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Instituto Superior Técnico, TU Lisbon, Av. Rovisco Pais, 1, P-1049-001 Lisboa, Portugal

email: jpinto@math.ist.utl.pt

Motivated by a recent investigation of Millar and McKay [Mol. Cryst. Liq. Cryst., 435,

277/[937]–286/[946] (2005)], we study the magnetic field twist-Fréedericksz transition for

a nematic liquid crystal of positive diamagnetic anisotropy with strong anchoring and pre-

twist boundary conditions. Despite the pre-twist, the system still possesses Z2 symmetry

and a symmetry-breaking pitchfork bifurcation, which occurs at a critical magnetic-field

strength that, as we prove, is above the threshold for the classical twist-Fréedericksz tran-

sition (which has no pre-twist). It was observed numerically by Millar and McKay that

this instability occurs precisely at the point at which the ground-state solution loses its

monotonicity (with respect to the position coordinate across the cell gap). We explain this

surprising observation using a rigorous phase-space analysis.

1 Introduction

Liquid crystals are materials that exhibit partially ordered fluid phases under certain

conditions (usually dependent on temperature or relative concentration, in the case of

mixtures). The simplest liquid-crystal phase is the nematic, which possesses orientational

order but no positional order. This phase is often associated with long rod-like molecules,

and the orientational order is typically modeled by a unit length vector field, the director

field, which represents the average orientation of the long axes of the molecules in a

volume element at a point. Standard references on liquid crystals include Chandrasekhar
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[2] and deGennes and Prost [5] (for the physics of liquid crystals) and Stewart [12] and

Virga [13] (from the point of view of applied mathematics).

The configuration of the director field in a confined system is influenced by several

factors, including the intrinsic elasticity of the material (the preference of the molecules

to orient themselves parallel to each other), externally applied electric or magnetic fields

(which can encourage the director to align either parallel to the field or perpendicular to

it, depending on the material), boundary conditions imposed by confining substrates, and

viscous torques arising from fluid flow. The local orientation of the director influences the

stress tensors that govern the fluid velocity variables. A full, coupled, macroscopic model

of the hydrodynamics of a liquid crystal (valid in certain parameter regimes) is given by

the Ericksen-Leslie equations, which contain the Oseen-Frank elastic theory governing

the steady state, equilibrium solutions.

In some systems, the coupling between director re-orientation and fluid flow can be

neglected (to leading order). The simplest model for the dissipative dynamics of the

director field in the absence of flow can be expressed as a gradient flow of the free energy

of the system and takes the general form

γ1
∂n

∂τ
= div

(

∂w

∂∇n

)

− ∂w

∂n
− λn,

or, in terms of components,

γ1
∂nα

∂τ
=

∂

∂xβ

(

∂w

∂nα,β

)

− ∂w

∂nα
− λnα,

where nα,β := ∂nα

∂xβ
. Here γ1 is a single rotational viscosity, n is the director field, τ is

time, w is the free-energy density, λ is a Lagrange-multiplier field to enforce the pointwise

unit-vector constraint |n| = 1, and summation over repeated indices is implied in the

component form. For a system with strong anchoring, occupying a region Ω, and in the

presence of a magnetic field, an appropriate form for the total free energy of a given

director field,
∫

Ω

w(n,∇n),

is provided by the free-energy density

2w = K1 (div n)
2

+K2 (n · curln)
2

+K3 |n× curln|2 − µ0∆χ(H · n)2,

where K1, K2, and K3 are phenomenological elastic constants, µ0 is the free-space mag-

netic permeability, ∆χ = χ‖−χ⊥ is the difference between the diamagnetic susceptibilities

parallel to versus perpendicular to the director, and H is the magnetic field (assumed

to be constant in Ω). The free-energy density embodies the competition between the en-

ergy cost of distortions of the director field versus the energy reduction associated with

aligning parallel to the magnetic field (if ∆χ is positive). For example, see [12].

A common geometry for liquid-crystal devices and experiments is that of a thin film,

with the confining substrates treated to coerce a particular orientation of the director. Un-

der the influence of a sufficiently strong electric or magnetic field, the equilibrium ground

state of the director field (which is typically uniform, undistorted) becomes unstable to

a solution more aligned with the applied field. This is called a Fréedericksz transition. It
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Figure 1. Geometry of the liquid crystal cell.

is the most basic and fundamental instability in liquid crystals and is discussed in all of

the standard references on the subject. From a practical point of view, such transitions

can be used in experiments to determine values for the elastic constants of different ma-

terials. Also, it is typically the case that the equilibrium director fields on either side of a

Fréedericksz threshold give the “on” and “off” states for various liquid-crystals devices.

We consider the geometry of the twist-Fréedericksz transition, with an antisymmetric

pre-twist. Thus we consider a slab of nematic material bounded by two parallel planes a

distance d apart from each other, unbounded and extending to infinity in any direction

parallel to these planes. Define a positively oriented orthogonal coordinate system (x, y, z)

such that z is perpendicular to the bounding planes. Let the director field be represented

by

n = (cosφ(τ, z), sinφ(τ, z), 0), (1.1)

where φ denotes the (twist) angle of the director. We will assume that in the liquid crystal

cell the director is fixed in opposing orientations −φp and φp at the two opposing planes

bounding the device in the z direction. This induces a net twist of the director vector field

across the cell (see Figure 1). We will consider a magnetic vector field H applied along the

constant direction (0, 1, 0) with varying intensity H = ‖H‖ and are interested in studying

the effect it induces in the stationary director distribution, according to Ericksen-Leslie

theory.

