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Singularities of Optimal Control Problems on some
Six Dimensional Lie groups

James Biggs, William Holderbaum, and Velimir Jurdjevic

Abstract— This paper considers the motion planning prob-
lem for oriented vehicles travelling at unit speed in a three-
dimensional space. A Lie group formulation arises naturally
and the vehicles are modelled as kinematic control systems with
drift defined on the orthonormal frame bundles of particular
Riemannian manifolds, specifically the three-dimensional space
forms Euclidean space E3, the sphere S3 and the hyperboloid H3.
The corresponding frame bundles are equal to the Euclidean
group of motions SE(3), the rotation group SO(4) and the
Lorentz group SO(1, 3). The Maximum Principle of optimal
control, shifts the emphasis for these systems to the associated
Hamiltonian formalism. For an integrable case the extremal
curves are explicitly expressed in terms of elliptic functions.
In this paper, a study at the singularities of the extremal
curves are given, which correspond to critical points of these
elliptic functions. The extremal curves are characterized as the
intersections of invariant surfaces and are illustrated graphically
at the singular points. It is then shown that the projections of the
extremals onto the base space, called elastica, at these singular
points, are curves of constant curvature and torsion, which in
turn implies that the oriented vehicles trace helices.

Index Terms— Optimal Control, Lie Groups, Integrable Hamil-
tonian Systems, Singularities.

I. INTRODUCTION

This paper is motivated by the problem of motion
planning for oriented vehicles moving with unit speed in
a three-dimensional space, such as the airplane landing
problem [1]. For such problems the orientation of the vehicle
is naturally represented by an orthonormal frame over a
point in the underlying manifold, that is, the configuration
space of the vehicle can be taken as the orthonormal frame
bundle of the manifold, and the motions of the vehicle are
described by curves in this bundle. In this paper we consider
three-dimensional spaces for which the orthonormal frame
bundle coincides with the isometry group. They are, the
Euclidean space E3, the sphere S3 and the hyperboloid
H3. The corresponding isometry groups are the Euclidean
group of motion SE(3), the rotation group SO(4) and the
Lorentzian group SO(1, 3). The Euclidean setting has been
used to study multi-vehicle formation control of Unmanned
air vehicles [2], the airplane landing problem [1] and the
control of underactuated Underwater Vehicles [3]. In each
of these cases the oriented vehicles trace paths in E3. In
this paper we generalize the Euclidean frame, simultaneously
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studying oriented vehicles in the space forms E3, S3 and H3,
as in [4].
In [2] the authors use the Euclidean Serret-Frenet Frame to
model Unmanned Air vehicles as particles moving at unit
speed in Euclidean space, where the controls take the form
of the geometric invariants curvature and torsion. In addition
[5] uses a generalized Serret-Frenet frame adapted to curved
spaces to describe the motion of relativistic particles in S3

and H3. For a description of the Serret-Frenet frame and
its formulation on Lie groups, see [6]. Although the Serret-
Frame is adequate in describing the motions of particles it is
inadequate in describing oriented bodies.
More general Euclidean frames have been used to describe
the motion of underwater vehicles in [3] and airplanes in [1].
In this work we use the most general orthonormal frames
to simultaneously study the motion planning problem for
oriented vehicles travelling in E3, S3 and H3. For a detailed
description of space forms, their frame bundles and their
tangent spaces see [7].
The motion planning problem for oriented vehicles has been
tackled using local representations of Lie groups i.e. the
Wei-Norman representation and Magnus representation to
describe the behavior of such systems and then classical
methods from nonlinear control e.g. averaging on Rn have
been adapted to these coordinate representations, see [8].
However, because in general these representations are local,
only small reorientations can be performed at any one time
and highlights the need for global methods to plan larger,
more energy efficient manoeuvres.
The global motion planning problem for systems evolving
on Lie groups has been addressed using optimal control
theory. In [9] the authors derive control functions such that
the resulting trajectory in the configuration space interpolates
a given set of points, subject to some physically interesting
cost function. The optimal control problem for underactuated
kinematic systems on Riemannian manifolds, known as
sub-Riemannian optimal control problems, have been studied
in [8], [10] and optimal control of underactuated dynamic
systems in [11]. In [1] the authors use the Maximum Principle
of optimal control to design landing trajectories for airplanes.
In this paper we propose to tackle the global motion planning
problem for oriented vehicles travelling at constant speed in a
three-dimensional space using the coordinate free Maximum
Principle of optimal control, see [12] and [6]. The advantage
of using the Maximum Principle to solve the motion planning
problem is that not only do we steer the vehicle from point
to point but do so while minimizing some practical cost
function.
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The application of the Maximum Principle of optimal control
shifts the emphasis to the language of symplectic geometry
and to the associated Hamiltonian formalism. The Maximum
principle states that the optimal solutions are the projections
of the extremal curves onto the base manifold, where the
extremal curves are solutions of certain Hamiltonian systems
on the cotangent bundle T ∗G. As the base manifolds of
the oriented vehicle is a Lie group G, the cotangent bundle
T ∗G can be realized as the direct product G × g∗ where
g∗ is the dual of the Lie algebra g of G. Therefore, the
original Hamiltonian defined on T ∗G can be written as a
reduced Hamiltonian on the dual of the Lie algebra g∗. The
corresponding Hamiltonian vector fields are then expressed
in non-canonical form and will be referred to as the reduced
Hamiltonian vector fields.
For a symmetric oriented vehicle, where two moments of
inertia c2 and c3 are equal, the Hamiltonian vector fields are
integrable (see [13] for a detailed description of integrable
Hamiltonian systems on Lie groups) and we derive explicit
expressions for the extremal curves. For integrable systems
their topological and qualitative properties such as bifurcations
and singularities are of great importance and knowledge about
these properties will give us some information about the
dynamical properties of a perturbed Hamiltonian or near
integrable Hamiltonian, as outlined in [14].
For the reduced integrable Hamiltonian system the extremal
curves are explicitly expressed by elliptic functions. Using
these explicit expressions we investigate the singularities of
the Hamiltonian vector fields. The singularities, or singular
points, are equilibria for the reduced Hamiltonian system and
are defined at the roots of the cubic function that appear in the
explicit expression of the extremal curves. The singularities of
the reduced Hamiltonian are important in the motion control
of vehicles as they coincide with relative equilibria for the
original Hamiltonian system. Indeed, it is shown that the
projections of the extremal curves at a singularity onto the
base space are helical curves. This implies that the extremal
controls at a singularity induce steady motions of the vehicle
i.e. constant translation and/or constant rotation. Once these
relative equilibria have been identified such techniques for
stabilization and control can be used as in [8]. Studying
these systems and their singularities provide insight into the
rich qualitative and topological nature inherent in the motion
planning of vehicles.
In this paper the motions of oriented vehicles are restricted to
move at unit speed. Under this restriction the motion planning
problem of steering the vehicle from an initial configuration
to a final configuration, in a fixed time, while minimizing the
amount of manoeuvering the vehicle will do, can be equated
to the elastic rod problem of Kirchhoff, which is detailed in
[13]. In the elastic problem the projections of the extremal
curves onto the base space, called elastic curves, reflect the
shape of an elastic rod, of fixed length, forced to have some
initial and final position and orientation. Therefore, in this
motion planning problem, the oriented vehicles will trace
elastic curves. In the Euclidean case, Kirchhoff elastic rods
have been used to model practical problems such as the
dynamic formation of DNA and to explain the looping of

