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Mathematical modelling offers a variety of useful techniques to help in understanding the intrinsic

behaviour of complex signal transduction networks. From the system engineering point of view,

the dynamics of metabolic and signal transduction models can always be described by nonlinear

ordinary differential equations (ODEs) following mass balance principles. Based on the state-

space formulation, many methods from the area of automatic control can conveniently be applied

to the modelling, analysis and design of cell networks. In the present study, dynamic sensitivity

analysis is performed on a model of the IkB–NF-kB signal pathway system. Univariate analysis of

the Euclidean-form overall sensitivities shows that only 8 out of the 64 parameters in the model

have major influence on the nuclear NF-kB oscillations. The sensitivity matrix is then used to

address correlation analysis, identifiability assessment and measurement set selection within the

framework of least squares estimation and multivariate analysis. It is shown that certain pairs of

parameters are exactly or highly correlated to each other in terms of their effects on the measured

variables. The experimental design strategy provides guidance on which proteins should best be

considered for measurement such that the unknown parameters can be estimated with the best

statistical precision. The whole analysis scheme we describe provides efficient parameter

estimation techniques for complex cell networks.

1. Introduction

Sensitivity analysis is an important tool in studies of the

dependence of systems on their parameters. It is normally used

to analyze how sensitive a system is with respect to the change

of parameters1 and is perhaps best known in systems biology

via the formalism of metabolic control analysis.2–4 The study

of sensitivity analysis helps to identify those parameters that

have more impacts on the system output and capture the

essential characteristics of the system.5 It is particularly useful

for complex biological networks that involve a large number of

variables and parameters. Sensitivity coefficients, which are

the partial derivatives of the model states with respect to the

model parameters, play an important role in experimental

design, parameter estimation, uncertainty analysis, model

discrimination and reduction, etc. for biological systems.6 In

a recent work on model reduction of complex metabolism

models, time-varying local sensitivity analysis has been

performed to compose the matrix of normalized sensitivity

coefficients, based on which, different methods were used to

discard parameters that have less influence on the model

dynamics.7 Using the Monte Carlo method, Cho et al.

employed multi-parametric global sensitivity analysis on the

TNFa-mediated NF-kB signal transduction pathway for

experimental design.8 Schwacke and Voit presented a Taylor

integration method for the efficient computation of time-

dependent sensitivities for generalized mass action systems,

then investigated the effects of different initial species

concentrations on the system dynamics.9

Sensitivity analysis methods can be classified into two main

categories: (1) local sensitivities that provide information on

the effect of a small change in each input parameter

individually; and (2) global sensitivities that instead describe

the effect of simultaneous ‘arbitrary’ variations of multiple

parameters on the dependent variables.5,10,11 Global sensitivity

analysis should be peformed when some parameters are most

likely deviated far from the true value or for a rather nonlinear

system. Local sensitivity analysis is still the most commonly

used method in the area of systems biology when the system

parameters are reliably provided by experiments or computa-

tion. In this paper, local sensitivities have been calculated and

studied to analyze a model of a signalling pathway system.

Local sensitivity analysis can be performed in a static way or a

dynamic way. Static sensitivity analysis is based on the steady-

state response to constant changes in parameters. It can

provide adequate description of system behaviour for mechan-

isms that are under homeostatic control and tend to exhibit

uniform behaviour with insignificant transients, in particular
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systems that are asymptotically stable. However, for general

systems with time-varying nominal behaviour, such as signal

transduction and regulatory systems, dynamic sensitivity

analysis is of primary interest. More emphasis should then

be put on the dynamics rather than the instantaneous

concentrations of the components.9,12 Investigation of the

transient behaviour in signal transduction networks or any

phenomena involving limit cycle oscillations requires a

dynamic analysis.13

A number of methods have been developed for the

computation of local sensitivities such as the finite difference

method (FDM), the direct differential method (DDM), the

Green’s function method (GFM), the analytically integrated

Magnus method (AIM), etc.5,11,14–16 These algorithms can be

lumped into two general categories: sequential methods (e.g.

