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Supporting high penetrations of renewable 
generation via implementation of real-time 
electricity pricing and demand response 

 

A.J. Roscoe and G. Ault 

 

Abstract:  
The rollout of smart meters raises the prospect that domestic customer electrical demand 

can be responsive to changes in supply capacity. Such responsive demand will become 

increasingly relevant in electrical power systems, as the proportion of weather-dependent 

renewable generation increases, due to the difficulty and expense of storing electrical 

energy. One method of providing response is to allow direct control of customer devices by 

network operators, as in the UK “Economy 7” and “White Meter” schemes used to control 

domestic electrical heating. However, such direct control is much less acceptable for loads 

such as washing machines, lighting and televisions. This paper instead examines the use of 

real-time pricing of electricity in the domestic sector. This allows customers to be flexible 

but, importantly, to retain overall control. This paper presents a simulation methodology 

for highlighting the potential effects of, and possible problems with, a national 

implementation of real-time pricing in the UK domestic electricity market. This is done by 

disaggregating domestic load profiles and then simulating price-based elastic and 

load-shifting responses. Analysis of a future UK scenario with 15GW wind penetration 

shows that during low-wind events, UK peak demand could be reduced by 8-11GW. This 

could remove the requirement for 8-11GW of standby generation with a capital cost of 

£2.6 to £3.6 billion. Recommended further work is the investigation of improved 

demand-forecasting and the price-setting strategies. This is a fine balance between giving 

customers access to plentiful, cheap energy when it is available, but increasing prices just 

enough to reduce demand to meet the supply capacity when this capacity is limited. 
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1 Introduction 

In 2008, the UK government set a target for a CO2 emission reduction of 80% by 2050, 

relative to the 1990 baseline [1]. One of the major requirements will be a large increase in 

the quantity and proportion of electricity generated from variable renewable sources, such 

as wind, wave, tidal and solar power. Although the variability of renewable resources can 

be mitigated by aggregating generation over large areas [2],[3],[4], the potential for 

mid-winter low-wind, low-temperature, events still exists. For example, [2] reports that 

50% of UK wind turbines might experience low-wind (zero output) events coincidentally, 

for 100 hours per year on average. During such times, if demand was inflexible, the 

electrical power system would need to be balanced using only a combination of operating 

reserve (standby generation), imports via international interconnectors,  and storage 

capacity [4],[5],[6],[7],[8].  The capacity factor of standby generation is low [4], making it 

unattractive from financial and efficiency standpoints, while electrical storage schemes 

are difficult, expensive or inefficient to realise at the required scales [9],[10]. Currently, 

UK pumped storage schemes allow 27 GWh to be stored, while requirements in 2050 may 

be of the order of 1200 GWh [11]. 

 

These balancing requirements can be reduced by allowing flexibility in demand. This could 

be achieved via centralised control of domestic appliances. However, [12] reports that 

customers would want the ability to reject the control action for a fiscal penalty, but 

would expect a fiscal reward for compliance. Such a scheme can be much more simply 

implemented by issuing price-based signals and allowing customers to respond as they see 

fit [13]. For a few large industrial and commercial consumers, such real-time pricing 

options are already available [14]. However, for domestic customers such schemes have 

only existed as limited implementations or small-to-medium scale trials, for example 

[15],[16],[17],[18],[19],[20]. These trials have often involved time-of-use tariffs which are 

not truly real-time, but which offer preset daily price fluctuations or definition of a 

number of preset daily price profiles which can be enforced with reasonable notice. For 

example, [15] used “blue”, “white” and “red” days, and the tariff decision was 
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communicated to customers by 8pm the previous evening. To date, the problems with 

rolling out such schemes on a nationwide scale include: 

 transmitting the prices to the customers 

 enabling customers to respond effectively 

 metering and billing 

However, the UK government now has a target of installing smart meters in every home by 

2020 [21], which largely solves these problems. Similar large-scale rollouts of 

smart-meters are occurring in other countries [22]. 

 

It has been recognised that, in addition to the meter itself, a visible real-time 

information/control panel is required, both to encourage general energy reduction [23], 

and to allow price-based responses. Some of these responses will require the customer to 

see the panel and consciously react in real time, but some responses such as load-shifting 

may be automated by the panel/controller or smart appliances, as allowed by the 

customer and how he/she wants to react to varying prices. 

