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1 Introduction

The evaluation of the efficiency of individual firms is of fundamental importance for policymak-

ing in many areas of economics. Stochastic frontier models have been one of the most popular

tools for carrying out such efficiency analyses. Numerous applications in the fields of finance

(e.g. Hunt-McCool, Koh and Francis, 1996), banking (e.g. Adams, Berger and Sickles, 1999,

Fernández, Koop and Steel, 2000), agriculture (e.g. Kumbhakar, Ghosh and McGuckin, 1991),

environmental economics (e.g. Reinhard, Lovell and Thijssen, 1999), public sector economics

(e.g. Perelman and Pestieau, 1994) and development economics (e.g. Pitt and Lee, 1981) testify

to the importance economists in diverse applied fields place on efficiency measurement. How-

ever, researchers must be cautious when using firm-specific efficiency measures to rank firms or

make statements about whether a firm is more or less efficient than others. The necessity for

caution arises for two reasons. Firstly, firm-specific efficiency is typically hard to estimate and

associated measures of uncertainty (e.g. confidence intervals or Bayesian posterior standard devi-

ations) can be quite large. Merely looking at point estimates can potentially be very misleading.

Secondly, there is not one unique definition of efficiency and a firm which is ranked as being very

efficient using one definition could potentially be ranked quite differently using another. The

latter problem is exacerbated in the case of multiple-output production which forms the basis of

the present paper.

These considerations motivate the focus of this paper. In particular, we develop and discuss

several definitions of efficiency for the case of multiple-output production. We allow for non-

separability of inputs and outputs by making the elasticity of transformation between outputs a

parametric function of the inputs. We also treat the case where some of the outputs produced

might be undesirable by-products of the production process, such as pollution. We shall use

Bayesian methods for making inference about firm-specific efficiency using these definitions and

compare the resulting efficiency rankings and conclusions in the context of two applications. We

consider the empirically relevant case where the researcher only has data on inputs and outputs.

That is, data on input or output prices, costs or profits are not available. Of course, if some or

all of these were available, the problems involved in multiple-output production would be greatly

simplified. For instance, if a cost function could be estimated, then outputs could be included as

explanatory variables with cost being the dependent variable. However, this would not allow the

development and analysis of a variety of output-oriented efficiency measures, each of which can

shed a slightly different and potentially insightful light on the data.
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Bayesian inference produces exact finite-sample posterior and predictive distributions and

fully takes parameter uncertainty into account. It was found in previous work (see e.g. Koop,

Osiewalski and Steel, 1994, 1997) to be an excellent tool for inference on efficiencies in stochastic

frontier models, allowing e.g. for economic regularity conditions to be imposed in a very simple

way. See Kim and Schmidt (2000) for some empirical comparisons of Bayesian and classical

approaches to efficiency measurement.

The first of the empirical applications is on the banking data of Adams et al. (1999), also used

in Fernández et al. (2000). The second is the environmental application of Reinhard et al. (1999)

and Fernández, Koop and Steel (2002). Our findings indicate that, given an efficiency definition,

efficiency rankings do have some practical relevance, despite the considerable uncertainty in

the inference on efficiencies. On the other hand, it is critical that we focus on the appropriate

efficiency concept for the particular purpose at hand, since different efficiency definitions can

lead to quite different conclusions, both in terms of rankings and absolute values. The paper is

organized as follows: In the second section we introduce our multiple-output production model.

The third section discusses the issue of efficiency measurement in this model. The fourth section

discusses some related approaches in the literature. Section 5 presents our two applications and

the sixth concludes. Details on the prior adopted and the Markov chain Monte Carlo (MCMC)

sampler used to conduct inference are given in the Appendix.

2 The Model

The best-practice technology for producing a vector of outputs, y, from a vector of inputs, x, can

be described using a transformation function:

f(y, x) = 0.

In this paper we shall assume the transformation function has the form:

g(y, x) = h(x),

with a particular class of functions g(y, x). The left and right hand sides of this equation are

referred to as the aggregate output and production frontier, respectively. In the present paper, we

adopt a modification of the setup of Fernández et al. (2000), hereafter FKS. As we shall see, our

particular choice for the transformation function allows freeing up the separability assumption of

our previous work in an attractive and intuitive manner.
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We consider a set of NT observations corresponding to outputs of N different firms (or

agents) where firm i is observed for Ti time periods. Note that this accommodates an unbalanced

panel. For a balanced panel, we will have Ti = T , i = 1, . . . , N . Generally, however, T will

be defined as (T1 + · · · + TN )/N . The output of firm i (i = 1, . . . , N) at time t (t = 1, . . . , Ti)

is a p-dimensional vector y(i,t) = (y(i,t,1), . . . , y(i,t,p))
′ ∈ �p

+, and we assume that the aggregate

output can be expressed as:

g(y(i,t), x(i,t)) =

(
p∑

j=1

α
q(x(i,t))

j y
q(x(i,t))

(i,t,j)

)1/q(xi,t)

, (1)

where α = (α1, . . . , αp)
′ with αj ∈ (0, 1) for all j = 1, . . . , p and

∑p
j=1 αj = 1. In addition, we

assume that q(x(i,t)) > 1 is a function of the inputs x(i,t) corresponding to firm i at time t given

by:

q(x(i,t)) = (1 + ψ0)

m∏
l=1

(1 + ψl)
x(i,t,l), (2)

where ψ = (ψ0, . . . , ψm)′ is a parameter vector in �m+1
+ and x(i,t,l) is the lth input corresponding

to observation (i, t). To avoid cluttering the notation, we will not explicitly indicate the depen-

dence of the output aggregator g(·, ·) in (1) on α and q(x(i,t)). For fixed values of α and q(x(i,t)),

g(y(i,t), x(i,t)) = constant defines a production equivalence surface, i.e. a (p − 1)-dimensional

surface in �p
+ consisting of all output vectors y(i,t) that are technologically equivalent. The ag-

gregation function used in (1) has been used in Powell and Gruen (1968) and Kumbhakar (1987)

and is sometimes called the “constant elasticity of transformation” aggregator, since it imposes

the same elasticity of transformation between any two outputs. This elasticity of transformation

is given by {1−q(x(i,t))}−1, which explains the restriction q(x(i,t)) > 1 as this ensures a negative

elasticity of transformation and also shows that this elasticity can be influenced by the input val-

ues. Thus, we have not imposed separability between inputs and outputs, and it is exactly through

the most interesting property of the aggregator function that we allow for x(i,t) to intervene. The

interpretation of the parameter α in (1) is to deal with scaling of the outputs, which is, therefore,

quite separate from the role of q(x(i,t)). Figure 1a illustrates the latter by displaying the range of

production equivalence surfaces corresponding to various values of q(x(i,t)). With given inputs in

h(x(i,t)), the production possibility set clearly increases with the value of q(x(i,t)). In the special

case of separability where q(x(i,t)) = q and given q, the regularity conditions on h(x(i,t)) would

imply a reduction of the production possibility set for smaller inputs x(i,t) (monotonicity). If in

our more general separable framework we would allow for q(x(i,t)) to be strictly decreasing in

x(i,t), we could well face a situation where a reduction in input actually leads to an new produc-
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tion possibility set which is not strictly contained in the old one1. In order to make sure that

monotonicity in inputs holds for our nonseparable model, the specification in (2) imposes that

q(x(i,t)) is a nondecreasing function of the inputs.

FKS use the transformation function in (1) with q(x(i,t)) = q. The latter assumption cor-

responds to ψl = 0, l = 1, . . . , m and, thus, imposes the special case of separability in inputs

and outputs of the production technology. As indicated by two Referees, this is a potentially

restrictive assumption, so the present paper allows for nonseparability. We shall comment on the

empirical support for this separability assumption in the context of our two applications in Sec-

tion 5. In these applications, we shall use the levels of all inputs in (2), standardized to be in the

interval [0, 1] by subtracting the maximum value in the sample. The latter helps in interpreting

values for the coefficients ψ1, . . . , ψm and makes a common prior (see (A.7) in the Appendix) a

reasonable assumption.

