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Signal transduction is the process by which the cell converts one kind of signal or stimulus into
another. This involves a sequence of biochemical reactions, carried out by proteins. The dynamic
response of complex cell signalling networks can be modelled and simulated in the framework of
chemical kinetics. The mathematical formulation of chemical kinetics results in a system of coupled
differential equations. Simplifications can arise through assumptions and approximations. The
paper provides a critical discussion of frequently employed approximations in dynamic modelling
of signal transduction pathways. We discuss the requirements for conservation laws, steady state
approximations, and the neglect of components. We show how these approximations simplify the
mathematical treatment of biochemical networks but we also demonstrate differences between the
complete system and its approximations with respect to the transient and steady state behavior.

I. INTRODUCTION

The processing of information in living cells is car-
ried out by signalling networks [1]. The character of
information and the corresponding responses include a
wide range of physical and chemical quantities, including
changes in temperature, pressure, water balance, concen-
tration gradients, pH-level. Within these networks infor-
mation is carried by dynamic changes in protein concen-
trations.

While there exist considerable experience in mathe-
matical modelling of metabolic systems [2–5], cell cycle
[6, 7], cellular rhythms [8, 9] and transcriptional networks
(see [10, 11] for recent surveys and [12] for a recent text-
book), the mathematical analysis of signal transduction
pathways is a younger field [13–19]. An important dif-
ference between modelling metabolic systems and signal
transduction pathways is that in cell signalling one is
primarily interested in the analysis of rapid responses to
stimuli, oscillatory dynamics, and transient changes. A
number of simplifying mathematical assumptions related
to steady-state analysis are therefore not available in the
analysis of signal transduction pathways.

To allow a meaningful mathematical analysis, simplifi-
cations are of vital importance. It is only natural that one
considers well established approximations for metabolic
systems to be applicable in cell signalling. The present
paper is to discuss a number of assumptions and approxi-
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mations that are frequently used in dynamic modelling of
signal transduction pathways. We show how these sim-
plify the mathematical treatment but also illustrate what
happens if they are not reasonable. We demonstrate that
assumptions can lead to deceptive changes in the model’s
behavior. In cell signalling the choice and justification of
assumptions is particularly important and relies on the
experimental set-up, biological context and purpose of
the model.

The outline of the paper is as follows. We begin with a
description of the assumptions underlying our study, be-
fore introducing activation/deactivation modules which
form the basic elements of cell signalling networks. In
Sections III to VI, we introduce commonly used approxi-
mations and simplifications, including assumptions about
stationarity assumptions, conservation and moiety laws,
and the neglect of components. In Section VII, the appli-
cation and consequences of assumptions and approxima-
tions are demonstrated for a MAPK cascade. This leads
us to a discussion of simplifications in the description of
feedback mechanisms.

II. ASSUMPTIONS OF THE STUDY

For the present paper we treat a signal transduction
pathway as a network of coupled modules, as illustrated
in Figure 1 [20, 21]. For each activation/deactivation
cycle an enzyme kinetic reaction serves as a template:

X + E
k1

−−−⇀↽−−−
k−1

C
k2

−→ E + X∗ (1)

Eq. (1) describes the modification of protein X into form
X∗, facilitated by an enzyme E. During the modifica-
tion of X an intermediate enzyme-substrate complex C
is formed. The enzyme is considered to be an ideal cata-
lyst, that is, the enzyme is released unchanged from the
complex. If not stated otherwise, we assume that the en-
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FIG. 1: Modules (of activation/deactivation cycles) of which
signal transduction pathways are composed.

zyme in (1) is a kinase for activation and a phosphatase
for deactivation.

A standard approach to the dynamics of cell signalling
networks is the framework of chemical kinetics. Within
this framework enzyme kinetic reaction (1) is represented
as a system of four coupled ordinary differential equations
[11, 22]

dX

dt
= −k1 EX + k−1 C , (2)

dE

dt
= −k1 EX + (k−1 + k2)C , (3)

dC

dt
= k1 EX − (k−1 + k2)C , (4)

dX∗

dt
= k2 C . (5)

Such a system of rate equations can be generalized to the
following form [2]

dSi

dt
=

m
∑

µ=1

νµikµ

∏

j

S
lµj

j , i = 1, . . . , n , (6)

where νµi is the stoichiometric coefficient, which is posi-
tive for synthesis and negative for degradation, and lµi is
the reaction order. The reaction rate is proportional to
the concentration of reaction partners and rate coefficient
kµ.