 

Although the costs of implementing price-based demand response compare favourably with 

the costs of alternative balancing measures [24], and the results of several trials are 

known [15-20], large questions still remain regarding real-time or flexible-tariff pricing, 

especially if such schemes were made available to a nationwide domestic market. There 

are communication and data management challenges which should be largely overcome 

during the imminent smart-meter rollouts, and also significant socio-economic challenges 

concerning tariff options and their acceptability to consumers including those within fuel 

poverty [12]. This paper does not seek to solve these problems, but focuses instead on: 

1) assessing the likely financial benefits of such tariffs, both for consumers and the 

power network in general, through reduced peak demands and availability of 

cheaper energy during off-peak periods … 

2) and predicting the possible problems with implementing real-time pricing, by 

examining the difficulty in predicting demand and setting prices in an environment 
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where price and demand are co-dependent. 

More specifically, the following questions are posed: 

 What levels of national demand reduction would be achievable, and over what 

timeframes? 

 How could demand be forecast, if it is responsive to price? 

 What variation in prices would be required, and how could prices be set? 

 Would customers perceive the tariffs as better value (or more preferable) than the 

fixed-price alternative? 

 

The analysis presented in this paper aims to provide an insight to these questions, by 

taking known national data and extrapolating from existing small-scale trial data. In this 

way, potential problems with a national rollout can be highlighted before they are met in 

reality. A time-domain simulation architecture is presented which allows likely domestic 

customer response to be modelled at a national scale, when exposed to real-time prices of 

electricity. The results of such a forward-looking simulation will always only be a guide, 

due to the limited nature of the known data and the variability in future scenarios. Thus, 

the approach is to implement a simulation to an appropriate resolution, to highlight 

approximate likely responses, and to highlight major issues which may arise due to 

price-setting strategies or customer response modes.  

1.1 Simulation process 

 

To simulate the effects of real-time pricing, the following process is followed, which is 

described in sections 2-5: 

 A set of generic disaggregated domestic load profiles are generated, with different 

weekly profiles for different load types (e.g lighting, washing machines, fridges 

etc.), averaged across all households.  In this paper we have concentrated on 

presenting an analysis based upon present profiles of UK electricity consumption, 

although input data could be modified to represent other future scenarios.  
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 A “baseline” simulation is run, using these profiles in a fixed price environment. 

 A “demand response” simulation is run, during which price is varied due to 

forecasts of demand and generation, and customer loads vary via elastic (section 

4) and load-shifting (section 5) mechanisms. 

 

An important part of the model is that load-shifting is simulated discretely over many 

households. This is important, since such load-shifting may be controlled automatically by 

panels or smart appliances as described above. Thus, there is the potential for either 

diverse or correlation action, depending upon the difference or similarity with which the 

automated actions are configured. The model includes algorithms for predicting demand, 

generation, and in particular, the setting of price. These algorithms are relatively simple 

at present, but could be substituted for more intelligent algorithms as they are developed.  

 

In this paper we have concentrated on presenting an analysis which uses present rates of 

UK electricity consumption as a baseline. Case studies 1 and 2 examine how the UK 

demand profiles might be modified from this baseline, with a high penetration of wind 

power, if prices varied in real-time.  

 

2 Disaggregation of baseline load profiles 

Examples of typical UK aggregate load profiles can be obtained from [25]. However, this 

gives no indication of the contributions from different sectors. Disaggregated UK annual 

energy consumption data can be obtained from [26],[27] which provides data split into 

sectors such as industrial, commercial and domestic. The domestic data is also further 

split into different load types (Table 1). However, this disaggregated data contains no 

time-domain information. To gather such information is a difficult task [28], and does not 

lend itself to modelling future scenarios. Therefore, to create a flexible simulation of 

appropriate resolution, the shapes of the disaggregated load profiles, in a baseline 

environment of fixed-prices, are estimated over a 7-day period, accounting for likely 

human/load behaviour due to the time of day and the differences at weekends. The 
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profile shapes are transformed into magnitudes, by matching the energy use for each 

appliance type per over a whole year with the published figures in [26],[27].  For lighting 

and space-heating load types, the demand profile magnitudes are additionally correlated 

in time to an input weather data set [29], which links the lighting and heating use to 

temperature and light levels. The resulting disaggregated profiles are baseline profiles, at 

fixed prices. In this paper, the baseline price is set at 12.5p/kWh (£125/MWh), 

representing present/imminent energy prices, concurrent with the data of Table 1. 