Since the aggregate output g(y(i,t), x(i,t)) is a univariate quantity, it is natural to model it using

a single-output stochastic frontier specification. To this end we define δ(i,t) = log(g(y(i,t), x(i,t))),

group these transformed outputs in an NT -dimensional vector

δ = (δ(1,1), δ(1,2), . . . , δ(1,T1), . . . , δ(N,TN ))
′, (3)

and model δ as

δ = V β − γ + ε. (4)

In the latter equation, V = (v(x(1,1)), . . . , v(x(N,TN )))
′ denotes an NT × k matrix of exogenous

regressors, where v(x(i,t)) is a k-dimensional function of the inputs x(i,t). The particular choice

of v(·) defines the specification of the production frontier: e.g. the vector v(x(i,t)) contains a 1

and all logged inputs for a Cobb-Douglas technology, whereas a translog frontier also involves

squares and cross products of these logs. The corresponding vector of regression coefficients is

denoted by β ∈ B ⊆ �k. Often, theoretical considerations will lead to regularity conditions on

β, which will restrict the parameter space B to a subset of �k, still k-dimensional and possibly

depending on x. For instance, we typically want to ensure that the marginal products of inputs

are positive. Such conditions are easy to impose through the MCMC sampler described in the

Appendix.

Technological inefficiency is captured by the fact that firms may lie below the frontier, thus

leading to a vector of deviations between (the log of) actual and maximum possible aggregate

1The production equivalence surface would shift towards the origin close to the axes in Figure 1a, due to the
reduction in h(x(i,t)), but this could be more than offset by an outward shift of the surface for roughly equal values
of both outputs, due to an increase in q(x(i,t)).
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output. This vector of deviations is labelled γ. It is usually reasonable to place some additional

structure on these deviations. In particular, we set γ ≡ Dz ∈ �NT
+ , where D is a fixed NT × M

(M ≤ NT ) matrix and z ∈ Z with Z = {z = (z1, . . . , zM)′ ∈ �M : Dz ∈ �NT
+ }. Through

different choices of D, we can accommodate various amounts of structure on the vector γ of

inefficiencies. For instance, taking D = INT , the NT -dimensional identity matrix, leads to

an inefficiency term which is specific to each different firm and time period. For a balanced

panel, choosing D = IN ⊗ ιT , where ιT is a T -dimensional vector of ones and ⊗ denotes the

Kronecker product, implies inefficiency terms which are specific to each firm, but constant over

time (i.e. “individual effects”). In our empirical section we make the latter choice for D, but with

the obvious extension to unbalanced panels for our second application. Fernández, Osiewalski

and Steel (1997) provides a detailed description of other possible choices for D. In the next

section, we will provide definitions of efficiency which will all be functions of this deviation γ.

In previous work (see van den Broeck, Koop, Osiewalski and Steel, 1994), it was found that a

reasonable choice for the distribution of z is a product of conditionally independent Exponentials.

See the Appendix for more details.

The model in (4) also includes a two-sided error term ε which captures the fact that the

frontier is not known exactly, but needs to be estimated from the data. We assume that ε follows

an NT -dimensional Normal distribution with zero mean and covariance matrix equal to σ2INT .

Hence, we obtain:

p(δ|β, z, σ) = fNT
N (δ|V β − Dz, σ2INT ), (5)

where fNT
N (.|a, A) denotes the NT -variate Normal density function with mean a and covariance

matrix A.

As discussed in FKS, the previous assumptions are not enough to specify the likelihood func-

tion. Intuitively, a single equation as in (5) is not sufficient to determine a probability density

function for the p-dimensional vector y(i,t) if p > 1. Hence, stochastics for the p − 1 remaining

dimensions must be specified by considering the distribution of the outputs within each of the

production equivalence surfaces. Defining

η(i,t,j) =
α

q(x(i,t))

j y
q(x(i,t))

(i,t,j)∑p
l=1 α

q(x(i,t))

l y
q(x(i,t))

(i,t,l)

, j = 1, . . . , p, and η(i,t) = (η(i,t,1), . . . , η(i,t,p))
′, (6)

we assume independent sampling across observational units (for i = 1, . . . , N ; t = 1, . . . , Ti)

from

p(η(i,t)|s) = f p−1
D (η(i,t)|s), (7)
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where s = (s1, . . . , sp)
′ ∈ �p

+ and f p−1
D (η|s) denotes the p.d.f. of a (p−1)-dimensional Dirichlet

distribution with parameter s (see Poirier, 1995, page 132). From (6) we see that η(i,t) can loosely

be interpreted as a vector of output shares, with 0 ≤ η(i,t,j) ≤ 1 and
∑p

j=1 η(i,t,j) = 1. The

Dirichlet distribution is a very flexible distribution commonly used to model shares.

The Appendix provides details regarding the prior distribution for all the parameters in the

model. The posterior obtained from combining the prior with the likelihood function is not

analytically tractable, but an MCMC algorithm can be developed to produce random draws from

the posterior. These draws can then be used to obtain posterior properties for all of the efficiency

measures. Details of the MCMC sampler are also briefly described in the Appendix.

3 Efficiency Measures

The previous section outlined an econometric model for multiple-output production where sepa-

rability is not imposed and inefficiency is possible. If we focus on a single observation, and drop

the (i, t) subscript from all variables for convenience, equation (4) can be written as:

g(y, x) = h(x)e−γeε, (8)

where h(x) is the production frontier [i.e. exp{v(x)′β}]. Note that we do not explicitly indicate

the dependence of g(·, ·) on α and q(x), and of h(·) on β. In order to derive explicit measures of

efficiency, we relate the model in (8) to various efficiency concepts.

3.1 Radial Output-Oriented Efficiency

The most common measure of efficiency is known as radial output-oriented technical efficiency,

τRO . The inverse of this (i.e. 1/τRO) measures the amount by which all p outputs must be propor-

tionally increased in order to get to the frontier. Clearly, for an inefficient firm we obtain τRO < 1,

whereas τRO = 1 corresponds to full efficiency.

The (stochastic) frontier faced by the firm with inputs x is given by h(x)eε. Hence, radial

output-oriented efficiency is defined by the equation

g

(
y1

τRO
, . . . ,

yp

τRO
, x

)
= h(x)eε, (9)

where 0 < τRO ≤ 1 and is equal to the output-distance function (see Shephard, 1970, or Färe

and Primont, 1995) mentioned in some detail in Section 4. We can use (8) and (9) and the

homogeneity of g(y, x) in (1) to obtain:

τRO = e−γ. (10)
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This is the definition of efficiency used in FKS. Note that the individual effects structure of γ will

be inherited by τRO, so that each firm will be assumed to have a specific radial output-oriented

efficiency constant over time.

Radial output-oriented efficiency is illustrated in Figure 1b. This figure plots the production

equivalence surface corresponding to the frontier (for a given level of inputs) for the two output

case with q(x) = 1.5. In other words, for a given level of inputs, the possible output combina-

tions that are achievable by a fully efficient firm are mapped out. If a firm using those inputs is

producing at point A, its radial output-oriented efficiency is given by τRO = |OA|/|OB|.

3.2 Individual Output-Oriented Efficiencies

In some cases, radial output-oriented efficiency, with its focus on a proportionate increase in all

outputs, may not be the sensible efficiency measure. For instance, a bank may be interested in

how much it can increase real estate loans, without affecting output of commercial loans. In this

case, interest centers on the potential increase in one particular output and measures of individual

output-oriented efficiencies, say, τjO for j = 1, . . . , p, are called for. Formally, 1/τjO measures

the amount by which output j must proportionally be increased in order to get to the frontier.

Reasoning as in the previous subsection, τjO is thus defined by:

g

(
y1, . . . ,

yj

τjO
, . . . , yp, x

)
= h(x)eε. (11)

Combining this equation with (8) and the form we use for g(·, ·) (see equation 2.1), we obtain:

τjO = e−γ

(
ηj

e−γq(x)ηj + 1 − e−γq(x)

)1/q(x)

= τRO

(
ηj

τ
q(x)
RO ηj + 1 − τ

q(x)
RO

)1/q(x)

, (12)

where ηj is the “share” of output j described in (6), and where the second equality in (12) follows

directly from the expression for the radial output-oriented efficiency in the previous subsection.

