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Universality in Protein Residue Networks 
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ABSTRACT Residue networks representing 595 nonhomologous proteins are studied. These 

networks exhibit universal topological characteristics as they belong to the topological class 

of modular networks formed by several highly interconnected clusters separated by 

topological cavities. There are some networks which tend to deviate from this universality. 

These networks represent small-size proteins having less than 200 residues. We explain such 

differences in terms of the domain structure of these proteins. On the other hand, we find that 

the topological cavities characterizing proteins residue networks match very well with protein 

binding sites. We then investigate the effect of the cutoff value used in building the residue 

network. For small cutoff values, less than 5Å, the cavities found are very large 

corresponding almost to the whole protein surface. On the contrary, for large cutoff value, 

more than 10.0 Å, only very large cavities are detected and the networks look very 

homogeneous. These findings are useful for practical purposes as well as for identifying 

“protein-like” complex networks. Finally, we show that the main topological class of residue 

networks is not reproduced by random networks growing according to Erdös-Rényi model or 

the preferential attachment method of Barabási-Albert. However, the Watts-Strogatz (WS) 

model reproduces very well the topological class as well as other topological properties of 

residue network. We propose here a more biologically appealing modification of the WS 

model to describe residue networks. 
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INTRODUCTION 

Complex networks are ubiquitous in many fields of science, studying systems which range 

from biology to social sciences (1-3). In a complex network the elements of the system are 

represented by nodes and the interactions between these elements are represented by links. 

Several charcateristic features have been observed in these systems, such as “small-

worldness” (4), “scale-freeness” (5), fractality (6), characteristic motifs (7) and mixing 

patterns (8).  

These concepts of network theory have been applied to the study of protein structure 

with promising results (9). In a seminal paper Vendruscolo et al. (10) constructed networks 

corresponding to protein structures and showed by the first time that they display “small-

world” features. The nodes corresponding to key residues were observed to play the role of 

“hubs” in the network of interactions stabilizing the structure of the transition states. In a 

further work Atilgan et al. (11) proposed to represent proteins as residue networks, showing 

that residues in folded proteins display “small-world” topology. In these networks the nodes 

represent C  or C  atoms of the amino acids and two nodes are connected if they are 

separated at a geometric distance lower than certain cutoff value. These authors have found 

that their results are independent of the use of different cutoff values (11). In another work, 

Bagler and Sinha (12) used the same representation of Atilgan et al. (11) and found that 

proteins, regardless of their structure class, show small-world properties. They also gave some 

insights about the modular structure of proteins by using various network parameters. On the 

other hand, Brinda and Vishveshwara (13) used a parametrized measure of the strength of 

interaction to decide whether two nodes representing protein residues are connected in the 

network. They observed that these networks exhibit a complex degree distribution with 

combinations of Gaussian-like, sigmoidal, and exponential/power-law decay for different 

interaction cutoffs (13). In a variation of these representation methods, Greene and Higman 

(14) considered each amino acid as a node, and the links were established between two nodes, 

if any two atoms of the amino acids are separated at less than 5 Å of each other. They found 

again that these networks exhibit small-world, single-scale, and at some degree, scale-free 

properties. 

Concerning the representation of proteins as networks da Silveira et al. (15) have carried 

out a comparative analysis between the cutoff-dependent and cutoff-free methods used to 

represent protein networks. They have found that the cutoff value of 7 Å “emerges as an 

important distance parameter”, because at this distance “all contacts are complete and 

legitimate (not occluded)”. Consequently, they concluded that in the strict range up to 7 Å, the 

cutoff-dependent approach “revealed to be simpler, more complete, and reliable technique” 

than the other approaches in use. Also importantly, they have shown that representing amino 

acids by C  atoms may introduce bias for cutoffs below 6.8 Å, which supports the use of the 

cutoff value of 7 Å. 

On the other hand, Bartoli et al. (16) have analyzed 1753 non-redundant protein 

structures and have shown that the small-world behaviour of inter-residue contact graphs is 

conditioned by the backbone connectivity. They have concluded that the characteristic path 

length L  and clustering coefficient C  in which the small-world concept is based, are not 

useful quantities for protein fingerprinting. Bartoli et al. (16) have used a randomization 

procedure from which L  and C  are indistinguishable from those of real proteins. They have 

verified that these results are independent of the selected protein representations, residue 

composition and protein secondary structures. 
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The main objective of the current work is to explore beyond general statistical properties 

of complex protein networks, such as small-worldness or scale-freeness. In fact, we show here 

that proteins represented as residue networks belong to a universal topological class, which 

can be unambiguously characterized from a mathematical point of view. This universal class 

corresponds to modular networks in which some highly interconnected nodes are separated 

from each other by topological cavities. We show that these cavities are potentially binding 

sites in proteins and that the domain structure of proteins plays an important role in this 

structural organization. 