 

Examples of 3 of the disaggregated load profiles, and the total domestic load profile, are 

shown in Fig. 1, for a typical late-winter weekday. When the total domestic load profile is 

added to the commercial and industrial load profiles from the same day, a typical result is 

shown on Fig. 2. There is reasonable agreement between both the magnitude and shape of 

the synthesised profile compared to actual UK demand data [25]. This indicates that the 

described method for disaggregating and then recombining the load profiles is accurate, to 

an appropriate resolution. 

3 Simulating demand elasticity 

Given a demand elasticity E for a given product, the level of demand D can be calculated 

for a given price P, based upon a reference demand and price (D0, P0), by the formula for 

arc elasticity (1) [30]. Note that E is usually negative. 
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The level of demand D can thus be calculated by (2), which is derived directly from (1). 
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Load types which are purely elastic (i.e. which have no potential for load-shifting), can be 
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simulated by simply taking the baseline (fixed price) load profiles from section 2, and 

modifying the magnitudes/shapes by (2), using the real-time price signal, which will be 

determined in section 5. In general, elastic response of demand is caused by conscious 

(and not automated) customer responses to price. 

4 Simulating domestic load shifting 

Customers can also respond to fluctuating prices by load shifting certain types of domestic 

load. Lighting, cooking and brown appliances are less suitable load types to be shifted, but 

wet loads could easily be shifted, by allowing appliances to execute their run cycles at any 

sensible times of low prices, before the clean items are required. Cold appliances can also 

be used to load-shift with the constraint that temperatures be maintained within 

allowable bounds.  

 

Simulating load-shifting with appropriate resolution is much more complex than simulating 

elastic behaviour. The approach taken here is to simulate a large number of discrete 

households individually, using quantised, shiftable load events. Events are described by 

the typical power and duration. For example, cold events have a typical power of 150W 

and a duration of 0.5 hours. This simulates a fridge running on a duty cycle; switching on 

in half-hour bursts and switching off for a period. For wet events, the nominal power is 

typically 2kW, with a duration of 1 hour, simulating a 2kWh wash or dry cycle. Thus, for 

individual simulated houses, the wet and water load-types lead to demand spikes, while 

the cold load type will be more consistent on a fairly steady duty cycle [28]. Only when 

many houses are simulated and the demands aggregated is a smooth load curve obtained. 

 

Within each household, the probability of events starting during each half-hour period in 

the baseline simulation is proportional to the shape of the baseline disaggregated demand 

profile for each particular load type; i.e. more washing machine cycles will start when the 

wet demand is at its peak than at its minimum. Also, the probability of events starting 

during each half-hour period is inversely proportional to the energy use per event; i.e. 

fewer washing machine cycles are required to create the demand profile if each machine 
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cycle uses more energy. Given the probability of event starts against time, the simulated 

event starts can be placed by using Poisson distributions for each household, for each 

shiftable load type, at every time period. The cumulative probability of having m or less 

event starts in each period is given by: 
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where P(k) is the probability of k event starts occurring during each time period, and np is 

the average number of event starts expected during each time interval. The number of the 

simulated event starts m can be placed for each house, for each shiftable load type, in 

each period, by choosing a uniform random number r between 0 and 1, and then 

evaluating P(m) successively with m starting at 0 and rising incrementally until P(m) is 

larger than r. 

 

In the demand-response simulation, for load types which can be shifted, the elasticity 

model (2) is first applied to each different load type at each time period. In this case, the 

number of event starts for each load type at each time for each household is adjusted up 

or down by quantised integer amounts using a modification to the process described by 

equation (3). Next, the event starts can be shifted using simulations of the automatic 

smart meter/controllers/appliances. This allows loads to be shifted without the user 

needing to be present or awake. Every customer’s smart meter/controller receives the 

same rolling 24-hour (48 period) advance price forecast (see section 5). The controllers 

form an opinion of average price Pavg by taking the rolling stream of billed prices, and 

passing this through a low-pass (exponentially decaying) filter with an exponential 

“half-life” of 7 days. This is implemented as a simple digital filter, having 48 timesteps per 

day, with the transfer function: 
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Thus, the (unitless) relative price index R = P/Pavg at each time period gives a relative 
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measure of the expense of buying electricity.  Each household can set their own 

personalised value of Rshift, a unitless relative threshold against which R is checked. When R 

rises above Rshift, the controller, having access to the 24-hour (provisional) price forecast, 

will attempt to re-schedule the load for the period with the lowest forecast price within 

an allowable future timeframe. The controller also allows for “critical peak” load shifting 

which can occur only when R rises above a higher threshold Rcritical. This can be used to 

trigger loads such as fridges to be shifted during very high price periods, without shifting 

them during normal day-to-day price fluctuations. 

