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ABSTRACT 

 

This paper presents the functional characterization of a centrifugal pump used as a turbine. It 

shows the characteristic of the machine involved at several rotational speeds, comparing the 

respective flows and heads. In this way, the influence of the rotational speed on efficiency as 

well as obtaining characteristic at constant head and runaway speed can be observed. Also the 

forces actuating on the impeller were studied. An uncertainty analysis was made to assess the 
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accuracy of the results. The research results indicate that the turbine characteristics can be 

predicted to some extent from the pump characteristics, that water flows out of the runner free of 

swirl flow at the best efficiency point, and that radial stresses are lower than pump mode. 

 

 

NOMENCLATURE 

 

b2 impeller width at outlet 

D2 impeller diameter at outlet 

Hth theoretical head 

Hp, Ht pump and turbine head 

Kf flow coefficient  

Khp head coefficient – pump mode 

Kht head coefficient – turbine mode 

Kpp power coefficient – pump mode 

Kpt power coefficient – turbine mode 

Ks radial force coefficient 

pi pressure in the hole i 

Q flow-rate 

T torque 

u2, u1 peripheral velocity at impeller outlet and inlet 

u2u, u2m tangential and meridian components of the absolute velocity 

z number of blades 

β1 outlet angle  

ηph, ηht pump and turbine hydraulic efficiency 

ηp, ηt pump and turbine efficiency 

ρ fluid density 

σ slip coefficient (Stodola coefficient) 

ω rotational speed 
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1. INTRODUCTION 

 

Because of the depletion of natural resources and global environmental problems, there is a 

need to develop renewable energy sources with minimal environmental impact. One of the most 

mature techniques for renewable power generation is hydro-electric. A large number of hydro-

electric power generation schemes have been implemented and the technology is now quite 

mature. However, the possibility for the implementation of large scale hydro electric power 

generation, whilst benefiting from the economies of scale, is not always technologically, 

economically, politically or environmentally feasible. Consequently, interest in small scale 

hydro electric power generation is increasing. However, construction costs for such plant are 

relatively high when compared with the small amount of power generation possible. The high 

construction costs limit the possibility for its implementation. If the construction costs could be 

reduced small scale hydro electric power production could be become more widespread 

especially in the third world. 

 

For low and very low power plants (power less than 100 kW), the possibility of using pumps 

instead of turbines deserves consideration because, even though there is an efficiency reduction, 

there is a significant reduction in the capital cost of the plant, of the order of 10 to 1 or even 

more. The inverse working mode of hydraulic turbines has been investigated before by 

Kittredge[1], Knapp[2], and Stepanoff[3] but the technology for their use in electrical power 

generation was not available at that time. However, advances in electrical machinery control 

technologies, which allow the driving regulation with variable velocity, rotation sense and 

torque have created the possibility of the utilisation of pumps working in inverse mode for 

power generation 

 

In contrast to a conventional turbine, a reverse running pump turbine has no inlet guide vanes; 

therefore, the variable discharge characteristics are slightly different to the Francis turbine. 

However, it has the following advantages: uniform quality, plus simple construction and 

durability. A reverse running pump turbine also has almost same efficiency as the pump, which 

is competitive with other turbines type; a small number of parts enables easy maintenance and 

inspection. 
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Most of the studies carried out were based on the hypothesis of the similarity between 

maximum efficiencies working in both modes, which is not easy to maintain, and other studies 

were based on algebraic relations as a function of efficiency. All of them have been achieved 

considering equal rotational speeds in both working modes. In this paper, the characteristics of 

a specific pump acting in inverse mode against rotational speed are shown. To accomplish this, 

a suitable facility has been designed, built and characterized. The facility consists of two 

pumps, the pump-turbine being tested and an auxiliary one, forming a closed loop through a 

regulation reservoir. The auxiliary pump is driven by a motor with adjustable speed of rotation 

by means of a variable frequency drive and provides the flow rate and head required by the 

pump-turbine. The pump-turbine (non-dimensional specific speed of pump is 0.52) can be 

connected either to a motor for pump operation or to a generator (turbine operation) that 

supplies electric power to a set of dissipative resistances. The turbine-generator set can rotate at 

any prescribed speed, Fernández[4]. 

 

Thus, when instrument calibration (torquemeters, tachometers, pressure transducers, flow 

meters and others) had been completed, characteristic curves at constant speed in pump and 

turbine modes were obtained, allowing comparison between them. New characteristics at 

constant head which allow the selection of turbines as well as the determination of runaway 

speed have been deduced. 

