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Abstract. We apply the wave-kinetic approach to study nonlinearly coupled

Rossby wave-zonal flow fluid turbulence in a two-dimensional rotating fluid.

Specifically, we consider for the first time nonlinear excitations of zonal flows

by a broad spectrum of Rossby wave turbulence. Short-wavelength Rossby

waves are described here as a fluid of quasi-particles, and are referred to as

the ‘Rossbyons’. It is shown that Reynolds stresses of Rossbyons can generate

large-scale zonal flows. The result should be useful in understanding the origin

of large-scale planetary and near-Earth atmospheric circulations. It also provides

an example of a turbulent wave background driving a coherent structure.
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1. Introduction

Although studies of fluid turbulence have been carried out over many decades, it is still one of

the most important and challenging problems in physics. It has stimulated a wide range of new

theoretical concepts [1, 2]. Its standard description involves the concept of an energy cascade

through the fluid perturbation scale length, flowing from the unstable region where turbulence

is generated to the dissipative region where it is absorbed. Direct and inverse cascades, from

lower to larger scale lengths, and the inverse, are usually invoked.

In this paper, we propose a new view on fluid turbulence, where a direct energy exchange

between large- and short-scale length perturbations is considered, without the need for any of the

usual energy cascades. This is directly inspired by our model for the plasma wave turbulence [3],

where short-scale oscillations of the medium provide an arbitrary turbulent spectrum as the

background for the excitation and absorption of large-scale turbulence. In the present model,

we describe the short-scale turbulence as a fluid of quasi-particles, described by an appropriate

wave kinetic equation. Exact and approximate wave kinetic equations have been derived [4] and

applied to many specific plasma physics situations. They include both electromagnetic [5]–[7],

and electrostatic plasma turbulence [8]–[10]. Of particular relevance is the case of zonal flows

in the presence of drift wave (or drifton) turbulence as explored recently by us [11], which has

been successfully applied to explain satellite observations in the magnetosphere [12].

In the following, we apply the wave kinetic description to the case of a rotating two-

dimensional fluid turbulence, where both large-scale zonal flows and short-scale Rossby waves

can coexist. They can both be described by the Charney equation [13], which also admits

vortex solutions [14, 15]. Nonlinear couplings between zonal flows and Rossby waves have

already been discussed in [16]. Our interest here is not to address the planetary atmospheric

turbulence in all its complexity, or to discuss the interesting relations between the well-known

beta-plane and rotating shallow water models [17, 18], but to propose a different approach to

fluid turbulence, and to illustrate it by a specific but physically relevant example. It should

also be noticed that successful two-dimensional models for plasma turbulence very similar to

Charney type equations for fluid turbulence have been established in the past [19, 20]. But here

we approach the two-dimensional fluid problem from the point of view of the wave kinetic

theory, which describes the short-scale Rossby waves as a fluid of quasi-particles (we refer

to them as the Rossbyons), and will allow us to consider an arbitrary Rossby wave turbulent

spectrum and to establish a clear and solid basis for comparison between the plasma and fluid

turbulences.
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We first show that a wave kinetic equation can be derived from the Charney equation. We

then derive a nonlinear dispersion relation for zonal flows, allowing us to describe the excitation

of zonal flows in a rotating fluid, due to the presence of a broad spectrum of Rossby waves (or

equivalently, an arbitrary distribution of Rossbyons). The particular example of a mono-kinetic

distribution, or a Rossbyon beam, is used to show that zonal flows can become unstable and

to derive the corresponding nonlinear growth rate. A Landau resonance is shown to exist in

the kinetic dispersion relation for the zonal flows. The role of such a resonance and the main

differences with respect to plasma turbulence will be discussed.

2. Basic equations

We start from the generalized Charney equation, which can describe the existence of both

Rossby waves and zonal flows in a two-dimensional fluid model of a rotating fluid. We have

[13, 15, 16]

(

1 − r 2
0∇

2
⊥

) ∂h

∂t
− v0

∂h

∂y
− U (h) = 0, (1)

where r0 and v0 are the Rossby radius and the Rossby velocity, respectively, as defined by

r0 =
1

�c

√

gH0, v0 = g
∂

∂x

(

H0

�c

)

. (2)

The total depth of the fluid is determined by H = H0 + h, where H0 is its equilibrium or

unperturbed value and h the wave amplitude perturbation. We have also used g, the acceleration

of gravity, and �c, the Coriolis frequency. In equation (1), we have introduced the potential

U (h) = r 2
0µ∇4

⊥ h − ǫ
(

ẑ × ∇h · ∇
)

∇2
⊥h, (3)

where µ is a kinematic fluid viscosity, ẑ the vertical unit vector, ∇⊥ the nabla operator in the

perpendicular plane and ǫ = g2 H0/�3
c the nonlinear coupling coefficient.

