
Strathprints Institutional Repository

Horak, Peter and Barnett, Stephen M. and Ritsch, Helmut (2000) Coherent dynamics of Bose-
Einstein condensates in high-finesse optical cavities. Physical Review A, 61 (3). 033609-1. ISSN
1050-2947

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9018536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


 
 
Horak, Peter* and Barnett, Stephen M.* and Ritsch, Helmut (2000) Coherent dynamics of 
Bose-Einstein condensates in high-finesse optical cavities. Physical review A: atomic, molecular 
and optical physics, 61 (3). 033609-1-033609-5. ISSN 1050-2947 
 
 
 
 
http://eprints.cdlr.strath.ac.uk/5856/
 
 
 
This is an author-produced version of a paper published in Physical review A: atomic, molecular 
and optical physics, 61 (3). 033609-1-033609-5. ISSN 1050-2947. This version has been peer-reviewed, but 
does not include the final publisher proof corrections, published layout, or pagination. 
 
Strathprints is designed to allow users to access the research output of the University 
of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained 
by the individual authors and/or other copyright owners. You may not engage in 
further distribution of the material for any profitmaking activities or any commercial 
gain. You may freely distribute both the url (http://eprints.cdlr.strath.ac.uk) and the 
content of this paper for research or study, educational, or not-for-profit purposes 
without prior permission or charge. You may freely distribute the url 
(http://eprints.cdlr.strath.ac.uk) of the Strathprints website. 
 
Any correspondence concerning this service should be sent to The 
Strathprints Administrator: eprints@cis.strath.ac.uk 
 

http://eprints.cdlr.strath.ac.uk/5856/
https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk


ar
X

iv
:c

on
d-

m
at

/9
90

63
57

 v
2 

  7
 J

ul
 1

99
9

Coherent dynamics of Bose-Einstein condensates in high-finesse optical cavities
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We study the mutual interaction of a Bose-Einstein con-
densed gas with a single mode of a high-finesse optical cav-
ity. We show how the cavity transmission reflects conden-
sate properties and calculate the self-consistent intra-cavity
light field and condensate evolution. Solving the coupled
condensate-cavity equations we find that while falling through
the cavity, the condensate is adiabatically transfered into
the ground state of the periodic optical potential. This al-
lows time dependent non-destructive measurements on Bose-
Einstein condensates with intriguing prospects for subsequent
controlled manipulation.

PACS number(s): 3.75.Fi, 3.65.Bz, 42.50.Vk, 42.50.Gy

Since the first experimental realisations of Bose-
Einstein condensation in dilute gases [1–3], the properties
and possible applications of condensates in various situ-
ations have been investigated. Most recently, attention
has been drawn to the study of condensates in optical
lattices [4–8] as have been intensely used in the context
of laser cooling and trapping of clouds of noninteracting
atoms [9]. But whereas the occupation of the lattice sites
in an optical molasses for a cloud of laser cooled atoms
at best is one atom per ten wells, the atomic densities
found in a condensate allow for multiple occupation of
each single well, which gives rise to a variety of new phe-
nomena.

In this Letter we investigate the case of a conden-
sate falling through a driven high-finesse optical cavity.
The strong coupling of the condensed atoms to the cav-
ity mode changes the resonance frequency of the cavity
which hence is shifted into or out of resonance with the
driving field. Consequently, the intracavity field inten-
sity is modified and this can easily be measured by de-
tecting the cavity output field. We show that according
to the collective nature of the condensate this gives a
measurable effect even for very low field intensities and
for detunings from the atomic resonance frequency so
large that the spontaneous scattering of photons is neg-
ligible. The proposed system should allow us to perform
non-destructive measurements on the condensate. Simi-
lar systems have been used recently to predict amplifica-
tion of matter waves [10] and the appearance of dressed
condensates [11,12].

Let us first introduce in more detail our model system,
which is similar to that used recently to study the effect
of a dynamically changing cavity field on the motion of
a single atom [13–16].

We consider a Bose condensate consisting of N two-

level atoms of resonance frequency ωa and spontaneous
decay rate Γ falling through an optical cavity. The atom-
cavity coupling is

g(x, t) = g0 cos(kx)e−(vzt)2/(2w2), (1)

for a cavity mode in the form of a standing wave in
the longitudinal direction and a Gaussian with waist w
transversally. The condensate is assumed to fall with
constant velocity vz , meaning that we neglect the trans-
verse light forces on the atoms and the gravitational ac-
celeration in the interaction region. Two further assump-
tions have been made at this point. First, the spatial
extension of the condensate has to be small compared
to the waist w of the cavity in order to allow a quasi
one-dimensional treatment. Second, we assume that the
induced resonance frequency shift of the cavity [17,18]
is much smaller than the longitudinal mode spacing, so
that we can restrict the model to a single longitudinal
mode with wavenumber k.