5 Forecasting and price-setting 

In the UK, a rolling demand forecast is provided by the system operator, with a 48 hour (96 

trading period) look-ahead. The existing algorithms for this forecast are not available in 

the public domain. Additionally, such existing algorithms do not need to (and are not 

designed to) take account of the effects of real-time prices to which significant 

proportions of the population can react. These prices are themselves dependent upon 

demand, and so price and demand become co-dependent Therefore, for the purposes of 

this paper, a new but simple demand forecasting model has been created. This “learns” 

from previous demand trends over 15 days, and provides a demand forecast up to 24 hours 

(48 periods) in advance. The algorithm (Fig. 3) first uses a linear regression to find the 

mean and slope of the past demand data. This mean and slope is subtracted from the data 

to leave a residual dataset. Next, a Fourier analysis of the residual dataset is used to find 

the 5 largest harmonic components of the underlying demand. Such a process is similar to 

that used for forecasting tide heights, developed by Thomson and Doodson in the 1860’s to 

1920’s [31]. Typically, this finds components with periods of 7 days (weekly variations), 1 

day (daily cycle fundamental), and integer fractions of days (defining the shape of the 

daily profile). The mean, slope, and harmonic components can be projected into the 

future to provide a simplistic but believable demand forecast, of sufficient accuracy for 

basic modelling. To account for short-term weather effects and demand elasticity, the 

forecast must also be adjusted. This is achieved as shown in Fig. 3, using the measured 

errors in the forecasts from the previous N periods, times a gain factor k. Setting N=1 can 
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lead to large oscillating fluctuations in demand forecast, price and actual demand, via the 

feedback loop formed by an elastic demand. In this paper, N has been set to 2, and k to 

0.5. Within this paper, for simplicity, the forecast of available generation (supply) 

capacity is produced using the same algorithm. In reality, knowledge of generation 

availability and weather forecasting would be used to create a more accurate forecast. 

 

The real-time price to be passed to consumers is determined from the forecasts of supply 

and demand. As demand approaches the supply capacity, the price must rise: both to 

represent the marginal cost of the peak-lopping generating units which may need to be 

brought on-line, and also to signal a change in elastic demand. 

 

Pricing of electricity at the wholesale level is a complex process. In future, the real-time 

price sent as forecasts and applied to domestic customers may be derived from wholesale 

market prices, or it may need to be derived in a different fashion. In this paper, the 

real-time price sent to customers is determined by curves fitted to typical data from the 

UK balancing mechanism [25]. The system buy price (SBP) was tabulated against the actual 

system demand over 12 representative days during late spring 2008, which included times 

when demand approached the supply capacity (Fig. 4). The maximum recorded demand for 

England and Wales was ~44GW, with available capacity in the region of 50GW (deduced 

from a ~6GW “surplus” generation forecast from [25]).  However not all of the ~6GW 

surplus capacity would be available instantly and the effective spinning capacity over the 

timeframe of interest would be closer to 45GW.  The pricing model is a curve fitted to this 

data. The first step is to calculate a normalised value x, which rises to unity as demand 

approaches the supply capacity. 

cityeratorCapaBiggestGencitySupplyCapa

Demand
x


  (4) 

 

The factor x accounts for the capacity of the largest generator. When demand is close 

enough to the supply capacity that power must be purchased from the largest single 
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generator in order to avoid a shortfall, it becomes pivotal in the marketplace and price 

rises rapidly. The price curves can then be created using (5), where A, B and C are fitted 

coefficients, and P is the price in £/MWh. 

CAeP Bx   (5) 

 

Four candidate curves are shown on Fig. 4. The price curves are capped at 1000 £/MWh. 

