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Abstract: This paper considers the two-dimensional electromagnetic
scattering from periodic array of circular cylinders in which some cylinders
are removed, and presents a formulation based on the recursive transition-
matrix algorithm (RTMA). The RTMA was originally developed as an
accurate approach to the scattering problem of a finite number of cylinders,
and an approach to the problem of periodic cylinder array was then
developed with the help of the lattice sums technique. This paper introduces
the concept of the pseudo-periodic Fourier transform to the RTMA with
the lattice sums technique, and proposes a spectral-domain approach to the
problem of periodic cylinder array with defects.
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1. Introduction

The photonic crystals have been proposed as media in which photons can be manipulated.
These structures can exhibit a complete photonic bandgap. A lot of complete-photonic-bandgap
based applications, functionality is provided through the precise, controlled incorporation of
three-dimensionally engineered defects [1, 2]. The photonic crystals with multiple-hole defects
have been compared with a single hole defect photonic crystal structures to demonstrate the
advantage of using the multiple-hole defects for sensing applications [3]. In laser technology,
the decimated photonic crystal lattices play important role [4]. These lattices have reduced
number of holes, which enhance the current and heat conductive paths from the optical cavity.
Many of these photonic crystals consist of arrays of dielectric circular cylinders, and more
effective technique is often required to analyze the electromagnetic fields in the cylinder array.

The recursive transition-matrix algorithm (RTMA) [5, 6] is one of the most commonly used
approaches to the electromagnetic scattering from a finite number of parallel cylinders. It uses
the cylindrical-wave expansions to express the field components and the boundary conditions
at the cylinder surfaces are derived using Graf’s addition theorem. Roussel et al. [7] extended
the RTMA to the plane-wave scattering from periodic cylinder array, which consists of infinite
number of cylinders. When the plane-wave illuminates a periodic structure, the Floquet theo-
rem asserts that the scattered fields are pseudo-periodic (namely, each field component is given
by a product of a periodic function and an exponential phase factor, and has an equidistant
discrete spectrum in the wavenumber space). Many of the numerical approaches to periodic
structures use this property, and the formulation proposed by Roussel et al. is also based on
the Floquet theorem. If the incident field is not the plane-wave or the structure is not perfectly
periodic, the fields generally have continuous spectra in the wavenumber space, and an artificial
discretization in the wavenumber space is necessary for the spectral-domain approach. Watan-
abe and Yasumoto introduced the pseudo-periodic Fourier transform (PPFT) [8] to consider the
discretization scheme for periodic structures for non-plane incident waves, and this approach
has applied to the scattering problem of the circular cylinders located near the periodic cylinder
array [9]. This paper considers the electromagnetic scattering problem of the periodic circular
cylinder array in which some cylinders are removed, and presents a formulation based on the
RTMA with the help of PPFT concept. Since the PPFT makes the fields pseudo-periodic, the
conventional grating theories with the use of the generalized Fourier series expansions also be-
come possible to be applied to the scattering problems of imperfectly periodic structures. The
combinations with the rigorous coupled-wave analysis and with the coordinate transformation
method were recently proposed in separated papers [10, 11].

2. Settings of the problem

The present paper considers the scattering problem of electromagnetic fields with a time-
dependence exp(−iω t) from a periodic circular cylinder array with defects. Figure 1 shows
an example of the structures under consideration. The structure consists of identical circular
cylinders, which are infinitely long in the z-direction and situated parallel to each other. The
cylinders are made with a homogeneous and isotropic medium described by the permittivity εc

and the permeability μc, and their radius is denoted by a. For a lossy medium, we use com-
plex values for the permittivity and/or the permeability, and the terms concerning to the current
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Fig. 1. Periodic circular cylinder array with defects.

densities are eliminated in the following formulation. The surrounding region is filled by a
lossless, homogeneous, and isotropic medium with the permittivity εs and the permeability μs.
The wavenumber and the characteristic impedance in each medium are respectively denoted
by k j = ω (ε j μ j)