The cavity with resonance frequency ωc and cavity de-
cay rate κ is externally driven by a laser of frequency ω
with pump amplitude η and is treated classically, that
is, the intra-cavity field is described by a (complex) field
amplitude α.

As we are interested in the limit where the condensate
is not destroyed by the light field, we will assume a large
detuning ∆a = ω − ωa ≫ Γ of the driving laser from
the atomic resonance such that the saturation parameter
s = g2

0/∆
2
a ≪ 1. Moreover, we want the cavity decay to

dominate over the spontaneous decay of all atoms and
thus impose the condition

κ≫ NΓs. (2)

In this realistically achievable limit we are not only al-
lowed to adiabatically eliminate the excited state of the
atoms but also to completely omit the effect of atomic
decay.

Hence we obtain the equation of motion for the field
amplitude

α̇(t) = [i∆c − iN〈U(x̂, t)〉 − κ]α(t) + η (3)

where ∆c = ω−ωc is the cavity-pump detuning, U(x, t) =
g(x, t)2/∆a the optical potential per photon, and “〈. . .〉”
denotes the expectation value taken with respect to the
condensate wave function |ψ(t)〉 at this time. This term
describes the action of the condensate on the cavity field:
the refractive index of the condensate shifts the resonance
frequency of the cavity by an amount of N〈U(x̂, t)〉.
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(With very high finesse optical cavities this effect has
already been observed even for a single atom [16,19,20],
that is, for N = 1.) If we require that this effect signifi-
cantly changes the intra-cavity field intensity in order to
yield a measurable difference in the cavity output, then
the maximum frequency shift must be of the order of or
larger than the cavity line width κ, which implies

Ng2
0/∆a ≥ κ. (4)

From this we obtain an order of magnitude for the re-
quired detuning ∆a which we insert into Eq. (2) to obtain
the following condition for the cavity parameters:

Ng2
0

Γκ
≫ 1. (5)

The condensate wave function itself obeys a nonlin-
ear Schrödinger equation (known as the Gross-Pitaevskii
equation) with the Hamiltonian

H =
p̂2

2m
+ |α(t)|2U(x̂, t) +Ngcoll|ψ(x̂, t)|2 (6)

where the last term describes two-particle collisions be-
tween the condensed atoms and is related to the s-wave
scattering length a by gcoll = 4πh̄2a/m. This Hamilto-
nian, together with Eq. (3) for the cavity field, forms a set
of coupled nonlinear equations describing the dynamics
of the compound system formed by the condensate and
the optical cavity.

In this Letter we will only consider the special case
where the cavity decay rate κ is much larger than the
oscillation frequency of bound atoms in the optical po-
tential of the cavity. In this limit the intra-cavity field
amplitude follows adiabatically the condensate wavefunc-
tion and hence at any time is given by

α(t) =
η

κ− i[∆c −N〈U(x̂, t)〉]
. (7)

Thus, the light intensity of the cavity output, which is
proportional to |α|2, provides information about the con-
densate wavefunction. In the following we will investigate
this effect in certain special parameter limits.

FIG. 1. Cavity photon number I = |α|2 versus time for a
condensate falling through the cavity without being perturbed
by the cavity field (see text for details). The optical potential
depth is given by NU0 = 2κ (solid line), 10κ (dashed), and
30κ (dotted), respectively. The pump field is chosen to give
rise to 20 photons in the empty cavity and the detuning is
∆c = 0.

Let us first consider the simple case where the cavity
field is weak enough and the interaction time τ = w/vz

is short enough such that the condensate wavefunction
remains essentially unperturbed (flat on the length scale
of an optical wavelength). In this limit the cavity field
can be evaluated analytically by inserting the frequency
shift per atom

〈U(x̂, t)〉 =
U0

2
e−(vzt)2/w2

(8)

into Eq. (7), where we have introduced U0 = g2
0/∆a. In

Fig. 1 the resulting mean cavity photon number I = |α|2

is plotted as a function of time for different atom numbers
in the condensate or, equivalently, for different optical
potentials.