There is a no such thing as a hypothesis-free model
and before we discuss various approximations that de-
rive from the basic modification scheme (1), we ought to
mention the assumptions that are implicitly made to this
point. The approach has been originally derived from
microscopic properties in statistical physics [23]. It links
the rate of change of a component Si to an average num-
ber of reactive collisions in a reaction volume. Eq. (6)
therefore implies the assumption that a mean value is
an appropriate description for changes in protein con-
centrations; random fluctuations (noise) are considered
small in comparison to this mean [23]. In that respect,
Eq. (6) describes ‘macroscopic’ changes of protein con-
centrations. A fundamental assumption of this approach
is a homogeneous distribution of all components in the

reaction volume. Diffusion processes are assumed to be
much faster than the chemical reaction made responsible
for the signalling mechanism. We stay therefore in the
realm of ordinary differential equations, not partial differ-
ential equations. Assuming that environmental variables
(e.g. temperature and volume) do not change, kµ is a
reaction constant.

III. STATIONARY COMPONENTS

In case of (de)phosphorylations, the reaction schema
(1) ignores the involvement of ATP. This simplification
is made possibly by assuming that ATP is available ei-
ther in great excess or can be supplied without significant
changes in concentration. This assumption is frequently
used for ATP in the activation cycles of Figure 1 [26].

We can illustrate this with a more detailed model

X + E
k1

−−−⇀↽−−−
k−1

C

C + ATP
k′

2

−→ X∗ + E + ADP .

(7)

In a first reaction step, enzyme and protein X form a
complex C, which is the target for the ATP molecule.
The reaction between the complex and ATP activates the
protein and release the unchanged enzyme E and ADP.
The corresponding differential equation for the rate of
change of the active protein is now

dX∗

dt
= k′

2 ATP C .

If we assume a stationary ATP concentration we can in-
troduce an effective or apparent rate constant

k2 = k′

2 ATP

leading to a differential equation, equivalent to (5). In
the same manner the other differential equations of reac-
tion scheme (7) can be reduced to a formally equivalent
system of (2)-(5). The effective rate constant k2 depends
on the ATP concentration. Experiments with different
ATP levels will subsequently lead to a different dissoci-
ation constants k2. This underlines the importance for
monitoring the concentration of stationary components.
The identification of a parametric dependence of a rate
coefficient on other species is an indication for a more
complex reaction mechanism.

IV. CONSERVATION LAWS, MOIETY LAWS

A further simplification in the treatment of signalling
pathways arises if some components obey conservation
relations with respect to the number of molecules in-
volved. Moving from molecule numbers to concentra-
tions, so-called moiety laws are defined. For example, in
case of the reaction scheme (1) we can assume

ET = E(t) + C(t) , (8)
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where ET is the total enzyme concentration, composed
of the free enzyme concentration E(t) and the enzymes
bound in the intermediate complex C. During the course
of the reaction, the ratio of enzyme and enzyme-substrate
complex is changing, but their sum remains constant over
time. Conservation relation (8) allows us to replace E(t)
in other equations by ET − C(t) and thereby to reduce
the overall number of differential equations. This idea is
frequently used [13, 26–28].

A notable difference between metabolic networks and
signalling pathways is the fact that the latter can often
be considered a closed system, restricted by the cell mem-
brane. In closed systems the conservation relation is an
exact relation and has no consequences on the dynamic
behavior. Even if the system as a whole is open, it can
be closed with respect to some components.

V. QUASI-STEADY STATE APPROXIMATION

Within the modules of Figure 1 elementary reac-
tions produce short-lived intermediates, like the enzyme-
substrate complex in Eq. (1). This is then referred to as a
pre-equilibrium [24], in which an intermediate is in equi-
librium with the reactants. This is only possible if the
rate of formation for an intermediate and its dissociation
back into the reactants is much faster than its conversion
into products [24]. For complex C this quasi-steady state
assumption leads to a simplification in Eqs. (2)-(5)

dX∗

dt
= −

dX

dt
= k2 C(t) = k2

X(t)E(t)

KM

. (9)

The Michaelis-Menten scheme now formally follows a
pseudo-bimolecular rate law. Such a reduction of the
underlying mechanism is a characteristic property of the
quasi-steady state approximation.