METHODS 

Proteins as residue networks 

Spatial residue networks are built by using the Cartesian coordinates of the protein reported 

in the protein data bank (PDB) (17). We use here the dataset prepared by Atilgan et al. (11), 

who studied 595 proteins with less than 25% of sequence homology. This dataset was 

selected previously by Fariselli and Casadio (18). We have obtained from Atilgan et al. (11) 

the dataset of these 595 proteins represented as residue networks.  

The nodes of these residue networks represent the amino acids of the protein, centred at 

their C  atoms, with the exception of glycine for which C  is used. In order to connect the 

nodes of the network it is considered a cutoff radius Cr , which represents an upper limit for 

the separation between two residues in contact. The distance between two residues is 

measured by taking the distance between C  atoms of both residues. Then, when the inter-

residue distance is equal or less than Cr  both residues are considered to be interacting. In this 

case, the corresponding nodes in the residue network are connected.  

The elements of adjacency matrix of the residue network are obtained by  
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where   10 xH  and   00 xH . Then, a protein is represented by the graph  EVG , , 

where V  represents the set of amino acids and E  represents the set of interactions between 

then. The residue networks studied here were constructed by using a cutoff of 7 Å. Atilgan et 

al. have verified that the general conclusions concerning the topology of these networks are 

not affected when a cutoff value of 8.5 Å is used instead (11). As a matter of example, the 

residue network of the protein with PDB code 1ash is represented in Fig. 1.  

Insert Fig. 1 about here. 

Topological classification of networks 

Let us consider a subset of amino acids VS  . The number of interactions between an 

amino acid in this subset S  with another amino acid which is not in this set, is named the 

boundary of S  and it is denoted by S . We select the subset of amino acids S  to be at most 

half the number of residues in the protein. Then, we can use the following measure to account 

for how efficiently connected the residue network is (19) 
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which is known as the expansion or isoperimetric constant of the network.  

The higher the expansion constant  G  the better the connectivity of the network (20), 

which means that the number of interactions that must be removed to separate the protein into 

isolated parts is relatively high in comparison with the number of amino acids in the protein. 

These networks are said to have good expansion (GE) properties. It is known that a network 

has GE if the gap between the first and second eigenvalues of the adjacency matrix (

12   ) is sufficiently large (20). When    1oG   it means that the number of links 

inside the subset S  is approximately the same as the number of links going out from it. This 

means that high expansion implies high homogeneity of the network. In the following we 

explain a method that permits to classify networks into universal classes according to their 

structural homogeneity, which is known as the spectral scaling method (21, 22). 

Let  iEEodd  be the subgraph centrality of the amino acid i  (23). The subgraph 

centrality represents the weighted participation of a node in subgraphs containing at least one 

cycle of odd length (23). It has the following spectral formula       j
j

jodd iiEE  sinh
2

1




 , 

where  ij  is the entry of the j th eigenvector of the adjacency matrix corresponding to the 

i th amino acid and j  is the corresponding eigenvalue. The subgraph centrality can be 

expressed as follow (21) 

            ,sinhsinh
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where we have written  iEC  for the principal eigenvector  i1  and 1  corresponds to the 

principal (Perron-Frobenius) eigenvalue of the network.  

Let us assume that the network has GE properties such that 21    (20). Then, we can 

consider that 

          j
j

j iiEC  sinhsinh
2

2

1

2




 . 

Consequently, we can approximate the odd-subgraph centrality as, 

       .sinh 1

2
iECiEEodd   (3)

This means that the principal eigenvector of the network is directly related to the subgraph 

centrality in GENs according to the following spectral power-law scaling relationship: 

      .


iEEAiEC odd  (4) 

Here,    5.0

1sinh


 A  and 5.0 . This expression can be written in a log-log scale as (21, 

22):
 

      .logloglog iEEAiEC odd  (5) 
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Consequently, in a homogeneous network a log-log plot of  iEC  vs.  iEEodd  displays 

a perfect straight line fit with slope 5.0  and intercept Alog . Topologically non-

homogeneous networks will display large deviations from this perfect fit as a consequence of 

their modularity. 