GFM and AIM) and simultaneous methods (DDM).17 In the

most commonly used direct differential method,18 the differ-

ential equations of the system model and the sensitivities are

combined into a coupled system and are solved simulta-

neously. In most cases, sensitivity calculation is a problem of

solving stiff ODEs (i.e. ODEs where the eigenvalues vary

greatly) as biological systems normally involve a large number

of reactions and the parameters can span several orders of

magnitude. For this reason, continuous efforts have been

made to develop efficient and robust integration algorithms

for solving sensitivity analysis problems in biological

systems.9,17,19–25

As sensitivity analysis describes the importance of the model

parameters to the measurement variables, it plays an impor-

tant role in biological model development in an iterative cycle

between data analysis, identifiability assessment, measurement

set selection, parameter estimation, model validation and

experimental design. One crucial issue relating to parameter

estimation is identifiability analysis, and this is closely related

to parametric sensitivity analysis. Several techniques have been

developed for identifiability analysis based on the sensitivity

coefficient matrix26–28 and applied to biological and chemical

systems to assist in parameter estimation.29–31 Another issue is

measurement set selection. The optimal measurement set

should consist of variables that have maximum information/

benefit for parameter identification. This issue assumes

significance in the modelling of biological networks because

only a limited number of molecules can be tagged with

fluorescent proteins to allow their detection. In some recent

work on the modelling of biological networks, the Fisher

Information Matrix was used to determine the measurement

set in order to optimise the quality of parameter estimation in

a certain statistical sense.32,33

Signal transduction pathways enable cells to receive, process

and respond to biochemical stimuli (information). The

components of a pathway interact not only with each other

but also with components of other pathways, leading to

complex cell networks. The nuclear factor kB (NF-kB)

signalling pathway (see Fig. 1) is an important cellular

signalling pathway, of which protein phosphorylation is a

major factor controlling the activation of further downstream

events.34,35 The NF-kB proteins are a group of mainly dimeric

nuclear transcription factors involved in a range of cell

responses including immune and inflammatory reactions as

well as the regulation of apoptosis.36 NF-kB is normally held

inactive in the cytoplasm by being bound to IkB (inhibitory

kB) isoforms. In response to extracellular signals such as

tumor necrosis, IKK (IkB kinase) is transformed from its

neutral form into its active form, a form capable of

phosphorylation and degradation of IkBa. Degradation of

IkBa releases the main activator NF-kB, which then translo-

cates to the nucleus and triggers transcription of numerous

genes including IkB.37 NF-kB regulation of IkBa transcription

represents a delayed negative feedback loop that drives

oscillations in NF-kB translocation.38 Understanding of this

system is required if we are to explore the therapeutic potential

of NF-kB as a drug target for chronic inflammatory diseases,

cancer, infections, chemotherapy, the immune system, etc.39–41

The IkB–NF-kB system is the central signalling module of

the NF-kB pathway. It acts to transduce all the NF-kB

response from the activation of Inhibitor-kB kinase (IKK) to

the transport rates into and out of the nucleus of each of the

components. We have analysed the static, local sensitivities

and the effects of dual modulation of critical parameters on

features selected from the concentration profile of NF-kB in

the nucleus (NF-kBn).8,42,43 This type of feature sensitivity

analysis is mostly used for oscillating reactions. However, the

interpretation of feature sensitivities is not straightforward in

general. It refers only to the importance of a parameter with

respect to the specific features.11 In this work, we implement

dynamic sensitivity analysis to the NF-kB signal transduction

pathway by considering the effects of parameters on the

dynamic responses of multiple variables.

This paper is organized as follows. The nonlinear states

model of the IkB–NF-kB signal pathway is given in section 2.

Section 3 briefly introduces the preliminaries on dynamic

sensitivity analysis and its relationship with parameter estima-

tion. Implementation of sensitivity analysis for single and

multiple variables is performed in section 4. A group of

sensitive parameters have been identified with the univariate

Fig. 1 IkB–NF-kB signal pathway module.45
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analysis. In section 5, correlation analysis and identifiability

analysis are investigated based on the relative sensitivity matrix

and the best measurement set is decided by a forward selection

algorithm using the modified E-optimal criteria. Finally,

conclusions are made in section 6. The detailed IkB–NF-kB

reaction mechanism, the concentration profiles of the reaction

species and the orthogonal procedure used in identifiability

analysis are provided in the appendix.

2. Signal pathway state-space model

A state-space model is a convenient way to describe a non-

linear system in terms of first-order differential equations

only.44 The mechanism of a simplified IkB– NF-kB signal

pathway is described by Hoffmann et al.,45 Nelson et al.38 and

(slightly differently) by Lipniacki et al.,37 in which there are 26

reaction species participating in 64 reactions. Out of the 26

reaction species, 24 species are changing dynamically and their

concentrations are defined as the state variables in Table 1

(i stands for the ith reaction species).

Details of the 64 kinetic reactions can be found in Appendix

A1, which are summarized from the published works.42,45 The

reaction rate is denoted as kj(j = 1, ... 64). Following the mass

balance principle, 24 ordinary differential equations can be

written for the concentration dynamics of the reaction species.

