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 9 

Abstract: Uptake of diagnostic and therapeutic oligonucleotides that specifically target 10 

disease can be enhanced by attachment of a cell penetrating peptide. Here we describe the 11 

covalent attachment of an oligonucleotide to Tat, a biologically important cell-penetrating 12 

peptide, via click chemistry. 13 

Keywords: oligonucleotide peptide conjugates, Tat peptide, click chemistry. 14 

 15 

Detection and treatment of disease on a cellular level using oligonucleotides is an elegant 16 

strategy with high specificity and low toxicity.1 Delivery of a nucleic acid sequence into the 17 

cell, however, is made difficult by the efficiency of the cell itself. The plasma membrane is a 18 

highly effective barrier with a net negative charge, repelling the phosphate backbone of 19 

oligonucleotides.2 Attachment of cell-penetrating peptides (CPPs) to oligonucleotides is well 20 

documented and has been found to facilitate transfection and enhance resistance to 21 

degradation of nucleic sequences.3-9 The conflicting chemistries of peptide and 22 

oligonucleotide synthesis make in-line conjugation challenging. Total solid-phase synthesis is 23 

overcoming these problems, however, the method is not very flexible.10 Synthesising the two 24 

biomolecules and linking them in solution (fragment conjugation) avoids these problems but 25 

can be labour intenstive, time-consuming and can generate poor yields. Tat peptide, derived 26 

from HIV-1 Tat protein, is a cell-penetrating peptide of biological interest due to its widely 27 

reported success in transporting various cargoes into cells.11-15 Tat peptide, however, is 28 

notoriously difficult to handle, often precipitating out of reaction mixtures.16-17 Whilst Gogoi 29 

et al. have produced oligonucleotide peptide conjugates (OPCs) using click chemistry,18 we 30 
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provide the first report of an oligonucleotide Tat peptide conjugate via the copper-catalysed 31 

azide alkyne cycloaddition (CuAAC). In addition, we have used highly denaturing conditions 32 

to ensure that the biomolecules come together covalently rather than electrostatically. 33 

Copper-catalysed azide alkyne cycloaddition reactions are chemoselective, fast and form only 34 

one stereoisomer, with an irreversible linkage, under ambient conditions.19 The mild 35 

conditions of this reaction have previously been applied to modify oligonucleotides,20-21 to 36 

functionalise nanoparticles with enzymes,22  and in fluorescent-labeling of cellular systems.23  
37 

A series of modified oligonucleotides as precursors for OPC formation under click chemistry 38 

conditions were synthesised. The alkyne could be added to either the peptide or the 39 

oligonucleotide as could the azide group, and both scenarios were examined. To produce a 540-މ 

alkynyl modified oligonucleotide, 5-hexyn-1-ol was phosphitylated and incorporated into the 41 

 end of the DNA sequence via solid phase synthesis. Conversely, a direct phosphoramidite 42-މ5

derivative of the azido function is not possible due to the reactivity of this group with 43 

phosphines, i.e. via the Staudinger reaction. To overcome this and to produce an azido-44 

modified oligonucleotide, succinimidyl azidovalerate was synthesised and reacted with an 45 

amino-modified solid support (Scheme 1). The Fmoc protecting group was removed using a 46 

piperidine solution and the free amine was reacted with the activated ester before being used 47 

with standard phosphoramidite chemistry to yield a 3މ-azido-modified oligonucleotide. 48 

In a similar approach, a 5މ-azido-modified oligonucleotide was produced using a two-step 49 

process: 5މ-monomethoxytrityl (MMT) aminomodifier phosphoramidite was used to modify 50 

the 5މ-end of the oligonucleotide with a protected amine group. Removal of the MMT 51 

protecting group allowed the free amine to react with succinimidyl azidovalerate to generate 52 

a 5މ-azido-modified oligonucleotide. The modified sequences were cleaved, purified and 53 

characterized by MALDI-TOF mass spectrometry (Table 1). 54 

Azide-modified Tat peptide was synthesised by reaction of the N-terminus of the peptide 55 

with succinimidyl azidovalerate. Propiolic acid was coupled to the N-terminus of Tat peptide 56 

to form an amide bond which gave the alkyne-modified peptide. Conjugation of the 557-މ 

alkyne-modified oligonucleotide with the azido-modified Tat peptide derivative 58 