marine cables, see [15].
The original contributions in this paper are summarized in
the following statement:

II. STATEMENT OF CONTRIBUTIONS

• The extremals are explicitly expressed in terms of cubic
curves which are parameterized by elliptic functions.

• The curvature and torsion of the elastic curves are ex-
plicitly expressed by elliptic functions.

• The critical points of this cubic correspond to periodic
extremal curves characterized as the intersections of
invariant surfaces, which are illustrated graphically.

• The elastic curves at the singularity are shown to be of
constant curvature and constant torsion and therefore the
oriented vehicles trace helices.

III. EXTREMAL CURVES IN se(3)∗ , s0(4)∗ AND s0(1, 3)∗

In this section we will state the elastic problem and equate it
to the motion planning problem for oriented vehicles moving
with unit speed in a three-dimensional space. Firstly, the group
G is used to represent the frame bundle of the space forms.
The analysis here is restricted to the three dimensional space
forms and therefore the corresponding frame bundles are the
matrix Lie groups SE(3), SO(4) and SO(1, 3). We identify
TG with G × g where g is the Lie algebra of G via the
left translations. The elastic problem on the three dimensional
space forms concerns the solutions g(t) ∈ G of the left-
invariant differential system:

dg

dt
(t) = g(t)(B1 +

3∑

i=1

uiAi)

= g(t)




0 −ε 0 0
1 0 −u3 u2

0 u3 0 −u1

0 −u2 u1 0




(1)

that minimize the expression

1
2

∫ T

0

(u(t), Qu(t))dt (2)

subject to the given boundary condition g(0) = g0, g(T ) = g1.
g(t) ∈ G where G depends on ε and is SE(3) for ε=0, SO(4)
for ε=1 and SO(1, 3) for ε=-1, so we are simultaneously
studying all three cases. B1, A1..., A3 are given matrices in
the Lie algebra g of G, the ui’s play the role of the control
functions and Q is a positive definite 3 × 3 matrix. This
problem can be identified with the elastic rod problem of
Kirchhoff, by replacing time t with the arc length parameter
of the curve s and in the expression (2) the terminal time
T should be replaced with the length of the rod l. Then
γ(s) corresponds to the central line of the rod. The physical
characteristics of the rod, related to the geometric shape of its
cross section are reflected in the constants, call ci, dependent
on the positive definite 3× 3 matrix Q. The control functions
represent the strains of the elastic rod. Then (1) describes the
frame deformations of the rod on the frame bundle G of the
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space form M . It follows that the problem of minimizing the
expression (2) is equivalent to minimizing locally the amount
of bending and twisting in the rod.
Proceeding to equate the elastic problem to the problem of
motion planning of a vehicle, the principal moments of inertia
ci of the vehicle are dependent on the matrix Q and the
controls ui relate to the angular velocity of the vehicle. It
follows that (1) describe the kinematic equations of the vehicle
such that the vehicle traces out a trajectory γ(t) ∈ M which
are related to g(t) ∈ G via the projection γ(t) = g(t)~e1

where ~e1 is a basis element in a standard orthonormal frame
~e1, ~e2, ~e3, ~e4 ∈ R4. The projected curves γ(t) ∈ M are called
elastic curves, where M = E3 when g(t) ∈ SE(3), M = S3

when g(t) ∈ SO(4) and M = H3 when g(t) ∈ SO(1, 3).
It follows from (1) that the vehicle is restricted to travel at
unit speed

∥∥∥dγ(t)
dt

∥∥∥ = 1 and in addition dγ(t)
dt coincides with

the first leg of the frame (see [7] for detail). The solutions
g(t) ∈ G of (1) while minimizing the expression (2) are locally
optimal, that is optimal for small terminal time T , however as
the terminal time grows they may stop being optimal. For
simplicity of terminology we will refer to all projections as
the optimal solutions even though the nature of cut-locus and
conjugate points have not been considered, see [6]. Minimizing
the cost function (2) is then equivalent to minimizing the
control energy of the vehicle between an initial position and
orientation and a final position and orientation.
The Maximum Principle of optimal control identifies the
appropriate left-invariant Hamiltonian H on the dual of the
Lie algebra g∗, (see [6]). The Maximum Principle, as a general
necessary condition of optimality, leads to the appropriate
Hamiltonian on the cotangent bundle of the Lie Group G,
hence the extremal curves belong to T ∗G. Then the Maximum
Principle considers the lift of the optimization problem to the
cotangent manifold T ∗G. The control Hamiltonian is written
as:

H(p, u) = p(gB1) +
3∑

i=1

uip(gAi)− p0(
1
2

3∑

i=1

ciu
2
i ) (3)

where p ∈ T ∗g G and p0 > 0 is a fixed positive constant
and H(p, u) is a concave function with respect to ui. It then
follows from the Maximum Principle that the extremal control
functions u∗i are determined from the condition:

dH

dui
= 0

differentiating (3) with respect to ui gives

dH

dui
= p(gAi)− ciui

where i = 1, 2, 3. Therefore, the extremal controls are given
in feedback form:

u∗i =
1
ci

p(gAi)

where i = 1, 2, 3. Because of the non-holonomic nature of
these problems, the extremal curves that correspond to an
optimal trajectory can be either abnormal or normal i.e. there
are two types of Hamiltonian to consider. p0 is set to 1 for
normal extremals and 0 for abnormal extremals. All of these

problems admit abnormal extremals, however, because of the
regularity of these variational problems each optimal trajectory
is a projection of a regular extremal curve. Therefore, assume
p0 = 1 to consider only regular extremals.
The Hamiltonian for such systems are functions on the cotan-
gent bundle T ∗G which can be trivialized from the left such
that T ∗G = G × g∗. Therefore, the appropriate Hamiltonian
is a function on g∗ the dual of the Lie algebra g of G. The
Hamiltonian (3) can be pulled back by the left or right. The
pull-back in this case is explicitly stated as p(·) = p̂(g−1(·)).
i.e p ∈ T ∗G is pulled back to give a function p̂ ∈ g∗. The
control Hamiltonian can then be written as

H(p̂, u) = p̂(B1) +
3∑

i=1

uip̂(Ai)− 1
2

3∑

i=1

ciu
2
i (4)

This Hamiltonian is a function of the controls only, and so it
does not depend explicitly on elements in G. In other words
it is left invariant in that it does not change by the group
multiplication on the left. In addition, define the extremal
curves pi = p̂(Bi) and Mi = p̂(Ai) then it follows that the
extremal controls can be expressed as

u∗i =
1
ci

Mi (5)

it follows from the formula (5) that the extremals Mi corre-
spond to components of angular momentum. Substituting these
back into (4) gives the optimal Hamiltonian

H∗ = p1 +
1
2

(
M2

1

c1
+

M2
2

c2
+

M2
3

c3

)
(6)

the extremal control functions ui
∗ are additionally substituted

into (1) to yield

g−1 dg

dt
=




0 −ε 0 0
1 0 −M3/c3 M2/c2

0 M3/c3 0 −M1/c1

0 −M2/c2 M1/c1 0


 (7)

To proceed it is essential to recognize some geometric facts
about these Lie algebras. The variational problem on Lie
groups in this paper are associated with the Cartan decom-
position of g of a Lie group G into the factors p and k which
satisfy the classic relations
[k, k] ⊆ k, [p, k] ⊆ p and [p, p] ⊆ k
where k consists of all matrices of the form




0 0 0 0
0 0 −α3 α2

0 α3 0 −α1

0 −α2 α1 0




and p consists of the matrices



0 −εb1 −εb2 −εb3

b1 0 0 0
b2 0 0 0
b3 0 0 0
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The corresponding basis elements for k and p are:

A1 =




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0


 , A2 =




0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0




A3 =




0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


 , B1 =




0 −ε 0 0
1 0 0 0
0 0 0 0
0 0 0 0




B2 =




0 0 −ε 0
0 0 0 0
1 0 0 0
0 0 0 0


 , B3 =




0 0 0 −ε
0 0 0 0
0 0 0 0
1 0 0 0




A1, A2, A3, B1, B2, B3 describe infinitesimal motion in the
roll, pitch, yaw, surge, sway and heave directions of the vehicle
respectively. The Lie bracket is defined as [X, Y ] = XY −Y X
and the corresponding Lie bracket table is then:

[, ] A1 A2 A3 B1 B2 B3

A1 0 A3 -A2 0 B3 -B2

A2 -A3 0 A1 -B3 0 B1

A3 A2 -A1 0 B2 -B1 0
B1 0 B3 -B2 0 εA3 -εA2

B2 -B3 0 B1 -εA3 0 εA1

B3 B2 -B1 0 εA2 -εA1 0

Using the optimal Hamiltonian (6), it is possible to construct
the corresponding Hamiltonian vector fields XH∗ using the
Poisson bracket defined on the symplectic manifold. The
Hamiltonian vector fields are calculated using the formula
XH∗ [·] = {·,H∗} where the Poisson bracket is associated
with the Lie bracket by {Mi,Mj} = −p̂([Ai, Aj ]). Therefore,
it follows that:

dM1

dt
= {M1,H

∗} = {M1, p1}+
M1

c1
{M1,M1}

+
M2

c2
{M1,M2}+

M3

c3
{M1,M3}

= 0 + 0− 1
c2

M2M3 +
1
c3

M3M2

=
c2 − c3

c2c3
M2M3

the remaining derivations of the Hamiltonian vector fields are
left to the reader and yield:





dM1

dt
= {M1,H

∗} =
−M2M3

c2
+

M2M3

c3

dM2

dt
= {M2,H

∗} =
M1M3

c1
− M1M3

c3
+ p3

dM3

dt
= {M3,H

∗} =
−M1M2

c1
+

M1M2

c2
− p2

dp1

dt
= {p1,H

∗} =
−M2p3

c2
+

p2M3

c3

dp2

dt
= {p2,H

∗} =
M1p3

c1
− p1M3

c3
+ εM3

dp3

dt
= {p3,H

∗} = −M1p2

c1
+

p1M2

c2
− εM2

(8)

In this paper the analysis is restricted to an integrable case of
the Hamiltonian vector fields XH∗ . Explicitly a Hamiltonian
function on a symplectic manifold N of dimension 2n is said
to be integrable if there exist functions ϕ2, ..., ϕn on N that
together with the Hamiltonian H∗ = ϕ1 satisfy the following
two properties:

• ϕ1, ..., ϕn are functionally independent i.e the differen-
tials dϕ1, ..., dϕn are linearly independent for an open
subset of N .