Let us consider the homogeneous case, in which a network displays perfect spectral 

scaling, such that we can calculate the eigenvector centrality by using the following 

expression, 

       .sinhlog5.0log5.0log 1 iEEiEC odd

Homo  (6) 

Now, let us consider the deviations from this perfect fit. We can account for these deviations 

from perfect homogeneity by measuring the departure of the points from the straight line 

respect to  iECHomolog  (21): 
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Using  iEClog  we can classify any network into any of four possible topological classes. 

The first class correspond to the case when   0log  iEC  for all nodes in the network and it 

corresponds to the homogeneous networks. In the second class   0log  iEC  for all nodes, 

which indicates that the network contains cavities in its structure (see further explanation). In 

class III   0log  iEC  for all nodes, which indicate the existence of a core-periphery 

structure of the network. Finally, the class IV occurs when   0log  iEC  for some nodes 

and   0log  iEC  for the rest. In Fig. 2 we give four model networks which represent these 

universal topological classes of networks together with their respective spectral scaling plots.  

Insert Fig. 2 about here. 

In a previous report (24) we have studied real-world complex networks and we have 

quantified the degree of deviation of the nodes from the ideal spectral scaling by accounting 

for the mean square error of all points with positive and negative deviations in the spectral 

scaling, respectively: 
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where 
and 

are the sums carried out for the N  points having   0log 1  i  and 

for the N  having   0log 1  i , respectively. In this previous work (24) we have plotted 

the values of these deviations for 60 real-world networks representing biological, ecological, 

socio-economical, technological and informational systems, where we observed that the four 

topological classes are populated by real-world networks (24). 

RESULTS AND DISCUSSION 

Topological classes of residue networks 

We have investigated the spectral scaling for the 595 residue networks studied in this paper. 

As a warming up example we study the protein 1ash. In this case all residues deviate 
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negatively from the perfect spectral scaling. The value of the mean square error of negative 

deviations for this protein is 498.0  and that for positive deviations is exactly zero. We 

have found that 95% of the proteins studied exhibit negative and no positive deviations from 

the perfect spectral scaling. This means that 564 out of 595 proteins have   exactly equally 

to zero. However, the average of the mean square error of negative deviations for these 

proteins is 996.0 . The other 31 proteins has small positive deviations from the perfect 

scaling, having 0011.0  and negative deviations 550.1 . In Fig. 3 we plot the 

logarithms of values of   and   of these 595 residue networks. We have incorporated 60 

complex networks representing a variety of biological, ecological, informational, social and 

technological systems and we classify each of them into one of the four topological classes 

according to our previous report (24). The following cutoff values have been used for 

classification purposes, class I: 02.0  and 02.0 ; class II: 02.0  and 02.0 ; 

class III: 02.0  and 02.0 ; class IV: 02.0  and 02.0 .  

Insert Fig. 3 about here. 

From Fig. 3 we immediately see that 99.5% of the proteins represented by their 

residues networks are in the class II. There are only three proteins which are classified in the 

class IV. These findings mean that most of the 595 proteins studied, which have between 54 

and 1021 residues and less than 25% of homology in their sequences, can be modelled as 

networks in which several highly connected clusters are separated from each other by 

forming structural cavities, as represented by the model graph B given in Fig. 2. In other 

words, protein residue networks exhibit universal topological characteristics.  

In order to explain why protein residue networks are in class II let us consider a residue 

located in one of the highly dense modules, e.g., a node in one of the external corners of the 

grid represented by the model graph B given in Fig. 2. If we walk around this node we 

observe a high density of connections in its neighbourhood. However, if we enlarge our walk 

to traverse the whole network we observe that this high connectivity is not kept as soon as we 

arrive at the central cavity in the network (21, 22). Our measurement of local connectivity is 

the subgraph centrality, which is larger than expected from the homogeneity line of the 

spectral scaling. This means that the points representing the amino acids of the residue 

network are placed to the right of the line representing the perfect scaling. An equivalent 

view is obtained by considering the eigenvector centrality, which is our global measure of 

connectivity. In this case the global connectivity is lower than expected from the 

homogeneity line placing the points below the straight line of the spectral scaling (21, 22). A 

discussion about the use of other local and global measures in biological networks can be 

found in (25). 

The eigenvectors corresponding to positive eigenvalues of the adjacency matrix of a 

network give a partition of the network into clusters of tightly connected nodes. On the 

contrary, the eigenvectors corresponding to negative eigenvalues make partitions in which 

nodes are not close to those which they are linked, but rather with those with which they are 

not linked. In other words, the nodes will be close to other nodes which have similar patterns 

of connections with other sets of nodes, i.e., nodes to which they are structurally equivalent. 