The “Least squares fit” curve is technically the exponential curve fit with the lowest 

variance of error (2574 £2). However, this curve presents an almost flat price until a very 

sharp knee occurs at ≈42GW and then price rises extremely sharply. As will be shown later, 

such a high demand/price gradient is undesirable, since it creates a high gain and 

potential instability in the closed-loop “control” system of price and demand. The “Least 

squares fit” curve also does not pass on the cheapest prices to customers when they are 

available. The “low” curve offers low prices and has a low variance of error (3077 £2). It 

offers a better fit at lower demands, but does not increase prices enough in the critical 

region of ≈40GW (with capacity at ≈45GW) to stimulate demand changes. The “mid” level 

curve has a slightly higher error variance (3428 £2) but crucially offers a good compromise 

between low prices at low demands, and a steadily increasing price/demand slope as 

demand approaches supply capacity. The “high” level curve offers undesirably higher 

prices (fit error variance 8472 £2) but does have an even steadier price increase when 

demand approaches supply capacity. The benefit of this will be described later in section 

7. 

 

The real-time price charged to customers at the domestic level will be higher than that of 

the wholesale market system buy price. The overheads consist of a Distribution Use of 

System (DUoS) charge (nominally 8 £/MWh in the UK in 2000 [32]), a Transmission Use of 

System (TuOS) and service charges. In this paper a lumped figure of £20/MWh (2p/kWh) is 

added to customer real-time prices, accounting for these components. Even after this 

addition, the real-time price is usually cheaper than the 12.5p/kWh fixed price, but is 

occasionally much more expensive. 
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6 Case study 1; 15GW wind penetration, 
conservative elasticities in the domestic sector 
only 

Case study 1 is simulated using 1000 discrete households (scaled to represent demand from 

25 million UK houses) for a 6-week timeframe in the midwinter season. Generation 

capacity is set at 48GW thermal plus 15GW (peak) wind generation. This level of wind 

generation is large compared to 2009 levels (3.7GW [33]) but  small compared to the 43GW 

predicted in 2030 by [4]. In the simulation, the wind generation capacity at any time is 

determined by splitting the 15GW peak wind capacity into 1500 separate 10MW 

wind-farms. Each wind-farm uses the same single-location weather dataset  [29] used to 

determine the heating/lighting load profile magnitudes, however a random time offset 

between -24 and +24 hours is applied at each wind-farm. This creates a smearing effect to 

represent the geographical spread of wind-farms across the UK. Although total peak 

generation capacity is 63GW, enough for UK winter peak demand, during low-wind events 

the thermal generation capacity of 48GW is not adequate. Note that we have ignored 

transmission and distribution losses in this analysis, and that the generation capacities 

should be regarded as capacities available at the point of end user demand. The baseline 

simulation for this scenario (Fig. 5), which uses electrical demands at present levels, 

clearly shows times when daily peak demand surpasses capacity. 

 

In the demand-response simulation, the following changes are applied: 

 Conservative elasticities for domestic consumption as per Table 2. These elasticities 

represent conservative figures compared to claims made by many previous studies of 

elasticity estimates [16],[17],[19],[20],[34]. Commercial and industrial consumption is 

set to be inelastic which is artificial but allows case study 1 to show only the potential 

effects of the domestic sector response. 

 75% of consumers willing to load-shift wet appliance cycles, with the help of automated 

controllers/devices, by up to 12 hours, when R exceeds Rshift = 1.25. 100% of consumers 

are prepared to load-shift their wet appliances (by 12 hours) and cold appliances (by 3 

hours) when R exceeds Rcritical = 3. 
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 Pricing is set by the “mid” curve of Fig. 4 and the mechanism described in section 5. 

 

The effect of the demand response on overall demand is shown by the thick line on Fig. 5, 

which is driven by the prices passed to customers, shown in Fig. 6. The demand is reduced 

at times of highest prices. The only slight generation shortfall occurs in the late evening 

on day 23. The response of the most elastic load types during the 2 days of highest prices 

(Fig. 7) is shown on Fig. 8. The brown demand drops by up to 1.5GW, i.e. approx 15 million 

appliances at 100W each, or 0.6 appliances per household. The lighting demand also drops 

by up to 1.5GW, i.e. 60 million lights at 25W each, i.e. an average of 2½ 25W lights per 

household. 

 

The authors believe that such short-term lighting elasticity can arise because some (but 

not necessarily all) home-owners will react to high electricity prices and take extra care to 

turn off unnecessary lights during these times. Conversely, these same people, and others 

who normally take care to turn off unnecessary lighting, may be less thrifty when 

electricity is relatively cheap. This particularly applies to ambient (as opposed to 

functional) lighting, and lighting which, in winter, offsets domestic heating demand, 

particularly in households using any electrical heating devices. It is also expected that the 

average daily lighting demand of households may fall from that quoted in Table 1, due to 

the gradual changeover from tungsten/halogen to energy-saver or LED 

(light-emitting-diode) bulbs. However, the most recent 2009 data from DECC [35] shows 

that this transition is, to date, occurring only slowly, with the newer technology bulbs only 

responsible for 10.6% of the lighting energy use, and overall domestic lighting demand only 

reduced by 5% between 2000 and 2008. 