For the parameters chosen in Fig. 1, the empty cavity
is in resonance with the driving field but is shifted out
of resonance by the presence of the condensate. Hence
the condensate is detected by the absence of light, which
further reduces the action of the cavity onto the conden-
sate. Therefore the cavity provides a non-perturbative
method of detection. The maximum resolution of the
detection is limited, however, by the cavity waist w and
is not good enough to detect fine structures such as con-
densate interference fringes. It might be useful, however,
to measure the output of an atom laser as has recently
been realised experimentally [21,22]. Note also that this
detection scheme only relies on the density of the conden-
sate, not on its coherence, and thus in principle works as
well with an incoherent cloud of atoms.

Let us now consider the opposite limit of a conden-
sate falling very slowly through the cavity. We will find
that under such conditions the condensate is adiabati-
cally transfered into the lowest bound state of the optical
potential and hence is strongly localized. In this case we
must use the position and time dependent optical poten-
tial

U(x̂, t) = U0 cos2(kx̂)e−(vzt)2/w2

, (9)

so that the condensate at all times feels a periodic op-
tical potential with periodicity λ/2. The condensate
wavefunction is conveniently described in terms of Bloch
states

ψn,q(x) = eiqxφn,q(x) (10)

where the functions φn,q, n ≥ 0, are periodic and the
Bloch momentum h̄q is confined to the interval [−h̄k, h̄k].
Note that the coherent interaction of the condensate with
the cavity light only couples Bloch states of different n
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but leaves states of different q decoupled and thus q is a
conserved quantity.

We are interested in the adiabatic limit correspond-
ing to small transverse velocities vz ≪ w/τR, where τR
is the inverse of the recoil frequency ωR = h̄k2/(2m).
In this limit the coherent time evolution associated with
a potential of the form of Eq. (9) maps the Bloch en-
ergy bands n onto the free space momentum intervals
[−(n + 1)h̄k,−nh̄k] and [nh̄k, (n + 1)h̄k]. This phe-
nomenon is known and has been exploited in the context
of laser cooling [23,24]. The same effect can be used in
our model to transfer a falling condensate with a trans-
verse momentum distribution confined in [−h̄k, h̄k] into
the lowest energy band (n = 0) of the optical potential in-
side the cavity. However, the situation is more complex
here than for the case of laser cooling for two reasons.
First, the light intensity itself depends on the condensate
wavefunction and hence on time. Second, the condensate
wavefunction obeys the nonlinear Schrödinger equation.
Hence, for any given z-position of the condensate (any
given time) the lowest energy state has to be found by
self-consistently solving Eq. (7) and the Gross-Pitaevskii
equation.

FIG. 2. Adiabatic transfer of the condensate wavefunction
to the bound ground state. gcoll = 0, ∆c = 0, NU0 = 10κ,
vz = w/(3τR) (dashed curves) respectively vz = w/τR (solid
curves). (a) Intra-cavity photon number I = |α|2, (b) pop-
ulation of instantaneous ground state corresponding to the
photon number at any time. The initial condensate wave-
function is taken as the zero momentum eigenstate |p = 0〉.

We show in Fig. 2 the time evolution of the intra-cavity
field intensity I and the overlap P0 of the condensate

wavefunction with the lowest energy band as the conden-
sate is falling through the cavity without atomic collisions
(gcoll = 0). For simplicity we assume that the initial con-
densate wavefunction is the free momentum state of zero
momentum. The conservation of the Bloch momentum q
then ensures that at any time only the Bloch states with
q = 0 are populated and the overlap with the lowest en-
ergy band is given by

P0 = |〈ψ|φn=0,q=0〉|
2. (11)

For a condensate falling with a velocity vz = w/τR the
transfer of the free wavefunction into the optical potential
is not adiabatic (especially not on entering and leaving
the cavity) and the occupation of the ground state drops
to about 90%. Hence there is a significant occupation of
excited modes and the corresponding spatial oscillation
of the condensate is reflected in the oscillation of the
cavity output. For vz = w/(3τR), however, nearly all of
the population is transfered into the lowest bound state
and accordingly the oscillations are suppressed.

For the parameters of Fig. 2, U0 > 0 and the conden-
sate is attracted to the nodes of the light field. Hence, the
lowest bound state is localized at these positions which
leads to a much reduced coupling of the condensate to the
cavity and correspondingly to a much smaller frequency
shift of the cavity resonance. This can be easily seen by
comparing the results for the cavity field with the solid
line of Fig. 1, which is taken for the same parameters but
a condensate falling so fast that the wavefunction does
not have the time to change due to the presence of the
optical potential wells.