1/2 and ζ j = (μ j/ε j)
1/2 for j = c,s. The axis of the lth-cylinder is located

at (x,y) = (l d,0) for integer l, though some cylinders are removed from the periodic array.
To indicate the removed cylinders, we introduce a notation D , which is a finite subset of the
integer set Z. If an integer l′ is an element of D , the cylinder whose center is at (x,y) = (l′ d,0)
is removed. Also, the complement of D in Z is denoted by Dc. The electromagnetic fields are
supposed to be uniform in the z-direction, and two-dimensional scattering problem is here con-
sidered. Two fundamental polarizations are expressed by TM and TE, in which the magnetic
and the electric fields are respectively perpendicular to the z-axis. We denote the z-component
of the electric field for the TM-polarization and the z-component of the magnetic field for the
TE-polarization by ψ(x,y), and show the formulation for both polarizations simultaneously.
The incident field ψ(i)(x,y) is supposed to illuminate the cylinders from outside and there exists
no source inside the cylinders.

3. Formulation

The present formulation uses mainly the cylindrical-wave expansions to express the fields in
the surrounding medium. The basis functions for the cylindrical-wave expansion are here given
by column matrices ggg(Z)(x,y), in which the nth-component is given as

(
ggg(Z)(x,y)

)
n
= Zn(ks ρ(x,y))einφ(x,y) (1)

with

ρ(x,y) =
√

x2 + y2 (2)

φ(x,y) = arg(x+ i y) (3)

where Z specifies the cylindrical functions associating with the cylindrical-wave bases in such
a way that Z = J denotes the Bessel function and Z = H(1) denotes the Hankel function of
the first kind. Let (xq,yq) and (xr,yr) be the reference points of the bases. Then, when (x,y) is
inside a circle with center (xr,yr) and radius ρ(xq − xr,yq − yr), the translation relation for the
cylindrical-wave bases is given by

ggg(Z)(x− xq,y− yq) = GGG(Z)(xr − xq,yr − yq)ggg(J)(x− xr,y− yr) (4)

where GGG(Z)(x,y) denotes the Toeplitz matrix whose (n,m)-entries are given by
(

GGG(Z)(x,y)
)

n,m
= Zn−m(ks ρ(x,y))ei(n−m)φ(x,y). (5)
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We have supposed that there exists no sources inside the inhomogeneous region −a ≤ y ≤ a
Therefore, if we choose the reference point at (x,y) = (qd,0) for an integer q, the incident field
in the surrounding medium can be expanded in a series of the cylindrical-waves associated with
the Bessel functions as

ψ(i)(x,y) = ggg(J)(x−qd,y)t aaa(i)q (6)

where the superscript t denotes the transpose and aaa(i)q is a column matrix generated by the
expansion coefficients. On the other hand, the scattered field ψ(s)(x,y) outside the cylinders
consists of the outward propagating waves from the cylinders, and it can be expressed as

ψ(s)(x,y) = ∑
q∈Dc

ggg(H
(1))(x−qd,y)t aaa(s)q (7)

where aaa(s)q denotes the column matrix generated by the expansion coefficients of the scattered
waves from the qth-cylinder. Using the translation relation Eq. (4), the total field near but out-
side the qth-cylinder (q ∈ Dc) can be expressed as

ψ(x,y) = ggg(J)(x−qd,y)t
[

aaa(i)q + ∑
r∈Dc\{q}

GGG(H(1))((q− r)d,0)t aaa(s)r

]

+ggg(H
(1))(x−qd,y)t aaa(s)q (8)

where Dc\{q} denotes the set in which an element q is removed from Dc. The first and the
second terms on the right-hand side of Eq. (8) are given by superpositions of cylindrical-waves
associated with the Bessel function and the Hankel function of the first kind, respectively, and
they represent the incident and the scattered fields for the qth-cylinder. Since the relation be-
tween the coefficient matrices of the incident and the scattered fields are given by the transition-
matrix (T-matrix), we have

aaa(s)q = TTT

[
aaa(i)q + ∑

r∈Dc\{q}
GGG(H(1))((q− r)d,0)t aaa(s)r

]
. (9)

The (n,m)-entries of the T-matirx TTT are given by

(TTT )n,m =

⎧
⎨
⎩

δn,m
ζs Jn(ks a)J′n(kc a)−ζc J′n(ks a)Jn(kc a)