It is clear from (12) that 0 ≤ τjO ≤ τRO , with τjO = τRO only if ηj = 1 (i.e. only the jth output is

produced) or if τRO = 1 (in which case the output vector y is on the frontier and both efficiency

measures are equal to 1). We remind the reader that ηj is observation-specific [see (6)] and, thus,

the ranking of firms in terms of τRO is not necessarily preserved in terms of τjO. In addition, τjO

can vary over time for the same firm (unlike τRO).

Individual output-oriented efficiency is illustrated in Figure 1b for each of the two outputs. In

particular, τ1O = |O1A|/|O1B1| and τ2O = |O2A|/|O2B2|. Measures similar to these are used in

Reinhard et al. (1999).
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3.3 Efficiency Shares

The essential problem of efficiency analysis with multiple outputs can be seen in Figure 1b. There

are many ways to measure the deviation of a firm (e.g. point A) from the production equivalence

surface. The previous measures either used the distance along a radian connecting the origin to

point A (τRO) or along a line parallel to an axis and passing through point A (τ1O and τ2O). Here,

we will consider an alternative concept, so-called “efficiency shares”, which involves mapping

distances along the axes. An examination of Figure 1b indicates that τ1S = |OO2|/|OC1| and

τ2S = |OO1|/|OC2| are intuitively plausible measures of efficiency.

The efficiency share for the jth output, τjS , is formally defined by the equation

g

(
0, . . . ,

yj

τjS
, . . . , 0, x

)
= h(x)eε, (13)

which has as solution

τjS = τROη
1/q(x)
j , (14)

where ηj is the share of output j as defined in (6). There are two ways in which we can interpret

this efficiency measure. First, by equation (13), 1/τjS is the proportional increase of output j

that can be achieved by being fully efficient while entirely giving up production of other outputs.

In addition, for the output aggregator in (1) we note that g(0, . . . , 0, yj/η
1/q(x)
j , 0, . . . , 0, x) =

g(y1, y2, . . . , yp, x), so that (1 − η
1/q(x)
j ) ≥ 0 is the relative reduction of production of output j

due to the fact that other outputs are also being produced. Thus, τjS in (14) represents the share

of the (overall) efficiency τRO due to the fact that several outputs are being jointly produced. In

many cases, these efficiency shares will be an interesting measure of efficiency. From (12) and

(14) we can immediately see that

τjS ≤ τjO ≤ τRO, (15)

where equalities hold if ηj = 1 (graphically illustrated in Figure 1b by considering a point A on

either of the axes). In contrast to τjO, the efficiency share measure τjS does not reduce to 1 for

τRO = 1.

3.4 Input-oriented Efficiency Measures

The previous discussion focussed on output-oriented measures. These all related to the question

“by how much can output potentially be increased (using available inputs) if full efficiency is

achieved?”. However, efficiency can also be measured using input-oriented measures which re-

late to the question “by how much can inputs potentially be decreased (holding output constant)

if full efficiency is achieved?”.
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Radial input-oriented efficiency, τRI , is the most common input-oriented measure. It mea-

sures the proportionate decrease in all inputs x1, . . . , xm which is consistent with full efficiency.

We can define efficient production as:

g (y1, . . . , yp, τRIx1, . . . , τRIxm) = h (τRIx1, . . . , τRIxm) eε.

Generally, this can be solved for a value of τRI , but there is no simple closed-form solution

available. However, in the special case of separability, we can derive from (8) that τRI must

satisfy

ln[h (τRIx1, . . . , τRIxm)] − ln[h (x1, . . . , xm)] + γ = 0. (16)

Note that if constant returns to scale exists (i.e. h(·) is homogeneous of degree 1), then τRI =

exp(−γ) = τRO . In other words, radial input- and output-oriented efficiencies are identical.

However, if returns to scale are non-constant, these measures can be different (see, e.g., Atkinson

and Cornwell, 1994). In our first application, we assume a Cobb-Douglas production frontier,

h(x) = eβ0xβ1

1 . . . xβm
m , (17)

in which case

τRI = e−γ/(β1+β2+···+βm) = τ
1/(β1+···+βm)
RO . (18)

Individual input-oriented measures, which address the question “how much can input l be

decreased without sacrificing output”, can be derived in an analogous manner by defining efficient

production as:

g(y1, . . . , yp, x1, . . . , τlIxl, . . . , xm) = h (x1, . . . , τlIxl, . . . , xm) eε.

Again, this only leads to a nice analytical solution in the separable case. If, in addition, we

assume a Cobb-Douglas production frontier, we obtain:

τlI = e−γ/βl = τ
1/βl

RO , (19)

for l = 1, . . . , m.

Thus, with a Cobb-Douglas production frontier, the input-oriented measures are all powers

of the standard radial output-oriented efficiency measure, and these powers do not vary across

observations. Hence, rankings of firms in terms of their efficiency will be the same using τRO,

τRI or τlI for l = 1, . . . , m. Accordingly, we do not investigate input-oriented efficiencies in our

first application, as we find that separability is favored by the data.
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In our second application we use a translog production frontier:

ln[h(x)] = β0 +
m∑

l=1

βl ln(xl) +
m∑

j=1

∑
l≤j

βlj ln(xl) ln(xj). (20)

Under separability we need to solve the equation in (16) and we obtain for radial input-oriented

efficiency:

ln(τRI) =
−b +

√
b2 − 4γ

∑m
j=1

∑
l≤j βlj

2
∑m

j=1

∑
l≤j βlj

, (21)

where b =
∑m

l=1 βl +
∑m

j=1

∑
l≤j βlj ln(xlxj) and existence of the solution requires that b2 >

4γ
∑m

j=1

∑
l≤j βlj. Again assuming separability, we obtain for input l-oriented efficiency:

ln(τlI) =
−el +

√
e2

l − 4γβll

2βll
, (22)

where el = βl +
∑

j≤l βjl ln(xj) +
∑

j≥l βlj ln(xj) and we need that e2
l > 4γβll.

A couple of things are worth noting about the input-oriented efficiency measures. Firstly, el is

the elasticity of the frontier with respect to input l. To ensure that aggregate output is increasing

in input, we impose (through our prior, see Appendix) the regularity conditions that e l ≥ 0

for l = 1, . . . , m for every firm in every time period. This ensures that all the input-oriented

efficiency measures are less than or equal to 1.0. Secondly, there are a few occasions where

(21) and (22) do not yield real solutions (i.e. e2
l − 4γβll < 0 or b2 − 4γ

∑m
j=1

∑
l≤j βlj < 0 for

some i, t). In the few cases where there is no value of τRI which solves (16), we instead use for

τRI the value which makes it as close to zero as possible. It can be verified that this implies:

ln(τRI) = −b/(2
∑m

j=1

∑
l≤j βlj). Reasoning in an analogous manner for τlI we obtain, for these

cases, ln(τlI) = −el/(2βll).

3.5 The Treatment of Good and Bad Outputs

In some applications, the jointness in production involves not only outputs that are desirable (so-

called “good” outputs), but also some that are unavoidable by-products of the production process,

such as pollution (which we will generally denote by “bad” outputs). In many empirical contexts,

interest will be focused not only on how well firms do in producing good outputs, but also in

how well they manage to avoid unnecessarily large production levels of the bad outputs. The

question then becomes how to model such bad outputs. Earlier approaches were to include them

as inputs (see e.g. Koop, 1998, and Reinhard et al., 1999) or model them separately in a stochastic

frontier context (Fernández et al., 2002). The latter approach allows us to separately define two
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types of efficiencies, “technical efficiency” related to the “goods” frontier and “environmental

efficiency” corresponding to the “bads” frontier, which can both be estimated from the data. Here

we are dealing with one single frontier and the issue of technical versus environmental efficiency

involves defining different ways of looking at the same distance (between the frontier and the

observed data). In this aspect, our present analysis is similar to that in Reinhard et al. (1999),

where both efficiency measures are clearly related.