• The functions ϕ1, ..., ϕn are in involution.

Thus, in identifying the (n− 1) functions ϕi and the Hamil-
tonian function the system is completely integrable. In the
mechanics literature these are called integrals of motion. The
Casimir functions are constant on co-adjoint orbits of G, and
are integrals of motion for any left-invariant Hamiltonian H∗.
There are also two extra integrals of motion corresponding
to their right-invariant Hamiltonian. They are in involution
with each other, and also in involution with H∗ and the
two Casimir functions. Hence, altogether they account for
five independent integrals of motion and the system becomes
completely integrable whenever there is just one more integral
of motion. For left-invariant control systems defined on semi-
simple Lie algebras, the Casimir functions are derived through
the invariance of the Killing form. In the case of SE(3) the
Killing form is degenerate and therefore the Casimir functions
are derived in a different way (see [7] for a detailed description
of their derivation), explicitly the Hamiltonian and Casimir
functions are:

H∗ = p1 +
1
2
(
M2

1

c1
+

M2
2

c2
+

M2
3

c3
) (9)

I2 = p2
1 + p2

2 + p2
3 + ε(M2

1 + M2
2 + M2

3 ) (10)

I3 = p1M1 + p2M2 + p3M3 (11)

An extra integral of motion exists in a case analogous to
Lagrange’s top [16]. Proceeding by equating c2 = c3 and
normalizing the constants such that c2 = c3 = 1, and
c1 6= 0, yields an extra integral of motion required for
Liouville integrability, see [16] for a description. The condition
c2 = c3 = 1 in (8) gives:

dM1

dt
= 0

and therefore M1 is a constant of motion which will be
denoted σ, the Hamiltonian vector fields (8) reduce to:





dM2

dt
=

σM3

c1
− σM3 + p3

dM3

dt
=
−σM2

c1
+ σM2 − p2

dp1

dt
= −M2p3 + p2M3

dp2

dt
=

σp3

c1
− p1M3 + εM3

dp3

dt
= −σp2

c1
+ p1M2 − εM2

(12)
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In a similar manner to [1], we proceed to solve for the extremal
control functions:

dp1

dt
= p2M3 −M2p3

it follows that

(
dp1

dt
)2 = p2

2M
2
3 + p2

3M
2
2 − 2p2p3M2M3 (13)

Using (9) and (10) write;

2(H∗ − p1)− σ2

c1
= M2

2 + M2
3

I2 − p2
1 − ε(σ2) = p2

2 + p2
3 + ε(M2

2 + M2
3 )

(14)

multiplying the two equations in (14) gives:

(I2 − p2
1 − ε(σ2))(2(H∗ − p1)− σ2

c1
) =

p2
2M

2
2 + p2

2M
2
3 + p2

3M
2
2 + p2

3M
2
3 + ε((M2

2 + M2
3 )2)

(15)

To find explicit solutions it is necessary to use the Casimir
function (11)

I3 − p1σ = p2M2 + p3M3 (16)

squaring (16) yields:

(I3 − p1σ)2 = p2
2M

2
2 + p2

3M
2
3 + 2p2M2p3M3 (17)

Therefore, substituting (17) and (15) into (13) gives the
following cubic function:

f(p1) = (
dp1

dt
)2 = (I2 − p2

1 − ε(σ2))(2(H∗ − p1)− σ2

c1
)

−(I3 − p1σ)2 − ε((2H∗ − σ2

c1
− 2p1)2)

(18)
The function f(p1) is then a cubic function of p1 and deter-
mines the qualitative behavior of an arbitrary elastic curve. The
solutions are therefore given in terms of elliptic functions, as
demonstrated in subsection III-A. M2 and M3 can be solved in
terms of p1 and the constants of motion. Proceeding to solve
the extremals and using the Hamiltonian function (9) where
M1 is a constant σ, the reduced Hamiltonian is

M2
2 + M2

3 = 2(H∗ − p1)− σ2

c1
(19)

This suggests using polar coordinates for M2 and M3;

θ(t) = arctan
(

M2

M3

)
(20)

θ̇ =
M3Ṁ2 −M2Ṁ3

M2
2 + M2

3

substituting in the values for Ṁ2 and Ṁ3 from (12) gives

θ̇ =
M3

(
M1M3

c1
−M1M3 + p3

)

M2
2 + M2

3

+
M2

(
−M1M2

c1
+ M1M2 − p2

)

M2
2 + M2

3

and on simplifying can be expressed as:

θ̇ =
σ

c1
− σ +

I3 − p1σ

2(H∗ − p1)− σ2

c1

(21)

It is easy to solve explicitly for the radius from (19)

r(t) =

√
2(H∗ − p1)− σ2

c1
(22)

Therefore, the extremal control functions are

u∗1 =
M1(t)

c1
=

σ

c1

u∗2 = M2(t) = r(t) sin(θ(t))
u∗3 = M3(t) = r(t) cos(θ(t))

(23)

Note that θ(t) is analogous to the nutation angle for the
Lagrange top (see [16]). The extremals are therefore only
dependent on the constants of motion and p1.