FIG. 3. Photon number corresponding to self-consistent
ground state vs position of condensate in the cavity mode.
Ngcoll = 0, 5, 10, 20ωR (from top to bottom), ∆c = 0,
NU0 = 10κ. (For Rb and Na experiments, Ngcoll = ωR

corresponds to condensate densities of the order of 30 atoms
per potential well, i.e., per (λ/2)3.)

Figure 3 shows the effects of collisions on the intracav-
ity photon number in the adiabatic regime (vz ≪ w/τR).
The curves are derived from the self-consistent solution
of Eq. (7) and the Gross-Pitaevskii equation for different
values of gcoll. For increasing gcoll the atoms in the con-
densate increasingly repell each other, counteracting the
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confining effect of the optical potential. The wavefunc-
tion becomes broader and the coupling of the conden-
sate to the cavity stronger, which in turn leads to larger
shifts in the cavity resonance frequency and a reduced
cavity field intensity. Hence, the decrease in the cavity
output provides a direct measure of the atom-atom in-
teraction within the condensate. Note that this could be
used for in situ measurements of Feshbach resonances, if
one manipulates the s-wave scattering length by applying
a magnetic field [25–28].

Finally, we plot in Fig. 4 the energy of the self-
consistent ground state and of the two lowest excitations.
The latter are calculated in lowest order perturbation
theory, that is, using the self-consistent ground state for
the collisional term of the Hamiltonian (6). The energy
difference between these states is the one which is respon-
sible for the oscillation of the cavity output in the case
of non-perfect adiabatic transfer of the condensate wave-
function into the lowest bound state as shown previously
in Fig. 2.

FIG. 4. Eigenenergy of the self-consistent ground state
(solid curve) and of the first two condensate excitation states
(dashed curves) versus collision parameter gcoll for ∆c = 0,
NU0 = 10κ. Eigenenergies and gcoll are given in units of ωR.

For gcoll = 0 the ground state is strongly localized
at the antinodes of the cavity leading to a large intra-
cavity field intensity. Hence the lowest three eigenstates
are well approximated by harmonic oscillator states and
the frequency difference between the ground state and
the first excited state is the same as the frequency dif-
ference between the first and the second excited state.
For increasing gcoll the internal (collisonal) energy of the
condensate increases. Simultaneously the effective po-
tential (optical potential plus collisional term) for the
excited modes changes its shape from a harmonic oscil-
lator to a potential well with a nearly flat bottom. This
is due to the well-known fact that the ground state of
the Gross-Pitaevskii equation becomes proportional to
the negative confining potential if the collisional term
dominates over the kinetic energy term in the Hamilto-
nian (Thomas-Fermi limit). Hence the excited modes are
those of a potential which looks more like a box in this
limit and the level spacing increases between more highly
excited modes. However, as the wavefunction broadens

with increasing gcoll the cavity field intensity decreases
and above a certain value (Ngcoll ≈ 28ωR for the pa-
rameters in Fig. 4) no bound state exists in the optical
potential. Hence the eigenfunctions above this critical
value resemble free space momentum states which leads
to the significant change in the behaviour of the spectrum
of excitation energies.

In conclusion we have shown that a high-quality opti-
cal cavity provides a powerful tool to investigate prop-
erties of Bose-Einstein condensates in a non-destructive
way. For slow initial velocities the condensate is adiabat-
ically transfered into the self-consistent ground state of
the optical potential, which contains ample information
on condensate properties.

In addition, the system suggests many interesting ap-
plications. Using cavities with a decay rate κ of the order
of the condensate vibrational frequencies in the potential,
the finite response time of the cavity implies a damping
(or amplification) of the condensate oscillations as it has
been shown for cooling and trapping of a single atom
[13,14,16]. By changing the intensity and/or the fre-
quency of the driving laser depending on the cavity out-
put one gets a handle for the controlled non-destructive
in situ manipulation of the condensate wavefunction.
Similarly, changing the magnitic field during the conden-
sate passage should allow a direct measurement of the
effective scattering length and the relaxation dynamics.

This work was supported by the United Kingdom EP-
SRC, the Austrian Science Foundation FWF (P13435),
and the European Comission TMR network (FRMX-
CT96-0077).
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