ẋ1 = 2(k37 + k38)x1 + k2x3 + k35x8 + k39x16 + k36x22 2 k1x1x2

2 k34x1x10

ẋ2 = 2k19x2 + (k2 + k16)x3 + (k4 + k17)x5 + (k6 + k18)x7 + (k8 +
k9)x9 + (k11 + k12)x12 + (k14 + k15)x14 + k20x15 2 k1x1x2 2

k3x2x4 2 k5x2x6 2 k7x2x8 2 k10x2x11 2 k13x2x13

ẋ3 = 2(k2 + k16)x3 + k53x9 + k54x17 + k1x1x2 2 k52x3x10

ẋ4 = 2(k43 + k44)x4 + k4x5 + k41x11 + k45x18 + k42x23 2 k3x2x4

2 k40x4x10

ẋ5 = 2(k4 + k17)x5 + k56x12 + k57x19 + k3x2x4 2 k55x5x10

ẋ6 = 2(k49 + k50)x6 + k6x7 + k47x13 + k51x20 + k48x24 2 k5x2x6

2 k46x6x10

ẋ7 = 2(k6 + k18)x7 + k59x14 + k60x21 + k5x2x6 2 k58x7x10

ẋ8 = 2(k35 + k62)x8 + k8x9 2 k7x2x8 + k34x1x10

ẋ9 = 2(k8 + k9 + k53)x9 + k7x2x8 + k52x3x10

ẋ10 = (k35 + k62)x8 + (k9 + k53)x9 2 k61x10 + (k41 + k63)x11 +
(k56 + k12)x12 + (k47 + k64)x13 + (k15 + k59)x14 2 k34x1x10 2

k52x3x10 2 k40x4x10 2 k55x5x10 2 k46x6x10 2 k58x7x10

ẋ11 = 2(k41 + k63)x11 + k11x12 2 k10x2x11 + k40x4x10

ẋ12 = 2(k11 + k12 + k56)x12 + k10x2x11 + k55x5x10

ẋ13 = 2(k47 + k64)x13 + k14x14 2 k13x2x13 + k46x6x10

ẋ14 = 2(k14 + k15 +k59)x14 + k13x2x13 + k58x7x10

ẋ15 = k19x2 2 k20x15 + k22x17 + k24x19 + k26x21 2 k21x15x16 2

k23x15x18 2 k25x15x20

ẋ16 = k38x1 2 k39x16 + k22x17 2 k21x15x16

ẋ17 = 2(k22 + k54)x17 + k21x15x16

ẋ18 = k44x4 2 k45x18 + k24x19 2 k23x15x18

ẋ19 = 2(k24 + k57)x19 + k23x15x18

ẋ20 = k50x6 2 k51x20 + k26x21 2 k25x15x20

ẋ21 = 2(k26 + k60)x21 + k25x15x20

ẋ22 = k27S 2 k29x22 + k28x15
2

ẋ23 = k30S 2 k31x23

ẋ24 = k32S 2 k33x24 (1)

These ODEs include linear and bilinear terms of the state

variables. Denoting

X = [x1 x2 ... x24]T (2)

as the state vector, and

h = [k1 k2 ... k64]T (3)

as the parameter vector, model (1) can be represented as

Ẋ = f(X,h,t), X(t0) = X0 (4)

where f(?) is a nonlinear function, X0 is the initial states vector

at t0. Model (4) can be described in a more general case with

X s n, h s m, where n is the number of states and m is the

number of parameters. The parameters in h may include rate

coefficients, Michaelis–Menten parameters, Arrhenius para-

meters, etc.

For this system (eqn (1)), the first-order derivatives of state

variables are linearly linked with the parameter vector,

therefore, an alternative formulation is

Ẋ = g(X )h (5)

g(X) s n6m is the nonlinear function matrix reflecting the

structure of system ODEs.

The concentration profiles of the 24 reaction species are

illustrated in Appendix A2.{ The oscillatory behaviour can be

clearly observed from the time response curves of several

variables. In this case study, measurement data used are

pseudo-experimental, i.e., generated by computer simulation

of the model.