In the case of the eigenvectors corresponding to positive eigenvalues the nodes corresponding 

to larger components tend to form quasi-cliques. That is, clusters in which every two nodes 

tend to interact with each other. On the contrary, for eigenvectors corresponding to negative 
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eigenvalues, nodes tend to form quasi-bipartites, i.e., nodes are partitioned into disjoint 

subsets with high connectivity between sets but low internal connectivity. It has been shown 

analytically (24) that for class II networks  

         


 jjjj ii  sinhsinh
22

, 

where 


and 


designate the sums corresponding to positive and negative eigenvalues 

for 2j . This means that the networks of class II are dominated by partitions into quasi-

cliques more than into quasi-bipartites. In words, these networks are characterized by two or 

more clusters of highly interconnected nodes which display a low inter-cluster connectivity.  

The tiny fraction of residue networks in class IV displays a mixture of positive and 

negative deviations. They are characterized by a combination of both quasi-cliques and quasi-

bipartites, without the predominance of either structure over the other. On the one hand, the 

central nodes connecting the highly interconnected clusters display larger connectivity to all 

other nodes in the network than the one expected from their local cliquishness, i.e., they 

display positive deviations from the perfect scaling. On the other hand, the nodes on one side 

of the graph are not well-connected to the nodes on the other side despite they are internally 

highly connected. Consequently, these nodes display negative deviations from the perfect 

scaling. 

Topological analysis of protein classes 

Despite the fact that 99.5% of the protein residue networks are classified in the class II it can 

be seen in Fig. 4A that there is a continuous transition between classes II and IV. In other 

words, there is not a clear gap separating proteins in class II from those in class IV. However, 

95% of all proteins are clearly in class II having negative deviations from the perfect scaling 

and 0 . The other fraction of proteins can be considered as borderline cases between 

both classes (see Fig. 3).  

The most significant difference between these two groups of proteins is given by the 

size of the proteins contained in each class. We have already remarked that the proteins 

studied here have between 54 and 1021 amino acids, with an average size of 254 residues. 

The average size of protein networks in class II having 0  is 261 residues. However, 

those protein networks for which 0  have average size of 126 residues, which is 

significantly lower than the average size for the whole data set of proteins. When the values 

of   and   of all proteins are plotted versus the number of residues in Fig. 4A we obtain a 

clear illustration of the size dependence of the topologies found for proteins.  

Insert Fig. 4 about here. 

As can be seen in Fig. 4A most proteins for which 0  have less than 200 residues. 

The only one exception is the protein with PDB code 1aa6, which has 697 amino acids. The 

probability of finding a protein having 0  is 63.6% (7 out of 11) for proteins with no 

more than 75 residues. This probability drops to 29.5% (13 out of 44) for proteins with less 

than 100 residues and to 14.2% (25 out of 176) for proteins with no more than 150 amino 

acids. This probability is only 0.4% for proteins having more than 240 residues. 

In order to understand these results we are going to consider the domain structure of 

proteins. A domain is a part of the protein which has a compact three-dimensional structure 
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and often can be independently stable and folded. Then, in a residue network those amino 

acids which are in the same domain tend to form highly interconnected clusters, such as the 

ones represented by the corners of the model network B in Fig. 2. However, the number of 

interactions between two different domains in a multi-domain protein is relatively low 

compared to the intra-domain interactions. Thus, we can think that most of the structure of 

class II residue networks can be explained by the multi-domain organization that these 

proteins have. This hypothesis is supported by the findings that most of domains found in 

proteins have between 50 and 150 residues (26). Then, most of small proteins have only one 

domain, while larger proteins tend to be combinations of such domains (26). This explains 

why practically all residue networks with more than 240 amino acids are clearly in class II. 

The structure of those proteins having 0  can be explained by considering the 

organization of the different elements of their secondary structure, e.g., helices and sheets. 

These elements can form small clusters, which are then interconnected in the form given by 

the graph D in Fig. 2 with more or less predominance of the quasi-cliques or quasi-bipartite 

structures. 