We now have, say, p1 < p good outputs and p−p1 bad outputs, and reorder the output vector to

have the good outputs as the first elements. In defining production equivalence surfaces, we need

to take into account that a larger production of good outputs will also imply a larger production

of bad outputs, so we can not directly use the output aggregator in (1). We can, however, still

use the latter aggregator if we transform bads (yj) to negative powers (y−r
j ). Thus, our output

aggregator now becomes

g(y, x) =

(
p1∑

j=1

α
q(x)
j y

q(x)
j +

p∑
j=p1+1

α
q(x)
j y

−rq(x)
j

)1/q(x)

, (23)

where the value of r > 0 still remains to be chosen. Figure 2 plots the production equivalence

surface defined through fixing g(y, x) in a case where we have one good output and one bad

output. The production equivalence surfaces are plotted for q(x) = 1.1 and various values of r

(namely r = 0.5, r = 1 and r = 3). Note from (23) and Figure 2 that it is not possible to produce

goods without bads; this is in line with the idea that bads are unavoidable by-products of the goods

production process and is implied by the definition of null-jointness in e.g. Färe, Grosskopf, Noh

and Weber (2002). This new output aggregator inspires the following definitions.

Technical efficiency, τT , is defined through

g

(
y1

τT
, . . . ,

yp1

τT
, yp1+1, . . . , yp, x

)
= h(x)eε, (24)

which leads to

τT = e−γ

(
ηT

e−γq(x)ηT + 1 − e−γq(x)

)1/q(x)

, (25)

after defining

ηT =

∑p1

j=1 α
q(x)
j y

q(x)
j∑p1

j=1 α
q(x)
j y

q(x)
j +

∑p
j=p1+1 α

q(x)
j y

−rq(x)
j

. (26)

Note the similarity of (25) to the individual output-oriented efficiency in (12), where we have

now used the share of good outputs in the aggregator function, ηT . Clearly, τT ≤ exp(−γ)
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with equality only if ηT = 1 (infinite bads) or if γ = 0. The case of infinite bads2 can be

interpreted as the situation where we focus entirely on producing goods and do not attempt to

reduce bad outputs, so that the technical efficiency as measured by the goods only is equal to

the radial output-oriented efficiency. In other cases, we sacrifice some technical efficiency as a

consequence of attempts to reduce pollution, due to the trade-off implicit in our aggregator. If we

focus on the case r = 3 in Figure 2, a production level at point A will imply a technical efficiency

equal to |O2A|/|O2B2|.
Similarly, we can define environmental efficiency, τE , through

g
(
y1, . . . , yp1

, τEyp1+1, . . . , τEyp, x
)

= h(x)eε, (27)

which, with g(y, x) as in (23), leads to

τE = e−γ/r

(
ηE

e−γq(x)ηE + 1 − e−γq(x)

) 1
rq(x)

, (28)

where we have defined ηE = 1 − ηT as the relative contribution of the bads in the aggregator. In

this case, τE ≤ exp(−γ/r) with equality only if ηE = 1 (no goods3) or if γ = 0. A graphical

illustration of environmental efficiency is given in Figure 2, by realizing that an observation at A

with r = 3 induces τE = |O1B1|/|O1A|.
In the context of data envelopment analysis (DEA), Tyteca (1996) discusses a measure of

environmental performance that is in the same spirit as the inverse of our τE . Again in a DEA

framework, Färe, Grosskopf and Zaim (1999) consider an environmental performance index,

which is the ratio of a quantity index based on a measure akin to τT and an index derived from

the measure in Tyteca (1996) mentioned above.

4 Discussion of Related Work

There is an extensive literature which considers efficiency definitions closely related to those

presented here (see, e.g., Färe and Primont, 1995). Although the terminology and notation is

different from ours, the basic ideas are quite similar. A key concept in this literature is the output

distance function, D0 (x, y), defined as:

2As pointed out by a Referee, the aggregator in (23) does formally allow for unbounded quantities of bad output
with finite inputs, which is clearly not a literal reflection of reality. However, for empirically relevant combinations
of good and bads, we feel the properties of our aggregator function are quite reasonable, and we would not want to
use the model for predictions far outside the range of the data.

3As a Referee remarks, in the hypothetical case of no goods production, our aggregator function in (23) would
imply a residual quantity of bads. Again, we consider our model to be reasonable in the empirically relevant range.
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D0 (x, y) = inf
{

θ :
(y

θ

)
∈ P (x)

}
,

where θ is a scalar and P (x) is an output correspondence. That is, P (x) defines the set of outputs

which can be produced by x. It can be seen that our equation (4), with the measurement error

removed, defines an output distance function and θ is equivalent to our radial output-oriented

efficiency measure, τRO, in (9). An input distance function can be defined analogously and

related to our radial input-oriented efficiency.

Most of the work using distance functions has been implemented using non-econometric

methods (e.g. Malmquist productivity indices are calculated using DEA techniques by, among

many others, Färe, Grosskopf and Kirkley, 2000). Researchers who adopt econometric ap-

proaches include Atkinson, Cornwell and Honerkamp (2003) who use a single-equation Gen-

eralized Method of Moments methodology and Coelli and Perelman (2002) who use a single-

equation corrected OLS methodology. However, for likelihood-based inference, such as our

Bayesian analysis, we do need more than such a univariate distance function as we are required

to specify a distribution in p dimensions.

The concept of the distance function has been extended in, e.g., Chambers, Chung and Färe

(1996) to the directional distance function. The output-oriented directional distance function is

defined as:
−→
D 0 (x, y, d) = sup {λ : y + λd ∈ P (x)} ,

where d is a p× 1 direction vector and λ is a scalar. The relationship between the output distance

function and output-oriented directional distance function is obtained by setting d = y and noting:

D0 (x, y) =
{

1 +
−→
D 0 (x, y, y)

}−1

.

The directional distance function can be used to measure inefficiency in terms of distances from

an observation to the frontier in any direction. Thus, the close relationship between τjO and
−→
D 0 (x, y, dj) with dj = (0, . . . , 0, yj, 0, . . . , 0)′ is clear. Our efficiency shares also represent

another direction in which distance to the frontier can be measured. Directional distance func-

tions have typically been estimated using DEA techniques (see, e.g., Ball, Färe, Grosskopf and

Nehring, 2001) and input-oriented directional distance functions can be defined which are closely

related to our individual input-oriented efficiency measures. In the context of goods and bad out-

puts, Färe et al. (2002) impose null-jointness and weak disposability of (good and bad) outputs

and base efficiency measures on directional distance functions.
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5 Applications

In this section, we investigate the properties of the various efficiency measures in the context of

two substantive applications which have received attention in the applied literature. It is worth

noting that in both applications q tends not to be far from one for most firms. This may help the

reader is assessing some of the properties of the expressions in Section 3. Reported results on

the banking data are based on a Monte Carlo run of 25,000 retained draws after discarding the

first 5000, whereas results for the agricultural data correspond to a run of 60,000 and a burn-in of

10,000 draws.

5.1 Efficiency of the US Banking Industry

Berger and Humphrey (1997) provide an extensive survey of the literature on the efficiency of

financial institutions. We use a data set which has been used by several others to investigate

this important issue (see Berger, 1993, Adams et al., 1999, and FKS). This banking data set

contains observations on N = 798 limited branching banks in the United States for T = 10

years (1980-89). The theory of bank behavior suggests that it is reasonable to treat loans as

an output in a production process where deposits and traditional factors (e.g. labor, capital) are

inputs. Accordingly, the data set contains p = 3 outputs (real estate loans; commercial and

industrial loans; installment loans) and m = 5 inputs (average number of employees; physical

capital; purchased funds; demand deposits; retail, time and savings deposits). A Cobb-Douglas

form is assumed for the production frontier. We assume that γ has an individual effects structure

and, hence, D = IN ⊗ ιT (see the discussion following (4)).

FKS carries out a Bayesian analysis of this data set. The model used in FKS contains explana-

tory variables in the efficiency distribution, and imposes separability. With these exceptions, the

present model (described in Section 2 and the Appendix) is identical to that in FKS and results

are quite similar. We focus mainly on the differences with FKS and on efficiency measurement.

Relative to FKS, we have extended our model to allow for nonseparability through (2) and, thus,

it is worthwhile to present results for ψ.4 Table 1 presents the medians of the posterior distri-

butions as point estimates and 95% Bayesian credible intervals5 for the m + 1 elements of ψ.

Since ψ1, . . . , ψ5 have most of the posterior mass quite close to zero, there is no immediate ev-

idence of a departure from separability of the transformation function (corresponding to ψl = 0

4To aid in interpretation, note that the explanatory variables used for q in (2) have been standardized to take
values in [0, 1].