If we further use conservation relation (8) we obtain
the well-known Michaelis-Menten equation [3, 27, 29, 30]

dX∗

dt
= −

dX

dt
=

Vmax X

KM + X
, (10)

with the limiting rate Vmax = k2 ET and Michaelis con-
stant KM = (k−1 + k2)/k1. The conditions for the appli-
cation of the quasi-steady state assumption were gener-
alized in [31, 32]. A generalization to reversible enzyme
kinetics is given in [33].

Instead of the three rate coefficients k1, k−1, and k2 of
complete model (2)-(5) the Michaelis-Menten equation
(10) is parametrically dependent on two new coefficients,
which can often be measured in experiments. Because the
original rate coefficients cannot be uniquely determined
from the limiting rate Vmax and Michaelis constant KM,
the quasi-steady state assumption leads to a loss of in-
formation about the reaction mechanism. Note, that the
rational form of the Michaelis-Menten equation is a con-
sequence of (8).
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FIG. 2: Comparison of the integrated Michaelis-Menten equa-
tion (10) (dashed) and the numerical solution of the system
of coupled ODE’s (2)-(5) in a semilogarithmic representation.
In addition to the evolution of protein X and its modified
form (solid lines) proteins, the enzyme and complex concen-
trations are shown as a function of time. The concentrations
are normalized to the initial protein concentration X0. The
time axis is scaled with the characteristic time τ (11). The
dynamics are separated into three parts: I - initial period, II
- period of quasi-steady states, III - final stage.

In Figure 2, we compare the solution for the full system
of coupled differential equations with its approximate de-
scription (10). In order to illustrate all three phases of the
reaction we choose a normalized logarithmic time scale.
As the scale factor we use the characteristic time needed
to establish the quasi-steady state [34]

τ = (k1 X0 + k−1 + k2)
−1

. (11)

Apart from dissociation constants k−1 and k2, τ depends
on the formation of complex C described by the associ-
ation rate k1 and the initial substrate concentration X0.
During this initial period the Michaelis-Menten equa-
tion deviates from a detailed model, especially for the
temporal evolution of the substrate. During phase (II),
1 < t/τ < 300, the enzyme complex is saturated due to
the limited amount of enzyme. This is the region, where
the quasi-steady state assumption is valid. Due to the
ratio of enzyme and substrate in Figure 2, the tempo-
ral evolution of the substrate is not well described by
the Michaelis-Menten equation, although in period (II) a
quasi-steady state of the enzyme-substrate complex C is
established. If the ratio becomes small (X0 � E0), devi-
ations occurring from the initial period can be neglected.

Towards the end, in phase (III), the enzyme complex
is degrading because of the lack of substrate leading to
a decrease of the formation rate. The assumption of an
equilibrium between complex and reactants is no longer
valid and the two models differ in their transient behav-
ior.

Note also that the enzyme kinetic reaction reaches a
period during which the enzyme complex is saturated and
shows no net change. However, this is not a necessary
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FIG. 3: The Goldbeter-Koshland function G(V1, V2, K1, K2)
(16) as function of the ratio of limiting rates V1 and V2. The
normalized steady state concentration X∗/XT is plotted for
the symmetrical modification cycle (K1 = K2). Depending on
the values of the Michaelis constants, the Goldbeter-Koshland
function can show sigmoidal or ultrasensitive behavior.

condition for the approximation of a quasi-steady state.
The Michaelis-Menten equation (10) and the enzyme

kinetic reaction Eqs. (2)-(5) have a similar long-term
behavior, but they deviate in the short-term behavior.
Thus, the underlying quasi-steady state approximation
may be applicable in metabolism, but can be problematic
in signalling, where we are interested in the description
of fast transient changes beyond the steady state. We
are going to further discuss Michaelis-Menten modelling
below. For a discussion of this modelling approach with
applications in cell signalling see [36].