The angle representation (1.1) guarantees satisfaction at all points and times of the

unit-vector constraint |n| = 1. In terms of this representation, the free energy density

and director dynamics equation become

2w(φ, φz) = K2φ
2
z − µ0∆χH

2 sin2 φ, φz :=
∂φ

∂z

and

γ1
∂φ

∂τ
=

∂

∂z

(

∂w

∂φz

)

− ∂w

∂φ
= K2

∂2φ

∂z2
+ µ0∆χH

2 sinφ cosφ.

In dimensionless form, the initial-boundary value problem governing the behaviour of
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the director field is then

∂φ

∂s
=
∂2φ

∂ζ2
+ λ sinφ cosφ, (s, ζ) ∈ R

+ × (0, 1) (1.2)

φ(·, 0) = −φp, φ(·, 1) = φp, (1.3)

φ(0, ·) = φ0 (1.4)

where

s :=
K2

γ1d2
τ , ζ :=

z

d
, λ :=

µ0∆χH
2d2

K2
. (1.5)

All the material parameters are positive for our system of interest. Observe that the

dimensionless control parameter λ is proportional to the square of the magnetic field

strength.

The associated equilibrium problem is given by

d2φ

dζ2
+ λ sinφ cosφ = 0, 0 < ζ < 1 (1.6)

φ(0) = −φp, φ(1) = φp. (1.7)

In the classical twist-Fréedericksz-transition problem, we have φp = 0; the system pos-

sesses a simple mirror symmetry, φ(ζ) ↔ −φ(ζ); and the ground-state solution (φ = 0,

which is invariant under this symmetry) loses stability to a pair of mirror-symmetric,

distorted solutions at a pitchfork bifurcation at the critical threshold value λc of the

parameter λ = λ(φp) given by

λc := λc(0) = π2 ⇔ Hc :=
π

d

√

K2

µ0∆χ
.

In a system with pre-twist (φp 6= 0), we no longer have the simple reflection sym-

metry above. The problem still possesses Z2 symmetry, however it is now of the form

φ(ζ) ↔ −φ(1−ζ). The ground-state solution (which is invariant under this symmetry) is

no longer uniform, but undergoes a net twist from ζ = 0 to ζ = 1. For λ = 0, it is simply

the linear profile φ(ζ) = (2ζ−1)φp. The problem still has a classical pitchfork bifurcation

diagram, with the symmetric solution branch bifurcating at a value λc(φp), which is nec-

essarily greater than π2, as we show below, to a pair of symmetry-related non-symmetric

solutions. We note that the antisymmetric nature of the boundary conditions is crucial

to this scenario.

This system was carefully studied numerically by Millar and McKay in [8, 9]. They

found that the ground-state solution is a strictly monotone increasing function of ζ for

0 ≤ λ ≤ λc(φp). At λ = λc(φp), this solution satisfies homogeneous Neumann boundary

conditions φ′(0) = φ′(1) = 0, in addition to the Dirichlet (“strong anchoring”) conditions

φ(0) = −φp and φ(1) = φp. For λ > λc(φp), this solution is no longer monotone and

possesses a unique interior minimum and maximum. See Figure 2. Thus Millar and

McKay observed the surprising fact that the symmetry-breaking bifurcation coincided

with the loss of monotonicity of the ground-state solution. Here we shall use a rigorous

phase plane analysis to explain this fact.
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Figure 2. Twist-angle profiles of the symmetric ground-state solution with φp = π

6
and for

(a) λ = 1

2
λc(φp), (b) λ = λc(φp), and (c) λ = 2λc(φp), and the concomitant loss of symmetry

and monotonicity and simultaneous satisfaction of both Dirichlet and homogeneous Neumann
boundary conditions at λ = λc(φp).

2 Time-maps

In this section we shall be concerned only with the stationary solutions to (1.2)–(1.4),

i.e., with the solutions of (1.6)–(1.7). Consider the change of variables t = t(ζ) :=
√

λ
2

(

ζ − 1
2

)

, and let ζ(t) be its inverse function. Let

L :=

√

λ

8
. (2.1)

Then, φ(ζ) is a solution of (1.6)–(1.7) iff x(t) := φ(ζ(t)) is a solution of

{

x′ = y

y′ = − sin 2x
(2.2)

x(−L) = −φp, x(L) = φp. (2.3)

The bifurcation parameter is now L. Note that L ∝ H. We shall treat the independent

variable t in (2.2)–(2.3) as the “time” of the dynamical system associated with (2.3). Note

that this “time” corresponds to the original spacial variable ζ and not to the original

time s.
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Figure 3. Orbits of (2.2) with the boundary conditions (2.3).