 

The aim of this research has been to show the feasibility of using pumps in turbine mode in 

small hydroelectric stations, and to regulate the power by means of variations in the turning 

speed of the turbine-generator set. 

 

The steps followed were: 

- Pump performance, working in normal and reverse modes. 

- Comparing radial thrust and velocity founding a relation between them and the best 

efficiency point. 

- Prediction of turbine characteristics from the pump characteristics. 

- Determination of the characteristics curves at constant head. 

- Estimation of the maximum uncertainty in the results. 
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2. EXPERIMENTAL SETUP 

 

The performance of the pump, operating either in the normal or inverse mode, was tested in a 

hydraulic set-up designed according to ISO 3555:1977, shown in figure 1. It consisted of a 

tank with 10 m3 of capacity, to which two pumps were connected through a piping network: the 

main pump and an auxiliary one. Appropriate piping permitted the water to be pumped from 

and returned to a reservoir. Flow-rate could be finely regulated by means of a set of butterfly 

valves located close to the discharge reservoir. The flow-rate was measured with an Ultraflux 

UF321 ultrasonic flow-meter (up to 0.008 m3/s) and with a calibrated orifice plate connected 

to a differential pressure transducer (flow-rates above 0.008 m3/s). The main pump was driven 

by a DC-motor governed by a regulation device that allowed for continuous adjustment of the 

rotational speed, with a precision of ±1 rpm. 

 

 
 

Figure 1: Test facility, over head and lateral view 
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The auxiliary pump supplies the flow rate and head required by the pump being tested as a 

turbine. It is capable of delivering 160 m3/h and a head of 90 m at the design point (2900 rpm 

with a 55 kW consumption) and it is driven, at any selected speed below 3000 rpm, by a motor 

controlled by a frequency variator. The auxiliary pump draws water from the tanks and delivers 

it to the inlet of the pump-turbine under study. 

 

The pump used for this investigation had single axial suction and spiral volute casing (figure 

2). It was equipped with an impeller of 200 mm outer diameter with 7 backward curved 

blades with logarithmic profile. Other impeller dimensions were; inlet diameter (tip) =52 

mm, discharge width b2=16.9 mm, blade angle at outlet =29º, rake angle (outlet pressure 

side) =10º, rake angle (outlet suction side) =29º. The cross-section of the volute increased 

linearly from 2.5 to 40 cm2 with a minimum gap between tongue and impeller of 10 mm 

(=10% of impeller radius). 

10º

10º

29º

16.9 mm

4.5 mm

U2

Probes

 

 

Figure 2: Sketch of the test pump showing location of the pressure taps and detail of 

impeller outlet (all dimensions in mm). 

 

Pressure taps with 3 mm diameter were located every 10° around the front side of the volute, 

at 2.5 mm from the outlet of the impeller, figure 2. Static pressure at these positions could be 

obtained with a Kistler 4043A10 piezo-resistive pressure transducer and a current amplifier, 

which provided absolute pressure values with an uncertainty of less than ±0.5% (according to 

manufacturer's data). Each of the transducers, connected to an amplifier, provided pressure 

measurements with a combined uncertainty of less than ±1.5%, according to manufacturer's 
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data. The resulting pressure signals were digitized and stored in a personal computer 

equipped with a multi-channel analogue to digital conversion card. Spectral analysis of the 

signals was then performed by software.  

 

The rotational speed was determined by a tachometer. To calculate the power, a torquemeter, 

placed between the turbine and the generator, was used. The torque was measured by a strain 

gauge transducer. Further information on the instrumentation may be found in Fernández [4]. 

 

The performance curves were obtained at a constant rotational speed, which could be fixed by 

means of the electrical control equipment connected to the turbine-generator set. Once the 

turbine velocity was fixed, the speed of the auxiliary pump was progressively increased, thus 

increasing the flow rate and the available head. For each flow rate, fixed by the auxiliary pump, 

flow rate, pressures and torque measurements were made. 

  

An uncertainty analysis was applied to the measurements using the procedure developed by 

Kline and McClintock[5]. For each variable the uncertainty was calculated taking into account 

the apparatus uncertainty and the acquisition uncertainty due to the analogue to digital data 

acquisition card. The application of the uncertainty analysis to the best efficiency point of the 

1500 rpm curve gives a relative uncertainty lower than 2.75 % in the efficiency, 0.82 % in 

torquemeter, 0.25 % in tachometer, 1.06 % in flow rate and 2.38 % in head. For details of the 

uncertainty analysis refer to Fernández[6]. 