5Defined as ranging from the 2.5th percentile to the 97.5th percentile of the posterior distribution.
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for l = 1, . . . , 5). This is in line with the Bayes factor which mildly favors the separable model

over the nonseparable one: the Bayes factor is estimated to be 40.4 in favor of the nonseparable

model. This is based on the marginal likelihood values for each model, which are estimated using

the modified harmonic mean estimator p4 of Newton and Raftery (1994). Thus, for this data set,

there is no real evidence of nonseparability of the transformation function. However, we shall

present the results of the more general nonseparable model in the sequel (which are quite close

to those with the separable model). In addition, Table 1 tells us that the posterior for ψ0 is located

very near to zero, indicating values of q(x) ≈ 1. Thus, in this application, we are near the limiting

case of a linear production equivalence surface (see Figure 1a for q(x) = 1).

Table 1: Posterior Properties of ψ
95% Credible Interval

Median Lower Upper
ψ0 4.0×10−5 1.0×10−7 1.9×10−4

ψ1 2.9×10−3 9.6×10−5 1.5×10−2

ψ2 3.8×10−3 1.4×10−4 2.0×10−2

ψ3 7.3×10−3 3.0×10−4 3.8×10−2

ψ4 8.0×10−5 5.9×10−6 4.2×10−4

ψ5 1.5×10−4 1.1×10−5 3.4×10−4

We next investigate whether the use of various definitions of efficiency allows us to uncover

potentially interesting aspects of the data that would remain hidden if we focussed only on, say,

τRO . We begin with a simple analysis based only on point estimates of efficiency. Note that strong

assumptions are necessary to derive classical confidence intervals for firm-specific efficiencies

(see Horrace and Schmidt, 1996) and common computer packages (e.g. LIMDEP) do not produce

confidence intervals. It is perhaps for these reasons, that applied work often merely presents point

estimates of efficiencies (e.g., among many others, Barla and Perelman, 1989). We use posterior

means as point estimates.

Given the individual effects structure of γ, τRO will also have an individual effects struc-

ture. However, τjO and τjS will not (j = 1, . . . , p). Accordingly, for each of our 2p + 1 = 7

output-oriented efficiency definitions, we have a TN-vector which contains the posterior means

of efficiency for each bank in each time period. Table 2 presents the correlation matrix between

these seven vectors. This simple measure of linear interdependence is computed as the correla-

tion coefficient between pairs of observations, where pairs share the same (i, t) index. Table 3

presents the Spearman rank correlation matrix computed along the same lines.

Consider first radial output-oriented efficiency. All of the other efficiency measures are posi-

tively correlated with this, as could be expected from the expressions in (12) and (14), but some
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Table 2: Correlation Between Posterior Means
of Efficiency Measures

τRO τ1O τ2O τ3O τ1S τ2S τ3S

1.00
0.89 1.00
0.71 0.52 1.00
0.87 0.72 0.59 1.00
0.61 0.86 0.15 0.34 1.00
0.26 -0.02 0.75 0.04 -0.22 1.00
0.66 0.44 0.36 0.90 0.03 -0.10 1.00

Table 3: Rank Correlation Between
Posterior Means of Efficiency Measures

τRO τ1O τ2O τ3O τ1S τ2S τ3S

1.00
0.88 1.00
0.71 0.47 1.00
0.88 0.67 0.54 1.00
0.59 0.88 0.17 0.35 1.00
0.25 0.00 0.81 0.09 -0.18 1.00
0.65 0.41 0.33 0.92 0.10 -0.04 1.00

of these correlations are quite low (e.g. the correlation with τ2S). This provides preliminary ev-

idence that alternative efficiency measures can provide a different perspective on the same data

set. Between the efficiency shares we find correlations near zero. This is not so surprising since

τjS = η
1/q(x)
j τRO [see (14), where q(x) takes values close to 1] and the correlation between ηi and

ηj for i 
= j will be negative6. This implies a negative contribution to the correlation between τjS

and τiS , which counteracts or even dominates the positive contribution through the common fac-

tor τRO . Further, correlations between τiO and τjS tend to be quite high for i = j but considerably

lower for i 
= j.

As discussed above, the input-oriented efficiency measures for the Cobb-Douglas production

frontier are always the same powers of radial output-oriented efficiency in the separable case.

Given that the data favor the separable model, and the results presented here are very close to

those with that model, these powers will be quite an accurate approximation of the input-oriented

measures and, hence, the latter are not presented here.

Note that results using the Spearman rank and simple correlations are quite similar to one an-

other. We found this similarity in all of our results and, accordingly, do not discuss the Spearman

rank correlation in our subsequent empirical work.

6This is not counterintuitive, since the ηj , j = 1, . . . , p, add up to unity.
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In order to further investigate the relationships between the different efficiency measures, we

created scatterplots from the point estimates of efficiency used to calculate the correlations in

Table 2. For the sake of brevity, we present only selected results. Figures 3, 4 and 5 plot the

point estimates of τRO against τjS for j = 1, 2, 3, respectively. As indicated in Subsection 3.3,

we always have τRO ≥ τjS and, hence, the points in the figures all lie below the 45-degree line. It

is clear that there are many observations which lead to substantially different efficiency estimates

using the different efficiency measures. The main conclusion we can draw from these figures

is that indeed τ2S behaves quite differently from the usual radial output-oriented efficiency. In

particular, the firms that are closest to the frontier (with τRO > 0.8) seem to produce relatively

less of the second output (commercial and industrial loans) and shift mostly to the third output

(installment loans). This conclusion was borne out by looking at scatterplots of posterior esti-

mates of τRO versus η. Thus, if we are particularly interested in how well firms do in terms of the

second output (with respect to what they could produce if they gave up production of the other

outputs), the conclusions in terms of efficiency levels and ranking of firms will inevitably be very

different from those based on τRO.

If we conduct a similar comparison of radial and individual output-oriented efficiencies, we

find roughly similar results, although the differences are not that striking.

What should we make of our previous results? Clearly, we cannot say “It does not matter

which efficiency definition you choose, all will give essentially the same results”. However, in a

practical setting, the choice between different efficiency measures is not likely to be completely

arbitrary. Researchers who are interested in departing from the standard radial-oriented output

measures, will typically have a reason to focus on a particular output (e.g. to measure the shortfall

of real estate loans from the maximum possible). Given the rather different interpretation of in-

dividual output-oriented efficiency and efficiency shares, it is not surprising that they would give

different results for some observations. Thus, what this really establishes is that the researcher

must make a choice between the various measures of output-oriented efficiency. In addition, the

variety of efficiency measures we present allows us to extract and highlight more information

from a given data set.

The numbers in the previous tables were obtained by first calculating the posterior mean

for each firm and time period and then calculating correlations. This, of course, ignores the

estimation uncertainty inherent in any efficiency analysis. A simple way to shed light on this is to

treat the correlations between efficiency measures as random variables and plot their posteriors.

This can be done by calculating the correlation of interest for each MCMC draw and then plotting
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its posterior density function. This is done in Figures 6-8 for selected efficiency measures. For

the sake of brevity, we do not plot the posteriors for all 2p2 + p correlations. Rather Figures

6 and 7 plot the posteriors for the correlations between τRO and each of τjO and τjS for j =

1, . . . , p. Figure 8 plots the posterior of the correlation between the individual output efficiency

and efficiency share measures for the same output (i.e. the correlation between τjO and τjS).

These figures do nothing to undermine our previous findings. That is, the correlations between

the efficiency measures are fairly precisely estimated. Thus, our previous results based on point

estimates point in the same direction as those which properly address the issue of estimation

uncertainty.

Another way to consider the differences in efficiency measures is to monitor whether firms

can make large jumps in the efficiency ranking if we use a different measure. In order to do this,

we take the estimates of τRO for each firm, rank them, and select the firms ranked at the first,

second and third quartiles. We then calculate the posterior probability that the relative ranking of

each pair of firms is maintained, using each of the efficiency measures.