A. Explicit solution of p1

For the purpose of this paper the critical points of the cubic
function (18) are of importance. However, we show here that
(18) can be solved in terms of a Weierstrass’ ℘-function,
a meromorphic function of complex time z. The equations
for p1 will be converted into the canonical equation for the
Weierstrass’ ℘-function (see [17]):

℘̇2 = 4℘3 − g2℘− g3 (24)

where g2 and g3 are the elliptic invariants to be determined
and that specify ℘ completely. The Weierstrass’ ℘ function is
often denoted ℘(z; g2, g3), where z ∈ C. In this problem z is
time and therefore we restrict ourselves to the real values of z,
then ℘(z; g2, g3) is real. The equation (18) can be converted
into this canonical form via an affine input transformation:

p1 = a℘ + b (25)

where a and b are constants and therefore

ṗ1 = a℘̇ (26)

Although the equation (18) can be solved for any constant
c1, we assume c1 = 1 for simplicity of this illustration.
Substituting (25) and (26) into (18) gives:

a2℘̇2 = 2a3℘3

+2a2(3b− 2ε−H∗)℘2

+2a(3b2 + 4εH∗ − 2b(2ε + H∗)− I2 + I3σ − εσ2)℘

+2b3 − 4εH∗2 − 2b2(2ε + H∗) + 2H∗I2

−I2
3 + 2εH∗σ2 − I2σ

2 + 2b(4εH∗ − I2 + I3σ − εσ2)
(27)

Comparing the coefficients of equation (27) to (24) and
simplifying we obtain:

a = 2

b =
2ε + H∗

3
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Therefore, p1 can be expressed explicitly as a Weierstrass’
℘-function under the affine transformation:

p1 = 2℘(z; g2, g3) +
2ε + H∗

3
Consequently p1 is a meromorphic function and the elliptic
invariants are:

g2 =
1
3
(4ε2 − 8εH∗ + H∗2 + 3I2 − 3I3σ + 3εσ2)

and

g3 =
1

108
(32ε3 + 4H∗3 − 18H∗(2I2 + I3σ)

+ε2(−96H∗ + 36σ2)

+12ε(5H∗2 + 3I2 − 3I3σ − 3H∗σ2) + 27(I2
3 + I2σ

2))

These calculations demonstrate that the integration procedure
is essentially the same for all three space forms with the
solutions only differing by the parameter ε = 1,−1, 0. In
addition it is shown in [17] that the discriminant of the cubic
4℘3 − g2℘− g3 = 0 is

∆ = g3
2 − 27g2

3 (28)

and if g2 and g3 are real then the cubic 4℘3 − g2℘− g3 = 0,
determines the qualitative nature of the solutions where the
cubic has:
• three distinct real roots if ∆ > 0.
• three real roots which are not all distinct if ∆ = 0.
• a real root and a pair of complex conjugate roots if ∆ <

0.

IV. THE SERRET-FRENET FRAME: CURVATURE AND
TORSION OF ELASTICA

In order to draw geometric conclusions in terms of curvature
and torsion of the corresponding elastic curves it is necessary
to relate the extremals which have been solved to the curvature
κ and the torsion τ along the central line. Therefore, it is nec-
essary to relate the differential equation (1) to the differential
equation expressed in terms of curvature and torsion, called
the Serret-Frenet frame:

dḡ(t)
dt

= ḡ(t)




0 −ε 0 0
1 0 −κ 0
0 κ 0 −τ
0 0 τ 0


 (29)

where ḡ(t) ∈ G. Denote the standard basis elements of a
vector in R4 as ~e1, ~e2, ~e3, ~e4 with ḡ(t)~e1 = γ(t) where γ(t)
is a curve in the manifold M , then the tangent vector ~T =
ḡ(t)~e2, the normal vector ~N = ḡ(t)~e3 and the binormal vector
~B = ḡ(t)~e4. Therefore differentiating ~T and substituting in
equation (29) gives:

d~T

dt
=

dḡ

dt
~e2 = ḡ(t)




0 −ε 0 0
1 0 −κ 0
0 κ 0 −τ
0 0 τ 0


~e2

= ḡ(t)(−ε~e1 + κ~e3) = −εγ(t) + κ ~N

(30)

and in the same manner as (30) obtain the differential equa-
tions describing the Serret-Frenet Frame:

d ~N

dt
= −κ~T + τ ~B

d ~B

dt
= −τ ~N

(31)

Let ~a1,~a2,~a3 be an orthonormal frame fixed at a point on
the body, called the moving frame. The Serret-Frenet Frame
is shown to be explicitly related to the moving frame in [6].
Here we proceed to solve for the curvature and torsion of the
elastic curves in terms of the meromorphic function p1 and
the constants of motion (9), (10), (11).
In these cases the Serret-Frenet frame and the elastic (general)
frame are adapted to the curve γ(t) in such a way that the
first leg of the frame coincides with the tangent of the curve
dγ(t)

dt = ~a1 = ~T implies that ~a2 and ~a3 are in the normal plane
spanned by ~N and ~B. Define an angle β that the normal ~N
makes with ~a2 then:

~N = (cos β)~a2 + (sin β)~a3

~B = (− sin β)~a2 + (cos β)~a3

(32)

Differentiating ~N gives

d ~N

dt
=

dβ

dt
((− sinβ)~a2+(cosβ)~a3)+(cos β)

d~a2

dt
+(sin β)

d~a3

dt
(33)

Let R ∈ SO(3) be the matrix that relates coordinates in the
moving frame to coordinates in the fixed frame along γ(t),
explicitly ~ai = R~ei. In addition as the tangent space at R
can be either a left or right translation at the identity then
dR
dt = A(u)R where A(u) ∈ k relates to the controlled vector

fields (the horizontal vectors in the Cartan decomposition) in
our problem:

A(u) =




0 −u3 u2

u3 0 −u1

−u2 u1 0




and ω(t) is used to denote its corresponding coordinate vector
related by A(u)x = x× ω(t) for all x ∈ R3 where

ω(t) =




u1

u2

u3




then
d~ai

dt
=

dR

dt
~ei = A(u)R~ei

= A(u)~ai = ~ai × ω(t)
(34)

from (34) and writing ~ai in its standard basis we can obtain
two useful equations:

d~a2

dt
= −u3~a1 + u1~a3

d~a3

dt
= u2~a1 − u1~a2

(35)
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substituting (35) into (33) and rearranging gives the following
expression:

d ~N

dt
= ((− cosβ)u3 + (sin β)u2)~a1

−
(

dβ

dt
sin β + u1 sin β

)
~a2

+
(

dβ

dt
cos β + u1 cos β

)
~a3

(36)

