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A Subband-Selective Broadband GSC With
Cosine-Modulated Blocking Matrix

Wei Liu, Member, IEEE, Stephan Weiss, Member, IEEE, and Lajos Hanzo, Fellow, IEEE

Abstract—A novel subband-selective generalized sidelobe can-
celler (GSC) for partially adaptive broadband beamforming is pro-
posed. The columns of the blocking matrix are derived from a pro-
totype vector by cosine modulation, and the broadside constraint is
incorporated by imposing zeros on the prototype vector appropri-
ately. These columns constitute a series of bandpass filters, which
select signals with specific directions of arrival and frequencies.
This results in a high-pass-type bandlimited spectra of the blocking
matrix outputs, which is further exploited by subband decompo-
sition and suitably discarding the low-pass subbands prior to run-
ning independent unconstrained adaptive filters in each nonredun-
dant subband. By these steps, the computational complexity of a
GSC implementation is greatly reduced compared to fully adap-
tive GSC schemes, while performance is comparable or even en-
hanced due to subband decorrelation in both spatial and temporal
domains.

Index Terms—Generalized sidelobe canceller (GSC).

I. INTRODUCTION

ADAPTIVE broadband beamforming has found many ap-
plications in various areas ranging from sonar and radar

to wireless communications [1]. A general beamformer with
sensors receiving a signal of interest from the direction of

arrival (DOA) is shown in Fig. 1. In broadband beamforming,
to achieve high interference rejection and spatial resolution, ar-
rays with a large number of sensors and filter coefficients
have to be employed, resulting in a considerable computational
burden. To reduce the computational complexity, partially
adaptive beamforming [2]–[5] is an option, which employs
only a subset of the available degrees of freedom (DOFs) in
the filter update process at the expense of a somewhat reduced
performance. Recently, subband methods were also introduced
[6]–[8] for broadband beamforming with low computational
complexity, where subband adaptive filters with reduced update
rate and filter order are employed in the adaptive process of
beamforming. Because of the prewhitening effect, subband
methods can also achieve a faster convergence speed for
least mean square (LMS)-type adaptive algorithms than their
full-band counterparts.

In this paper, we combine partial adaptivity and subband pro-
cessing methods and propose a partially adaptive generalized
sidelobe canceller (GSC) [9] with a novel subband-selective co-
sine-modulated blocking matrix. In this structure, the column
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Fig. 1. Signal impinging from an angle � onto a broadband beamformer with
M sensors, each followed by a J-tap filter.

vectors of the blocking matrix of reduced dimension constitute
a series of cosine-modulated bandpass filters, which separate the
impinging signals and interference into components of different
DOAs and frequencies. This results in bandlimited spectra of
the blocking matrix output and is further exploited by subband
decomposition and appropriately discarding the low-pass sub-
bands prior to invoking independent unconstrained adaptive fil-
ters in each nonredundant subband. By these steps, the compu-
tational complexity of the system is greatly reduced. Addition-
ally, a faster convergence speed will be achieved by joint spatial
and spectral decorrelation. An advantage of this method is that
the subbands discarded during the adaptation can be determined
a priori and are independent of the signal environment. A fur-
ther reduction of the computational complexity can be poten-
tially achieved by monitoring the remaining subbands and dy-
namically discarding those subbands whose signal power falls
below a given threshold [5].

This paper is organized as follows. Section II briefly reviews
GSC-based fully and partially adaptive broadband beam-
forming prior to proposing a special subband-selective GSC.
For this scheme, a novel cosine-modulated blocking matrix is
introduced in Section III. Finally, simulations underlining the
benefit of our proposed method are discussed in Section IV,
and conclusions are drawn in Section V.

II. SUBBAND-SELECTIVE GENERALIZED SIDELOBE CANCELLER

A. GSC

A linearly constrained minimum variance (LCMV) beam-
former [10] performs the minimization of the variance or power
of the output signal of the structure in Fig. 1 with respect to
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some given spatial and spectral constraints. For a beamformer
with sensors and filter taps following each sensor, the
output can be expressed as

(1)

with

(2)

(3)

(4)

(5)

where and denote transpose and Hermitian transpose
operations, respectively. Each vector , , con-
tains the complex conjugate coefficients found at the th tap
position of the attached filters, and ,
holds the th data slice in the array corresponding to the th co-
efficient vector .