Table 4 contains the results. If we begin by examining the column labelled τRO , we can

see that rankings based on point estimates do give a crude but reliable picture of firm-specific

banking efficiency. That is, the firm ranked as being at the 3rd quartile is almost always more

efficient than the median and 1st quartile firms. This finding indicates that if a researcher decides

on one particular efficiency definition (e.g. τRO), then the large spread of efficiencies (evidenced

in Figures 3-5) does not prevent at least an approximate classification of observed firms in terms

of their mean efficiency levels.

Table 4: Probability that Firm A is More Efficient than Firm B
Firm A/Firm B τRO τ1O τ2O τ3O τ1S τ2S τ3S

3rd Quart./Median 0.98 0.94 0.25 1.00 0.68 0.00 1.00
3rd Quart./1st Quart. 1.00 1.00 1.00 1.00 0.29 0.04 1.00
Median/1st Quart. 1.00 0.90 1.00 1.00 0.18 1.00 1.00

Three of the columns of Table 4 exhibit a similar pattern. In particular, using τ1O, τ3O or τ3S

as efficiency measures would lead to a similar differentiation between these three firms as the

one based on τRO . However, the other efficiency definitions indicate somewhat different rankings

of the three firms. Tables 5 and 6 present posterior means and standard deviations, respectively,

for the efficiencies of the three firms using all of the definitions. We know that the absolute

magnitudes of the various efficiencies are subject to the inequalities in (15). An examination

of these tables immediately puts the results in Table 4 in context. Posterior standard deviations

of, say, τRO are small enough to lend some practical relevance to the ranking of the three firms.
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However, the three firms selected as being at the first, second and third quartiles using τRO are

ranked quite differently using some of the other efficiency definitions. In particular, the firm

ranked as being quite efficient by τRO (i.e. the third quartile), is quite inefficient according to τ2S

and is below the median according to τ2O. In addition, all three firms have roughly equal values

for τ1S . Thus, the results of Tables 5 and 6 highlight the need for a careful choice of the efficiency

measure used, depending on the question one wants to address.

Table 5: Posterior Means of Efficiencies for Three Firms
Ranking acc. to τRO τRO τ1O τ2O τ3O τ1S τ2S τ3S

3rd Quartile 0.73 0.35 0.44 0.57 0.15 0.21 0.37
Median 0.63 0.28 0.47 0.31 0.14 0.33 0.16
1st Quartile 0.51 0.24 0.32 0.19 0.15 0.24 0.12

Table 6: Posterior Standard Deviations of Efficiencies for Three Firms
Ranking acc. to τRO τRO τ1O τ2O τ3O τ1S τ2S τ3S

3rd Quartile 0.04 0.04 0.04 0.04 0.01 0.01 0.02
Median 0.04 0.03 0.04 0.03 0.01 0.02 0.01
1st Quartile 0.02 0.02 0.02 0.01 0.01 0.01 0.01

Incidentally, the posterior mean value for τRO corresponding to the median firm accords well

with the estimated average relative efficiencies computed for these data on the basis of non-

parametric methods in Adams et al. (1999).

Researchers may worry about presenting firm-specific efficiency estimates or rankings on

the grounds that posterior standard deviations might be large and, hence, point estimates might

be misleading. Alternatively, they may worry about the choice of efficiency definition. Our

findings above indicate that it is the latter issue that is the more serious one. Posterior standard

deviations, at least for the present application, are not so large as to preclude at least a rough

categorization of firms in terms of their efficiency. However, alternative efficiency definitions can

give very different results. Thus, we should carefully choose the efficiency measure that is the

most appropriate one to answer the question of relevance to us in a particular empirical situation.

5.2 An Application to Dutch Dairy Farms

Stochastic frontier methods have been extensively used in the field of agricultural economics.

As an example in this area, we use a data set compiled by the Agricultural Economics Research

Institute in the Hague from highly specialized dairy farms that were in the Dutch Farm Accoun-

tancy Data Network, a stratified random sample. Reinhard et al. (1999) and Reinhard (1999)
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describe the data in detail. The panel is unbalanced and we have 1,545 observations on N = 613

dairy farms in the Netherlands for some or all of 1991-94. The dairy farms produce three outputs

(p = 3), one of which is bad (p1 = 2) using three inputs (m = 3):

• Good Outputs: Milk (millions of kg) and Non-milk (millions of 1991 Guilders).

• Bad Output: Nitrogen surplus (thousands of kg).

• Inputs: Family labor (thousands of hours), Capital (millions of 1991 Guilders) and Variable

input (thousands of 1991 Guilders).

Variable input includes inter alia hired labor, concentrates, roughage and fertilizer. Non-

milk output contains meat, livestock and roughage sold. The definition of capital includes land,

buildings, equipment and livestock.

Fernández et al. (2002) analyze the same data, using two separate Cobb-Douglas frontiers

(one for the goods and one for the bad). Here, we assume a translog form for the single production

frontier, as in Reinhard et al. (1999). Hence, using the notation following equation (4), and

denoting the lth element of x(i,t) by x(i,t,l), we have k = 10 and:

v(x(i,t)) = (1, ln(x(i,t,1)), . . . , ln(x(i,t,3)), ln
2(x(i,t,1)), ln(x(i,t,1)) ln(x(i,t,2)),

. . . , ln(x(i,t,2)) ln(x(i,t,3)), ln
2(x(i,t,3)))

′.

We experimented with different values for r in the aggregator function (23) and found the results

relatively insensitive to the actual choice of r in the range 0.5 to 3. We shall present our results

for r = 3. Again, we assume an individual effects structure for γ.

As before, we focus mainly on the efficiencies. As in the case of the banking data, the data

favor separability in the production frontier. Marginal likelihoods computed using the estimator

p4 of Newton and Raftery (1994) lead to a Bayes factor of 63.2 in favor of the separable model.

Thus, the evidence that the elasticity of transformation does not depend on the inputs used is

even stronger for the farm data than for the banking data. Separability also greatly facilitates the

calculation of input-oriented efficiencies (see Subsection 3.4), which we want to examine in this

translog application. Therefore, we now only present results for the separable model.

Table 7 presents the correlations between the measures of efficiency introduced in Section 3,

including the input-oriented measures and the technical and environmental efficiencies of Sub-

section 3.5. Results using Spearman rank correlations are very similar.

All input-oriented measures are highly correlated among themselves, and also display a high

positive correlation with the output-oriented efficiency measures in the output 1 (milk) direction.
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Table 7: Correlation Between Posterior Means of Efficiency Measures
exp(−γ) τ1O τ2O τ1S τ2S τRI τ1I τ2I τ3I τT τE

1.00
0.98 1.00
0.56 0.44 1.00
0.91 0.97 0.23 1.00
0.05 -0.11 0.72 -0.34 1.00
0.98 0.97 0.52 0.91 0.04 1.00
0.76 0.75 0.65 0.70 -0.01 0.70 1.00
0.88 0.87 0.53 0.82 -0.02 0.85 0.81 1.00
0.88 0.85 0.66 0.76 0.10 0.83 0.87 0.90 1.00
1.00 0.98 0.56 0.92 0.06 0.98 0.75 0.87 0.87 1.00
-0.46 -0.50 -0.18 -0.50 -0.04 -0.61 -0.18 -0.39 -0.32 -0.51 1.00

For output 2-oriented measures this is not the case (especially for efficiency shares). Clearly,

efficiency measurement corresponding to output 2 (non-milk) is not very similar to the other

measures. Technical efficiency [as defined in (25)] is highly positively correlated with all other

measures, except for those in the direction of output 2 and τE . Posterior mean environmental

efficiency [see (28)] is clearly negatively correlated with the other efficiency measures, and in

particular, has a correlation of −0.51 with the technical efficiency for the good outputs, τT . This

result is in contrast with the small positive correlation found in Fernández et al. (2002). Note,

however, that in the latter paper environmental and technical efficiency are modeled separately,

whereas here they reflect different ways of looking at the same distance with respect to the (single)

frontier.

The relationship between exp(−γ) 7 and the various input-oriented efficiency measures is

further illustrated in Figures 9-12, where it is clear that the relationship bears some resemblance

to the powers of exp(−γ) that result from the simpler Cobb-Douglas frontier [see (18) and (19)].

Table 8 is the counterpart of Table 4, where we have chosen three quartile firms according to

exp(−γ), and consider the posterior probabilities that a higher ranked firm is more efficient than

a lower ranked one.

