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ABSTRACT

Technological adances in real-time data collection, data transfer aediecreasing computational per are
bringing simulation assisted control and on-liaalf detection and diagnosis closer to reality thas imnagined
when Building Enagy Management Systems were introduced in the 19T8& paper describes thevep-
ment and testing of a prototype simulation assisted contrisllahich a detailed simulation program is embed-
ded in real-time control decision making. Results fromygeement in a full-scale &ironmental testdcility
demonstrate the feasibility of prediaticontrol using a pisically-based thermal simulation program.

Keywords: Building enegy management systems, predietontrol, simulation assisted control.

INTRODUCTION

The majority of recent delopments in Building Engy Management Systems (BEMS)vbafollowed the
adwances made in computer technologlecommunications and information technolofgnificant deelop-

ments hae keen made in the standardisation of communication protocols [1] and in web-enabled controllers [2].
There has been less focus on theelibgment of nes concepts in control, particularly in thaili environment.
Despite this, some significant adhces on the application ofwéouilding control techniques kia been made.
These are outlined belo

The concept of prediste mntrol, which uses a model in addition to measured data in order to forecast the opti-
mum control stragy to be implemented, could assist in the mofiieft operation of BEMS. This should
result in laver enegy consumption and more comfortableildings. Work has been done on predieticon-
trollers using stochastic models [3], [4], [33oth short term (10-20 min) and long term (days) prediction errors
lay within acceptable ranges both in terms of temperature and humidity cdptedliction errors were found to

be within PC and 1.5% relatie tumidity.

Other deelopments include the use of fuzzy logic control [6], [7] and the use of neurabnkst{8], [9]. The
basic idea behind fuzzy logic control is to incorporate #pgence of a human process operator in the design
of the controller: this unfortunately requires good qualityegiential knavledge and data about the controlled
systems goerating characteristicsA neural netwrk is a control mechanism based on the operational principles
of the human brainlt can be considered as a set of ddkunits that connect an input to an output. These units
interact with each other by means of weighted connecti®hs. netvork requires training by ging the related
output to a gien input, resulting in certain weights being assigned to particular connectiotiear dravback

with the use of neural nebsks in control is the requirement fottensve training data [10].

Controllers incorporating self-learning algorithms in control systems aseqnde common, for xample in
optimum start of heating plant [11]The aim is to achiee te defined zone conditions at the desired time of
arrival (DTOA) of the occupants in the shortest possible tifdewever, the International Engy Ageny (IEA)
Annex 17 research wrk [12] shaved that these learning algorithms can initiallyetakys to predict the correct
optimum start time and ke dfficulty dealing with unusual conditions such as long shutrdperiods, rcep-
tional weather conditions and changesuiiding operation. Egn the best trained self-learning controller cannot
extrapolate bgond its range ofxgerience.
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All the previously discussed methods of controvbane common feature: thiehave no underlying pisical

model of the system and process being controlldte controlled entity is essentially a nonypieal "black-box

model". Thereare inherent limitations in the black box approach to control as the controller haswiedge

of the cause andfett relationships between the elements of the controlled systenxianola excitations such

as climate and occupant interactionittpassie huildings emplging natural resources such as daylight and

free cooling, control actions become eolnted due to these interactions between the elements of the controlled
system (e.g. glare requiring blind repositioning, causing luminaire actuation, leading to increased cooling loads).
Such interactions can best be represented irysiqaily-based model in which all the elements interact. Build-

ing simulation programs pvide such a model.

SIMULATION ASSISTED CONTRL
At the present time, detailed simulation programs are playing significant roles &e@s:

Emulators: Emulators replace auliding and its HWAC systems and use a computer program to simulate their
response to the BEMS commandSmulators can also be used for control produseldpment, training of
BEMS operators, tuning of control equipment and imitateugtfsituations to see wthe BEMS vould cope
[13]. Collaboratve research wrk on emulation was carried out by the IEA under Ann#6 and Annex 17 [12].