ζc H(1)′
n (ks a)Jn(kc a)−ζs H(1)

n (ks a)J′n(kc a)
for TM-polarization

δn,m
ζc Jn(ks a)J′n(kc a)−ζs J′n(ks a)Jn(kc a)

ζs H(1)′
n (ks a)Jn(kc a)−ζc H(1)

n (ks a)J′n(kc a)
for TE-polarization

(10)

where the symbol δn,m stands for Kronecker’s delta.
The process up to here is same with that of the conventional RTMA [5, 6]. The conventional

method considers the problem of a finite number of cylinders and the coefficient matrices {aaa(s)q }
are numerically obtained from Eq. (9) by truncating the expansions. However, the structure
under consideration includes an infinite number of cylinders, and Eq. (9) cannot be directly
solved. To resolve this difficulty, we introduce the PPFT. Let f (x) be a function of x. Then the
PPFT and its inverse transform are formally defined by

f (x;ξ ) = ∑
q∈Z

f (x−qd)eiqd ξ (11)

f (x) =
1
kd

∫ kd/2

−kd/2
f (x;ξ )dξ (12)
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where ξ is the transform parameter and kd = 2π/d denotes the inverse lattice constant.
The transformed functions have a pseudo-periodic property in terms of x: f (x − qd;ξ ) =
f (x;ξ ) exp(−iqd ξ ) for any integer q, and also have a periodic property in terms of ξ :
f (x;ξ − qkd) = f (x;ξ ). Applying the PPFT to the incident and the scattered fields, the trans-
formed fields are expressed as follows

ψ(i)(x;ξ ,y) = ggg(J)(x,y)t aaa(i)(ξ ) (13)

ψ(s)(x;ξ ,y) = ∑
q∈Z

ggg(H
(1))(x−qd,y)t aaa(s)(ξ )eiqd ξ (14)

with

aaa(i)(ξ ) = ∑
q∈Z

aaa(i)q e−iqd ξ (15)

aaa(s)(ξ ) = ∑
q∈Dc

aaa(s)q e−iqd ξ . (16)

The column matrices aaa(i)(ξ ) and aaa(s)(ξ ) give the coefficients of the cylindrical-wave expansions
for the reference point at (x,y) = (0,0), and they are periodic in terms of ξ with the period
kd . The original coefficient matrices are inversely obtained by integrating on the transform
parameter ξ as

aaa( f )
q =

1
kd

∫ kd/2

−kd/2
aaa( f )(ξ )eiqd ξ dξ (17)

for f = i,s.
Substituting Eq. (9) into Eq. (16) and using Eqs. (15) and (17), we obtain the following

relation:

MMM(p)(ξ )aaa(s)(ξ )+
1
kd

∫ kd/2

−kd/2
MMM(d)(ξ ,ξ ′)aaa(s)(ξ ′)dξ ′

= aaa(i)(ξ )+
1
kd

∫ kd/2

−kd/2
c(d)(ξ ,ξ ′)aaa(i)(ξ ′)dξ ′ (18)

with

MMM(p)(ξ ) = TTT−1 −LLL(ξ ) (19)

MMM(d)(ξ ,ξ ′) =−c(d)(ξ ,ξ ′)LLL(ξ ′) (20)

LLL(ξ ) = ∑
q∈Z\{0}

GGG(H(1))(−qd,0)t eiqd ξ (21)

c(d)(ξ ,ξ ′) =− ∑
q∈D

e−iqd(ξ−ξ ′) (22)

where the superscript −1 stands for the matrix inverse. The entries of matrix LLL(ξ ) are called
the lattice sums [12] and known to converge very slowly. Yasumoto and Yoshitomi [13] have
proposed an integral representation of the lattice sums, which makes it possible to obtain the ac-
curate values of lattice sums in practical computation. By contrast, the scalar function c(d)(ξ ,ξ ′)
is given by a sum of finite terms, and it expresses the effects of defects in the periodic array.

The scattered field ψ(s)(x,y) is here decomposed into the scattered field by the periodic cylin-
der array without defects ψ(s,p)(x,y) and the residual field ψ(s,d)(x,y) = ψ(s)(x,y)−ψ(s,p)(x,y).