3. Preliminaries

3.1 Dynamic sensitivities

Denoting xi as the ith state in X, hj the jth parameter in h, the

effect of the parameter change in hj to the state of a species of

interest, xi, can be expressed by a Taylor series expansion:

xi hjzDhj ,t
� �

~xi hj ,t
� �

z
Xm

j~1

Lxi

Lhj

Dhj

z
1

2

Xm

l~1

Xm

j~1

L2xi

LhlLhj

DhlDhjz � � �
(6)

In eqn (6), the partial derivatives hxi/hhj are called the first-

order local concentration sensitivity coefficients, while

h2xi/hhlhhj are the second-order local concentration sensitivity

coefficients, etc.11 Normally only the first-order sensitivity

Table 1 NF-kB reaction species and the states

i Participant species i Participant species

1 IkBa, x1 14 IKKIkBe–NF-kB, x14

2 NF-kB, x2 15 NF-kBn, x15

3 IkBa–NF-kB, x3 16 IkBan, x16

4 IkBb, x4 17 IkBan–NF-kBn, x17

5 IkBb–NF-kB, x5 18 IkBbn, x18

6 IkBe, x6 19 IkBbn–NF-kBn, x19

7 IkBe–NF-kB, x7 20 IkBen, x20

8 IKKIkBa, x8 21 IkBen–NF-kBn, x21

9 IKKIkBa–NF-kB, x9 ** Source (S = 1)
10 IKK, x10 22 IkBa–t, x22

11 IKKIkBb, x11 ** Sink (sink = 0)
12 IKKIkBb–NF-kB, x12 23 IkBb–t, x23

13 IKKIkBe, x13 24 IkBe–t, x24

642 | Mol. BioSyst., 2006, 2, 640–649 This journal is � The Royal Society of Chemistry 2006



coefficients are considered. The absolute sensitivity matrix is

defined as

S~
LX

Lh
~

s1,1 s1,2 � � � s1,m

s2,1 s2,2 � � � s2,m

..

. ..
.

P
..
.

sn,1 sn,2 � � � sn,m

2

66664

3

77775
(7)

where si,j = hxi/hhj.

Matrix S can be obtained conveniently by differentiation if

the analytical solution of the ODEs in eqn (4) is available.

Unfortunately, this is very rare for cell network systems whose

dynamics are described by complex nonlinear ODEs.

Therefore, numerical methods have to be applied to obtain S

at each sample time. The two most commonly used numerical

methods are FDM and DDM. The finite difference approx-

imation is used in FDM, in which the sensitivity coefficient si,j

is calculated from the difference of the nominal and perturbed

solutions

si,j tð Þ~ Lxi tð Þ
Lhj

~
xi hjzDhj ,t
� �

{xi hj ,t
� �

Dhj

(8)

This method is straightforward in that only the calculation

of xi is required with nominal and perturbed parameters.

However, the numerical values obtained may vary significantly

with Dhj, and repeated solution of the model is required at least

once for each parameter. It also implies inherent disconti-

nuities with respect to the initial state parameter.

In this work, we use DDM to calculate the local sensitivities

as a function of time. Taking the partial derivative of eqn (4)

with respect to hj yields the following set of absolute sensitivity

differential equations

d

dt

LX

Lhj

~
Lf

LX

LX

Lhj

z
Lf

Lhj

~J:SjzFj (9)

where

J~
Lf

LX
~

Lf1

Lx1

Lf1

Lx2
� � � Lf1

Lxn
Lf2

Lx1

Lf2

Lx2

� � � Lf2

Lxn

..

. ..
.

P
..
.

Lfn

Lx1

Lfn

Lx2
� � � Lfn

Lxn

2

666666664

3

777777775

, Fj~
Lf

Lhj

~

Lf1

Lhj

Lf2

Lhj

..

.

Lfn

Lhj

2

6666666664

3

7777777775

are referred to as the Jacobian matrix, the parametric Jacobian

matrix, and

Sj~
LX

Lhj

~

s1,j

s2,j

..

.

sn,j

2

66664

3

77775
(10)

is the column sensitivity vector with respect to the jth parameter.

The initial conditions of si,j can be obtained by differentiation of

the initial condition of X(t0) in eqn (4) as follows:

si,j(t0) = d(hj 2 x0
i ) (11)

where d is the Kronecker delta function, X0
i is the initial value

of the ith species. By solving the n equations in eqn (4) together

with the n equations in eqn (9) as a set of differential

equations, i.e.,

:
X~f X ,h,tð Þ, X t0ð Þ~X0
:

Sj~J:SjzFj , Sj t0ð Þ~S0

(

(12)

both X(t) and hX(t)/hhj can be determined simultaneously. In

real systems analysis, the following relative sensitivities are

normally used instead of si,j to allow direct comparison of

responses at different states or across different parameters.

si,j~
Lxi=xi

Lhj

�
hj

~
Lxi

Lhj

: hj

xi

(13)

3.2 Least squares estimation and dynamic sensitivities

Given the model structure and a set of experiment data of the

measured variables, the target of parameter estimation is to

determine unkonwn parameters so as to match the measured

data with the best statistical quality. This can be achieved by

minimizing a cost function that measures the distance between

the measured and predcited data profiles. Under the assump-

tion that the measurement errors are uncorrelated and

normally distributed with zero mean and constant variance,

the weighted least squares criterion can be used for parameter

estimation.