In Fig. 4B we plot the negative deviations from perfect scaling   versus the number 

of residues in the proteins studied. There are two characteristics of this plot that can also be 

related to the domain structure of proteins. The first is that the variability in the values of   

is significantly larger for small proteins than for larger ones. For instance, for proteins having 

no more than 200 residues the deviations range from zero to almost 6, 60   . However, 

for proteins over 500 amino acids the deviations are concentrated in the range 31   . The 

larger variability in the deviations of small proteins could be due to the before mentioned fact 

that most of protein domains have between 50 to 150 residues. Then, small proteins are 

formed by one domain only. Because the dataset studied contains less than 25% similarity in 

the sequence of proteins it is expected that two small proteins are formed by different 

domains with high probability. For instance, some of these small proteins are mainly- , 

while others are mainly-  . The differences in the structures of these domains are reflected in 

the spectral scaling of their residue networks giving rise to the observed variability.  

In the case of larger proteins it has also been reported that 64.3% of proteins having 

more than 200 residues are formed by more than one domain (27). It has been reported 

previously that some of these multidomain proteins display degree of folding which are 

average of the folding of the different domains forming the protein (28). Then, we can 

consider multidomain proteins as combinations of the small ones in such a way that their 

topological properties are the average of the ones observed for one-domain proteins.  

The second characteristic of the plot given in Fig. 4B is the existence of a lower bound 

in the negative deviations from perfect scaling. This lower bound is a function of the protein 

size.  For instance, for proteins having less than 100 residues there are no negative deviations 

below 25.0 . This bound is 45.0  for proteins with 200 residues and it is larger than 

1 for proteins with more than 800 amino acids. This threshold can be approximated by a 

straight line as can be seen in Fig. 4B. The existence of this lower bound can be explained by 

the fact that the number of domains per protein steadily increases with the size of the 

proteins. For instance, 42.9% of proteins with more than 350 residues have more than 2 

domains and 38.5% of those with more than 500 amino acids have more than 3 domains (27). 

Then, it is intuitive to think that the deviation from homogeneity in the residue networks 

increases with the number of domains due to the larger inter-domain cavities created.  
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 Now, we want to add some words about the existence of cavities in class II protein 

networks. In graph theory a hole is defined as a chordless cycle, which is a cycle of length at 

least 4 such that there is not link between two non-consecutive nodes (29). It is easy to check 

that any of the four universal topological classes of networks contains holes in their 

structures. In Fig. 2 it is easily recognizable that model networks in class II, III and IV 

contain chordless cycles of length 4. Then, a cavity in networks of class II cannot be 

identified with a network hole. Instead we propose the following definition of a topological 

cavity:  

Definition: A topological cavity is a hole, i.e., a chordless cycle of length at least 4, which 

separates at least two highly connected clusters in the network. 

The problem of determining whether a network has a chordless cycle of length k  is 

NP-complete (30). The problem has been solved for fixed k  in  knO  (31) and some 

improvement exists which solves the problem in  TnO k 3 , where 376.2nT   (32). In addition, 

for the identification of a topological cavity these holes should separate two or more highly 

connected clusters in the network. Here we are not concerned with the development and/or 

application of these algorithms to detect holes or topological cavities in residue networks. 

Instead, we are going to illustrate the existence of such cavities in a residue network and its 

possible implications for the study of protein structures. Our aim is to stimulate other 

researchers in the search for algorithms to detect topological cavities and holes in residue 

networks. 

For the sake of illustration we study the residue network for the protein with PDB code 

1ash. We have found the presence of a hole of length 15 in this network, which is formed by 

the residues 27, 30, 33, 40, 43, 59, 60, 62, 64, 67, 71, 92, 95, 96 and 101. That is, these 

residues form a cycle of length 15 in which no two of them are joined by a link which does 

not belong to the cycle.  As can be seen in this figure this hole is separating several highly 

connected regions of the residue network and can be considered as a network cavity 

according to the definition given here. We have to recognize that no quantitative method 

whatsoever has been developed for the identification of these structures in complex networks 

in general or in residue networks in particular. Thus, the identification of this particular cavity 

for illustration purposes here has been carried out using a brute-force search. 

When this topological cavity is placed on the three-dimensional structure of the protein 

we can see that it practically corresponds to the binding site of this protein. According to the 

information provided by the database PDBSum (33) the residues having contacts with the 

ligand are 30, 33, 40, 43, 44, 60, 64, 67, 68, 71, 95, 96, 101, 103, 108, and 140. This means 

that there is 71% of overlapping between this list of residues in the binding site and the 

topological cavity found in the residue network. The overlapping is calculated as twice the 

number of residues in the interception of the two lists divided by the number of residues in 

the union of both lists. This example clearly illustrates the relationship between topological 

cavities and potential binding sites in proteins. 