#162163 - $15.00 USD Received 26 Jan 2012; revised 13 Mar 2012; accepted 23 Mar 2012; published 24 Apr 2012
(C) 2012 OSA 7 May 2012 / Vol. 20,  No. 10 / OPTICS EXPRESS  10650



Since the transformed field ψ(s,p)(x;ξ ,y) can be expressed in the same form with Eq. (14), the
coefficient matrix aaa(s)(ξ ) is also decomposed as

aaa(s)(ξ ) = aaa(s,p)(ξ )+aaa(s,d)(ξ ) (23)

where aaa(s,p)(ξ ) and aaa(s,d)(ξ ) denote the coefficient matrices of ψ(s,p)(x;ξ ,y) and ψ(s,d)(x;ξ ,y),
respectively. If there is no defect in the cylinder array (D = /0), the matrices MMM(d)(ξ ,ξ ′) and
c(d)(ξ ,ξ ′) vanish. Therefore, from Eq. (18), the coefficient matrix for the scattered field by the
periodic cylinder array is given as

aaa(s,p)(ξ ) = MMM(p)(ξ )−1 aaa(i)(ξ ). (24)

Substituting Eqs. (23) and (24) into Eq. (18), we may obtain the following equation for aaa(s,d)(ξ ):

MMM(p)(ξ )aaa(s,d)(ξ )+
1
kd

∫ kd/2

−kd/2
MMM(d)(ξ ,ξ ′)aaa(s,d)(ξ ′)dξ ′

=
1
kd

∫ kd/2

−kd/2

(
c(d)(ξ ,ξ ′)aaa(i)(ξ ′)−MMM(d)(ξ ,ξ ′)aaa(s,p)(ξ ′)

)
dξ ′. (25)

To solve the integral Eq. (25), we introduce here a discretization in the transform parameter
ξ . Considering the periodicity, we take L sample points {ξl}L

l=1 in the Brillouin zone −kd/2 <
ξ ≤ kd , and assume that Eq. (25) is satisfied at these points. Also, the integral on the left-hand
side is approximated by an appropriate numerical integration scheme with the use of same
sample points. We denote the respective weights of the sample points by {wl}L

l=1. Then, we
may derive the following relation:

L

∑
l′=1

MMMl,l′ aaa
(s,d)(ξl′) = bbbl (26)

with

MMMl,l′ = δl,l′ MMM
(p)(ξl)+

wl′

kd
MMM(d)(ξl ,ξl′) (27)

bbbl =
1
kd

∫ kd/2

−kd/2

(
c(d)(ξl ,ξ ′)aaa(i)(ξ ′)−MMM(d)(ξl ,ξ ′)aaa(s,p)(ξ ′)

)
dξ ′. (28)

From Eq. (26), the coefficient matrices of the residual field at the sample point is obtained by

⎛
⎜⎝

aaa(s,d)(ξ1)
...

aaa(s,d)(ξL)

⎞
⎟⎠=

⎛
⎜⎝

MMM1,1 · · · MMM1,L
...

. . .
...

MMML,1 · · · MMML,L

⎞
⎟⎠

−1⎛
⎜⎝

bbb1
...

bbbL

⎞
⎟⎠ . (29)

4. Numerical experiments

To validate the present formulation, we consider a specific example of periodic circular cylin-
der array with defects. The parameters are chosen as follows: d = 0.8λ0, a = 0.4d, εc = 4ε0,
εs = ε0, μc = μs = μ0, and three cylinders with the center at (x,y) = (−2d,0), (0,0), (2d,0)
are removed from the perfectly periodic array (D = {−2,0,2}). When implementing a practi-
cal computation, the cylindrical-wave expansions must be truncated. We denote the truncation
order for the expansions by K that truncates the expansions from −Kth- to Kth-order.
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4.1. Line-source excitation

First, we consider the fields excited by a line-source of unit amplitude, which is situated parallel
to the z-axis at (x,y) = (x0,y0) for y0 > a or y0 <−a. The incident field is then expressed as

ψ(i)(x,y) = H(1)
0 (ks ρ(x− x0,y− y0)). (30)

Using the Fourier integral representation for the Hankel function of the first kind of order zero
[5], the nth-components of the column matrices aaa(i)(ξ ) are given by

(
aaa(i)(ξ )