Let us now write h = h̃ + a, where h̃ represents the short-scale Rossby wave turbulence,

and a the large-scale zonal flows. From the Charney equation (1) we can then obtain a pair of

coupled equations, one describing the Rossby waves

(

1 − r 2
0∇

2
⊥

) ∂ h̃

∂t
− v0

∂ h̃

∂y
+ r 2

0µ∇4
⊥h̃ = J (h̃, a) + J (a, h̃) (4)

and another for zonal flows

(

1 − r 2
0∇

2
⊥

) ∂a

∂t
+ r 2

0µ∇4
⊥a = J (h̃, h̃), (5)

where we have defined the nonlinear terms generically as

J (a, b) = ǫ
(

ẑ × ∇a · ∇
)

∇2
⊥b, (6)

for arbitrary functions a and b. For Rossby waves of the form exp(i Ek · Er − iωt), and using the

linear approximation ǫ = 0, we can easily derive from equation (4), the dispersion relation

ω = −
1

1 + k2
⊥r 2

0

(

kyv0 + iµk4
⊥r 2

0

)

, (7)
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which exhibits the existence of wave damping, due to the fluid viscosity µ. Similarly, for zonal

flows oscillating in space and time as exp(i Eq · Er − i�t), we obtain from the linearized version of

equation (5), the dispersion relation

� ≡ −iŴ0, Ŵ0 = µ
q4

⊥r 2
0

1 + q2
⊥r 2

0

, (8)

which is a purely damped mode, with the damping rate also proportional to the kinematic fluid

viscosity.

The nonlinear properties of equations (4) and (5) will be discussed next.

3. The Rossbyon fluid

Let us consider a broad spectrum of short-wavelength Rossby wave turbulence, generically

described by the Fourier integral

h̃(Er , t) =

∫

h̃( Ek) exp
(

i Ek · Er − iωkt
) d Ek

(2π)3
, (9)

where ωk ≡ ω( Ek) is determined by the dispersion relation (7), and h̃( Ek) are slowly varying

spectral amplitudes. Replacing this in equation (4), and assuming that the low-frequency fluid

perturbations appearing in the nonlinear terms are simply described by a(Er , t) = a0 exp(i Eq · Er −
i�kt), we can derive the following evolution equation for the spectral amplitudes:

∂h

∂τ
− 2iµr 2

0 k2
⊥

(

Ek⊥ · ∇⊥

)

h = α−a0h− − α+a∗
0 h+, (10)

where we have used h ≡ h̃( Ek), to simplify, and defined the differential operator

∂

∂τ
=

(

1 + r 2
0 k2

⊥

) ∂

∂t
− v0

∂

∂y
. (11)

We have also defined h± ≡ h̃( Ek±), with Ek± = Ek ± Eq , and the new nonlinear coefficients are

determined by

a± = ǫ

[(

ẑ × Eq · Ek±

)

k2
±⊥ +

(

ẑ × Ek± · Eq
)

q2
⊥

]

. (12)

In the extreme case of infinitesimal wavelengths, such that |k| ≫ |q|, we can use the

approximation

h± = h ± Eq ·
∂h

∂ Ek
, (13)

which corresponds to taking the geometric optics approximation for short-wavelength (in

comparison with the Rossby radius) Rossby waves. Equation (11) can then be reduced to a

much simpler form as

∂h

∂τ
− i Eβ · ∇⊥h = Ah − B Eq ·

∂h

∂ Ek
, (14)

where we have assumed Eβ = 2µr 2
0 k2

⊥
Ek⊥, and defined new coefficients as

A = α−a0 − α+a∗
0 , B = α−a0 + α+a∗

0 . (15)
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Let us now define the Rossbyon occupation number, as N = |h|2, or more explicitly

N ( Ek) = |h̃( Ek)|2. The evolution equation for this new quantity can be derived from equation

(14), and takes the form

∂ N

∂τ
− i Eβ ·

[

h∗∇⊥h − h∇⊥h∗
]

= (A + A∗)N − B Eq ·
∂ N

∂ Ek
, (16)

where we have

(A + A∗) = −2ǫ(ẑ × Eq · Ek) Ek⊥ · Eq⊥(a0 + a∗
0). (17)