Using the equation d ~N
dt = −κ~T + τ ~B from (31) and substitut-

ing in the expressions for ~T and ~B gives:

d ~N

dt
= −κ~a1 + τ((− sin β)~a2 + (cos β)~a3) (37)

Identifying (36) with (37) yields:

κ = u3 cos β − u2 sin β

τ =
dβ

dt
+ u1

(38)

To obtain a direct relation between the extremals and torsion
it is necessary to obtain an expression for β in terms of the
controls. Differentiating ~B in (32) gives:

d ~B

dt
=

dβ

dt
((− cosβ)~a2 + (− sin β)~a3)

+(− sin β)
d~a2

dt
+ (cos β)

d~a3

dt

(39)

Substituting (35) into (39) gives:

d ~B

dt
= (u2 cosβ + u3 sin β)~a1

−
(

u1 +
dβ

dt

)
(cos β)~a2 −

(
u1 +

dβ

dt

)
(sinβ)~a3

(40)

Substituting ~N from (32) into d ~B
dt = −τ ~N from (31) and

equating to (40) immediately yields:

u2 cos β + u3 sin β = 0 (41)

Thus the equation for the angle β can be written explicitly in
terms of the controls as:

tan β = −u2

u3
(42)

Summarizing
κ = u3 cos β − u2 sin β

τ =
dβ

dt
+ u1

tan β = −u2

u3

(43)

In our case the Hamiltonian corresponds to H∗ = p1+ 1
2 (σ2

c1
+

M2
2 +M2

3 ) which is generated by the optimal controls u1(t) =
M1
c1

= σ
c1

u2(t) = M2 and u3(t) = M3, therefore the curvature
can be written explicitly in terms of the extremals. Squaring
the equation for the curvature (43) and adding to the square
of equation (41) yields:

κ2 = u2
2 + u2

3 = M2
2 + M2

3 (44)

and substituting (9) into (44) gives:

κ2 = 2(H∗ − p1)− σ2

c1
(45)

Here we proceed to solve the torsion in terms of the mero-
morphic function for this particular case. From (42) and
substituting the extremals gives:

tan β = −M2

M3
(46)

Differentiating (46) yields:

sec2 β
dβ

dt
=

M2Ṁ3 −M3Ṁ2

M2
3

(47)

substituting in the equations for Ṁ2 and Ṁ3 from (12) gives:

sec2 β
dβ

dt
=

M2(−M1M2
c1

+ M1M2 − p2)
M2

3

−M3(M1M3
c1

−M1M3 + p3)
M2

3

(48)

In addition using equation (46) to derive sec2 β = M2
2+M2

3
M2

3
and substituting into (48) gives:

dβ

dt
= M1(1− 1

c1
)− M2p2 + M3p3

M2
2 + M2

3

(49)

then substituting (49) into the equation for the torsion (43)
gives:

τ = −M2p2 + M3p3

M2
2 + M2

3

+ M1 (50)

using the constants of motion (16), recalling that M1 = σ in
the integrable case and equation (44), then (50) can be written
in terms of the meromorphic function p1:

τ = −I3 − p1σ

κ2
+ σ (51)

As the equations (45) and (51) are expressed in terms of the
constants of motion and the meromorphic function p1, it is
clear that if p1 is constant then the curvature and torsion are
also constant. Therefore, at the singularity the elastic curves
have constant curvature and constant torsion and are therefore
generalized helices. This implies that at the singularities of
the cubic function (18) (when dp1

dt = 0), the projections onto
the base space correspond to steady motions i.e. constant
translations and/or constant rotations.

V. THE GEOMETRY AT THE SINGULARITIES OF THE
EXTREMAL CURVES

In this section a discussion is given of the equilibria of the
reduced Hamiltonian vector fields. From equations (12) it is
clear to see that there exists a trivial fixed point in all the cases
(ε = −1, 0, 1) when p1 = p2 = p3 = M1 = M2 = M3 = 0.
At these fixed points the corresponding elastic curves are the
geodesics. In addition a degeneracy occurs in the Euclidean
case corresponding to the level set I2 = 0. This is the case
studied in [1] used to plan aeroplane landing trajectories in
the ‘Control Tower Landing Problem’. This degenerate result
does not extend to the non-Euclidean cases. The analysis in
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[1] result from a highly simplified model where helical elastic
curves are found under the condition that I2 = 0. In this paper
we study the general case when I2 6= 0. In the general case
there are equilibria of the system that are less obvious and can
be seen from the explicit solutions which occur at the roots
of the cubic f(p1) = 0 in (18). The equilibria of the reduced
Hamiltonian system corresponding to the roots of this cubic
will be called singularities. It is shown here that at the roots
of the cubic the extremals define a closed periodic orbit. A
geometric interpretation is given in terms of the intersection
of invariant surfaces and explicit solutions stated. Here we
begin with a brief comment on the level set I2 = 0 before
moving onto the singularities defined at the root of the cubic.

A. The Level set I2 = 0
The level set I2 = 0 (equation (10)) in the Euclidean

case is analogous to the Euler top (left-invariant heavy top)
in the mechanics literature (see [16]). I2 = 0 when ε = 0
implies that p1 = p2 = p3 = 0 for all time. Along with the
assumption c1 = c2 = c3 which is the case studied in [1], the
corresponding elastic curves were used to find optimal landing
trajectories for airplanes, and where the equations of motion
(12) degenerate to:

dM1

dt
= 0

dM2

dt
= 0

dM3

dt
= 0

M1,M2 and M3 are constants of motion and therefore the
optimal controls are constants. In [1] it is shown that the elastic
curves corresponding to constant controls ui are helices. In
addition if M1 is zero the elastic curves reduce to Riemannian
circles. If all the controls are zero then the elastic curve are
geodesics. In the spherical and hyperbolic case, this particular
degeneracy does not occur. In these cases I2 = 0 corresponds
to p1 = p2 = p3 = M1 = M2 = M3 = 0 for ε = 1
where the elastic curves are geodesics and in the hyperbolic
case ε = −1 implies that the extremals exist on the light-cone
p2
1 + p2

2 + p2
3 = M2

1 + M2
2 + M2

3 . This case requires further
investigation and is left to future research.