Let us start by observing that (2.2) is a nonlinear pendulum equation with first integral

V (x, y) = y2 − cos 2x, (2.4)

and thus its orbits are contained in the level sets of V . The natural phase space for

(2.2)–(2.3) is the strip [−π
2 ,

π
2 ] × R with the straight lines x = −π

2 and x = π
2 identified;

which is, obviously, the same as a cylindrical phase space (Figure 3). We shall use either

interpretation (as a strip or as a cylinder) as appropriate.

Observing that, for all α ∈
(

0, π
2

)

, the orbit γα that intersects the x-axis at (α, 0) is

periodic, we can associate to each of these values of α the quantity T (α) = 1
4P (α), where

P (α) is the period of the corresponding orbit γα. By the symmetry properties of (2.2)–

(2.3) under the transformations x 7→ −x, and y 7→ −y, we conclude that T (α) is the time

needed for the point of intersection of γα with the positive-y semi-axis, (0,
√

2 sinα), to

travel to (α, 0). Using (2.2) in (2.4) we get

T (α) :=

∫ α

0

dx√
cos 2x− cos 2α

. (2.5)

We will also need the time-map (α, φp) 7→ T1(α, φp) measuring the time needed for the

point of intersection of the orbit γα with the positive-y semi-axis to travel to the straight

line x = φp 6 α, corresponding to the boundary condition (2.3):

T1(α, φp) :=

∫ φp

0

dx√
cos 2x− cos 2α

. (2.6)



Bifurcation of the twist-Fréedericksz transition with pre-twist b.c. 7

Clearly T1(φp, φp) = T (φp).

An analogous time-map can be defined for orbits that cross the positive-y semi-axis

at a point above the orbit γh joining
(

−π
2 , 0

)

to
(

π
2 , 0

)

(note that γh is a heteroclinic

orbit if we do not identify its endpoints as a single point, or a homoclinic orbit when

we consider the cylindrical picture of the phase space). Using the first integral (2.4) we

easily conclude that γh crosses the positive-y semi-axis at the point (0,
√

2). For every

β >
√

2 and φp ∈
(

0, π
2

)

the time-map (β, φp) 7→ T2(β, φp) defined by

T2(β, φp) :=

∫ φp

0

dx
√

β2 + cos 2x− 1
(2.7)

measures the time taken by the point (0, β) to reach the line x = φp under the flow

generated by (2.2). By the dominated convergence theorem, we have T2(β, φp) → 0 as

β → +∞.

The time map T2 can be used to compute the periods of the periodic orbits above γh:

if the orbit crosses the positive-y semi-axis at a point (0, β) with β >
√

2, its period is

2T2(β,
π
2 ). Observe that, by the symmetry of (2.2) under the transformations x 7→ −x

and y 7→ −y, the orbits crossing the negative-y semi-axis at a point (0,−β) below the

orbit γ−h connecting
(

π
2 , 0

)

to
(

−π
2 , 0

)

, have a period given by the same expression.

The function T2 can be continuously extended for values β <
√

2 using the time map

T1: by the phase portrait presented in Figure 3 and the fact that orbits of (2.2) lie on

level sets of the first integral V , we conclude that, for each α ∈ (0, π
2 ), there exists a

unique β = β(α) ∈ (0,
√

2) such that the points (0, β) and (α, 0) lie on the same orbit of

(2.2), and the function α 7→ β(α) is strictly increasing. Thus, denoting by β∗ the value

of β(φp), we conclude that, for each α ∈ [φp,
π
2 ), we have β(α) ∈ [β∗,

√
2). Denoting by

β 7→ α(β) the inverse function, we can extend the definition of T2 to β ∈ [β∗,
√

2) as

follows

T2(β, φp) := T1(α(β), φp). (2.8)

Observe that the following equalities hold, T2(β
∗, φp) = T1(φp, φp) = T (φp) = L∗, where,

for later reference, we have defined

L∗ := T (φp). (2.9)

We also observe that, by continuous dependence of the flow generated by (2.2), we have

β∗ := β(φp) →
√

2 as φp → π
2 .

In order to proceed with the analysis we need the following result about the mono-

tonicity properties of the time maps T , T1 and T2:

Proposition 1 Let α ∈
(

0, π
2

)

, φp ∈ (0, α), and β > β∗. Then,

1. the function α 7→ T (α) defined by (2.5) is strictly increasing and converges to +∞ as

α ↑ π
2 , and to π

2
√

2
as α ↓ 0.

2. the functions α 7→ T1(α, φp) and β 7→ T2(β, φp), defined by (2.6) and (2.7), respec-

tively, are strictly decreasing. The same holds true for T2(·, π
2 ).
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Proof 1. As in [11], we change the integration variable x 7→ s := x
α in (2.5), so that

T (α) =

∫ 1

0

α√
cos 2αs− cos 2α

ds,

and thus

T ′(α) =

∫ 1

0

θ(αs) − θ(α)

(cos 2αs− cos 2α)3/2
ds, (2.10)

where θ(x) := cos 2x+ x sin 2x. Since θ is strictly decreasing in
(

0, π
2

)

, we conclude that

the integrated function in (2.10) is positive and thus T (·) is strictly increasing. The limit

behaviours are readily obtained from the facts that the orbits approach γh in the first

case, and the flow becomes close to the linearized flow about (0, 0) in the second case.