 

 

3. EXPERIMENTAL RESULTS 

 

3.1 Performance curves at constant speed 

 

The experimental characterization of the pump-turbine, the nominal characteristics of which 

have been described, was carried out. Following the procedures stated above, characteristic 

curves in pump and turbine modes corresponding to 1250, 1500, 1750, 2000, 2250 and 2500 

rpm rotating speeds were obtained. Figure 3 shows the head coefficient, power coefficient and 

the efficiency against the flow rate coefficient for a working speed of 1500 rpm. Coefficients 
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and efficiencies are defined as follows: 

 

Power coefficient: 

 

Kp = P/(ω3D2
5ρ)     equation 1 

 

Head coefficient: 

 

Kh = gH/(ωD2)2     equation 2 

 

Flow coefficient: 

 

Kf = Q/(ωD2
3)     equation 3 

 

Pump and turbine efficiency: 

 

ω
ρη

T
gQH

p = , 
gQH
T

t ρ
ωη =    equation 4 

 

 

The characterization in pump mode allowed the production of stable curves in power and head, 

with maximum efficiency similar to those stated by the manufacturer. The best efficiency point 

corresponds to a flow coefficient of 0.011. On the other hand, in turbine mode, the net head was 

increased. Note that the curves for the pump working in turbine mode do not pass through the 

origin, indicating that the machine, at low flows, presents an inverse-working area with power 

consumption and head dissipation. The intersection point of the turbine curves with the abscissa 

axis shows runaway conditions for the turbine at a flow coefficient of 0.007. The best efficiency 

point corresponds to a flow coefficient of 0.015. 
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Figure 3: Non-dimensional curves at 1500 rpm in pump and turbine modes 

 

3.2 Radial thrust 

 

The radial force was calculated by multiplying the pressure obtained by the outlet rotor width 

plus shroud width and by the circumferential length: 

 

 Fi = p (b2 + shroud width) circumferential length         equation 5 ∑
=

=
36

1i
iFF
rr

 

Later, these forces were added up giving a resultant, which goes through the centre of the rotor 

and an angle. 

 

In pump mode, the radial force obtained was seen to diminish as the flow approached the design 

point where it reaches a minimum. The results are agree with another authors (Neumann[7], 

Iversen[8], Engeda[9]). Radial force can be put as well in non dimensional mode: 

 

( )ρω 4
2

2D
FKs =     equation 6 

 

Figure 4 shows force coefficient versus flow coefficient for a range of rotor speeds. Meanwhile 
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the angle of incidence of this force varies: shifting, ahead of the design point within 2nd 

quadrant angles (90° - 180°) and behind the design point within 4th quadrant angles (270° - 

360°) as seen in figure 5. The results are logical as the pumps were made so that mechanical 

stress acting on the rotor and volute were minimal.  
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Figure 4: Radial force coefficient in pump mode 
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Figure 5: force angle in pump mode 

 

In tests carried out in turbine mode it was determined that, as the maximum performance range 

was approached, the resultant force increased, figure 6. The area on which the forces acted was 

always within the 1st and 4th quadrants (270° - 90°). The mechanical force was always 
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increasing, but, excluding large flow rates, was lower than in pump mode. The turbine best 

efficiency point does not correspond to a minimum of the forces. The forces measured in the 

turbine are always smaller than the maximum forces found in pump mode, thus it may be 

concluded that the forces in turbine mode will not produce an increase in material fatigue 

compared with the pump mode. 
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Figure 6: Radial force coefficient in turbine mode 
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Figure 7: Force angle in turbine mode 
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Figure 8 shows the areas where the radial thrust is concentrate in pump and turbine modes. 

Pump Turbine

 

Figure 8: Locations of radial thrust concentration 

 

3.3 Post-rotation velocity 

 

It is known that in pump mode, close to the best efficiency point, the velocity at inlet to the 

impeller has no rotation. For the pump acting in turbine mode the outlet velocity has the same 

characteristics. 

 

To confirm this, because of the pump size, a three holes probe was manufactured in perspex. 

Details of the three hole probe and its calibration may be found in Fernandez[4]. Due to the 

pump design, two holes were made 18 mm from the impeller outlet and at 45º from a vertical 

line (figure 2). The probe was placed 10mm from the pipe wall towards the centre and 

measurements taken for several flowrates at the same rotation speed. 