B. Critical points of the cubic function f(p1)
The explicit solutions of the Hamiltonian vector fields

are solely dependent on the constants of motion and the
initial conditions of the meromorphic function p1, which
is defined in terms of elliptic functions. The initialization
of p1 is therefore essential in determining the qualitative
behavior of the system. To understand the behavior of p1

(equation (18)) we plot dp1
dt against p1; this phase portrait is

illustrated for the Euclidean case in Figure 1, the Spherical
case in Figure 2 and the Hyperbolic case in Figure 3 with
each isocline dependent on the constant I2. The constants
used were M1 = σ = 0.5,H∗ = 1, I3 = 1 and I2 was set to
different constants 1, 2, 3, 4, 6, 9 which correspond to different
isoclines in the figures. Each of the three figures vary only
by the parameter ε. For each value of I2 there is a bounded

component and an unbounded component, the smallest value
of I2 corresponds to the smallest bounded component and the
right most unbounded component:

-2 2 4

-10

-5

5

10
dp1
���������

dt

p1

Fig. 1. Phase Portrait- the Euclidean case with increased I2 the bounded
component becomes larger and the unbounded component shifts to the left

-1 1 2 3 4 5

-10

-5

5

10dp1
���������

dt

p1

Fig. 2. Phase Portrait- the spherical case with increased I2 the bounded
component becomes larger and the unbounded component shifts to the left

-4 -2 2 4

-15

-10

-5

5

10

15dp1
���������

dt

p1

Fig. 3. Phase Portrait- the hyperbolic case with increased I2 the bounded
component becomes larger and the unbounded component shifts to the left

In the physical sense the bounded component is the only
one that corresponds to real motions of the vehicle, as the
extremals at these values of p1 are real. In all three cases,
provided the roots of the cubic are real the phase portraits
are qualitatively unchanged. From the figures it is clear to see
that p1 is increasing above the horizontal axis dp1

dt > 0 and
decreasing below the horizontal axis dp1

dt < 0. It is also clear
to see that any initialization on the bounded component will
flow to an equilibrium point i.e equilibrium points lie on the
horizontal axis where dp1

dt = 0. It is only the isoclines that
correspond to the unbounded component where dp1

dt > 0 that
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do not flow to an equilibrium point. Therefore considering
only the possibility of real extremals, as t →∞, p1 tends to a
constant corresponding to a root of the cubic (18). In addition,
as the curvature and torsion are both constant when p1 is
constant, the elastic curves corresponding to real extremals
will flow to a helix as t →∞. Proceeding, assuming a constant
I2, we illustrate the different qualitative behavior of the critical
points depending only on the curvature of the underlying space
form. As M1 is the constant σ and can be initialized at any
constant, a plot is given of the roots of the cubic equation
f(p1) = 0, with p1 a function of σ. In each of the following
cases H∗, I2 and I3 were constant and only ε was varied. A
plot of the real roots/critical points are given in Figure 4 for
ε = 0, Figure 5 for ε = 1 and Figure 6 for ε = −1:

-6 -4 -2 2 4

2

4

6p1

Σ

Fig. 4. The singularities of the system: Euclidean case ε=0

-6 -4 -2 2 4 6

-4

-2

2

4

6

8
p1

Σ

Fig. 5. The singularities of the system: Spherical case ε=1

-6 -4 -2 2 4 6

-3

-2

-1

1

2 p1

Σ

Fig. 6. The singularities of the system: Hyperbolic case ε=-1

The diagrams above give an indication in the differing
qualitative nature of the solutions depending on the underlying
space form.

C. The geometry of the extremals at the singularity
At the singularity defined at the critical points of the cubic,

p1 is constant and will be denoted by c. Then the Casimir

functions (9), (10) and (11) can be written in a reduced form,
see [4], where the left hand side of these equations are all
constants:

2(H∗ − c)− σ2

c1
= M2

2 + M2
3

I2 − c2 − ε(σ2) = p2
2 + p2

3 + ε(M2
2 + M2

3 )
I3 − cσ = p2M2 + p3M3

(52)

writing the third equation in terms of p2 and squaring gives:

p2
2 =

(I2
3 − 2I3cσ + c2σ2)− 2I3p3M3 + 2cσp3M3 + p2

3M
2
3

M2
2

defining new constants α = (I2
3 − 2I3cσ + c2σ2) and γ =

I2− c2− ε(σ2) for simplicity, then by substituting p2
2 into the

second equation in (52), the reduced Hamiltonian and reduced
Casimirs can be written as two surfaces in 3 dimensions
(p3,M2,M3):

2(H∗ − c)− σ2

c1
= M2

2 + M2
3

γM2
2 = α + p2

3M
2
2 + 2cσp3M3 − 2I3p3M3 + p2

3M
2
3

+εM2
2 (2(H∗ − c)− σ2

c1
)

(53)

Proceeding more geometrically we analyze the system at the
singularities in terms of the intersection of these two invariant
surfaces. For the purpose of the following illustration we
take ∆ > 0 where ∆ is defined in equation (28) with
positive reduced Hamiltonian i.e. the left hand side of the first
equation in (52) is assumed positive, in a physical sense this
is meaningful as energy is always positive. For each case the
3-dimensional surfaces are drawn graphically in Fig. 7. for
ε = 0, Fig. 8. for ε = 1 and Fig. 9. for ε = −1.

Fig. 7. The intersection of the energy cylinder and the non-generic quadric
for ε = 0 at the singularity
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Fig. 8. The intersection of the energy cylinder and the non-generic quadric
for ε = 1 at the singularity

Fig. 9. The intersection of the energy cylinder and the non-generic quadric
for ε = −1 at the singularity

The surfaces make contact and in each case the intersection
is a closed periodic orbit. Fig. 10. shows the points of
intersection for ε = 1, this remains qualitatively unchanged
in each case ε = 0 and ε = −1.