(YGRKKRRQRRR) and the 5މ- and 3މ-azido-modified oligonucleotides with alkyne-modified 59 

Tat peptide was carried out using the reaction conditions as recommended by Kolcălka et 60 

al.24 This included tris(benzyltriazolylmethyl)amine (TBTA), an additional ligand which has 61 

been shown to stabilise Cu(I) and accelerate the reaction (Scheme 2).25 An aliquot of 62 



formamide was added to ensure the covalent attachment of the biomolecules and prevent 63 

them coming together electrostatically.17 Each solution was agitated at room temperature 64 

overnight.  65 

Ion-exchange HPLC analysis of the reaction between the 3މ-azido-modified 66 

oligonucleotide and the alkyne-modified peptide showed the formation of a new peak 67 

with a shorter retention time than that of the unconjugated oligonucleotide (Figure 1).  68 

 69 

The OPC is overall less negatively charged in comparison to the unconjugated 70 

oligonucleotide as the ionic charges are negated due to the positively charged peptide. 71 

The peak appearing at approximately 11 minutes, thought to be the OPC product, was 72 

collected, dialysed to remove remaining formamide and further purified using ZipTip™ 73 

C18 pipette tips. Formation of the OPC was confirmed by MALDI-TOF mass 74 

spectrometry in positive mode (Table 1). Based on peak ratios, the conjugate was formed 75 

in 56% yield. 76 

All conjugation reactions described were carried out under argon atmospheres to prevent 77 

breakdown of the copper catalyst. It was subsequently found, however, that this made no 78 

difference to the outcome of the reactions. The arginine side chain is known to stabilise 79 

Cu(I) which may prevent the anticipated oligonucleotide degradation negating the need 80 

for an inert atmosphere.26 81 

No OPC peak was observed for the synthesis of the 5މ-azido-modified or 5މ-alkyne-modified 82 

oligonucleotide-Tat peptide conjugates. It is not fully understood why the reaction between 83 

 azido-modified oligonucleotide and alkyne-modified Tat peptide did not proceed, however 84-މ5

successful formation of oligonucleotide-Tat peptide conjugates may require an activated 85 

alkyne which was present during the formation of OPC 1.27 The amino acid side chains of the 86 

peptide can have a significant effect on the reaction outcome and underlines the difficulty in 87 

using biologically relevant peptides such as Tat.   88 

In conclusion, a series of modified oligonucleotides as precursors for CuAAC synthesis of 89 

OPCs were generated, however, OPC formation was only observed upon reaction with 390-މ 

azido-modified oligonucleotide and alkyne-modified Tat peptide. This is the first report of 91 

the preparation of an OPC via CuAAC using Tat. The reaction proceeds under aerobic 92 

conditions, at room temperature, in water to reportedly form one stereosiomer.19,28 These are 93 

attractive properties in the development of biological tools for diagnostics and therapeutics. 94 
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 137 

Scheme 1.  (i) 20% piperidine in MeCN; (ii) concentrated NH4OH. *Indicates a chiral centre. 138 

 139 

 140 

Scheme 2. (i) TBTA, sodium ascorbate, CuSO4, formamide, phosphate buffer, 56 %.  141 

 142 

 Calc’d  m/z Found m/z 

   

X=  

5643.4 5642.2 

Y =     
5785.3 5782.9 

X =    
5740.1 5739.4 

1 7396.0 7399.2 



Table 1. MALDI-TOF mass spectrometric characterisation of modified oligonucleotides,   143 

5’-X-GTT TTC CCA GTC ACG ACG-Y-3’ and oligonucleotide-Tat peptide conjugate 1. 144 

 145 

Figure. 1 Ion-exchange HPLC traces at 260 nm of 3’-azido-modified oligonucleotide-146 

Tat OPC (solid line) and control (dashed line): (i) unreacted catalyst mixture, (ii) OPC, (iii) 147 

unreacted oligonucleotide.  The control contained all the (TBTA, CuSO4, sodium ascorbate, 148 

3’-azido-modified oligonucleotide, formamide, phosphate buffer) but not the Tat peptide. 149 