2. Differentiating T1 with respect to α, we get

∂T1

∂α
= −

∫ φp

0

sin 2α

(cos 2x− cos 2α)3/2
dx < 0. (2.11)

For β >
√

2 we use (2.7) to get

∂T2

∂β
= −

∫ φp

0

β

(β2 + cos 2x− 1)3/2
dx < 0,

which is valid for all φp ∈ (0, π
2 ]. With β ∈ (β∗,

√
2), using (2.8), the fact that β 7→ α(β)

is strictly increasing, and the above computation of ∂T1

∂α , we conclude that

∂T2

∂β
=
∂T1

∂α

dα

dβ
< 0.

The result now follows from these inequalities and the continuity of T2(·, φp) at β∗ and√
2.

3 Phase-space Analysis

With recourse to the time-maps’ properties established in the previous section, we can

now start our bifurcation analysis of (2.2)–(2.3). At this point it is important to separate

the study of orbits bounded by the homoclinic loops γh and γ−h, from those existing in

the unbounded regions of the cylindrical phase plane. We will deal with the first ones in

Sections 3.1–3.3 and with the last ones in Section 3.4.

For the study of the orbits in the bounded region we can consider the system as living

in the strip (−π
2 ,

π
2 )×R of R

2. Naturally, for the study of the solutions in the unbounded

regions the consideration of the cylindrical nature of the phase plane is mandatory. For

all Sections 3.1–3.3 below, remember that we have defined L∗, in (2.9), as the value of

T (·) at φp.

3.1 The critical case L = L∗

A first and easy consequence of last section’s results is that, for every φp ∈ (0, π/2), there

exists a unique solution, (x∗, y∗), to the boundary value problem (2.2)–(2.3) with L = L∗.

In fact, if we fix φp ∈ (0, π/2), the monotone increasing behaviour of T (·) given by Propo-

sition 1 implies that there exists a unique value of α, namely φp, such that T (α) = L∗.
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Observe that the x-component of this unique solution is strictly increasing and satisfies

both Dirichlet and homogeneous Neumann boundary conditions (cf. Figure 4).

x

y

x = −φp x = φp

−π
2

π
2

γ∗

Figure 4. The orbit γ∗ of the solution (x∗, y∗) of (2.2)–(2.3) when L is the critical value L∗.

3.2 The subcritical case L < L∗

Another equally easy consequence of the monotonicity of the time maps is that, for each

fixed valued of φp ∈ (0, π/2) and each L ∈ (0, L∗), there exists one and only one solution

to (2.2)–(2.3). Furthermore, all these solutions have a monotone increasing x-component.

To establish this, let us start by fixing φp ∈ (0, π/2). For this φp, compute L∗ by (2.9)

and choose an arbitrary L ∈ (0, L∗). From the definition and properties of T2 in Section 2,

we conclude that there exists a unique βL > β∗ such that T2(βL, φp) = L.

Consider the orbit γβL
of (2.2) that contains the point (0, βL). By construction, the

arc of γβL
between the lines x = −φp and x = φp satisfies the boundary condition

(2.3). By the monotonicity of T2 it follows that L 7→ βL is strictly decreasing, and the

uniqueness of βL implies the uniqueness of the solution to (2.2)–(2.3). The monotonicity

of the x-component of the solution as a function of t is obvious from the phase portrait

in Figure 3.

3.3 The supercritical case L > L∗

Finally, again using the monotonicity of the time maps, we can establish the existence,

for all L > L∗, of several branches of solutions, three of them bifurcating from the critical

solution (x∗, y∗) at L = L∗.

3.3.1 Asymmetric solutions bifurcating from γ∗.

Fix any L > L∗. By Proposition 1, there exist a unique α = α(L) ∈
(

φp,
π
2

)

, such that

T (α) = L. Hence, there exists a unique solution of (2.2) satisfying the boundary condition

x(−L) = −α and x(L) = α and with strictly increasing x-component; corresponding to

this solution is the arc between the points (−α, 0) and (α, 0) of the periodic orbit γα of

(2.2) plotted in Figure 5.

By construction, γα has period 4L, and by the invariance of the vector field of (2.2)
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−α α

x = −φp x = φp

γα

π
2

−π
2

x

y

Figure 5. The orbit γα of (2.2) with period 4L, with L > L∗, and the arc of γα that satisfies
the boundary condition x(−L) = −α and x(L) = α.

under the transformations x 7→ −x and y 7→ −y, one concludes that, in any one period,

the orbit spends exactly 2L units of time in every half-strip. This implies that there exists

exactly two solutions of (2.2)–(2.3) whose orbits, denoted by γ+
α and γ−α , coincide with

part of γα and lie entirely in a half-space, as presented in Figures 6(a) and 6(b).

α

x = −φp x = φp

γ+
α

−π
2

π
2

y

(a)

α

x = −φp x = φp

γ−α

−π
2

π
2

y

(b)

Figure 6. The orbits γ+
α and γ−

α of (2.2) that satisfy the boundary condition (2.3) where α is
the unique solution of T (α) = L, for L > L∗.