)
n
= ∑

q∈Z

2
d βq(ξ )

e−iαq(ξ )x0

⎧
⎨
⎩

(
iαq(ξ )−βq(ξ )

ks

)n
eiβq(ξ )y0 for y0 > a(

iαq(ξ )+βq(ξ )
ks

)n
e−iβq(ξ )y0 for y0 <−a

(31)

with

αq(ξ ) = ξ +qkd (32)

βq(ξ ) =
√

ks
2 −αq(ξ )2 (33)

where the infinite summation in Eq. (31) is also truncated in practical computation. We use
2K + 1 terms (from −Kth- to Kth-order terms) to obtain the following results. Also, we use
the same sample points {ξl}L

l=1 for aaa(i)(ξ ), and the column matrix bbbl given in Eq. (28) are then
approximated as

bbbl =
L

∑
l′=1

wl′

kd

(
c(d)(ξl ,ξl′)aaa(i)(ξl′)−MMM(d)(ξl ,ξl′)aaa(s,p)(ξl′)

)
. (34)

We set the location of the line-source at (x0,y0) = (d,2d), and the obtained field intensities
at (x,y) = (0,±d) are shown in Fig. 2. Figure 2(a) shows the convergence characteristics in
terms of the number of sample points L. The truncation order is set to K = 4 for calculating
these results. The dotted curves are the results of the trapezoidal scheme, which uses equidistant
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Fig. 2. Convergence of the field intensities at (x,y) = (0,±d) for a line-source excitation.
The dotted curves are obtained by the trapezoidal scheme, and the solid curves are ob-
tained by the Gauss-Legendre scheme applying to split subintervals. (a) Convergence on
the number of sample points L (b) Convergence on the truncation order K.
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sample points and equal weights. They oscillate and converge very slowly. The solid curves are
obtained by the discretization scheme used in Refs. [8, 9]. In this scheme, the Brillouin zone
is split at the Wood-Rayleigh anomalies and the Gauss-Legendre scheme is applied for each
subinterval to decide the sample points and weights. Figure 2(a) shows that this scheme is
effective to improve the convergence though the convergence for the TM-polarization is some
slower than that for the TE-polarization. Figure 2(a) shows the convergence in terms of the
truncation order for cylindrical-wave expansion K. The values are computed with L = 80, and
the sample points and the weights are determined by applying the Gauss-Legendre scheme for
the subintervals. The convergence with respect to the truncation order K is very fast. From the
physical point of view, the results of the present formulation are not expected to noticeably
different in many cases from those of the conventional RTMA [5] for the scattering from a
finite number of cylinders, if the cylinder number is large enough and the observation points
are located near the line-source. Here, we consider 98 cylinders located at (x,y) = (qd,0)
for q = ±1,±3,±4,±5, . . . ,±50, and the field intensities at (x,y) = (0,d) are calculated by
the conventional RTMA. The obtained values are 0.338 for the TM-polarization and 0.264
for the TE-polarization. These values are in good agreement with the results shown in Fig. 2.
The total field intensities near the defects are computed with L = 80 and K = 4 by changing
the observation point, and shown in Fig. 3. The positions of cylinder surfaces are indicated
by the white dashed lines and the obtained results seem to be proper. Using the cylindrical
coordinate (ρ(o),φ (o)) and applying the saddle-point method for ρ(o) → ∞ [14], an expression
of the scattered field in the far-zone is obtained, and Fig. 4 shows the absolute values of the
scattering pattern function.

We examine also the reciprocal property by using the reciprocity error defined by

σ(xp,yp;xq,yq) =

∣∣ψ(xp,yp;xq,yq)−ψ(xq,yq;xp,up)
∣∣∣∣ψ(xp,yp;xq,yq)

∣∣ (35)

where ψ(xp,yp;xq,yq) denotes the field observed at (xp,yp) for a line-source located at (xq,yq).
The reciprocity theorem requires that this function is zero when both (xp,yp) and (xq,yq) are

0

Line-Source

1

(a)

0

Line-Source

1

(b)

Fig. 3. Field intensities near a periodic cylinder array with defects for the line-source exci-
tation. (a) TM-polarization (b) TE-polarization.
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Fig. 5. Numerical results of reciprocity test for the line-source excitation.

located in the surrounding medium. We fix one point at (xp,yp) = (0,2d) and the other point
(xq,yq) is moved on the lines y=±d. The reciprocity errors at 101 equidistant points in −8d ≤
x ≤ 8d are calculated with L = 80 and N = 4 in the standard double-precision arithmetic, and
the obtained results are shown in Fig. 5. The obtained values are smaller than 3× 10−14 and,
considering the computation precision, it can be said that the reciprocity relation is perfectly
satisfied.