The LCMV problem can be formulated as

subject to (6)

where is the covariance matrix of the received array data in
, the constraint matrix, and the response

vector. If the signal of interest arrives from broadside, then
has the form

. . . (7)

and can be , where is an vector with all
its elements being equal to unity. A convenient way of solving
the constrained optimization in (6) is by using a GSC [9], which
splits the constrained optimization problem into two subspaces,
one fullfilling the constraints by a quiescent vector , the other
one orthognal to the constraints by a blocking matrix . There-
after, standard unconstrained optimization algorithms such as
LMS or recursive least squares (RLS) algorithms can be invoked
[11].

Fig. 2 shows the principle of a GSC [9], [12], where the upper
branch signal is obtained via

with (8)

Assume that we have , which is composed of
linearly independent column vectors

(9)

(10)

with . The multichannel input signal
of the following

multichannel adaptive filtering (MCAF) process is obtained by
, whereby the blocking matrix must satisfy

(11)

with given in (7) and being an element vector containing
ones. As only (11) has to be satisfied, the dimension can be
selected arbitrarily with . The maximum value
corresponds to the fully adaptive GSC. When a large number of

Fig. 2. General structure of the GSC, where unconstrained adaptive
optimization is performed by a multichannel adaptive filter (MCAF).

Fig. 3. Characteristics of the L spatial filters contained in BBB.

sensors is employed, we can opt for a smaller value of , i.e.,
, resulting in a partially adaptive GSC [3], which

has a reduced number of DOFs and offers reduced complexity
traded off against a generally somewhat inferior performance.
In Section III, we will trade the loss of DOFs against a specific
design of the blocking matrix.

B. Partially Adaptive Subband-Selective GSC

Consider a unity amplitude complex input wave with angular
frequency and DOA . Referring to Fig. 1, the waveform im-
pinges with a time delay on adjacent sensors separated by

in a medium with propagation speed . The received phase
vector at the sensor array, , is

with
(12)

Assume that the array sensors are spaced by half a wavelength
of the maximum signal frequency and the temporal sampling
frequency is twice the maximum signal frequency, i.e.,

, where is the temporal sampling period; then,
we get . Noting that , where is the
normalized angular frequency of the signal, the phase vector can
be written as

(13)

Using the substitution , the th output of the
blocking matrix, , , can be denoted as

(14)

with being a Fourier transform pair.
When the beamformer is constrained to receive the signal of

interest from broadside, the blocking matrix has to suppress any
signal impinging from . Therefore, at the response
of has to be zero, which has been indicated in (11).
Now, we arrange , , over the interval

as shown in Fig. 3, satisfying

for
otherwise.

(15)
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Fig. 4. Temporal filtering effect of the lth spatial filter in BBB.

Fig. 5. Frequency response of a bandpass filter as an example for the column
vectors of BBB.

As when , the possible max-
imum frequency component of the th output is ,
which corresponds to , while the possible
minimum frequency component is , which corre-
sponds to . Then, we have the response of
as a function of in the following:

for
otherwise

(16)

as shown in Fig. 4.
As a simple example to show this effect, Fig. 5 depicts the

frequency response of a 30-tap bandpass filter designed by the
MATLAB function remez [13]. Its magnitude response with re-
spect to signals of different frequencies and DOAs is shown in
Fig. 6. To see its highpass filtering effect more clearly, the mag-
nitude response is drawn over frequency only in Fig. 7, yielding
an ensemble of curves for the various DOA .

Thus, the blocking matrix not only decomposes the received
signals and interferences in the spatial domain, but also in the
temporal domain, where the column vectors of simultane-
ously perform a temporal high-pass filtering operation. With
increasing , these filters are associated with a tighter and tighter
highpass spectrum and the last output only contains the
ultimate highpass component. Thus, if we decompose each of
these highpass signals into subbands in a similar way as in [7] and
[14], the subband signals residing in the corresponding lowpass
subbands will be zero and can be omitted from the subsequent
subband adaptive processing. This subband setup is shown in
Fig. 8. The blocks labeled perform analysis operations, split-
ting the signal into frequency bands by means of a -channel
filter bank with decimation ratio . Within each subband,
an independent unconstrained multichannel adaptive filter is
operated, and a synthesis filter bank, labeled , recombines the
different subsystem outputs to the full-band output .