Table 8: Probability that Firm A is More Efficient than Firm B
Firm A/Firm B exp(−γ) τ1O τ2O τ1S τ2S τRI τ1I τ2I τ3I τT τE

3rd Quart./Median 0.99 0.99 0.97 0.99 0.78 0.83 0.85 0.33 0.86 0.99 1.00
3rd Quart./1st Quart. 1.00 1.00 0.01 1.00 0.00 1.00 0.94 0.81 0.91 1.00 1.00
Median/1st Quart. 0.99 1.00 0.00 1.00 0.00 1.00 0.77 0.99 0.39 0.99 0.00

7Note that here we do not use τRO since the aggregator function is different from the one in (1), which underlies
the logic of (9).
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Table 8 paints the same broad picture as Table 7, in that the efficiency measures are roughly

in accordance, except for output 2-oriented and environmental efficiency. In order to get an idea

of typical regions for the various efficiencies, Table 9 presents the averages and standard devia-

tions (computed over all observations) of the posterior mean efficiencies. Clearly, the inequality

constraints mentioned in Section 3 can be recovered in the means.

Table 9: Posterior Means of Efficiency Measures
exp(−γ) τ1O τ2O τ1S τ2S τRI τ1I τ2I τ3I τT τE

Average 0.68 0.65 0.18 0.60 0.07 0.63 0.11 0.41 0.29 0.67 0.15
St.Dev. 0.13 0.14 0.14 0.14 0.06 0.17 0.11 0.19 0.20 0.13 0.12

Note the large difference between the output-oriented efficiency measures corresponding to

the two good outputs. Clearly, firms tend to be much more efficient in the direction of milk

production (output 1) than in that of non-milk production. Given that the primary goal of these

farms is milk production, their infrastructure will be mostly geared towards that aim, and this

difference is not too surprising. The average of the posterior mean efficiencies in Table 9 would

correspond to a firm that is much closer to the horizontal (“milk”) axis than the vertical (“non-

milk”) axis in Figure 1b, and produces 65% (τ1O) of the milk output that it could produce, given

the current level of non-milk production. If it would also relinquish its non-milk production, it

is at 60% (τ1S) of its maximum milk output. However, if this firm would consider giving up its

milk production, it could multiply its production of non-milk output more than tenfold (see τ 2S)!

Radial input-oriented efficiency is in the same region as exp(−γ), and the input that seems

least efficiently used is the first one, namely family labor (which presumably is often readily

available).

Of particular interest are also the technical and environmental efficiencies, and from Table 9

we clearly see that firms tend to do better in producing goods than in avoiding the production of

the bad (nitrogen surplus). A more insightful picture of technical and environmental efficiencies

can be obtained by a predictive concept. The out-of-sample predictive efficiency distributions

capture the inference on efficiencies for an unobserved firm belonging to the industry. This is

obtained by integrating out the efficiency distributions with the posterior. Given the definition

of τT and τE , we need to integrate the distribution of z (and thus γ) in (A.2) with the posterior

distribution of φ and the distribution of η in (7) with the posterior of s, as well as use the poste-

rior of ψ and α to define q(x) in (2)8 and η in (6). Given posterior draws from (φ, s, ψ, α), we

8Here q(x) is simply equal to (1 + ψ0) as we are in the separable case. In general, q(x) does depend on inputs,
and then we could e.g. present the predictive for a farm with mean or median values for the inputs.
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can thus construct draws for technical and environmental efficiencies. This results in the predic-

tive efficiencies graphed in Figures 13 and 14, along with the efficiencies of the three quartile

observations chosen for Table 8. The latter illustrate that knowledge of the specific firm-year

greatly reduces the uncertainty in efficiency inference. This, once again, illustrates the possibility

of ranking firms according to efficiencies in a meaningful way (although we should not attach

too much importance to small differences in rank). Predictive means and standard deviations (in

parentheses) of τT and τE are 0.701 (0.220) and 0.244 (0.221), respectively. If we compare these

predictive distributions with those presented in Fernández et al. (2002), we obtain here a slightly

higher technical efficiency and a somewhat lower environmental efficiency. The overall picture,

though, is similar, in that uncertainty about efficiencies of unobserved firms is substantial and

environmental efficiency tends to be considerably lower than technical efficiency.

It is worth noting that this paper focuses on multiple-output production. If there is only a

single output, then all of our output-oriented measures are equivalent to one another. However, the

input-oriented measures are still different from one another. Hence, the issues and findings in this

application for the input-oriented measures are of relevance for the single-output case. Atkinson

and Cornwell (1994) provide a detailed discussion of output and input-oriented measures in the

single equation case.

6 Conclusions

In this paper, we have derived and discussed various ways of defining efficiency with multiple-

output production, where we allow for nonseparability of outputs and inputs. In addition to

standard radial measures we discuss the properties of individual output-oriented measures. We

also considered analogous input-oriented efficiency definitions. Furthermore, we developed an

efficiency measure which incorporates the losses due to jointness in production, and which we

refer to as “efficiency shares”. Finally, we defined technical and environmental efficiencies in

cases where some of the outputs are undesirable by-products. With so many alternative ways of

defining efficiency, the question arises as to which definition to adopt. This paper provides two

types of responses to this. Firstly, in many applications the choice of efficiency measure is not

arbitrary. Each measure has a particular interpretation and it is crucial to use the measure that

corresponds to the particular empirical question being raised. For instance, the researcher may

have reason to focus on one particular output or input and, hence, use τjO or τjI . Alternatively,

the researcher may be interested in what would happen if only one output were produced, in

which case the concept of efficiency shares may be the relevant one. Secondly, considering more
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than one efficiency measure allows us to obtain a much clearer picture of the data, through the

decomposition of the distance to the frontier (γ) in various complementary and often insightful

ways.

We have illustrated the issues above in the context of two substantive applications, where we

also demonstrated that the types of things a policymaker might want to report (e.g. an efficiency

ranking or the identification of some firms as laggards or exemplars) do seem to make practical

sense, once we have agreed on a particular choice of efficiency definition.

Nevertheless, our results do highlight that caution should be taken when carrying out an ef-

ficiency analysis. We would recommend that practitioners report posterior standard deviations

(or confidence intervals) of all firm-specific efficiency estimates. Furthermore, if theoretical

considerations do not provide clear guidance as to which efficiency definition should be used,

researchers should present results for several different choices.
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Appendix: Bayesian Analysis

The Prior Distribution

In order to conduct Bayesian inference, we need to complement the likelihood function (as de-

scribed in Section 2) with a prior distribution on the parameters (β, z, σ, α, q, s). We shall choose

a proper prior distribution with the following structure

p(β, z, σ, α, q, s) = p(β)p(z)p(σ)p(α)p(q)p(s). (A.1)

It is worthwhile briefly noting that use of improper priors in stochastic frontier models can

cause problems (i.e. inability to calculate meaningful Bayes factors or even the lack of existence

of the posterior itself, see Fernández et al., 1997, for details). In this paper, we choose values for

hyperparameters which imply a relatively noninformative but proper prior.
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Prior for z:

The distribution of z determines the distribution of the inefficiency vector γ = Dz. Since we

are assuming an individual effects structure for the inefficiencies, z ∈ �N
+ . We will consider a

hierarchical structure which adds an extra parameter φ ∈ �+. Given φ, we take the following

product of Exponential distributions for the elements of z:

p(z|φ) =

N∏
l=1

fG (zl|1, φ) , (A.2)

where fG(zl|a, b) denotes the p.d.f. of a Gamma distribution with mean a/b and variance a/b2.

The prior on φ is taken to be

p(φ) = fG(φ|e0, g0), (A.3)

with positive prior hyperparameters e0 and g0. We choose e0 = 1 and g0 = − log(0.80), values

which imply a relatively flat prior on the individual efficiencies with prior median efficiency set

at 0.80, as discussed in van den Broeck et al. (1994).

Prior for β:

The prior assumed on the frontier parameters has p.d.f.

p(β) ∝ fk
N (β|b0, H

−1
0 )IB(β),

i.e. a k-dimensional Normal distribution with mean b0 and covariance matrix H−1
0 , truncated to

the regularity region B. In our first application, we assume a Cobb-Douglas form for the frontier.