VI. NEGLECTING COMPONENTS

In order to simplify the mathematical treatment of
(de)activation cycles (Figure 1), one often uses a combi-

nation of the previous discussed approximations. First,
one can decompose the modification and the reverse
process into two separate Michaelis-Menten-type reac-
tions, where we assume, that additional participants are
constant (See Section III) and obtain the reaction scheme

X + E1

k1

−−−⇀↽−−−
k−1

C1

k2

−→ E1 + X∗

X∗ + E2

k3

−−−⇀↽−−−
k−3

C2

k4

−→ E2 + X .
(12)

With the conservation laws for the kinase E1 and the
phosphatase E2, analogous to (8), for the protein

XT = X(t) + X∗(t) + C1(t) + C2(t) , (13)

and the quasi-steady state approximation for the formed
complexes C1 and C2 we obtain an expression which in-
volves the complex concentrations. If we assume, that
the concentration of the complexes C1 and C2 are much
smaller than the concentration of the modified protein
X∗ and its original form X

X + X∗
� C1 + C2 . (14)

we can neglect their contributions in conservation law
(13). Because the maximal concentration of complexes
is determined by the enzyme, from (14) the enzyme con-
centration must be small. We thus obtain the following
rate equation [26]

dX∗/XT

dt
=

1

XT

[

V1 (1 − X∗/XT)

K1 + 1 − X∗/XT
−

V2 X∗/XT

K2 + X∗/XT

]

(15)

with the limiting rates V1 =k2E
T
1 and V2 =k4E

T
2 and the

dimensionless Michaelis constants K1 =(k−1+k2)/(k1X
T)

and K2 =(k−3+k4)/(k3X
T). The corresponding steady

state is described by the Goldbeter-Koshland function
[26]

G(V1, V2,K1,K2) =
X∗

SS

XT
=

V1(1 − K2) − V2(1 + K1) +

√

[V1(1 − K2) − V2(1 + K1)]
2

+ 4V1K2(V1 − V2)

2(V1 − V2)
, (16)

having a characteristic sigmoidal shape as a function of
the ratio of the limiting rates, see Figure 3. Roughly
speaking, the ratio of kinase to phosphatase defines a
switch-like behavior which depends on the Michaelis con-
stants. The steady state concentration of X∗ increases
abruptly from a low (nearly zero) concentration to a high
level (nearly XT). Such behavior is called ‘ultrasensitiv-
ity’ [26, 28]. Apart from the described covalent mech-
anism, referred to as zero-order ultrasensitivity, other
mechanisms leading to ultrasensitive behavior have been

described [27, 29, 34]. As noted in [26], the considera-
tion of a non-negligible complex concentration moves the
steady state concentration of both protein forms to lower
concentrations. As a consequence, the activity X∗/XT

lies now in the range of 0 ≤ A ≤ Amax < 1. In contrast,
Eq. (16) has a range of [0, 1]. This behavior is shown in
Figure 4, illustrating the parametric dependencies on the
ratio of enzyme and protein concentration. Whereas the
dynamic behavior remains qualitatively unaffected, only
the relaxation time increases. On the other hand, the
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FIG. 4: Temporal evolution of modified protein X∗ to its
steady state for different enzyme concentrations. The solid
lines are the solution for finite enzyme concentrations and
the dashed lines the corresponding solution of (16).
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FIG. 5: Steady state concentration of modified protein X∗

as function of the ratio of catalyzing enzyme concentration
and total protein concentration XT for different ratios of
the limiting rates V1 and V2. For small ratios the enzyme-
substrate complex can be neglected in the protein balance and
the steady state tends asymptotically to result of Goldbeter-
Koshland [26] (dashed lines).

steady state for the modified form deviates from Eq. (16).
The differences in the steady state values increases with
the ratio of enzyme and protein concentration, as one
could expect. Additionally, a further increase comes with
the ratio of the limiting rates V1/V2, as demonstrated in
Figure 5.

Whereas assumption (14) holds true for most in-

vitro enzyme reactions, it often fails in phosphoryla-
tion/dephosphorylation reactions in signalling pathways.
In signal transduction the concentration of substrate, ki-
nase and phosphatase can be comparable [15, 37, 38].
As a consequence of the decreased steady state, the sig-
moidal shape is stretched and thereby the ultrasensitiv-
ity. With an increased enzyme concentration, the switch-
like ultrasensitive behavior can disappear [36].