The current work is not aimed, however, to the development of mathematical or 

computational methods for identifying binding sites in proteins, for which excellent methods 

already exist (34, 35). As previously stated we are aimed here with the identification of 

topological properties that residues networks share in a universal way, such as the 

organization of their nodes/links in class II type of structure. This universal topological 

property adds to other properties like the small-worldness and Poisson degree distributions 

previously reported (11) for residue networks and they together allow us to understand the 
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organizational principles of protein architectures. However, because the cavities are 

important characteristics of class II networks we are going to analyze some of their general 

features. First, we are going to use the nomenclature of voids, pockets and depressions for the 

three types of cavities studied previously in (34). In a residue network representation of a 

protein a void can be identified by the current approach as a topological cavity if, and only if, 

the distance ir  between pairs of atoms in the interior of the cavity is larger than the cutoff 

value used, Ci rr  . For pockets and depressions being recognized as topological cavities the 

distance mr  between the two atoms forming the mouth of the site should be smaller than the 

cutoff value used Cm rr   as well as Ci rr   for internal atoms. Then, there are obvious 

situations in which the current approach is not able to identify some kinds of binding sites. 

The situation is not different, however, to other methods used for this purpose. For instance, 

in the case of small binding sites, such as those for metals, a network representation with a 

relatively large cutoff value does not identify the corresponding binding pockets. What is 

interesting here is that the topological cavities defined in this work are present as a universal 

characteristic of residue networks for the cutoff value and network definition used in this 

work. 

In the following we are going to analyze the influence of the cutoff value in the 

topological structure of residue networks. In particular we study the protein with PDB code 

1ash for cutoff values 5.0 Å, 7.0 Å, 10.0 Å and 15.0 Å. We recall that the cutoff value 7.0 Å 

is the one used in the current work for all residue networks. When a value 5.0 Å is used only 

C  atoms of the different residues which are separated at most 5.0 Å apart are connected. 

This includes only 146 links connecting nearest-neighbor residues in the protein backbone 

plus 40 other inter-residue interactions. Consequently, the resulting residue network displays 

very low density (the average degree is only 2.68). The spectral scaling of this version of the 

residue network is characteristic of class IV networks in which there are holes together with 

some core-periphery structures. The holes in this version of the network are quite large. For 

instance, there is a 53-nodes hole formed by residues 32-34, 55-58, 60-78, 85-96, 101-103 

and 107-118. In Fig. 5A we display the spectral scaling for this network and a visualization of 

the previously mentioned hole as a surface in the protein structure. As can be seen this hole 

corresponds to practically the whole external surface of the protein. This confirms our 

previous statement that using small cutoff values is equivalent to consider very small probe 

spheres to explore the protein, in which all small cavities are considered describing all 

rugosities of the protein surface. Then, if we are interested in studying only the total surface 

of a protein it is recommended to use very small cutoff values, e.g., 0.5Cr Å. For the sake 

of comparison, we illustrate the spectral scaling and surface of the 15-nodes hole in the same 

protein obtained for a cutoff value 7.0 Å (Fig. 5B). 

Insert Fig. 5 about here. 

When the cutoff value is augmented to 10.0 Å only large holes are detected. The 

residue network display a class II topological structure, but the spectral scaling displays 

considerable less dispersion than for the case of 7.0 Å (Fig. 5C). In this case the 15-nodes 

hole previously detected for 7.0 Å is shrank to one having 9 nodes only, which is formed by 

residues 30, 33, 40, 43, 34, 37, 71, 95 and 101. In Fig. 5C we can see that these residues are 

located in the wider part of the binding site for 1ash. The same trend is observed when we 

study the network built by using cutoff 15.0 Å (Fig. 5D). In this case the spectral scaling 

corresponds to a class I network due to the high density observed in the network. We recall 

that in this case all C  atoms separated at less than 15.0 Å are connected. Consequently, only 
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very large holes are detected, which in this case are of very small size, such as the one formed 

by residues 40, 60, 62, 71 and 96. This approach of using very large cutoff values is only 

recommended when very large cavities need to be detected in the protein. These results 

confirm the previous report of da Silveira et al. (15) about the use of a cutoff value equal to 

7.0 Å to represent proteins as residue networks. 