 

During the high prices, many wet load events are moved (Fig. 9). Between 09:30 and 21:30 

on day 23, up to 2GW of wet demand was removed. However, in this simulation, because 

all domestic controllers were given the same parameter settings and received the same 

price signal, all the shifted events were re-scheduled to the same forecast cheapest price 
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period, between 02:30 and 05:00 on day 24. This creates an undesirable, correlated, 8GW 

demand spike. The cold demand is normally a fairly static 2GW load. Due to the critical 

peak pricing signals (when R>3, see Fig. 7), the cold demand can be reduced by 2GW 

during many of these times (Fig. 10). The by-product is that the demand must be made up 

later, which can again result in correlated demand spikes, in this case up to 8GW caused 

by 3 previous periods of load shifting. This is again due to similarly configured controllers 

responding to the same price signal. 

 

The total demand reduction at peak times is approximately 8GW, made up predominantly 

of ~1.5GW (lights), ~1.5GW (brown), ~1GW (space-heating), ~2GW (wet load shifts), and 

~2GW (cold load shifts). The accuracy of these values for lights and brown is directly 

dependent upon the conservative elasticity values assumed in Table 2. If such elasticities 

are not achievable (or are higher than quoted), then the reductions will be proportionately 

different. The exact choice of pricing curve will also affect these values. For the peak 

reductions due to load shifts, the values depend mainly upon the assumed participation 

rates, and also require that smart appliances are installed. In this scenario, at critical peak 

prices, the participation rate is 100%. The peak demand reduction values of 2GW for wet 

and 2GW for cold can be shown to be of the right order by taking the average daily 

consumption values from Table 1 and scaling them to average UK demand in GW. This has 

been done in the right-hand column of Table 1. The figure for cold is a good match as one 

would expect. For wet, our simulation shows a higher peak reduction than the average UK 

wet demand, but this too is expected since at peak times there will be a natural tendency 

for wet demand to be higher than average. 

 

Case study 1 was also examined over a full annual period, to examine the overall changes 

in electrical energy demand, and electricity bills, between the baseline (fixed-price) and 

demand-response (real-time price) scenarios. To do this, the number of discrete houses 

modelled was reduced from 1000 to 100, to keep simulation durations and computer 

memory requirements within acceptable bounds. 
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Although the price to customers is fixed in this baseline simulation, the real-time price 

that would result can still be calculated due to the balance of supply and demand, as 

described in section 5. During the baseline simulation, over the year, the average market 

forecast price would have been 11.06 p/kWh (after the addition of overheads), making the 

actual customer flat-rate price of 12.5 p/kWh profitable (1.44 p/kWh hedging profit) for 

the UK electricity providers. This shows that the assumed flat-rate price of 12.5 p/kWh 

and the pricing model of section 5 are consistent with one another. 

 

The results of the annual simulation are summarised in Table 3 and Table 4. Notably, in 

the presence of real-time prices, customers are able to use more electrical energy over 

the year, but to pay less for it. Table 3 shows that the average daily household electrical 

demand rose from 12.8 kWh to 13.75 kWh (+7.4%), while saving £103 (-18%) at the same 

time. The magnitude of the average bill reduction arises from two contributing factors. 

Firstly, the energy providers no longer take a hedging profit of 1.44 p/kWh on each of the 

~4750 kWh that each household uses each year (£0.0144*4750=£68.40). Secondly, because 

demand reduces when generation is limited, the average market prices are lower than 

they are in the baseline (fixed price) simulation. The combination of these two effects 

leads to the average household saving of £103. Table 3 also shows how the actual energy 

use and bill reductions vary between different types of household. In the case of 

households with electric water and space heating, note that in the baseline simulation, 

the effects of legacy pricing schemes such as Economy 7 and White Meter have not been 

included, which would reduce the baseline costs. Table 4 provides a further breakdown of 

the effects of implementing real-time prices, for 4 of the appliance types. 