Six different emulators were ddoped: three used FACSIM+ and three used MASYS. One of the best-
known emulators desloped within the framwork of Annex 17 was 'SIMBAD’ (SIMulator for Buildings And
Devices), which uses both the TRNSYS andA@&IM+ simulation softare. The early ersions of SIMBD

had dificulty simulating dynamic conditions, the creation of A3/models vas tedious and the user interé

was rot user friendly In order to address thesefitifilties CSTB are currently geloping a "toolbox" of models

of HVAC components and plant for the design and testing of control systems [14]. Johnson Controls and the
National Institute of Standards andchnology (NIST) in the US ka devdoped a lav cost PC based emulator
[15]. Thecompaly is now using this for the purpose of testingmeontrol products.

Simulation models play a similar role in thevdepment of &ult-detection and diagnosis (FDD), a technique
which aims to detect and locageufts or predict the presence abifts in enegy management systems [16]. FDD
uses a model of the correctly operating system to supplement tenttonal feedback loop, the model acting
as a reference for correct belwur of the controlled systeme$t results [17] on an air handling unit serving a
dual duct air conditioning system shahat the use of FDD impved the control performance and ackee
good results in detecting leakage of a contatderan a @oling coil and the sticking of a return air damper

Evaluators: In this role, simulation programs can be used to test flomgf of possible control stratges. In this
case a detailed model of theilding/HVAC system is established, andrious control stratges are eduated in
terms of comfort acceptability and eggreficieng (e.g. [12], [18]).

The objectie d this research s to ivestigate a possible third use for simulation programs: their encapsulation
within the BEMS system in order to pide simulatiorassisted controlThe research, undertak in collabora-

tion with Hong/well Control Systems, iolved eecuting the simulation program as part of the control task in
order to gduate sgeral possible control scenarios and mak ®lection in terms of some relnt criteria.
Although this possibility had been suggestedriogsly, it was dismissed at the time as beingydrel the capa-
bilities of the detailed simulation programs" [19The premise of the present study is that simulation program
capabilities and BEMS fiébility are naw sufficiently advanced for simulation assisted control to be feasible.

Although there are potential @dulties associated with simulation assisted control (e.g. the need o arhk
calibrate a model of the system, particularly when dynarai@tions due to airfls and solar radiation are
important; the dficulty of parsing from compleresult-sets to simple actions),yslically-based models fefr the
following benefits wer "black-box" models:

. they are able to address cause arfé@fscenarios such as outlinedvpoessly;

. they can adapt to the impact of changingjlding use or operation (pvawed that the change is incorpo-
rated into the model);



. they potentially ofer better control through calculation of interactions and can identifyaitters that
result in particular bilding performance; and

. they provide the possibility of comparing options for fdifent control stratges by testing them on the
building model.

Simulation assisted control is ¢k to be of most use in the folling circumstances:
. when significant look-ahead times aredlwed (hours, rather than minutes);

. for high-level supervisory control, e.g. load shedding, wheneesg alternaties and their implications for
ervironmental conditions (particularly occupant comfort) may need todeated;

. where interaction is high, e.g. blinds/lighting/cooling; and

. where the bilding use waries or changes (e.g. d@r \ariations in occupang and where thisariation is
known in adance.

Table 1 lists those plant systems thatdnBeen identified as presenting opportunities for simulation assisted con-
trol (extracted in part from the compreherssiibrary of BEMS control stratées in [11]). In addition, where
integrated control is emphasised, a BEMS systemunldv likely benefit from eplicit simulation of the interac-
tions within the hilding.

The primary objectie d this pilot project vas therefore to irestigate the possibility of inggrating simulation
within real-time BEMS operation to prigle a prototype control decision-making capabilitie ewisaged sys-

tem is depicted in Figure 1. This st®the usual BEMS control structure—inputs are obtained from climate and
building state sensors, and an internal control algorithm decides on the appropriate control actweitcfong
heating, cooling etc. The weslements are the simulatavhich models the wilding/HVAC using sensed data as
boundary conditions, and awaluator, which scans the simulation results to suggest an appropriate control
action to the main simulation assisted controller

The study imestigated whether real-time simulation could be introduced asrstim Figure 1. In vies of the

mary practical interice issues thatauld be inherent in using a BEMS system directlydemonstrated in the
development of the SIMBD emulator [14], it vas decided to use LabVIEW as a BEMS replacement and the
dynamic simulation program ESP-r [20] for control scenario appraisal. LabVIEW is used widely in industry for
SCADA (Supervisory Control and Data Acquisition) applications, and for prototypaopenent it ofered the
necessary figbility without being tied to a particular BEMS protocol. The ESP-r systers used as it is a
detailed simulation program withxglicit representation of all heat and mass transfer processes and includes an
extensive aray of control capabilities.