Let us now analyze the computational complexity of the above
system. The adaptation in subbands requires only approximately

(or ) of the operations required for a full-band
adaptive algorithm with a complexity of (or ),
where is the total number of coefficients in the full-band
realization [7]. If sufficiently selective column vectors can be
designed, the first MCAF would be a single channel
adaptive filter drawing its low-frequency input solely from the
first branch of . The second MCAF block in Fig. 8
will most likely only cover some of the lower branches of ,
while finally only the last MCAF consists of all of the

nonsparse channels. Thus, under ideal conditions, on average
the dimensionality of the MCAFs can be reduced by half, with a
proportional decrease in computational complexity. Considering
the whole subband-selective GSC, only (or

) of the computations of the traditional fully
adaptive GSC schemes are required.

As an example for discarding channels in the MCAF blocks,
assume a scenario with real valued sensor signals and a blocking
matrix with columns, whereby the frequency responses

of the column vectors are ideal as given in Fig. 9(a).
By employing eight-channel oversampled generalized
DFT (GDFT) filter banks [15], [16] with frequency responses
shown in Fig. 9(b), each of the blocking matrix outputs ,

, is decomposed into eight subband signals ,
. They form, in total, eight subband MCAF

blocks, as shown in Fig. 10. Since the input signals are real, we
only need to process the first four subband MCAF blocks. From
the characteristics of the frequency responses in Fig. 9(a) and
(b), it can be seen that some subband channels will have zero
power and can be discarded. The pattern for discarding these
channels is given in Fig. 10, where the discarded subbands in the
last four subband MCAF blocks are also shown for complete-
ness. With increasing and , the number of discarded sub-
band channels becomes approximately half of the total number
of subbands. However, in practice, the frequency responses of
the column vectors and the filter banks are not ideal and finite
transition bands are unavoidable, such that the number of dis-
carded subbands will be smaller than in the ideal situation.

III. COSINE-MODULATED BLOCKING MATRIX

In our subband-selective GSC, the blocking matrix plays a
central role and a column vector design with a good band-selec-
tive property is of great importance. We may design each of the
column vectors independently subject to the constraint in (11).
In order to reduce the design and implementation complexity of
the blocking matrix, here we propose a cosine-modulated ver-
sion, where all the column vectors are derived from a prototype
vector by cosine-modulation, which is a widely used method
in the implementation of filter banks [17]. The broadside con-
straint can be guaranteed by imposing zeros appropriately on
the prototype vector.

Assume that the prototype vector is , .
It is shifted along the frequency axis by and

using type-IV cosine modulation [17] to
obtain the th column vector ,

(17)
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Fig. 6. Three-dimensional magnitude response of a bandpass filter to signals with different frequencies and DOAs.

Fig. 7. Response of a bandpass filter to signals with different frequencies as a column vector of the blocking matrix BBB.

Fig. 8. Subband decomposition applied to the output of the blocking matrix.
Independent MCAF (as defined in Fig. 2) is applied to each subband.

In fact, these column vectors constitute the last analysis
filters in an -channel maximally decimated cosine-mod-
ulated filter bank system. If the polyphase matrix of the analysis

Fig. 9. (a) Frequency responses of the four-column vectors B (e ),
l = 0; 1; 2; 3. (b) Frequency responses of the eight-channel analysis filter bank
H (e ), k = 0; . . . ; 7.

filter bank is paraunitary, then this filter bank system is perfect
reconstructing, and the column vectors are thus orthogonal to
each other [17]. Here, orthogonality is not required; however,
the column vectors have to exhibit a good band-selection
property and fulfill the broadside constraint .
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Fig. 10. Components of the subband MCAF blocks (where only shaded
squares will be processed; remaining unshaded subband channels are
discarded).