J hð Þ~1

2

X

k

X

i

vi ~xxi kð Þ{xi k,hð Þð Þ2 (14)

Here x̃i(k) and xi(k,h) are the measured and predicted values at

sample time k, respectively, vi are the weights to normalize the

contributions of different state variables and can be taken as

vi~
1

max
k

~xxi kð Þð Þ

0

@

1

A

2

(15)

The gradient of J(h) with respect to the jth parameter hj is

expressed as

g~
LJ

Lhj

~{
X

k

X

i

viri kð Þ Lxi k,hð Þ
Lhj

~

{
X

k

X

i

ri kð Þvisi,j kð Þ
(16)

where ri (k) = x̃i (k) 2 xi (k,h) is defined as the residual at time

k. The curvature of J(h) (Hessian matrix) can be found by

calculating the second-order derivative as

L2J

LhjLhl

~
X

k

X

i

visi,j kð Þsi,l kð Þ{
X

k

X

i

ri kð Þvi

Lsi,j kð Þ
Lhl

(17)

The second term in (17) can be neglected when the residuals

are small. The element of the Hessian matrix at (j,l) is then

approximated by

H j,lð Þ~
X

k

X

i

visi,j kð Þsi,l kð Þ (18)
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Therefore, the Hessian matrix should be represented as

H~~SST ~SS (19)

where

~SS~

~SS 1ð Þ
~SS 2ð Þ

..

.

~SS Nð Þ

2

666664

3

777775
, ~SS kð Þ~ si,j kð Þ: ffiffiffiffiffivi

p� �
[n|m (20)

k = 1 to N are the sample time. It can be seen that the gradient

and Hessian matrix are closely related to the sensitivity

coefficients. They can be used in any gradient-based, first,

second or quasi-second order algorithms for parameter

estimation. As such, sensitivity analysis provides crucial

information for general least squares parameter estimation.

4 Dynamic sensitivity analysis

4.1 Initial conditions

The initial conditions of the state variables are taken from

the equilibrium states, which is run from t = 0 to t = 2000 min.

At t = 0, all the initial values in X are set to be zeros except

for that of NF-kB. The concentration of NF-kB at t = 0 is

taken to be 0.1. The equilibrium states are used as the initial

conditions of X0 at t0 with the exception of the species IKK.

IKK is treated as the activator and its initial value is set to be

0.1 at t0. The initial conditions of the dynamic sensitivities are

taken from formulation in eqn (11).

For all the calculations relating to dynamic sensitivities

and other analysis in this work, the dynamic time length is

400 min and the sample frequency is 1 per min, i.e., N = 400

in eqn (20). Also, as the change in concentration profiles

of x23 and x24 are too small compared with other variables,

only the first 22 variables in Table 1 are considered for

analysis.

4.2 Dynamic sensitivity analysis with a single variable

For the dynamic sensitivity analysis performed on the basis of

one variable, the following L2-norm performance is used to

measure the relative coefficients alone the time axis

RSi,j~
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

k~1

�ssi,j kð Þ
�� ��2

vuut (21)

Here k is the time instance and N is the total number of

sampling points. Fig. 2 illustrates the value distribution of

RSi,j.

Taking the 15th state, NF-kBn, as the variable (Fig. 3

shows the time series of its concentration), parameters can

be ranked by RS15,j in descending order as denoted in vector

S1.

S1 = [k29 k36 k28 k38 k52 k61 k9 k62 k37 k21 k34 k1 k19 k10 k7 k54

k27 k53 k39 k55 k2 k20 k35 k3 k12 k8 k44 k30 k42 k58 k5 k31 k23 k15

k4 k33 k32 k16 k48 k56 k50 k57 k22 k6 k60 k25 k63 k45 k43 k64 k11 k40

k51 k59 k46 k49 k41 k14 k13 k24 k47 k17 k18 k26]

This result can be further illustrated in Fig. 4, which shows

all the values of RS15,j from j = 1 to j = 64. For this group of

results, the following 8 parameters can be classified as the most

sensitive parameters (in descending order): k29, k36, k28, k38,

k52, k61, k9, k62.

The time courses of the top 8 relative sensitivity coefficients

are presented in Fig. 5. It is interesting to note that the

dynamic sensitivity profiles of k28 and k36 are very similar. This

suggests that the effects of changes in some parameters are

very similar to those of other parameters in this model.