7 Case study 2; larger elasticities, non-domestic 
response, and lowered thermal generation 
capacity 

Case study 2 is based upon case study 1, but uses more optimistic elasticity figures for 

domestic demand (Table 2) and also includes conservative elasticities of -0.1 for the 
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commercial and industrial sectors to illustrate the combined effect of all consumers. This 

enables thermal generation capacity to be reduced from 48GW to 45GW. An example of 

the response is shown in Fig. 11. The total demand reduction at peak times is 

approximately 11GW. Of note, however are the beginnings of large high-frequency 

oscillations in the pricing signals (Fig. 12) which subsequently affect demand with a 

rippling effect. This is caused by the high gain (elasticity) of the customer response to 

half-hourly price changes, combined with the steep gradient of the “mid” price curve (Fig. 

4), and the primitive nature of the forecasting and price-setting algorithms employed 

during these simulations. The oscillations (for a given level of elasticity) can be reduced by 

either of the following actions which re-stabilise the “control loop” formed by pricing 

control and customer response: 

 More intelligent forecasting/pricing algorithms 

 Reduction of the gradient of the price curve, for example to the “high” price 

curve shown on Fig. 4. This lowers the gain of the feedback system. There are two 

significant drawbacks to this solution. The first is that the price given to customers 

is higher than it needs to be when demand is low. The second is that the price 

gradient may not be high enough to create enough elastic response when demand 

approaches the supply capacity.  

8 Conclusions and further work 

In the case studies presented, the results show that a demand reduction of between 8GW 

and 11GW at times of peak demand and low-wind could be achieved in the UK, due to 

elasticity and load-shifting. This is significant, since this would remove the requirement 

for 8-11GW of thermal standby generation or storage.  The capital cost of such generation 

is estimated at £331/kW [36], and for storage is even higher [9],[10]. Thus, the value of 

the implementation of real-time pricing would be at least £2.6 to £3.6 billion. The actual 

value will be higher due to the recurring reduction in standby/storage operating costs 

(approx £418m p.a. for 6.5GW [3], but potentially lower for low-maintenance storage 

schemes with high round-trip efficiency). Thus, over a 10-year timeframe, the offset cost 

of standby generation could be £7 to £11 billion, or around £300-400 for each of the 25 
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million UK households. This benefit could be used to justify the expense of installing and 

operating the smart meters. The total value (and viable cost) of smart meters will be even 

higher than this figure since they bring additional functionality such as automated meter 

readings and instrumentation capability in a smart grid context. 

 

The case studies suggest that many customers will perceive the real-time pricing tariffs as 

better value than the fixed-price tariffs, since, on average, simulated customers on 

real-time pricing tariffs manage to use more energy, but by spending less. This also 

highlights one reason why electricity suppliers may be reluctant to initially offer such 

tariffs, since their hedging profits will be reduced. 

 

The case studies also highlight three significant problems which would need to be 

addressed before a nationwide rollout of real-time pricing could occur. Firstly, as 

previously described in [37], more intelligent demand-forecasting algorithms are required 

and questions about the responsibility and cost for providing this remain. These will 

probably need to be adaptive algorithms, and must learn to account for the changes in 

demand which occur due to price changes, as well as the time/date and weather 

conditions. Secondly, price must be set appropriately. This is a fine balance between 

giving customers access to plentiful, cheap energy when it is available, but increasing 

prices just enough to reduce demand to meet the supply capacity when this capacity is 

limited. Increasing the price too far both penalises customer unnecessarily and can cause a 

larger demand reduction than is required. In the extreme, this can lead to an oscillating 

demand/price cycle. The algorithms to set price and forecast demand may need to be 

integrated, since price and demand will be co-dependent. 

 

Thirdly, if automated energy display panels or smart appliances are used within households 

to implement load-shifting, then the possibility exists for all households to correlate their 

re-scheduled loads to the same times, causing a new demand spike where one otherwise 

would not have existed. This is especially true if all households use controllers of 
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appliances which contain similar algorithms and use similar default parameters, and 

receive the same price signals. Ways to mitigate such unwanted behaviour could be: 

 Issuing different prices to different customers. A range of tariffs could accomplish 

this. Prices could also be location-based, as suggested by [37] [38], both to reduce 

nationally correlated demand spikes, and to assist in power flow constraint 

management. 

 Use of low-end caps on real-time prices, so that no single price period is the 

cheapest. 

 Automated control systems or smart appliances could, by law, be required to 

contain some degree of randomisation in timing and/or default parameter 

settings, so that even without customer intervention, some diversity of response 

will occur. 