Hence, IB(β) corresponds to simply restricting the elements of β (except the intercept) to be

non-negative. In our second application, we use a translog frontier and we impose only local

regularity (i.e. we impose regularity at each data point). Hence, IB(β) corresponds to the region

where input elasticities are non-negative at every data point [see the discussion after equation

(22)]. We set b0 = 0k and H0 = 10−4 × Ik. The k − 1 last elements of β are likely to be smaller

than 1. Due to the logarithmic transformation, the intercept will also certainly be much less than

one prior standard deviation away from the mean. Hence, our prior is quite noninformative.

Prior for σ:

We define the prior distribution on the scale σ, through a Gamma distribution on the precision

h = σ−2:

p(h) = fG(h|n0/2, a0/2). (A.5)

In our applications, we set n0/2 = 1 (which leads to an Exponential prior for h) and a0/2 = 10−6.

These values imply large prior uncertainty.
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Prior for α:

Since the components of α are all in the interval (0, 1) and sum up to one, an obvious choice

of a prior distribution is a Dirichlet with p.d.f.

p(α) = f p−1
D (α|a), (A.6)

where the hyperparameter a = (a1, . . . , ap)
′ ∈ �p

+. We use a = ιp, which makes the prior

Uniform over the (p − 1)-dimensional unit simplex.

Prior for ψ:

For the parameterization of q, we use independent Gamma priors

p(ψ) ∝
m∏

l=0

fG(ψl|d1, d2). (A.7)

In our empirical illustrations, we choose d1 = d2 = 1.

Prior for s:

We assume p independent Gamma distributions for the components of s:

p(s) =

p∏
j=1

p(sj) =

p∏
j=1

fG(sj |bj, cj). (A.8)

In our applications, we take bj = 1 and cj = 10−6 for all j.

The MCMC Sampler

The likelihood function derived from (5) and (7) is given in expression (2.7) of FKS. In com-

bination with the prior distribution described in the first part of this Appendix, this defines a

Bayesian model. In order to conduct posterior inference with this model, we shall use an MCMC

sampler to generate drawings from it. The sampler is run over the inefficiencies in z as well as

all parameters, including the parameter φ introduced in the prior for z. We shall briefly describe

the sampler here and refer to FKS for more details in a very similar context. If not otherwise

indicated, indices run from i = 1, . . . , N , t = 1, . . . , T and j = 1, . . . , p. The full conditionals

used in the sampler are as follows:

Conditional posterior distribution of z:

Choosing D in (5) to ensure constant efficiencies over time, we obtain

p(z|Y, φ, β, σ, α, ψ, s) ∝ fN
N (z|m, R)I�N

+
(z), (A.9)
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i.e. a truncated N-variate Normal distribution, with mean

m = (D′D)−1{D′(V β − δ) − σ2φιN}, (A.10)

and covariance matrix

R = σ2(D′D)−1. (A.11)

Note that in our case D′D = Diag(Ti) is diagonal, which greatly facilitates drawing from (A.9).

Conditional posterior distribution of φ:

The conditional distribution of φ is given by the p.d.f.

p(φ|Y, z, β, σ, α, ψ, s) = fG(φ|e0 + N, g0 + z′ιN ). (A.12)

Conditional posterior distribution of β:

For β we get the following truncated Normal distribution

p(β|Y, z, φ, σ, α, ψ, s) ∝ fk
N(β|b∗, H−1

∗ )IB(β), (A.13)

where

H∗ = H0 + σ−2V ′V, (A.14)

and

b∗ = H−1
∗ {H0b0 + σ−2V ′(δ + Dz)}. (A.15)

Conditional posterior distribution of σ:

The conditional posterior distribution expressed in terms of σ−2 takes the simple form

p(σ−2|Y, z, φ, β, α, ψ, s) = fG

(
σ−2|n0 + NT

2
,
a0 + (δ − V β + Dz)′(δ − V β + Dz)

2

)
.

(A.16)

Conditional posterior distribution of α:

The p-dimensional vector α has a (p − 1)-dimensional distribution, where each of the com-

ponents are in between zero and one and sum to one. We obtain the following p.d.f. for this

conditional distribution:

p(α|Y, z, φ, β, σ, q, s) ∝ ∏
j α

aj−1+sj
∑

i,t q(x(i,t))

j

∏
i,t

(∑
j α

q(x(i,t))

j y
q(x(i,t))

(i,t,j)

)−∑
j sj

exp
{− 1

2σ2 (δ − V β + Dz)′(δ − V β + Dz)
}

,
(A.17)

with δ, defined through (1) and (3), depending on α.
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Conditional posterior distribution of ψ:

For each of the components ψl, l = 0, . . . , m we have the posterior

p(ψl| Y, z, φ, β, σ, α, {ψh, h 
= l}, s) ∝ ψd1−1
l exp(−d2ψl) (1 + ψl)

(p−1)
∑

i,t x(i,t,l)

exp
{− 1

2σ2 (δ − V β + Dz)′(δ − V β + Dz)
} ∏

i,t,j η
sj

(i,t,j),
(A.18)

where we have defined x(i,t,0) = 1. Note that δ depends on ψ through (1)-(3) and ηi,t,j depends

on ψ through (6) and (2).

Conditional posterior distribution of s:

Finally, the p.d.f. of the conditional posterior distribution of sj , j = 1, . . . , p is:

p(sj |Y, z, φ, β, σ, α, q, {sh : h 
= j}) ∝
{

Γ(
∑

l sl)

Γ(sj)

}NT

s
bj−1
j

exp
[
−sj

{
cj −

∑
i,t log η(i,t,j)

}]
.

(A.19)

A simple random walk Metropolis-Hastings algorithm (see e.g. Chib and Greenberg, 1995,

for an intuitive explanation) with a Normal candidate generator is used to implement the steps for

α, ψ and s in the sampler. Direct draws from the other conditionals can easily be conducted. Pre-

liminary runs are used to calibrate the variances/covariances for our Normal candidate generating

densities used in the Metropolis-Hastings algorithms. The algorithm converges quite rapidly as

shown in FKS.

References

Adams, R., Berger, A., Sickles, R., 1999, Semiparametric approaches to stochastic panel frontiers

with applications in the banking industry, Journal of Business and Economic Statistics 17,

349-358.

Atkinson, S., Cornwell, C., 1994, Estimation of output and input technical efficiency using a

flexible functional form and panel data, International Economic Review, 35, 231-244.

Atkinson, S., Cornwell, C., Honerkamp, O., 2003, Measuring and decomposing productivity

change: Stochastic distance function estimation versus data envelopment analysis, Journal of

Business and Economic Statistics 21, 284-294.
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Figure 1a: Production equivalence surface with p = 2 outputs and various values of q(x(i,t)).
q(x(i,t)) = 1 for the longest dashes and as the dashing becomes finer, we use q(x(i,t)) = 2,
q(x(i,t)) = 4 and, finally, q(x(i,t)) = ∞ for the shortest dashing. We have taken α1 = α2 = 1/2
and g(y(i,t), x(i,t)) = 1.
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Figure 1b: Production equivalence surface with p = 2 good outputs and q = 1.5. A firm pro-
ducing A will have radial output-oriented efficiency equal to |OA|/|OB|, whereas individual
output-oriented efficiencies are given by τ1O = |O1A|/|O1B1| and τ2O = |O2A|/|O2B2|. Fi-
nally, efficiency shares are equal to τ1S = |OO2|/|OC1| for output y1 and to τ2S = |OO1|/|OC2|
for the second output.
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Figure 2: Production equivalence surface with one good and one bad output for q = 1.1. The
drawn line corresponds to r = 3, the long dashes to r = 1 and the short dashes to r = 0.5. Pro-
duction at point A corresponds to technical efficiency |O2A|/|O2B2|, whereas the environmental
efficiency is given by τE = |O1B1|/|O1A|.
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Figures 3-5: Posterior means of radial output-oriented efficiency versus efficiency shares for the
banking data
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Figures 6-8: Posterior densities of correlations between output-oriented efficiency measures for
the banking data
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Figures 9-12: Posterior means of radial output-oriented efficiency exp(−γ) versus input-oriented
efficiency measures for the farm data
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Figures 13 and 14: Posterior and predictive densities of technical and environmental efficiencies
for the farm data
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