It is clear from the limit behaviour of T at π
2 stated in Proposition 1, that the branches

of solutions corresponding to the orbits γ+
α and γ−α exist globaly as L→ +∞ and remain

bounded. Clearly, since α ↓ φp as L ↓ L∗, the two orbits converge to the orbit γ∗ of the

critical solution (x∗, y∗) as L → L∗. Note that each of these solutions exhibit a single

extremum in the interval (−L,L): the solution whose orbit is γ+
α has a maximum, and the

one correspondent to γ−α has a minimum. Note that these are the asymmetric solutions

presented in Figure 2(c).

3.3.2 Symmetric solutions bifurcating from γ∗.

For L > L∗ there is an easily obtained further solution of (2.2)–(2.3) that corresponds

to the bifurcating symmetric solution shown in Figure 2(c). To reach this conclusion,

observe first that the point in the y-axis of an orbit like the one plotted in Figure 7 takes

2T (α) − T1(α, φp) units of time to cover its full length.

From Proposition 1, T (·) and T1(·, φp) are both continuous and monotone functions of α
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α

x = φp

γα

π
2

x

y

Figure 7. The orbit γα of (2.2) that satisfies the boundary condition x(0) = 0 and x(L) = φp

referred to in the text.

for α ∈
(

φp,
π
2

)

, the first one increasing and converging to +∞ as α→ π
2 , the second one

strictly decreasing. Also, remember that T (φp) = T1(φp, φp) = L∗. From this it follows

that 2T (φp)−T1(φp, φp) = L∗ < L and limα→π/2 (2T (α) − T1(α, φp)) = +∞ > L. Thus,

there exists a unique value of α ∈
(

φp,
π
2

)

such that the orbit γα plotted in Figure 7 is

traveled in L units of time. Observe that, as α ↓ φp, we have 2T (α) − T1(α, φp) → L∗

and γα → γ∗. By the symmetry x ↔ −x, this construction allows us to conclude that,

for each L > L∗, there is a single solution of (2.2)–(2.3) with exactly one maximum and

one minimum in (−L,L), and it bifurcates from the critical solution (x∗, y∗). This is the

symmetric solution in Figure 2(c)

3.3.3 Other bifurcating solutions.

In this section we apply the approach used above, based on the interplay of phase-space

analysis and the behaviour of the time-maps, in order to obtain the existence, at values

L = L∗
k := (2k + 1)L∗, ∀k ∈ N

+, of a supercritical pitchfork bifurcation from non-

monotonic solutions γ∗k whose orbits are akin to γ∗ but wind a full k times around the

origin. With this notation, γ∗ can be seen as the member k = 0 of this family, γ∗0, since

it does not wind around the origin.

We shall also conclude that, for each k ∈ N
+, the branch of symmetric solutions

impinging on the pitchfork bifurcation point with L < L∗
k is one of the branches of

solutions arising from a saddle-node point at some Lsn,k ∈ [L∗, L∗
k), and no other saddle-

node points occur along either of the resulting branches. We start by noting the existence

of the five different types of solutions to the boundary value problem (2.2)–(2.3), described

in the Table 1 by the letters A–D.

Note that, by the same argument used in sections 3.2, 3.3.1, and 3.3.2, all those so-

lutions converge to the critical one γ∗k (solution B) as α ↓ φp, and the time taken by

each orbit converges to the corresponding time SB(φp) := 2(2k + 1)T (φp) = 2L∗
k. Also

by the monotonicity properties of the time-maps (Proposition 1), we conclude that, for

each fixed α > φp close to φp, the time taken by the orbits of type C and D satisfies

SD(α) = SC(α) + 2 (T (α) − T1(α, φp)) > SC(α) > SB(φp) = 2L∗
k,
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Table 1. Solutions of (2.2)–(2.3), with α close to φp, winding k times around 0. The

symmetry classification of the orbits refers to their behaviour under the reflection x↔ −x.

L Orbit γα,k symmetry Time taken by the

(winds k times around 0) of γα,k orbit γα,k

L < L∗
k

A

symmetric
SA(α) :=

2 (2kT (α) + T1(α, φp))

L = L∗
k

B

symmetric
SB(φp) :=

2(2k + 1)T (φp)

L > L∗
k

Cℓ Cr

asymmetric
SC(α) :=

2(2k + 1)T (α)

L > L∗
k

D

symmetric
SD(α) :=

2 ((2k + 2)T (α) − T1(α, φp))

and hence the corresponding branches of solutions occurs supercritically (i.e., at L > L∗
k).

Analogously, since by (2.10) and (2.11) we have, as α ↓ φp,

T ′(α) → T ′(φp) ∈ (0,∞), and
∂T1

∂α
→ −∞, (3.1)

the time spent by orbits of type A (with α sufficiently close to φp) satisfy

SA(α) = 2 ((2k + 1)T (α) + T1(α, φp) − T (α)) < 2L∗
k,

and thus the corresponding branch of solutions occur subcritically (i.e., at L < L∗
k).