Equation (16) can be rewritten in a more compact and physically more appealing form by

noting that the term (A + A∗)N can be absorbed into the dispersion relation for the Rossbyons,

as a small correction term, due to the presence of zonal flows, in such a way that the real part of

the Rossbyon frequency becomes

ℜ(ω) = −
kyv0 − (A + A∗)

1 + k2
⊥r 2

0

. (18)

Of course, for infinitesimal values of the zonal flow amplitude a0, such a correction is

negligible and equation (7) can be used. On the other hand, it can be shown by using energy

conservation arguments (strictly valid in the absence of the nonlinear coupling ǫ) that the

dissipative term associated with Eβ leads to the decay of the occupation number as exp(−2γkt),

where γk = ℑ(ω) as determined by (7). We are then left with a kinetic equation for the Rossbyon

occupation number, which can be written in terms of the space and time variables y and t as
(

∂

∂t
− vy

∂

∂y
+ B Eq ·

∂

∂ Ek

)

N ( Ek) = −2γk N ( Ek). (19)

This will be our basic equation for the kinetic description of the Rossby wave turbulence. In

such an equation, it is obvious that B Eq describes a force acting on the Rossbyon quasi-particles,

due to the presence of zonal flows.

4. Dispersion relation

We now turn to the nonlinear evolution equation for zonal flows. Introducing the Rossbyon

occupation number in the nonlinear terms of equation (5), and using the quasi-optical

approximation for these quasi-particles (valid for |k| ≫ |q|), we can write

(

1 − r 2
0∇

2
⊥

) ∂a

∂t
+ r 2

0µ∇4
⊥a =

∫

ǫk N ( Ek)
d Ek

(2π)3
, (20)

with ǫk = ǫ[(ẑ × Eq · Ek) Ek2
⊥]. For perturbations of the form a = a0 exp(i Eq · Er − i�t) and N ( Ek) =

Nk0 + Ñk exp(i Eq · Er − i�t), where Nk0 is the unperturbed value, we obtain

a0 =
i

�(1 + r 2
0 q2

⊥) + ir 2
0µq4

⊥

∫

ǫk Ñ ( Ek)
d Ek

(2π)3
. (21)

On the other hand, the linearized form of the kinetic equation (19) allows us to write

Ñk = −iǫka0

Eq · ∂ Nk0/∂ Ek

(� + vyqy) + 2iγk

. (22)
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From these two equations, we can then derive the nonlinear dispersion relation for the zonal

flows in the presence of Rossbyon turbulence, in the following form:

�
(

1 + r 2
0 q2

⊥

)

+ ir 2
0µq4

⊥ −

∫

f ( Ek) Eq ·
∂ Nk0

∂ Ek

d Ek

(2π)3
= 0, (23)

with

f ( Ek) =
ǫ2

k

(� + vyqy) + 2iγk

. (24)

In the absence of the Rossby wave turbulence, this will of course reduce to the linear dispersion

relation (7). But, in the presence of the Rossby turbulence, this shows the occurrence of a

Landau resonance, which will be discussed below. Such a resonance is clearly recognized when

we neglect the wave damping term 2iγk . The singularity in the expression of f ( Ek), is then

determined by the equality

vy ≡ −
v0

(1 + r 2
0 k2

⊥)
= −

�

qy

, (25)

which corresponds to a situation where the velocity of the Rossbyon quasi-particle along y,

exactly matches the phase velocity of the zonal flow (−�/qy) along the same direction.

A completely new picture of the fluid turbulence emerges from here where, instead of the

occurrence of a (direct or indirect) energy cascade, we have a direct link between short- and

large-scale fluid perturbations, eventually mediated by a Landau resonance.

5. Beam-like instability

In order to understand the physical relevance of the above nonlinear dispersion relation for

the zonal flows, let us consider a simple but illustrative case. We assume an initial turbulent

distribution such that Nk0 = (2π)3 N0δ( Ek − Ek0). Equations (23) and (24) can then be reduced to

�
(

1 + r 2
0 q2

⊥

)

+ ir 2
0µq4

⊥ +
N0 Eq · Eg( Ek0)

(� + vyqy) + 2iγk

= 0, (26)

where

Eg( Ek) =
∂

∂ Ek

ǫ2
k

(1 + r 2
0 k2

⊥)
. (27)

The contribution from the nonlinear term is maximum for the case qy = 0 and � = iŴ. This

leads to

Ŵ = Ŵ0 +
N0 Eq · Eg( Ek0)

(Ŵ + 2γk)(1 + r 2
0 q2

⊥)
, (28)

where the first term corresponds to the linear damping rate of the zonal flow, as determined by

equation (8). Solving for Ŵ, we obtain

Ŵ = −
1

2
(Ŵ0 + 2γk)