The research had the falling elements.
a) Theidentification of control functions of current BEMS that might benefit from simulation assistance.
b)  Thecreation of LabVIEW routines for data acquisition and control actuation.

c) Thedevelopment of the real-time linking of these routines to ESP-r to permit scenario appraisal, selection
and enactment.

d) Atesting of this linkd system in realistic scalggeriments.

CONTROL CAPRPABILITIES OF ESP-r

For simulation to be of use in the present camté must be possible to represent thidding/HVAC system and

the imposed control as an igtated systemWithin ESP-r a control system is implemented as a set of closed or
open control loops acting jointly or indilually. Each loop comprises a sensor kakto an actuator via an algo-
rithm; in certain cases loops may be cascade®lP-r ofers an &tensve library of sensors, actuators and algo-
rithms representing both idealised and realistic components, ranging from basic "ideal" control, through PID




control to global sequence control [21].

As part of a designveluation, the usual practice is to firstly empldealised components to constrain system
states (required temperaturesaiable heating capacitynechanical entilation rates etc) in order tadilitate

the intercomparison of control optionkater, in support of detailed design, these idealised components may be
substituted by more realistic counterparts doilftate the study of control system stability anficaty. By
arranging that diérent sets of control loops can be eattd over different periods, it is possible to implement
ary concevable control rgime (een conceptual rgimes for which no actual hardwe is &ailable).

IMPLEMENTATION
The implementation of a prototype simulation assisted controller required theirigllelements:

i) A calibrated model of theuilding and H\AC system.

i)  Sensorgo measure all critical boundary conditiongtéenal temperature, solar radiation etc) and internal
conditions (temperature, humidity etc); the data must be collated in the BEMS (i.e. within LabVIEW).

(i) A mechanism for transferring data to the simulator
(iv) A routine within the BEMS for initiating the simulation(s)adgst a predefined control strgye

(v) A simulator to predict internal conditions and ascertain parameters (start time, plant output etc) to meet
some usedefined criterion.

(vi) A controller to mak decisions based on modelling outputs.

(vii) A mechanism for transferring control data back to the BEMS (LabVIEW).
(viii) Actuatorscontrolled by the BEMS to initiate the control action.

(ix) A structure to allev iteration and updating of control actions.

An independent softare module s deeloped that, together with LabVIEW and ESHarms the prototype
simulation assisted controlleFhe softwvare module combineswsal of the elements outlined al® The three
programs operate as stioin Figure 2. The function of these three programs, and thaogenents required in
each case are summarized in the foily paragraphs.

ESP-r

The main use of the ESP-r system is for design decision suf@meral changes were required to cope with the

novel aspects of real-time simulation. The most important of these were the transfer of acquired data into ESP-r
databases, and the subsequent use of this measured data to maintain the correct model state until the current time,
after which the specified predioti controller was irvoked.

LabVIEW

In its role as a surrege BEMS, LabVIEW is the controlling entityrrograms were therefore written in Lab-
VIEW’s in-huilt G programming language to collect sensor data, to display and store this data in a format suit-
able for import to ESP-$’databases, to commission simulations, to kec#ie suggested control action and to
initiate that action.

BEMSto ESP-r link
This nev interface module operates on the basis of a control definition file containing thvariglioformation:

. the type of control simulation to be conducted (e.g. winter:heating, summer:cooling);

. designated controlled spaces;



. control action type(s) to bevestigated (e.g. optimum start/stop, nigletilation);
. available plant capacity for each space;

. control stratgy end time;

. target set-point for each space;

. target time at which set-point is to be attained.

The interbice module is controlled by the BEMS system (LabVIEW), and is passed a file containing LabVIEW’
monitored climate and internal temperature data. The module then performs thinépthsks:

(i) Smulation Synchronisation: The required start and stop dates for the simulation are determined, based on the
time-stamped data contained within the filevidted by LabVIEW The program also calculates a simulation fre-
gueng (time step) based on the sampling rate of the monitored data.