Hence this concludes the existence of the pitchfork bifurcations alluded to above.

One clear problem arising from the above bifurcation result is that, by the results in

Section 3.2, the branch of solutions of type A cannot continue for values of L below L∗.

To understand what happens to these solutions, we study the map α 7→ SA(α), where

SA(·) is the time spent by the orbits of type A. For this study, it turns out to be much

easier to consider the parametrization of the orbits by α̃ := sin2 α instead of α. Denote by

S̃A(α̃), T̃ (α̃) and T̃1(α̃) the functions SA, T and T1 in the new variable. By the definition
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of T in (2.5), we can write

T (α) = T̃ (α̃) =
1√
2

∫ π
2

0

dθ
√

1 − α̃ sin2 θ
=

1√
2
K(α̃),

where K is the complete elliptic integral of the first kind [1, Chapter 17]. From (2.6) we

have

T1(α, φp) = T̃1(α̃, φp) =
1√
2

∫ φp

0

dx
√

α̃− sin2 x
.

Thus, we have

S̃′′
A(α̃) = 4kT̃ ′′(α̃) + 2

∂2T̃1(α̃, φp)

∂α̃2

=
3k√

2

∫ π
2

0

sin4 θ

(1 − α̃ sin2 θ)5/2
dθ +

3

2
√

2

∫ φp

0

dx

(α̃− sin2 x)5/2
> 0.

From Proposition 1 we infer that S̃A(α̃) → ∞ as α̃ → 1, and from (3.1) we conclude

that S̃′
A(α̃) → −∞ as α̃ ↓ sin2 φp. These arguments, together with the above convexity

result, allow us to conclude that the function α̃ 7→ S̃A(α̃) has a unique minimum for some

α̃sn,k ∈ (sin2 φp, 1). We denote by Lsn,k the corresponding minimum value of 1
2 S̃A (the

saddle-node bifurcation point). For all L ∈ (Lsn,k, L
∗
k) there exist exactly two branches

of solutions of type A. Recalling that α = arcsin
√
α̃, the branch corresponding to the

smaller value of α for fixed L converges to the critical orbit γ∗k (solution B) when L ↑ L∗
k,

while the one corresponding to larger values of α is defined for all L > L∗
k and converges

to the union of the loops γh ∪ γ−h, as L → +∞. The same monotonicity and convexity

arguments, now applied to the map that gives the time spent by the asymmetric orbits

Cℓ and Cr as functions of α̃, allow us to conclude that those solution branches do not

possess turning points.

Collecting this information graphically, we obtain the bifurcation diagram presented in

Figure 8, where the bifurcation parameter is L and the bifurcation variable is the value

of the y-component of the solution at time t = −L (i.e., is the value of the y-component

of the starting point of the orbit, which, of course, lies in the vertical line x = −φp).

Using the methods of Schaaf [10], it is possible to conclude that all solutions that do not

arise in the pitchfork bifurcation at L∗ are linearly unstable for the semiflow generated

by (1.2)-(1.4).

3.4 Non bifurcating solutions.

We now finish the phase space analysis with a study of the non-bifurcating solutions to

(2.2)–(2.3) that lie in the unbounded regions of the cylindrical phase space, i.e., those

periodic solutions that exist above the homoclinic loop γh, or below γ−h. As a consequence

of this study we then present the bifurcation diagram that sums up the analysis developed

thus far. Let us start with the periodic solutions above the loop γh.

We already know, from the results in Section 3.2, that the branch of solutions leaving

the bifurcation point L = L∗ for L < L∗ exists down to L = 0. By the analysis in that

section and what was presented in Section 2 on the time-map T2, these solutions satisfy
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L

A

B

hp

−hp

y(−L)

Cℓ

Cr

DL∗
k

Lsn,k

Figure 8. Supercritical pitchfork bifurcation diagram around L = L∗

k where two branches of
asymmetric solutions (Cℓ and Cr) bifurcate from the (symmetric) critical solution B of (2.2)–
(2.3) when L is the critical value L∗

k. The symmetric branch (A) with L < L∗

k disappears in a
saddle-node bifurcation at L = Lsn,k ∈ [L∗, L∗

k). We denote by hp (resp. −hp) the value of the
y-component of the orbit γh (resp. γ−h) at the point of intersection with x = −φp. See Table 1
and the text for further details.

y(−L) → +∞ as L→ 0. Remember that the x-component of these solutions is monotone

increasing, so they are not periodic.

The periodic orbits above γh can be indexed by k, the number of times they fully

circle the cylindrical phase space. An orbit of (2.2)–(2.3) that circles k times the phase

space spends in its orbit a time given by 2
(

kT2(βk,
π
2 ) + T2(βk, φp)

)

, where βk is the

y-component of its intersection with the positive y-axis. Note that, from the phase space

analysis, for each orbit, there is a one-to-one correspondence between the values of βk and

y(−L), both converging to +∞ as L → 0, and to the corresponding points in γh when

L→ +∞. From this and the results in Section 2, we conclude that, for each k ∈ N, and

each L > 0, there exists a unique solution to (2.2) circling exactly k times the cylindrical

phase space, taking exactly 2L units of time to do so, and its value of y(−L) converges

to +∞ as L → 0 and to hp (defined in the caption of Figure 8) when L → +∞. From

the monotonicity properties of T2 studied in Section 2, we further conclude that y(−L)

is monotonically decreasing with L.