E1
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W∗
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X
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3
XPP
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Y
8 YP

7
YPP

10

9

FIG. 6: Schematic representation of the basic MAPK cascade.
The activated protein of the previous level acts as a kinase of
the subsequent one. The dashed lines denote an implicit feed-
back from the upstream level back to their precursor through
the released activated proteins if the complexes dissociate. A
possible negative feedback loop (e.g. [28]) is denoted by a dot-
ted line. There is a specialized phosphatase for each protein.
As for the phosphorylation we assume for the dephosphoryla-
tion that the kinetic parameters are independent on the status
of protein activation (non-, single- or double-phosphorylated).
Each (de)activation step i is determined by the rate constants
ai describing the formation of complexes, di describing the re-
verse reaction, and ki describing the dissociation into product
and enzyme.

VII. SIGNALLING CASCADES

An example for a sequence of (de)activation cycles is
the MAPK cascade [20](Figure 6). MAPK cascades have
been modelled by various authors [13–17, 28, 37–40, 44].
We will show in this section that these models result from
different levels of approximation within a common funda-
mental reaction scheme. Considering some components
of the fundamental model we will discuss a step-by-step
reduction of the model and its consequences on dynamics.
The starting point is the mechanistic model of Huang &
Ferrell [13] which was also used in [14, 15, 39, 40]. Note,
that the first assumption in all cited papers was that the
concentrations of additional participants (ATP, H2O,...)
are constant. As described in Section III, we can then
use the enzyme kinetic reaction as a template for the
(de)phosphorylation processes in the cascade. A model
reduction occurs if we use the conservation relations for
the phosphatases and the kinase E1 [13] and for the pro-
teins which contain the different protein forms and all
related complexes. In [28] these complexes are neglected.

However, the conservation of phosphatases of proteins
X and Y do not follow the conservation relation (8). In-
stead of we have

ET = E(t) + CP(t) + CPP(t) , (17)

where the superscripts denote the complex of phos-
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phatase and the different phosphorylated protein forms.

In contrast to the single activation/deactivation cycle,
the rate equations of the cascade proteins are more com-
plex as shown in Eq. (18) for the double phosphorylated
protein XPP. The active protein W∗ acts as a kinase and
the enzyme E4 is the corresponding phosphatase. The
formation of complexes is proportional to the rate con-
stants ai, the reverse reaction to di, and the dissociation
into product and enzyme to the constants ki. The un-
derlined terms in (18) correspond to the ‘implicit feed-
back’, which describes the freed kinases in the modifica-
tion process. Due to this ‘implicit feedback’ downstream
activation steps also influence the dynamics of the previ-
ous steps. In Figure 6 this is shown with dashed lines.

dXPP

dt
= k5C

XP

W∗ − [a6E4 + a7Y + a9Y
P]XPP (18)

+ d6C
XPP

E4
+ [d7 + k7]C

XPP

Y + [d9 + k9]C
XPP

Y P ,

where C denotes the formed complex with the protein as
superscript with kinase. Besides the ‘implicit feedback’,
see also [41], the enzyme involved in the (de)activation
leads to an ‘implicit inhibition’ [42, 43]. For instance, the
single-phosphorylated protein XP inhibits the phospho-
rylation of X and X inhibits the phosphorylation of XP

through the competition for W∗. An analogues inhibi-
tion mechanism exists for the dephosphorylation of the
proteins in the cascade.

A further simplification arises if one uses the quasi-
steady state approximation for the formed complexes.
The system of 30 coupled differential equations can then
be reduced to eight equations involving only the proteins.
Not only the number of equations is reduced , the struc-
ture of the equations is simplified as well. For instance
rate equation (18) reduces to

dXPP

dt
= k5 CXP

W∗ − k6 CXPP

E4
, (19)

where the rate is now determined by the slowest step of
phosphorylation and dephosphorylation. From the dis-
cussion in Section V, these slowest steps have to be the
dissociation of the formed enzyme-substrate complex. As
shown in (9), Eq. (19) can also be expressed in terms of
pseudo-bimolecular reactions, leading to the representa-
tion of Heinrich et al. [17]. A comparison of Eqs. (18)
and (19) shows that the reduced rate equation does not
contain any implicit feedback. Therefore the dynamics
of both representations will differ if the implicit feedback
becomes important (i.e. whenever the steady state as-
sumption is not satisfied).