4.2. Plane-wave incidence

Next, we consider the plane-wave incidence problem. The angle of incidence θ (i) is measured
counter-clockwise from the x-axis, and the incident field of unit amplitude is expressed as

ψ(i)(x,y) = ei(kx x+ky y) (36)
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with kx =−ks cos(θ (i)) and ky =−ks sin(θ (i)). Then, the column matrices aaa(i)(ξ ), aaa(s,p)(ξ ), and
bbbl are given by

aaa(i)(ξ ) = kd aaa(i)0 ∑
q∈Z

δ (ξ − kx −qkd) (37)

aaa(s,p)(ξ ) = kd MMM(p)(kx)
−1 aaa(i)0 ∑

q∈Z
δ (ξ − kx −qkd) (38)

bbbl =
(

c(d)(ξl ,kx) III−MMM(d)(ξl ,kx)MMM(p)(kx)
−1
)

aaa(i)0 (39)

where III denotes the identity matrix and the nth-components of the column matrix aaa(i)0 are given
by

(
aaa(i)0

)
n
= e−in(θ (i)+ π

2 ). (40)

Figure 6 shows the results of the same convergence tests with Fig. 2 but for the angle of inci-
dence θ (i) = 70◦. The convergence characteristics are similar to those for the line-source exci-
tation, though the amplitudes of the oscillations appeared on the dotted curves are smaller. The
results of the present formulation are compared with the those of the conventional RTMA for 98
cylinders located at (x,y) = (qd,0) for q = ±1,±3,±4,±5, . . . ,±50. The values obtained by
the conventional RTMA are 1.377 for the TM-polarization and 0.417 for the TE-polarization.
These values are in good agreement with the results shown in Fig. 6. The total field intensities
near the defects and the scattering pattern of the residual field ψ(s,d) are computed with L = 80
and K = 4, and shown in Figs. 7 and 8, respectively. In this computation, the Brillouin zone is
split at the Wood-Rayleigh anomalies, and the sample points and the weights are determined
by applying the Gauss-Legendre scheme for the subintervals.

5. Concluding remarks

The paper has presented an accurate method for analyzing the two-dimensional electromag-
netic scattering from a periodic circular cylinder array in which some cylinders are removed.
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Fig. 6. Convergence of the field intensities at (x,y) = (0,±d) for the plane-wave incidence.
The dotted curves are obtained by the trapezoidal scheme, and the solid curves are ob-
tained by the Gauss-Legendre scheme applying to split subintervals. (a) Convergence on
the number of sample points L (b) Convergence on the truncation order K.
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Fig. 7. Field intensities near a periodic cylinder array with defects for the plane-wave inci-
dence. (a) TM-polarization (b) TE-polarization.
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Fig. 8. Scattering pattern of the residual field ψ(s,d) for the plane-wave incidence.

The present formulation was based on the RTMA with the lattice sums technique and the PPFT.
We have shown numerical results for the line-source excitation and the plane-wave incidence.
A simple discretization scheme presented in Ref. [8, 9] showed good convergences, and the nu-
merical results are validated by comparing with that for an array of a large number of cylinders.
The present formulation was also validated by the reciprocity test. The numerical results shown
in this paper were for the array of lossless dielectric circular cylinders. However, the conver-
gence characteristics for the array of lossy cylinders are similar in many cases. Also, the arrays
of the perfectly conducting cylinders or the non-circular cylinders are possible to be treated
by replacing the T-matrix, because only the T-matrix depends on the material and the shape of
cylinders in the present formulation. When the cylinders are made of an anisotropic material or
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the fields are not uniform in the direction of cylinder axes, the TM- and the TE-polarizations
cannot be decomposed, but the extension is straightforward.
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