Random models and protein topological classes 

We have previously shown that proteins represented by residue networks mainly belong to a 

universal topological class. Only 5% of proteins primarily of small size are in a different 

topological class. Ravasz et al. (37) have modelled hierarchical networks by replicating a 

core set of nodes and links. However, as Bagler and Sinha have remarked (12), “proteins 

grow linearly first, and then this polypeptide chain organizes itself in a modular way at 

different levels”. It was already mentioned that Bartoli et al. (13) have found that the small-

world properties of these residue networks are well replicated by random models, which 

excludes the use of the average path length and clustering as protein fingerprints. Then, what 

is the situation with the current universal property found for residue networks. Is the 

universal class of proteins reproduced by some of the best known models of network 

growing? We are going to analyze these questions now. 

Here we investigate whether the random network growing models of Erdös-Rényi (ER) 

(38) and Barabási-Albert (BA) model (5) are able to reproduce the structural classes 

populated by protein residue networks. In both models each random network starts with m 

nodes and new nodes are added consecutively in such a way that a new node is connected to 

exactly m of the already existing nodes, which are chosen randomly. The new edges are 

attached according to the probability distribution used, e.g., Poisson distribution for the ER 

and the preferential attachment mechanism, power-law degree distribution, in the BA model. 

We have studied random networks generated by these two growing mechanisms having 

1000n  nodes by changing systematically the value of m from 2 to 8, giving rise to 

networks with average degrees, k  between 4 and 16. For every value of m we have 

generated 100 random networks. Then, we have averaged the values of   and   for every 

value of m. In Fig. 6A we plot the values of  510ln    versus  510ln    for the random 

networks generated using both growing models. In the same plot we have placed the values 

corresponding to 595 proteins studied in this work. 

Insert Fig. 6 about here. 

As can be seen in this figure neither ER nor BA growing mechanisms are able to 

reproduce the topological properties of residue networks. None of these random networks 

replicate, even partially, the structure of 99.5% of proteins in which highly interconnected 

clusters are separated by topological cavities. The characteristic of class IV protein residue 

networks, in which a tiny fraction of small-size proteins appears, are only partially 

reproduced by random networks at low average degree regimes. It is clear from this figure 

that as the average degree grows both kinds of random networks exhibit good expansion 

properties typical of class I networks. These results are supported by previous theoretical 

findings indicating that for 3k  these random networks are expanders with high 

probability (39, 40). In summary, the topological organization exhibited by protein residue 

networks is of more complex nature than the ones reproduced by random growing 

mechanisms, such as ER and preferential attachment. This finding should be added to the 

well-known fact that these two models do not reproduce important structural properties of 
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residue networks. For instance, networks created with the ER model lacks internal structures 

reflected by its very poor clustering and the BA model does not reproduce the Poisson 

distribution of these networks (11). 

In view of the previous findings it should be more appropriate to consider other random 

models that reproduce better the structural organization of residue networks. One of such 

models is that of Watts and Strogatz (WS) to generate “small-world” networks by starting 

from regular ones (4). This model starts with a ring of n  nodes in which each node is 

symmetrically connected to its m2  nearest neighbours. Then, for every node, each link 

connected to a clockwise neighbour is rewired with probability p . This rewiring process 

usually creates shortcuts between distant nodes in the ring. At the very beginning when we 

are in presence of the n -nodes ring there is a central hole in the graph. Thus, the initial step 

in this process is a network belonging to class II, which also has large clustering but lacks the 

small average shortest path length that characterizes small-world networks like the protein 

residue ones. Then, we studied here the spectral scaling for networks created by using the WS 

model for networks having 300 nodes and 10  p . The results are illustrated in Fig. 6B, 

where we can see that the networks generated by WS model are in class II for values of 

5.0p . For probabilities beyond this value the networks are in class IV and go to class I 

when 0.1p . As can be seen in this figure the networks obtained for values of 01.0p  

display large clustering coefficient similar to the original ring but they have average path 

length that scales as the logarithm of the number of nodes and in addition they display class II 

topological characteristics. In other words, they are small-world class II networks, which are 

topological characteristics shared by protein residue networks. 

The fact that the WS networks duplicate some important properties of residue networks 

should not be considered as an indication that this model can give insights about the way in 

which proteins fold into their 3D structures. For instance, the WS model starts by considering 

a ring with each node symmetrically connected to its m2  nearest neighbours. This violates 

the principle that “proteins grow linearly first, and then this polypeptide chain organizes itself 

in a modular way at different levels” (12). The presence of this ring is the main cause for the 

existence of the hole in the networks generated by this model. Secondly, in the WS model the 

rewiring process takes place for any link in the network, while in a protein those links 

representing the protein backbone cannot be rewired. In fact, in the WS model for large 

number of nodes it is usually to find disconnected networks, which is not ever the case in 

protein folding process. Then, a more realistic model of residue network “formation” is given 

by the following modified WS (MWS) model 

i) starts with a linear chain of n  nodes in which every link is colored blue, 

ii) connect node i  of the linear chain to ki  , e.g., 2k , and color every of these 

links in red, 

iii) for every node, each red link is rewired with probability p . 