Due to conservation relations, Eq. (19) can be trans-
formed into rational expressions of the rate laws. On the
other hand, the phosphatases of proteins X and Y sup-
port conservation relation (17), which does not allow an
analogue transformation as discussed in Section V. In or-
der to further simplify the rate laws of these phosphatases

we assume

ET + CP(t) � CPP(t) single phosphorylated ,

ET + CPP(t) � CP(t) double phosphorylated .

These conditions can be fulfilled simultaneously only if

ET
� CP(t) + CPP(t) (20)

for the phosphatases. In contrast to the treatment of the
enzyme kinetic reaction, the phosphatases are not sat-
urated during the quasi-steady state phase. The quasi-
steady state expression of the protein-protein complexes
are obtained if we assume that the complex concentra-
tions are negligible. Only the current complex remains
in the expression. After some transformation we obtain
Goldbeter-Koshland like rate laws for the proteins in the
cascade. For example, we have for the double phospho-
rylated signalling protein XPP

dXPP

dt
=

k5X
PW ∗

KM5 + XP
−

k6E
T
4 XPP

KM6 + XPP
,

where KM5,6 are the corresponding Michaelis constants.
Note, that we substitute the conservation law term in the
above equation (see for example the dynamic Goldbeter-
Koshland function (15)). Such a representation was used
for instance in [28, 44].

In the course of the derivation we assume that all com-
plexes are simultaneously in a quasi-steady state. But
due to the consecutive nature of the cascade there are
delays between the different complexes. Furthermore we
neglect the contributions of the complex concentrations
to the dynamics and more important to the steady state
concentrations of the proteins. As discussed in the previ-
ous section, one has to assume that the protein concentra-
tion of each consecutive activation cycle is much greater
than in the previous step. From Figure 5 we can estimate
that a magnitude of at least hundred is needed. For a
three step cascade this means a concentration 104-higher
than the protein concentration in the first cycle which
is not common in signalling pathways [15, 37, 38]. Due
to these assumptions the mechanistic and the Goldbeter-
Koshland-like representation will differ in the dynamic
and the steady state behavior. In a recent investigation of
a MAPK-cascade model with negative feedback, see Fig-
ure 6, the authors of [36] have shown that in a more de-
tailed representation the oscillations predicted in [28] do
not emerge. The reason is the overestimated ultrasensi-
tive behavior of the subsequent steps due to the neglect of
the complex concentrations. At least for the chosen set of
parameters, both models differ even though they use the
same parameters. In other words, parameter estimation
of a given model strongly depends on the model struc-
ture. If we compare the Michaelis constant derived from
known rate constants of a mechanistic model and the
Michaelis constant derived from a Goldbeter-Koshland
model they may differ for the same set of experimental
data. Due to the underlying assumptions in both models
the parameters are not comparable.
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FIG. 7: Diagrammatic representation of a homoeostatic sys-
tem (a) and a mutually activated system (b) according to
[45].

Furthermore, the assumption of a quasi-steady state
for the intermediate complexes is crucial. If substrate
concentration and the modifying enzyme concentration
are similar, a small rate coefficient k2 is the consequence.
Furthermore an enzyme saturation is, either not reached
or only for a short time.

VIII. QUASI-STATIONARY STATES IN

FEEDBACK MECHANISMS

The behavior of signalling networks is regulated and
controlled by positive and/or negative feedback. It is
often assumed that the reactions involved in the feed-
back loops are much faster than the regulated branch of
the network (e.g. in the cell cycle [6, 7]). In this case,
the component feeding back can be treated as a steady
state variable. The regulated component is assumed as
approximately constant, or quasi-stationary, during the
period needed to establish the steady state of the feed-
back loop. The changes in the dynamics of a system
due to the applied quasi-stationary approximation shall
be discussed in this section. We consider simple models
consisting of a linear reaction scheme, which is regulated
in an autocatalytic manner through an enzyme having
an active and an inactive form.