To ensure the zero response after mod-
ulation, the frequency response of the proto-
type vector should have one zero at each point of

, . If we factorize
into two parts according to

with

(18)

then the broadside constraint will be automatically satisfied for
all the column vectors and the free parameters contained in
can be used to optimize its frequency response. By this factor-
ization, the design of the blocking matrix becomes an uncon-
strained optimization problem of the prototype vector. The ob-
jective function we minimize is

(19)

where is the stop-band edge. To solve this unconstrained
optimization problem, we employ here the subroutines
BCONF/DBCONF of the IMSL library [18]. A design example
for the blocking matrix with sensors and
column vectors is given in Fig. 11.

In fact, the constraint in (11) can be regarded as the zero-order
derivative constraint [12]. If -order derivative constraints
[12] are employed for the GSC, we can replace in (18) by

. Note however that too many DOFs might be sacrificed
and a satisfying performance may not be achieved for small-
scale arrays.

IV. SIMULATIONS AND RESULTS

The following simulation is based on a beamformer setup
with sensors and taps for each attached
sensor filter. The signal of interest illuminates the array from
broadside and two interfering signals impinge from
and , respectively, both of which cover the fre-
quency band with a signal-to-interference

Fig. 11. A design example for a 28� 11 blocking matrix.

Fig. 12. Frequency responses of the 21� 10 blocking matrix.

Fig. 13. Frequency responses of theK = 12 channel filter banks decimated
by N = 10.

ratio (SIR) of 30 dB. Additionally, all sensors receive spec-
trally and spatially uncorrelated noise at 20-dB signal-to-noise
(SNR).

In our subband-selective GSC, the dimension of is 21 10
, with its characteristic shown in Fig. 12. Each of

the blocking matrix outputs and the reference signal are
divided into subbands by oversampled GDFT filter
banks [15], [16] with decimation ratio . The frequency
responses of the analysis filters, which are based on a prototype
filter with 240 coefficients, are depicted in Fig. 13. The adaptive
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Fig. 14. Channels discarded in each MCAF block in our simulation (where only shaded squares will be processed; remaining unshaded subband channels are
discarded).

Fig. 15. Resulting beampattern for the subband-selective GSC over the frequency band [0:3�; 0:7�].

filter length in each subband is . In each MCAF block,
we discard channels with very low signal power according to
Fig. 14.

The beamformer’s response of the subband-selective GSC is
shown in Fig. 15 over the frequency band .
From this beampattern, we see that the subband-selective GSC
is capable of suppressing the interference effectively by forming
appropriate nulls in the directions of interference.

Fig. 16 shows the learning curves of a normalized LMS
(NLMS) algorithm with a step size of 0.3. The depicted
performance measure is the mean square value of the residual

error, i.e., the beamformer output minus the appropri-
ately delayed signal of interest. The convergence rate of the
subband-selective GSC is significantly improved over the
traditional fully adaptive full-band GSC due to the combined
decorrelation effect of both the blocking matrix and the filter
banks. This decorrelation is performed in the temporal domain
by the filter banks and in both the temporal and spatial domains
by the blocking matrix, as shown by (15) and (16). In terms
of computational complexity, the proposed subband-selec-
tive GSC only needs 37% multiplications of its full-band
counterpart.
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Fig. 16. Learning curves of a full-band fully adaptive GSC and the proposed subband-selective GSC.

V. CONCLUSION

A spatially/spectrally subband-selective GSC for partially
adaptive broadband beamforming with cosine-modulated
blocking matrix has been proposed. In this structure, the
column vectors of the blocking matrix are derived from a proto-
type vector by cosine-modulation and these vectors constitute
a series of bandpass filters, which decompose the impinging
signals into components of specific DOAs and frequencies and
lead to band-limited spectra of the blocking matrix outputs.
Subband methods were employed to remove the associated
redundancy by discarding the corresponding lowpass subbands.
The combination of partial adaptation, subband decomposition,
and discarding permits a considerably reduced computational
complexity. As demonstrated by our simulations, the proposed
approach also has the additional benefit of faster convergence
for LMS-type adaptive algorithms.
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