The sensitivity analysis results may be different if another

variable is chosen for analysis. Taking the species IkBe–NF-kB

(x7) as an example, the concentration profile of IkBe 2 NF-kB

and the relative sensitivity coefficient RS7,j are shown in Fig. 6

and Fig. 7. The 64 parameters are ranked by RS7,j in the

descending order as denoted in vector S2.

S2 = [k31 k29 k58 k48 k33 k32 k61 k36 k38 k28 k52 k9 k62 k34 k5

k46 k37 k15 k21 k1 k19 k49 k50 k59 k25 k6 k47 k64 k60 k10 k54 k7 k35

k53 k27 k55 k12 k2 k3 k39 k20 k8 k44 k23 k18 k14 k30 k42 k13 k4 k51

k16 k56 k57 k26 k22 k40 k63 k45 k41 k11 k43 k24 k17]

Fig. 2 Sensitivity matrix of integral performance RSi,j.

Fig. 3 Time response curve of NF-kBn.
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Comparing S1 with S2, it is clearly seen that for a multi-

variable system, the conclusions of dynamic sensitivity analysis

depend heavily on the variable chosen. The question then

arises as to whether there are measures of sensitivity that

contain useful information on all the variables, or at least the

most important ones.

4.3 Dynamic sensitivity analysis with multiple variables

A simple way to consider the overall effect of a parameter

change to all (or multiple) species is to use the Euclidean-norm

for sensitivity coefficients

OSj~
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

k~1

Xp

i~1

�ssi,j kð Þ
�� ��2

vuut (22)

OSj groups the overall impact of the involved reaction species

with respect to the jth parameter. This performance is also

termed the overall sensitivity in some literature. The calcula-

tion results of OSj with 22 variables for the 64 parameters are

presented in Fig. 8.

The 64 parameters are ranked in the following descending

order denoted by S3.

S3 = [k29 k36 k28 k38 k52 k61 k9 k62 k31 k21 k48 k37 k42 k33 k32

k30 k19 k34 k1 k54 k55 k12 k58 k50 k44 k60 k57 k25 k15 k23 k3 k5 k10

k46 k40 k7 k64 k4 k27 k53 k63 k41 k39 k35 k6 k43 k20 k47 k2 k49 k8

k56 k11 k59 k14 k13 k16 k22 k26 k24 k45 k51 k17 k18]

Based on the calculation results of OSj, the following 8

parameters are considered to be the most sensitive parameters

for the IkB–NF-kB signal pathway: k29, k36, k28, k38, k52, k61,

k9, k62. They are defined in the following reactions.

k29: IkBa2t A sink

k36: IkBa2t A IkBa + IkBa2t

Fig. 5 Profiles of the top 8 sensitivity coefficients for NF-kBn.

Fig. 6 Time response curve of IkBe –NF-kB.

Fig. 7 Performance index RS7,j (IkBe–NF-kB).

Fig. 4 Performance index RS15,j (variable: NF-kBn).
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k28: NF-kBn + NF-kBn A IkBa2t + NF-kBn + NF-kBn

k38: IkBa A IkBan (Import)

k52: IKK + IkBa–NF-kB A IKKIkBa–NF-kB

k61: IKK A sink

k9: IKKIkBa–NF-kB A IKK + NF-kB

k62: IKKIkBa A IKK

Three reaction species, NF-kB, IKK, IkBa and their

compounds are of most interest.

This result is similar to the static sensitivity analysis,42 where

it is claimed that the above 8 parameters and also k34 are the

most sensitive parameters. It can be observed from the above

analysis that three reaction species, viz. free IKK, IkBa and

NF-kBn, dominate the oscillation behaviour of this signal

pathway. The analysis in ref. 42 was based on several

oscillating features abstracted from the concentration

profile of NF–kBn. The similar results here show, importantly,

that the oscillatory features of the NF–kBn concentration can

be regarded as the dominant features for this particular

system.

It should be noted that conclusions obtained so far are taken

from univariate analysis because the correlation effects

between parameters are not considered.

5. Identifiability analysis and measurement set
selection via multivariate analysis

5.1 Identifiability analysis

In identifiability one is concerned with the question of the

theoretical uniqueness of solutions for a given model and

experiment.26 A nonlinear system is said to be structurally

identifiable if each set of parameter values yields unique output

trajectories.46 This a priori structural identifiability is a

necessary condition but obviously not sufficient for successful

parameter estimation from real data, as they are normally

sparse and noisy. Two additional problems are commonly

encountered in practice. (1) A parameter has a weak effect on

the measured output. Estimation of such a parameter is

difficult because its effect cannot be accurately quantified. (2)

The effects of certain parameters on the measured outputs are

nearly linearly dependent, resulting in parameter estimations

that are highly correlated.27,33

To determine the correlations between parameters, the

correlation matrix was calculated as follows:

Mc = correlation(S̄) (23)

where

�SS~

�SS 1ð Þ
�SS 2ð Þ

..