By the symmetry properties of (2.2), exactly the same occurs with the orbits below

γ−h, the only difference being that, now, the time taken by a solution to (2.2)–(2.3) whose

orbit circles k times the cylindrical phase space is 2
(

(k + 1)T2(βk,
π
2 ) − T2(βk, φp)

)

.

These results, together with those obtained in the Sections 3.1–3.3, can be joined

together in order to draw the bifurcation diagram in Figure 9.

How all these solutions and bifurcation events are related to what happens as φp → 0+

is an interesting problem in its own right, but we do not address it here. Furthermore, a

thorough understanding of the associated compact global attractor, along the lines of the

work of, say, Fiedler and Rocha (see, for instance, [4] and related work) would require

a knowledge of the Morse indices of the equilibria. It is, however, somewhat outside the

scope of the present study.
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L

hp

−hp

y(−L)

L∗ L∗
1

Lsn,1 L∗
2

Lsn,2

Figure 9. Part of the bifurcation diagram of (2.2)–(2.3) showing the pitchfork bifurcation
points at L∗, L∗

1, and L∗

2 , as well as four non-bifurcating solutions, two above γh, and two below
γ−h .

4 Stability and Monotonicity

We now recall the definitions introduced in sections 1 and 2 for the rescaled variables

t and ζ and for the parameter L, and rescale the original time s 7→ s̃ := λ
2 s. Denoting

again by φ = φ(s̃, t) the function φ(s(s̃), ζ(t)) where φ(s, ζ) is a solution of (1.2)–(1.4),

we can write the initial-boundary value problem (1.2)–(1.4) in the form

∂φ

∂s̃
=
∂2φ

∂t2
+ sin 2φ, (s̃, t) ∈ R

+ × (−L,L) (4.1)

φ( · ,−L) = −φp, φ( · , L) = φp. (4.2)

φ(0, ·) = φ0 (4.3)

Note the equilibria of (4.1)–(4.3) are the solutions x(t) of (2.2)–(2.3).

Let us fix φp ∈ (0, π/2). Let L∗ be given by (2.9). Denote by x∗(t) the monotone

solution of (2.2)–(2.3) for L = L∗. Remembering Section 3.1, x∗(t) satisfies both Dirichlet

and homogeneous Neumann boundary conditions. In this section we show that there is

a pitchfork bifurcation of Z2-symmetry breaking solutions from x∗(t), which is thus

concomitant with loss of monotonicity. By the principle of exchange of stability, this

implies that the only stable solutions (more precisely, locally asymptotically stable for the

semi-flow generated by (4.1)–(4.3), and hence also by (1.2)–(1.4)) are either monotone (for

L 6 L∗, the symmetric solution) or have a unique extremum point (the non-symmetric

solutions, for L > L∗). The bifurcation that, as we show, occurs at L∗ has to be a pitchfork

bifurcation by the Z2 symmetry of the equations, and it has to be a supercritical pitchfork

bifurcation by the monotonicity results in Proposition 1. We have

Theorem 1 There is a Z2-symmetry breaking bifurcation at L∗ from the solution x∗(t)
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defined above. Furthermore, there cannot exist a bifurcation from a monotone solution

x(t) that does not satisfy the Neumann boundary condition.

Proof Let the operator AL with homogeneous Dirichlet boundary conditions on (−L,L)

be defined by

AL =
d2

dt2
+ 2 cos(2x(t;L)),

where x(t;L) is a solution of (2.2)–(2.3) for some fixed value of the parameter L. Since

(x∗)′(±L∗) = 0, the function ψ(t) = (x∗)′(t) is a zero eigenfunction of AL∗ . Since the

eigenvalue problem for this operator is a standard regular Sturm-Liouville problem with

homogeneous Dirichlet boundary conditions, we know that all its eigenvalues are simple.

Thus, by Krasnoselskii’s theorem [6], L∗ is a bifurcation point.

To prove the second statement of the Theorem, let us proceed by contradiction. Sup-

pose such a bifurcation occurs. Then, by the Krein–Rutman theorem [7], there is a

function ψ(t) > 0 satisfying homogeneous Dirichlet boundary conditions, such that

ATψ := ψ′′ + 2 cos(2x(t))ψ = 0.

Furthermore, ψ′(−L) > 0, ψ′(L) < 0, because otherwise, by the uniqueness theorem for

linear ODEs, ψ(t) is identically zero. Now let ρ(t) = x′(t). Then

ρ′′ + 2 cos(2x(t))ρ = 0

and (since x(t) is strictly monotone) ρ(±L) > 0. But then multiplying the equation

satisfied by ψ by ρ, and vice versa, integrating over [−L,L] and subtracting, we have

that

ψ′(L)ρ(L) − ψ′(−L)ρ(−L) = 0,

which is impossible, as this expression is necessarily negative.

Finally, we have the following theorem (which again has been found numerically in

[8, 9]):

Theorem 2 The map φp 7→ L∗ is monotone increasing.