 

In the future, electric heating (possibly using ground-source or air-source heat pumps) may 

become financially competitive with heating from natural gas. Electric vehicles may also 

become commonplace, with complex charging (and possibly storage-related) profiles 

[3],[39],[40]. Domestic generation may become significant. The simulation architecture 

described in this paper could be extended to analyse the potential effects of these 

high-impact changes to future domestic electricity demand, and interactions with 

real-time prices.  
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10 Figures & Tables 

 

Type Meaning 

Percentage of 
all households 
with electrical 

load types 

Average electrical 
demand 

kWh/house/day  
(all households) 

Average electrical 
demand 

kWh/house/day 
(households 
without gas) 

Approx. 
average UK 

electrical 
demand (GW) 
For 25 million 
households 

Lighting Electric lights 100.0% 2.0 2.0 2.1 

Cold Fridges, freezers 100.0% 1.9 1.9 2.0 

Cooking 
Electric hobs and 

ovens 
60.0% 1.1 1.8 

1.1 

Brown 
Consumer electronics 

(e.g. TVs) 
and home computing 

100.0% 2.9 2.9 
3.0 

Wet 
Washing machines, 
tumble dryers, and 

dishwashers 
 100.0% 1.4 1.4 

1.5 

Space Heat Electric space heating 15.0% 2.5 16.9 2.6 

Water Electric water heating 15.0% 1.5 10.1 1.5 

Total 
domestic 

- - 13.3 37.0 
13.8 

Commercial - - 10.7 - 11.1 

Industrial - - 12.2 - 12.7 

Table 1   Average demand of load types, scaled to per-household, per-day amounts 
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Fig. 1   Example of disaggregated UK domestic load profiles for a late winter weekday 
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Fig. 2   Example of total UK load profiles for a late winter weekday 

 

 

Fig. 3   Demand forecasting algorithm, executed every period 
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Fig. 4   Price model, based upon System Buy Price (SBP) data, capacity ≈45GW 
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Load type 

Conservative 
elasticity 

(Case study 1) 

Optimistic 
elasticity 

(Case study 2) 

Brown -0.5 -1.0 

Cooking -0.1 -0.2 

Lights -0.5 -1.0 

Wet -0.1 -0.2 

Cold 0 0 

Water -0.1 -0.2 

Spaceheat -0.1 -0.2 

(Commercial) 0 -0.1 

(Industrial) 0 -0.1 

Table 2   Potential elasticities of disaggregated load types 
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Fig. 5   Case study 1 overview; 16 days (Monday-Tuesday) shown  
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Fig. 6   Case study 1; pricing 
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Fig. 7   Case study 1; pricing during days of high prices 
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Fig. 8   Case study 1; elastic loads (brown and lighting) during days of high prices 
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Fig. 9   Case study 1; load shifting of “wet” appliances 
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Fig. 10   Case study 1; load shifting of cold appliances due to critical peak pricing (R>3) 
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Demand average 

kWh/day 

Cost (pence per kWh) 
average to the 

customer 
Total annual bill 

Bill reduction 

 Baseline 
Demand 
Response 

Baseline 
Demand 
Response 

Baseline 
Demand 
Response 

Total domestic 12.80 13.75 12.50 9.60 £584 £481 £103 

Houses using gas for 
heating and cooking, 
without wet shifting 

8.26 9.10 12.50 9.64 £377 £320 £57 

Houses using gas for 
heating and cooking, 

with wet shifting 
8.35 9.19 12.50 9.26 £381 £311 £70 

Houses using 
electricity for 

heating and cooking, 
without wet shifting 

39.61 41.10 12.50 9.97 £1807 £1495 £312 

Houses using 
electricity for 

heating and cooking, 
with wet shifting 

39.42 40.87 12.50 9.85 £1799 £1469 £330 

Table 3   Benefits of applying real-time prices to customers 

 

 

Daily usage 
increase 

kWh 

Average annual bill reduction, per household 

Brown 0.47 £15.76 

Lights 0.34 £11.10 

Wet 0.04 £18.11 

Cold 0 £20.39 

Table 4   Energy use changes (relative to Table 1) and bill reductions due to the 
application of real-time prices, for 4 appliance types 
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Fig. 11   Case study 2 overview; 16 days (Monday-Tuesday) shown 
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Fig. 12   Case study 2 pricing showing some short-term oscillations 

 

 