.

�SS Nð Þ

2

66664

3

77775
, �SS kð Þ~ �ssi,j kð Þ

� �
[n|m (24)

In the correlation matrix Mc, parameters that are in this

sense highly correlated to other parameters have correlation

values close to +1 or 21. For the IkB–NF-kB signal pathway,

following the calculation of eqn (23) and eqn (24), it turns out

that parameters in the pairs of (k31, k32), (k31, k33) and (k32,

k33) have exact linear dependence on each other, i.e., the

correlation values for each pair are exactly +1 or 21. When a

threshold of 0.99 is used, the following parameters are

regarded as highly correlated: (k7, k8), (k16, k37), (k21, k22),

(k28, k36), (k34, k35), (k40, k41), (k46, k47), (k52, k53), (k55, k56),

(k58, k59). This correlation analysis supports the results of

dynamic sensitivity calculation in section 4.2, where it shows

that parameter changes of k28 and k36 have the similar impacts

on the concentration dynamics of NF-kBn.

The correlation behaviour of parameters may cause

identifiability difficulties using least-squares estimation tech-

niques. This can be illustrated by Fig. 9 and Fig. 10, in which

the cost functions (residual ~
1

N

PN

k~1

~xx15 kð Þ{x15 k,hð Þð Þ2) with

respect to the change of two parameters are shown when one

variable x13 (IKKIkBe) is considered for the measurement. In

Fig. 9, it is difficult to find a unique pair of (k28, k36) corresponding

to the minimum cost function, because the sensitivities of this pair

of parameters are highly correlated and yield a straight line basin

in the cost function; however for the pair of parameters in Fig. 10,

a good estimation can more obviously be made by searching for

the global miminum point of the cost function.

The orthogonal method developed in ref. 28 takes into

account both parameters’ effects on model predictions and

Fig. 9 Cost function wrt (k28, k36).

Fig. 8 Overall integral performance OSj in natural order.
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correlations between parameters. It can accommodate

dynamic models wherein some responses are available at

irregular sampling times.30 The effect of indivial parameters

can be determined by examining the magnitude of each column

of the relative sensitivity coefficient matrix S̄, which corre-

sponds to a particular vector. A large value indicates a large

effect of that parameter on the model predictions. The

correlation feature is examined by checking whether the

columns of the sensitivity coefficient matrix corresponding to

the set of estimable parameters are correlated with each other.

Implementation of this algorithm can be found in appendix

A3. The algorithm can be interpreted as a forward selection

procedure where the parameter being selected is the one with

the highest t-ratio.

After calculation, the ranking result for all 64 parameters in

the IkB–NF-kB model is as follows (see Fig. 11 for

illustration):

Identifiability ranking: I1 = [k29 k36 k31 k61 k42 k38 k52 k19 k9 k21

k50 k54 k44 k28 k58 k15 k55 k12 k25 k23 k34 k46 k40 k60 k57 k5 k1 k3 k48

k30 k62 k64 k4 k6 k39 k37 k10 k63 k2 k11 k27 k20 k13 k45 k51 k41 k7 k47

k43 k49 k14 k26 k35 k24 k56 k8 k59 k22 k53 k17 k18 k16 k32 k33].

It suggests that k29 is the most identifiable parameter, k36 is

the second most identifiable parameter and so forth. A cut-off

threshold can be used to determine the subset of parameters

which are practically estimable. The choice of this threshold is

normally heuristic. One means of selection is based on the

differences between estimability measures. If the measure of

the Lth ranked parameter is much greater than that of the

(L + 1)th ranked parameter, then the threshold can be set

between these two parameters. Of course some problems do

not allow such a clear distinction. In the work of Yao et al.,

they suggested a value of 0.04 for the 2-norm measure, which

means a 10% parameter change should make at least a 2%

variable change for the purpose of parameter estimation.28 An

alternative method is to perform parameter estimation tests to

determine the proper number of estimable parameters.27

If none of the parameters is correlated to any other, then the

ranking order in the sensitivity ranking vector S3 should show

the same identifiability ranking of parameters from easy to

difficult, i.e., S3 = I1. For the IkB–NF-kB model, however, 13

pairs of parameters are either exactly correlated or highly

correlated. Therefore, the descending order of the 64

parameters in the identifiability ranking I1 is different from

that of the sensitivity ranking S3. Among the correlated pairs,

at least one parameter is moved towards the direction of less

estimable from S3 to I1. This clearly shows the difference

between the univariate and multivariate analysis.