For the first example, we use a minimal model for a
homoeostatic system, shown in Figure 7. The signalling
component R is synthesized in a catalytic reaction and
degraded in a bimolecular reaction with an external con-
stant stimulus S

dR

dt
= k0 E − k2 SR . (21)

The enzyme dynamics follow the modification scheme
(12). In Figure 8 we compare the dynamical treatment

dE

dt
=

k3 (1 − E)

KM3 + 1 − E
−

k4 ER

KM4 + E
(22)

with the quasi-stationary model published in [45], where
the enzyme E is assumed in its steady state

E(R) = G(k3, k4R,KM3,KM4) . (23)

Due to the negative feedback, the system can display
damped oscillations. The dynamic description of the
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FIG. 8: Temporal evolution of the homoeostatic model [45]
for the quasi-stationary approximation of enzyme activation
(23) and the detailed model (22). Due to a negative feedback
loop, the detailed model shows damped oscillations, which are
dependent on the ratio of the rate coefficients. Only, if the
enzyme activation cycle reaches its equilibrium rapidly, both
models agree. For a very slow relaxation, the curve shows
aperiodic behavior and takes much longer to equilibrate as is
predicted by the quasi-stationary model.

feedback loop leads to a qualitatively different dynamic
behavior than the model using the quasi-stationary ap-
proximation, which cannot show oscillations. Note that
the steady state is unaffected because the individual
steady states of the subsystems remain unaffected. In
a more complex signalling network this can lead to a
qualitatively new behavior of the system as a whole. For
example, damped oscillations may occur or thresholds
(bifurcation points) may be passed. The faster the en-
zyme activation in comparison to the synthesis of the sig-
nalling component R, the smaller the deviations between
a detailed and the quasi-stationary model.

In addition to a change in the dynamics of a signal,
the quasi-stationary state assumption can affect other
characteristic properties of biochemical networks. As an
example, we consider the model of a one-way switch (Fig-
ure 7(b)) discussed in [45]. The behavior of this system
is linked to biological processes for which a fundamen-
tal, possibly irreversible decisions between two states are
made. This is, for instance, the case in cell differentiation
and in developmental processes [46–48]. The synthesis of
the signalling component R

dR

dt
= k0 E∗ + k1 S − k2 R (24)

is increased by the modified enzyme E∗. Enzyme modifi-
cation is controlled by the signalling component R itself.
Again, we compare the dynamic model

dE∗

dt
=

k3 (1 − E∗)R

KM3 + 1 − E∗
−

k4 E∗

KM4 + E∗
(25)

with the quasi-stationary approximation

E∗(R) = G(k3R, k4,KM3,KM4) . (26)
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FIG. 9: Relaxation of the one-way switch (24) to steady
state for two different, constant supercritical stimuli in quasi-
stationary approximation (dashed) and in dynamic treatment
(solid). The horizontal line marks the concentration which
has to be exceeded for the system to reach to the upper sta-
ble branch after the external stimulus is switched off. In the
grey region no stable steady state solution exists. The inset
shows the critical signal duration time ∆τ as function of the
stimulus for both approximations.
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FIG. 10: Diagrammatic representation of a linear (a) and a
hyperbolic system (b) [45].

Whereas both models show a similar dynamic behavior
(see Figure 9), some characteristic times differ. An im-
portant time for a bistable system is the signal duration
∆τ needed to reach the upper stable branch, if the super-
critical external stimulus is switched off after ∆τ . This
characteristic time is compared in the inset of Figure 9.
In the quasi-stationary approximation the steady state is
reached much faster than in a dynamical model. Espe-
cially for small supercritical signals the signal duration
deviates from each other.

Note, in Figure 8 we vary the rate coefficients deter-
mining the subsystems; a more general measure for this
purpose is the relaxation time τ . This characteristic time
is a measure for the time the biochemical reaction needs
to relax from a perturbated state to its steady state. Es-
pecially for complex signalling networks this is not only
dependent on the rate coefficients kµ, but also on the con-
centrations of other participating species. For instance,
the relaxation time of a simple linear system (Figure
10(a)) is

τlin = k−1
2 , (27)

that is, the inverse of the degradation rate constant k2.
If we consider a hyperbolic system (Figure 10(b)), the

relaxation time is

τhyb = (k2 + k1 S)
−1

, (28)

where S is the external stimulus. A change in the concen-
tration thus varies the ratios of the relaxation times. Un-
fortunately, the estimation of characteristic times is ex-
ceedingly difficult if no analytical expressions are known
[49].