1 ±

√

1 + N0

Eq · Eg( Ek0)

(Ŵ0 + 2γk)2(1 + r 2
0 q2

⊥)



 . (29)
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We see that the zonal flows can be destabilized by the short-scale Rossby wave turbulence,

as long as Eq · Eg( Ek0) > 0, therefore Ŵ > 0. In this case, and assuming that the linear terms are still

the dominant ones, we obtain an approximate expression for the growth rate

Ŵ ≃
N0

4

[ Eq · Eg( Ek0)]

(Ŵ0 + 2γk)2(1 + r 2
0 q2

⊥)
. (30)

From equation (27) we clearly see that such a situation can always occur, for a given range of

Eq , by noting that

Eq · Eg( Ek) =
Eq

(1 + r 2
0 k2

⊥)
·

[

∂ǫ2
k

∂ Ek
−

2r 2
0
Ek⊥

(1 + r 2
0 k2

⊥)

]

. (31)

If the second term is dominant, we only have to consider an adequate direction of Eq in order to

make the quantity (− Eq · Ek⊥) negative. Similarly, when the first term is dominant, we can always

find a spectral region of Eq such that Eq · (∂ǫ2
k /∂

Ek) is positive. In conclusion, we can say that the

zonal flows are always unstable in the presence of a beam of Rossbyons.

Finally, let us consider the possible occurrence of a Landau damping. We go back to the

nonlinear dispersion relation (23) and (24), and consider the case � = iŴ and qy = 0 as before,

but we now retain an arbitrary Rossbyon distribution Nk0. Accordingly, we obtain

Ŵ
(

1 + r 2
0 q2

⊥

)

+ r 2
0µq4

⊥ + Eq ·

∫

ǫ2
k

(1 + r 2
0 k2

⊥)

∂ Nk0/∂ Ek

Ŵ + 2γk

d Ek

(2π)3
= 0. (32)

As we see, the integral in the last term of the above equation can be split into its principal part

and the contribution from the pole, which corresponds to a given value of Ek such that γk = −Ŵ/2.

The principal part of the integral is real, and leads to the occurrence of a nonlinear contribution

to the zonal flow damping rate Ŵ, as already shown. On the other hand, the contribution from

the pole is imaginary, and leads to a very small correction to the real part of the frequency �.

We can therefore conclude that no Landau damping exists in this wave kinetic model of

a rotating viscous fluid. A Landau resonance still exists, but it only contributes to the real part

of the frequency. This results from the fact that the zonal flow is essentially a purely growing

mode, dominated by viscosity. This is in clear contrast with the plasma turbulence, where the

kinetic damping resulting from the Landau resonance can become the dominant process.

6. Discussion and conclusions

A new picture of fluid turbulence was explored here, where large-scale fluid perturbations are

considered in a background of short-scale turbulence. In our description, zonal flows were

studied in the presence of an arbitrary spectrum of Rossby waves, described as quasi-particles.

This means that we have assimilated this spectrum to a kinetic distribution of Rossbyons. A

kinetic equation for Rossbyons, valid in the limit of geometric optics, was derived. Nonlinear

coupling between the Rossbyons and the zonal flows (driven by Rossbyon fluid stresses) was

considered. A new dispersion relation was derived, which establishes a direct link between the

short- and large-scale fluid perturbations. No cascading process is involved. Using the particular

but physically relevant case of a mono-kinetic spectrum of Rossbyons, we have shown that zonal

flows can become unstable by a direct nonlinear coupling with Rossbyons, and approximate

expressions for the growth rates were derived.
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We have also examined the importance of Landau resonances. We have shown that,

contrary to plasma wave turbulence, Landau damping for nonlinearly coupled Rossbyons and

zonal flows cannot take place. A Landau resonance only leads to a small nonlinear contribution

to the zonal flow frequency �, which is purely imaginary in the linear case. Such a qualitative

difference between neutral fluid turbulence and plasma turbulence is due to the fact that in

the plasma case collisional damping and viscosity effects can be neglected in many important

physical situations, in contrast with the fluid turbulence, where a kinematic fluid viscosity is

always dominant. However, the present work will not allow us to conclude that Landau damping

is completely absent from fluid turbulence, as will be shown in a future work. We have therefore

been able to establish a clear theoretical link between the fluid and plasma turbulences, where

similar concepts, such as quasi-particles can be used, and where similarities and main qualitative

differences can be explicitly stated and the dominant physical processes can be understood. The

present results should be useful in understanding the origin of large-scale planetary and near-

Earth atmospheric circulations.
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