(ii) Climate Prediction: The LabVIEW data file is read and its climate information used to predict weather condi-
tions for the net 24 to 48 hours. At this stage, only a structure for short-term climate prediction has been imple-
mented with a simple algorithm: furtheovk will be required to deslop this function.

(iii) Control Strategy Preparation: Based on the control action type specified in the control definition file, the
interface module deslops a suitable control stragefor use in the ESP-r simulation.

Firstly, the controlled space temperatures are held to those contained in the monitored data passed by LabVIEW
until time t, the last monitored time in the file, after which the simulatimtves freely (with predicted climate
data) until time 4.

Secondly the module determines the plant action start time: this is eitha@negld or retarded based on the
progress of the predigt smulation. Plant action is made according to a defined plant controlgstratél time
t, the specified shut ém time.

(iv) Smulation Commissioning: Based on the calculated simulation start and stop dates, simulation fiequenc
and wuser defined control strgye the interice module commissions n simulations (where

N = (tsiop — tstar) X L/frequency). Ineach of these simulations a control parameter (e.g. plant start time) is
changed by a fed increment.The parameters for the simulation are passed to the simulator in the form of a
control definition file and a simulation parameter file (defining the pexiedwhich the simulation is to be run

and the time step of the simulation).

(V) Results Interpretation : At each iteration, the intemte module xamines the simulation output and compares

the \alue of the controlled spacanable reached at the gat time with that specified in the control definition

file. If the controlled wlue is not acceptable then another simulation is commissioned with the plant action time
t, adwvanced or retarded by one time increment depending on the type of simulation being conducted. If the con-
trolled value is within bounds then the sequence of simulations is stopped and the timealnd/atich meets

the control criteria reported back to LabVIEW

As a result of these ddopments, it is possible to implement the functions listechinlé 1. Br the purposes of

this project, one commonly used functioasmested—optimum start contrdlhe folloving sections describes
experiments that were set up to test the real-time simulation link - the first is a simple laboratory rig, the second a
full size test room arironment.

PRELIMINARY EXPERIMENT

This experimental configuration & designed to test the practicality arféeaiveness of the simulation assisted
controller and to demonstrate real-time use of simulation for control purposes. A simple test dged, com-
prising an opaque box, a 150Wlb as a heat source, internal amteenal mechanically aspirated temperature
sensors and a computer running the BEMS configured LabVIEW programs, the spetéaitied ersion of
ESP-r and the meinterface module (Figure 3).




Several experiments were conducted based on optimum start control. In these, LabVIEW commissioned a series
of ESP-r simulations with the aim of determining at what time, the heat source inside theutdxe&ed to be
switched on so that the internal air temperatuoald reach the set-point temperatuRrediction of switch-on

time was generally found to be reasonabléne experiments demonstrated the practicality of the contraet

the accurag of the results, for a roughly calibrated model, were encouradiitgire 4 shws the results for one

of the experiments conducted.

TEST CELL EXPERIMENT

A more realistic scale testas conducted in the @inonmental testdcility at Hongwell’'s Newhouse site in
Scotland. This dcility consists of tw realistically dimensioned rooms surrounded by temperature controlled
voids (Figure 5). The constructions used in the test rooms areudd ke found in a real UK dwelling (insulated
cavity walls, with double glazed winels). Each room is heated by a central boiler; there are atstotwtem-
perature hot ater radiators in each roonfwo dedicated PCs running LabVIEW monitor heating system tem-
peratures, room air temperatures aaoit temperatures.

An ESP-r model of the test roomasvdeeloped (Figure 6) using geometrical and construction data supplied by
Honegywell. This model, along with ESP-r itselfaw installed on the PC monitoring test room 1. The LabVIEW
programs described pfieusly were modified and lirdd to the eisting test room data acquisition program.

The ESP-r model as firstly calibrated using data from a heating sequence conducted on test room 1: the room
was heated at full paver (using one radiator) for whours and allewed to cool for 3 hoursThis sequence a&s
repeated twice. The same heating sequerasesimulated with the ESP-r model and predicted room temperature
were deemed to be sigfently close to that of the real room for the purposes ofitherenent.