 

Figures 9, shows tangential velocity components non-dimensionalised by the rotor outlet tip 

velocity, at a rotational speed of 1500 rpm. Tangential velocity component is, more or less, 

negligible for flow coefficients close to optimum. Close to the wall pipe, this velocity 

decreases due to the presence of the boundary layer, and in the centre of the pipe due to the 

presence of the hub. We can postulate that, for the best efficiency point, there is no rotation in 

the flow at the impeller outlet. 
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Figure 9: Non-dimensional tangential velocity component at the impeller outlet, turbine 

mode, at 1500 rpm for several flow coefficients 

 

3.4 Prediction of Turbine Characteristics 

 

Theoretical head in a turbomachinery, from of the Euler equation, is: 

 

( ) g/vuvuH ut11ut22tht −=    equation 7 

 

At the best efficiency point, the head in pump and turbine modes are: 

 

g/vuH up22th =     equation 8 

 

The hydraulic efficiency is defined as: 

 

thpphp H/H=η       tththt H/H=η    equation 9 

 

And then: 

 

g/vuH up22hpp η=       ( )gvuH htutt η/22=   equation 10 
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The ratio between these equations is: 

 

( )hthpuputpt vvHH ηη22 // =    equation 11 

 

In the figure 10 we can see the velocity triangles for pump and turbine mode. In pump mode 

there is a slip at the impeller outlet. In turbine mode the relative flow angle at the impeller inlet 

is close to the blade angle at the best efficiency point. The following ratio is obtained: 

 

( ) ( )σ−=σ−= 1/1Uu/uv/v 222up2ut2    equation 12 

 

Substituting we obtain: 

 

( )[ ]σηη −= 1/1/ hthppt HH    equation 13 

 

U2 U2

 σ U2W2

W2

V2

V2mp

V2mt

V2up

V2ut

V2

 

Figure 10: Velocity triangles at the impeller outlet (pump) and inlet (turbine) 

 

For this pump the hydraulic efficiencies are known, Fernández[4], ηhp = 0.88 and ηht = 0.84, and 

then it can obtain the slip coefficient: 

 

0.2176  sin
z

== βπσ     equation 14 

 

We have: 

 

Ht/Hp = 1.73     equation 15 
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Figure 11 shows the ratios between turbine and pump at the best efficiency point for head, 

flowrate and efficiency. Results in head are close to the value obtained above. However, these 

results are higher than shown for other authors (Engeda[9]). In this case, we have a centrifugal 

pump, and the main process to convert the energy is not the flow diffusion but the centrifugal 

forces. The blades inlet in turbine mode is not rounded and so, the losses are increased and the 

hydraulic efficiency decreases. 

 

The above values indicate the possibility that the characteristics in turbine mode can be 

predicted from the characteristics in pump mode. However, in order to predict this, numerical 

simulations are required to enable the comparison between pumps including those belonging to 

different families. 
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Figure 11: Ratios at the best efficiency point 

 

3.5 Performance curves at constant head 

 

Head is the main characteristic of a turbine, which generally shows few variations with respect 

to its design specifications. That is why it is interesting to obtain performance curves at constant 

head, representing flow rate, power and efficiency against the rotating speed. This allows the 

most suitable speed and flow for each specific situation to be selected. 
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Figures 12-13 show curves corresponding to 20 and 30 m head respectively. The shown values 

have been obtained from the characteristic curves. Power and efficiency are represented by 

families of curves, which have a common point of origin (zero power with the machine 

stopped) and the other point at the abscissa axis, which fixes the so called runaway speed at 

which the power generated is zero, consuming a certain supply flow rate. This speed increases 

with the head. For a head of 20 m the runaway speed is 2235 rpm. 
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Figure 12: Constant head of 20 m 
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Figure 13: Constant head of 30 m 
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4. CONCLUSIONS 

 

This paper has described the behaviour of a centrifugal pump in turbine mode at several rotating 

speeds. 

 

The stress in turbine mode will not produce greater material fatigue than in pump mode, 

although it is always rising. These forces do not indicate the best efficiency point. 

 

Turbine characteristics were compared with pump characteristics. Once the characteristics in 

pump mode were known, the characteristics while operating in turbine mode could be 

approximately predicted. However, in order to predict the turbine characteristics with even 

more accuracy it would be necessary to obtain more test data and statistically analyze design 

data. The possibility of accomplishing this by numerical simulation will be the subject of a 

future paper. 

 

The constant head curves which allow the selection of the generator rotating speed and, for 

machines liable to a varying inlet regime, a variable flow exploitation criterion were obtained; 

thus, a control program which allows the turbine to work at optimum efficiency versus the 

energy consumed was created. 
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