-1

0

1

M2
-1

0

1

M3

-0.5

0

0.5

p3

-1

0

1

M2

Fig. 10. Closed periodic orbit; intersection of invariant surfaces

When p1 is constant, M2 and M3 are explicitly solved as
(23), where r is constant and θ is linear in t. Using the equation
from (12)

dM2

dt
=

M1M3

c1
−M1M3 + p3 (54)

and assuming p1 is constant, we differentiate M2 as solved
in (23) and along with the solutions for M1,M2, M3 are

substituted in equation (54) and rearranged to give:

p3 =
(

σ(
c1 − 1

c1
) + θ̇

)
r cos(θ(t)) (55)

where θ̇ is a constant (21) when p1 is constant. Therefore,
in the frame (p3, M2,M3) the explicit solutions describe an
ellipse as shown in Figure 10. To show this let us define a
constant λ =

(
σ( c1−1

c1
) + θ̇

)
r. Clearly, the projection onto

the M2,M3 plane is a circle. In addition it is easily shown
that the projection of this ellipse onto the p3,M2 plane is
an ellipse from the explicit solutions and satisfy the implicit
elliptic equation.

p2
3

λ2
+

M2
2

r2
= 1 (56)

Thus, the extremal curve is a circle when λ = r.

D. The explicit solution of the periodic orbit

Recall that assuming only real extremals as t →∞, p1 tends
to a constant defined by a root of the cubic (18). At these roots
the solutions to the Hamiltonian vector fields simplify greatly.
Immediately, from (23) where r is constant and θ is linear in
t gives:

M2(t) = r sin(θ(t))
M3(t) = r cos(θ(t))

(57)

Then using the equations (12) to obtain the explicit expressions
in the same manner as for equation (55) yields:

p2(t) = λ sin(θ(t))
p3(t) = λ cos(θ(t))

(58)

Therefore, at the critical points where p1 = c is constant, the
explicit solutions (57) and (58) define a closed periodic orbit
in the plane p1,M1. From equation (21) with p1 constant and
assuming the initial value at t = 0 to be θ0 = 0 then:

θ(t) =

(
σ

c1
− σ +

I3 − p1σ

2(H∗ − p1)− σ2

c1

)
t

Equating θ to 2nπ where n ∈ Z the period T of the closed
orbit is:

T = 2nπ/

(
σ

c1
− σ +

I3 − p1σ

2(H∗ − p1)− σ2

c1

)

E. The corresponding elastic curves at the singularity (Criti-
cal Configurations)

As κ and τ are constant when p1 is constant it is straight-
forward to integrate the equation (29) by taking the matrix
exponential map from the Lie algebra to the Lie group (see
[18]). An illustration of the different types of elastic curves
that correspond to singularities in E3 is given. The illustration
of S3 and H3 are omitted. The plot below shows a bifurcation
diagram for the system for a particular set of constants. The
critical points of p1 are a function of the constant I2, a plot
of the real critical points are illustrated:
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2 4 6 8 10

-3

-2

-1

1

2

3

I2

p1=c

Fig. 11. Bifurcation diagram where the critical points of p1 are dependent
on I2

As an illustration of the helical maneuvers of the vehicle
we choose I2 = 2 in Figure. 11. such that there are three
real roots; a negative root, a small positive root and a larger
positive root. For a fixed length of time, the vehicle traces the
following elastic curve γ(t) = g(t)~e1 = [x1, x2, x3]T :

-0.2
0

0.2

x1

0

0.2

0.4
x2

0

0.2

0.4

0.6

x3

0

0.2

0.4

0

0.2

0.4

0.6

Fig. 12. Helix for p1 = −1.17693 and I2 = 2, giving κ = 4.1 and
τ = 0.406

When p1 = 0.738226 and I2 = 2, κ = 0.27 and τ =
−7.93. This is not illustrated here as for the same dimensions
as Figure.12., the helix appears close to a straight line. Figure.
13. illustrates the helix for the large positive real root
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0.5

1

x1

-1.5
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0
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-1.5

-1

-0.5

0

x3

-0.5

0

0.5

1

x1

-1.5

-1

-0.5

Fig. 13. Helix for p1 = 1.4387 and I2 = 2, giving κ = −1.1275 and
τ = 0.279

Although the Serret-Frame gives a geometric interpretation
of the elastic curves, it does not give any indication of how
the vehicle rotates along these curves. For information about
the rotation it is necessary to integrate the general frame (7).
However, as the extremals are time dependent the integration
procedure is not trivial and is the area of current research.

VI. CONCLUSION

Oriented vehicles travelling at unit speed which are sub-
ject to steering controls that change their orientation can be
modelled analogously to the elastic problem on Lie groups,
where the Lie group describes the configuration space of the
vehicle. The configuration spaces considered in this paper are
the orthonormal frame bundles SE(3), SO(4) and SO(1, 3).
For these systems the extremal curves are solved explicitly in
terms of elliptic functions. Under a transformation from the
general frame to the Serret-Frenet frame, it is shown that the
curvature and torsion of the corresponding elastic curves are
also explicitly defined in terms of elliptic functions. In this
paper an analysis at a singularity of these systems is given,
defined at the roots of a cubic function that appear in the
explicit solutions of the extremal curves. At these singularities
it is shown that the extremal curves define a periodic orbit
and the corresponding elastic curves have constant curvature
and torsion. Therefore, the singularities in the extremal curves
coincide with steady motions of the vehicle i.e. constant
translation and/or constant rotation. Identifying such equilibria
is extremely useful in the motion planning of vehicles. Using
various stabilization techniques from geometric control such
periodic equilibria can be exploited to obtain these steady
motions. Although, the focus of this paper is on the motion
control of vehicles travelling at unit speed, this paper presents
new results applicable to general elastic curves and Kirchhoff’s
elastic rod. Future work will include a stability analysis of
these singularities and methods to integrate the general frame
in order to analyze the rotation of these vehicles as they trace
elastic curves.
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