A more detailed description of feedback loops can
change the dynamic behavior of the system and its char-
acteristic parameters in comparison to a quasi-stationary
approximation, whereas the steady state is unchanged.
The approximation of a quasi-stationary state may ap-
ply if one subsystem settles into a steady state much
faster than the other. One must however be aware that
the ratio of the relaxation times depends on the current
conditions of the considered system. For the dynamic
modelling of signalling networks this approximation has
to be validated for each model.

IX. DISCUSSION

The framework of chemical kinetics is a frequently used
approach to dynamic modelling of complex signalling net-
works. The resulting systems of coupled ordinary non-
linear differential equations can usually only be solved
numerically. To reduce the complexity of an analysis,
one uses exact relations, like conservation relations, and
different approximations like steady-state assumptions or
one neglects components. Such a reduction simplifies
the mathematical dimension of biochemical networks and
makes the model amenable to the estimation of parame-
ter values from experimental data. The downside is that
an approximation can misguide the analysis of the real
dynamical behavior of the pathway.

As shown in Section V, the time until reaching a steady
state can bring about further differences between the pre-
dicted time course and the one observed in experiments.
A similar conclusion can be drawn if a quasi-stationary
state approximation is used, e.g. for a feedback loop. The
altered behavior of this single subunit of the model can
change the behavior of the system as a whole. It can
happen that this loop induces oscillations into the net-
work or the unstable region is shifted to other external
stimuli.

Furthermore a comparison of model parameters is dif-
ficult due to the uncertainty in determining rate coef-
ficients from Michaelis constants. Due to the possible
changes in the dynamic behavior, the set of parameters
of a detailed model must be derived from experimental
data.

As shown, steady-state approximations can lead to a
reduction of the dynamical system but since the com-
plete system takes a finite time to establish the assumed
state, the complete system and its approximation will
differ during a transient period. This delay modifies the
dynamics of a pathway dramatically. In particular, for
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the treatment of feedback loops one has to take care us-
ing these approximations. Small changes in the dynamics
of the loop can change the overall behavior substantially.
Common for the steady-state approximations are, that
they do not influence the steady state value. In contrast,
the neglect of the finite concentration of intermediates,
influences the steady-state values and leads to a weaken-
ing or disappearance of ultrasensitive characteristics. In
signalling cascades consisting of a combination of activa-
tion/deactivation cycles, even small changes in the ultra-
sensitivity can change the overall behavior. Furthermore,
pathways are often regulated by multiple feedback loops.
Hence, the combination of steady-state assumptions and
neglect of components may result in very different dy-
namics.

As shown in Section VI, each activation cycle can
show ultrasensitive behavior depending on the associated
Michaelis constants and the ratio of the ‘substrate’ pro-
tein and the kinase. A weakening or disappearance of
ultrasensitivity, due to finite complex concentrations in
the cycles, can change the behavior of the whole cascade
qualitatively. For the same set of parameters (Michaelis
constants and limiting rates) the amplification, possi-
ble oscillations or multistability can change dramatically.
Notice, one ultrasensitive step in the cascade is enough

to create such nonlinear behavior.

Whereas steady state properties are more robust
against approximations, the dynamic behavior is sensi-
tive to the approximations used. Hence, if transient, dy-
namic behavior is most relevant, (e.g. in cell signalling)
some frequently used approximations have to be justified.

Finally, what we have shown is that dynamic pathway
modelling requires careful considerations with regard to
the role of mathematical models in explaining observa-
tions, hypothesizing phenomena and supporting the de-
sign of experiments: Systems biology is the art of making
appropriate assumptions.
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[49] Llórens, M., Nuño, J.C., Rodŕıguez, Y., Meléndez-Hevia,
E., and Montero, F. (1999) Generalisation of the Theory
of Transition Times in Metabolic Pathways: A Geomet-
rical Approach, Biophys. J. 77 (1), 23-36.