Proof Fix φp in
(

0, π
2

)

and consider the critical solution x∗(t). This function gives rise

to a solution X∗(t) of (2.2) with homogeneous Dirichlet boundary conditions as follows:

X∗(t) =

{

x∗(t+ L∗), t ∈ [−L∗, 0)

−x∗(t− L∗), t ∈ [0, L∗]
.

Remembering that in section 2 we denoted by β∗ := β(φp) the ordinate of the point

of intersection of the critical solution with the y-axis, we imediately conclude, from a

brief inspection of the phase portrait in Fig. 3, that the map f1 : φp 7→ β∗ is monotone

increasing. On the other hand, by a calculation as in Proposition 1, the (time) map f2
which measures the time it takes for a solution through the point (0, a), a ∈ [0,

√
2), to

hit the point (0,−a) is monotone increasing. Furthermore, f2(β
∗) = 2L∗. Hence 1

2f2 ◦ f1
is monotone increasing; but this is the map φp 7→ L∗, which concludes the proof.
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Defining

λc(φp) := 8 (L∗)
2

(4.4)

we conclude, by (2.1) and the previous results, that λc(φp) is the first bifurcation value

of (1.2)–(1.4) and that the monotonicity, the symmetry, and the stability properties of

the bifurcating solutions are as stated in the Introduction.

5 Conclusions

We summarize our results and some consequences. The twist-Fréedericksz geometry (in-

plane field perpendicular to planar-aligned director) is one of the three main Fréedericksz-

transition geometries (the other two being the “bend” and the “splay” [3]). The instabili-

ties associated with these systems are fundamental in the macroscopic equilibrium theory

of liquid crystals and are of intrinsic interest. We have analyzed the twist-Fréedericksz

transition with pre-twist and some of the surprising features discovered numerically by

Millar and McKay [8, 9]. In systems such as these, it is usually the case that altering

the boundary conditions destroys the mirror symmetry and leads to an imperfect bifur-

cation and smeared-out transition. For the twist geometry, however, in the presence of

antisymmetric pre-twist boundary conditions (equal absolute value and opposite signs on

the opposing sides of the boundary), the system retains Z2 symmetry and a symmetry-

breaking pitchfork bifurcation, albeit at an elevated threshold.

The most distinguishing feature of the transition (with pre-twist) is the coincidence

of the symmetry-breaking bifurcation with the loss of monotonicity of the ground-state

solution (and simultaneous satisfaction of both Dirichlet and homogeneous Neumann

boundary conditions φ′(0) = φ′(1) = 0). A good framework within which to study this is

the phase plane, where the problem coincides with that of a nonlinear pendulum. There,

by analyzing appropriate time maps, we have shown that the trajectory of the solution

of the equilibrium boundary value problem at the bifurcation point must coincide with a

segment of an orbit that begins and ends on the horizontal axis, where necessarily φ′ = 0.

From a practical point of view, this transition provides a potential way to measure

experimentally the pre-twist of a twist cell with differently aligned anchoring conditions.

In such an experiment, one would steadily increase or decrease the magnetic field strength

to determine the critical threshold Hc of the onset of the instability. The relationship

between Hc and φp is monotone, hence invertible. It is given (in dimensionless terms) by

(4.4), which can be written as

λc(φp) = 8 (L∗)2 = 8(T (φp))
2, 0 6 φp <

π

2
. (5.1)

Recalling (1.5), the parameter λ and the magnetic field strength H are related by

λ =
µ0∆χH

2d2

K2
⇔ H =

1

d

√

K2

µ0∆χ

√
λ.

While an explicit formula for φp in terms of λc or Hc cannot be given, formula (5.1) can

easily be inverted, and Theorem 2 implies that φp 7→ λc(φp) is monotone increasing for

the full range of values of φp ∈ (0, π/2). For small values of the pre-twist angle φp, the
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fact that T (α) = 1√
2
K(sin2 α) allows one to obtain the approximation

λc(φp) ≈ π2

(

1 +
1

2
φ2

p

)

, when φp ≈ 0,

which was found in [8] to give very good agreement with numerical results.

A final result worth noting concerns the characterization of the non-bifurcating periodic

solutions in Section 3.4. In addition to allowing us to complete our phase-space analysis,

these solutions are of some physical interest as well, for it is in these unbounded regions

of the cylindrical phase space above γh and below γ−h that one finds all ”super-twisted”

solutions, that is, solutions with total twist across the cell greater than π radians. Super-

twisted cells are used in display applications, although they are typically switched by

electric (not magnetic) fields that are aligned perpendicular to (rather than parallel to)

the film plane. STNs (Super-Twisted Nematic cells, 3π
2 radians total twist) are preferred

to standard TNCs (Twisted Nematic Cells, π
2 radians total twist) in some applications

because of their shorter switching time. Our analysis readily guarantees existence and

uniqueness of super-twisted solutions (both clockwise and counter-clockwise) of arbitrar-

ily large total twist and for all field strengths. Of course for given orientations of the

director on the substrate boundaries, the solution with smallest total twist would have

the least free energy.
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