We are not going to analyze this model in detail. However, our preliminary results 

indicate that the networks generated by using MWS model are both small-world and class II 

graphs, which encourage us to study these networks in more detail in further works. In 

addition, this growing process fulfils the requirement of starting from a linear chain that then 

organizes itself in a modular way (12). 

CONCLUSIONS 
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Proteins represented by their cutoff-dependent residue networks exhibit universal topological 

characteristics. Residue networks belong primarily to the topological class of modular 

networks formed by several highly connected clusters separated by topological cavities. We 

call the attention that not every modular network fulfils the requirement of being a class II 

network. A very small fraction of protein residue networks deviates from this behaviour and 

are characterized by having some central core surrounded by a periphery of small clusters and 

cavities. These networks represent mainly small-size proteins having less than 200 residues. 

In general, small proteins display larger variability in their deviations from homogeneity than 

larger proteins. These differences can be accounted for by the domain structure of these 

proteins. Finally, we have shown that the topological cavities characterizing proteins residue 

networks are intimately related to protein binding sites.  The cutoff value for the construction 

of the network has been analyzed and we have seen that the spectral scaling method is 

appropriate to distinguish between protein-like and non protein-like networks. In addition, 

different cutoff values can be used to model different kind of characteristics in proteins, such 

as molecular surface (small cutoff values) or cavities of different sizes. We have also 

analyzed some random models for mimicking the properties of residue networks. Among 

then, the Watts-Strogatz model reproduces very well the topological class and small-

worldness observed for residue networks. We have proposed here a modification of this 

model that is able to build protein-like networks keeping in mind the restrictions imposed by 

the chemistry of proteins. 

The current study has made evident the necessity for efficient algorithms for detecting 

topological cavities in residue networks as well as for better mathematical characterization of 

these structures. We hope that this work contributes to the search for other topological 

methods and algorithms for extracting more structural information from the topology of 

proteins represented as networks.  
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Figure captions 

FIGURE 1 Construction of the residue network for protein with PDB code 1ash. The network 

is represented by using the 3D vector display program MAGE, 

(http://www.analytictech.com/downloaduc6.htm). The nodes are colored in the same way as 

the secondary structure elements given in the cartoon representation shown in this figure. 

FIGURE 2 The four topological classes of networks which are theoretically possible 

according to the spectral scaling method. A model graph for each class (left) and the spectral 

scaling (right) are given for each model. 

FIGURE 3 Classification of real-world networks in the topological classes illustrated in Fig. 

2. Networks representing a variety of complex biological, ecological, informational, social 

and technological systems are represented by circles. Protein residues networks are 

represented by upper triangles.  

FIGURE 4 A) Spectral scaling of 595 protein residue networks as a function of the number of 

residues in the protein. In the box there are all proteins which have 0  (5% of the total). 

B) Plot of the negative deviations from perfect scaling versus the number of residues in the 

proteins studied. The lower bound has been plotted by hand as an eye-guide. 

FIGURE 5 Effect of the cutoff value on the topological structure of the residue network with 

PDB code 1ash. In the left part we illustrate the spectral scaling for networks obtained with 

cutoff values 5.0 Å (A), 7.0 Å (B), 10.0 Å (C) and 15.0 Å (D). In the right part of the figure 

we illustrate the three-dimensional structure of the protein in which the amino acids forming 

some topological cavities are represented by their surface. In the case of 5.0 Å the cavity 

illustrated contains 53 residues. The cavity illustrated for 7.0 Å (B) is the one reported in the 

main text. In the cases of cutoff values 10.0 Å (C) and 15.0 Å (D) we investigate only the 

effects of the cutoff value on the 15-nodes cavity found for 7.0 Å. The molecular structure 

and surface are drawn by using AISMIG (38). 

FIGURE 6 A) Plot of the positive and negative deviations from perfect scaling for 595 

protein residue networks together with the corresponding values for the random networks 

with 1000 nodes generated by using ER and BA models. B) Average shortest path length 

L(p), clustering coefficient C(p) and topological classes for the WS networks having 300 

nodes.  

http://www.analytictech.com/downloaduc6.htm
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Fig. 2 
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Fig. 5 
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