5.2 Measurement set selection

As performing experiments to obtain rich data for modelling is

expensive and time-consuming, measurement set selection aims

to find a necessary or a minimum set of variables for the

experimental measurements such that the unknown para-

meters are estimated with the best statistical quality. For this

purpose, the sensitivity analysis results can also be interpreted

as an estimate of the ‘‘observability’’ of each parameter from

the perspective of each variable. An interesting and important

question to consider is, ‘‘Which variables are the most

important, useful or discriminating for parameter estimation?’’

This question can be framed in a number of different ways,

depending on what is meant by a good estimate. In this work,

the estimation quality is assessed by the least-squares measure

along the variable trajectories.

Under the scheme of the least squares parameter estimation

described in section 3.2, the information content of measure-

ments can be quantified by the Hessian matrix H in eqn (19).

In general, the smaller the joint confidence intervals for the

estimated parameters are, the more information is contained in

the measurements.47 The commonly used optimal design

criteria are: the A-optimal design (min trace(H21)), the

D-optimal design (max det(H)), the E-optimal design (max

lmin(H)) and the modified E-optimal design (min lmax (H)/lmin

(H)). Here lmin and lmax are the minimum and maximum

eigenvalues of H, while det indicates the determinant and tr the

trace of H.

We use the modified E-optimal design for the measurement

set selection. This design minimizes the ratio of the maximum

value to the minimum value of the eigenvector, therefore the

functional shape of the confidence intervals of the estimated

Fig. 11 Parameter identifiablity results by orthorgonal forward

selection.

Fig. 10 Cost function wrt (k9, k28).
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parameters is optimised. Similar to that of the identifiability

analysis, forward selection procedures are performed to find

the best sets of variables This algorithm can be performed as

follows.

Step 1: Considering the case that one variable is used for para-

meter estimation (p = 1), formulate the corresponding matrix H

with one variable at each run. Use the modified E-optimal design

to find the first variable for the measurement set.

Step 2: Consider the case that one more variable is used for

estimation, augment the matrix H with the new variable. Use

the modified E-optimal design to find the next variable to be

included in the measurement set.

Step 3: Increase the iteration number p by 1, go to step 2

until all the variables are checked.

The result of the measurement set selection is related to the

parameter set to be estimated. When considering the top 8

identifiable parameters in I1 to be estimated, the calculation

results is shown in Fig. 12. It can be seen that three or four

variables will provide good enough estimation for the 8

parameters: k29, k36, k31, k61, k42, k38, k52, k19. In this case, x12

(IKKIkBb–NF-kB), x21 ( IkBen–NF-kBn), x13 ( IKKIkBe) and

x19 ( IkBbn–NF-kBn) are the top 4 variables to be included in

the measurement set. It should be noted that the result will be

different if different parameters are to be estimated.

6. Conclusions

Based on the nonlinear state-space formulation, a general

scheme of system analysis is provided for the purpose of least

squares system identification. It includes dynamic sensitivity

analysis, correlation analysis, model identifiability assessment

and measurement set selection. Together these will allow

efficient parameter estimation of any cellular network.

For the simplified IkB–NF-kB signal pathway system

studied in this work, the univariate analysis of dynamic

sensitivities shows that out of the 64 parameters in the model,

the following 8 parameters have the main impacts on the

oscillation behaviour of the nuclear NF-kB when they are

varied individually: k9, k28, k29, k36, k38, k52, k61, k62. It

suggests that three reaction species, viz. free IKK, IkBa and

NF-kBn, dominate the oscillation behaviour of this signal

pathway. This conclusion is made without considering the

correlations between parameters. Pairwise phenomena are

observed from the 8 most sensitive parameters, especially for

k28 and k36. That is to say, the two parameters have very close

effects on the model predictions. Further correlation analysis

indicates more pairs of parameters that are in this sense, by

their effects, highly correlated to each other, among which, k31,

k32, and k33 are exactly linearly dependent on each other.

Using the dynamic sensitivity matrix, identifiability of the

parameters is studied via a forward selection algorithm. This

multivariate analysis shows which parameters are more

identifiable and which are less when all the variables are

included in the measurement set. Finally, the modified

E-optimal design is introduced to select the measurement set

for parameter estimation. It is encouraging to see that for the

group of the most identifiable parameters, only a small number

of variables are needed to be measured to provide satisfactory

estimation.

Based on the results herein, different methods of nonlinear

parameter estimation in signal pathway systems are now being

investigated.
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