The main gperiment ivolved using simulation assisted control to predict the optimum start time for the test
room 1 heating systenData collection s at 1 minute inteals. At the start of thexperiment, the test rooms
were left in a free-floating state for 24 houiBhe surrounding eids remained unconditioned throughout the
experiment, while the adjacent test room (being used for anctperiment) vas maintained at 2&. Thesim-
ulation controller vas set to determine the switch-on time required to bring the room to a temperatut€ of 25
with a nominal 1200W heat inpuEigure 7 shws the results of thexperiment, with the actual collected tem-
perature data superimposed upon the simulatkabs.

In the preceding 24 hours the room temperature floated at arof@d Zlven a 5°C set-point and tayet of
11:00, ESP-r predicted a heating system switch on time of 10:20. Note that the room tempeatuoe at
exactly 25C a this time as the simulated temperatugsvweompared to the set-point with a tolerance@5°C.

When the test room heatingae/ switched on, the room reached@%t 11:06. The room temperature coincided
with the ESP-r room temperature prediction at 11:02. From Figure 7, it is clear that ESP-r shgiptigdicts

the response of the test room to heating, with the prediction leading the actual room tempataver,

given the rudimentary calibration of the model, the predétierformance of the simulation assisted control tool
was encouraging. Measureahd simulated temperatures coincided with a temporal error of 5%, maximum error
in temperature predictionag around IC and the actual set-pointag reached 6 minutes later than predicted b
within the time interal of one simulation time increment (10 minutes).

Subsequent alterations to the model, including a more accurate representation of the radiator which heats the test
room, qaveresults which gvea doser match to the measured data. Figure 8vshthe performance of the re-
calibrated model compared to the same test data. Note thevamaat in the simulated room dynamics during

the heating phase.

CONCLUSIONS
This research as conducted to test the feasibility of using simulation to enhance the control capabilities of
BEMS. Building and plant control functions amenable to simulation assisted control were identified.

Modifications to the ESP-r system were undeztato allav real-time simulation (i.e. simulation using data as it
is gathered and which returns control actions for real-time implementation). This paper descrikeeriameat
undertalen with the prototype control system in full scale rooms within Mae#'s test ficility, demonstrating
how such a system could be used to generate optimum start tidrea. realistic scalexperiment, it vas shan



that it is feasible to include simulation in control decision makiggically, the simulation time (for a total of
about 6 diferent simulations of the Hopeell test fcility) was about 1 to 2 minutes on aviend Pentium PC.
Although only optimum start &as demonstrated, the structure is in place for other applications.

Further research is necessary todi® the idea further This should focus on testing on a full scalélding
subject to rternal climate ariation, intgrating impraed short-term climate prediction algorithms into the sim-
ulator, testing diferent control stratges, replacing LabVIEW with a modern BEMS systenveltming the link

to ESP-r (and/or other simulators) with BEMS standard protocols aetbgimg calibration stratges.
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Table 1: Applications suitable for simulation assisted control.

Application

ControlledComponent

Outpub be optimised

Optimum start/stop
Night-time cooling

Optimum set-back temperature

Boiler sequencing

Load shedding
Combined heat and per
District heating
Underfloor heating

Mixed mode entilation systems

Chaging of ice storage

Night operated ground ater source heat

pumps
Optimum control mode

Heating/ cooling system
Fans

Heating system

Boilers

Heating system
CHPengine

Heating system

Heating system

Fans

Refrigeration

Water pump/compressor

Various

Start/stop time
Hoursof operation
Set-back temperature
Heatingsystem diciency
Priority for heating
Hoursf operation
Forecasting of heat deman
Hours of operation
Start/stopime
Hoursf operation
Start time

Controlmode selection




EXTERNAL CONDITIONS

BUILDING AND PLANT SYSTEMS

Weather station sensors

Sensors

- temperature

- humidity
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Actuators

- switches

- valves

- dampers etc
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Figure 1: Simulation assisted control in BEMS.
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Figure 6: Exploded vig of the ESP-r model.
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Optimum Start Prediction Real Data vs Simulation Data:Re-calibrated Model
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Figure 8: Model prediction vs monitored data after re-calibration.
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