VOLTAMMETRIC STUDIES OF REACTIVE BLACK 5 AND ITS APPLICATION IN WASTEWATER FROM BATIK INDUSTRY

by

NUR SYAMIMI BINTI ZAINUDIN

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

March 2014
ACKNOWLEDGEMENTS

All praise is to ALLAH SWT and blessing is upon His Prophet Muhammad SWT whose ultimate guidance that creates a meaningful purpose of this work.

I wish to express my sincere appreciation to my supervisors, Dr. Mohamad Hadzri Yaacob and Dr. Noor Zuhartini Md Muslim for their guidances and encouragements throughout this work. Besides, I would like to thank Universiti Sains Malaysia (USM) for awarding Short Term Grant No: 304/PPSK/61312057, Ministry of Education for awarding MyBrain15 scholarship, Mr Zulkhairi Othman and Mr Rosliza Harun for their assistances in completing the work and also Metrohm (Malaysia) Sdn Bhd for allowing me to use their instrument.

Special appreciation to my beloved parent, Mr Che Zainudin Che Husin and Mrs Saedah Ismail, my siblings and close friends for always supporting, encouraging and understanding me. Thank you very much.
TABLE OF CONTENTS

Acknowledgements ii
Table of Contents iii
List of Tables ix
List of Figures xii
List of Abbreviations xix
List of Symbols xx
Abstrak xxiii
Abstract xxv

CHAPTER I – LITERATURE REVIEW

1.1 Overview 1
1.2 Batik Wastewaters, Characteristics and Environmental Impacts 3
1.3 Dyes in General 4
1.4 Organic Dyes and The Subclasses 5
 1.4.1 Azo Dyes 5
 1.4.2 Reactive Dyes 7
 1.4.3 Vat Dyes 8
1.5 Analytical Methods for Determination of Textile Azo Dyes 9
 1.5.1 Spectrophotometric Determination of Textile Azo Dyes 9
 1.5.2 Chromatographic Determination of Textile Azo Dyes 11
 1.5.3 Capillary Electrophoresis Determination of Textile Azo Dyes 12
 1.5.4 Voltammetric Determination of Textile Azo Dyes 14
1.6 Voltammetric Determination of Azo Dyes in Various Applications 19
1.7 Voltammetric Technique 21
 1.7.1 Instrumentation in Voltammetric Measurement 22
 1.7.1.1 Working Electrode (WE) 23
 1.7.1.2 Auxiliary Electrode (AE) 29
1.7.1.3 Reference Electrode (RE) 30
1.7.2 Supporting Electrolyte 32
1.7.3 Current in Voltammetry 34
1.7.4 Types of Voltammetric Technique 36
1.7.4.1 Polarography 36
1.7.4.2 Cyclic Voltammetry (CV) 38
1.7.4.3 Stripping Voltammetry 41
1.7.4.3a Anodic Stripping Voltammetry (ASV) 42
1.7.4.3b Cathodic Stripping Voltammetry (CSV) 43
1.7.4.3c Adsorptive Stripping Voltammetry (AdSV) 43
1.7.4.4 Pulse Voltammetry 44
1.7.4.4a Differential Pulse Voltammetry (DPP) 44
1.7.4.4b Square Wave Voltammetry (SWV) 45
1.7.5 Qualitative and Quantitative Information of Voltammetry 46
1.8 Reactive Black 5 (RB5) Dye 46
1.9 Objectives and Scopes of Study 48
1.9.1 Objectives of Study 48
1.9.2 Scopes of Study 49

CHAPTER II – MATERIALS AND METHODS

2.1 Apparatus, Materials and Reagents 51
2.1.1 Apparatus 51
2.1.2 Materials 53
2.1.2.1 Reactive Black 5 (RB5) Dye Stock and Standard Solution 53
2.1.2.2 Others Azo Dyes Stock and Standard Solution 54
2.1.3 Reagents

2.1.3.1 Britton-Robinson Buffer (BRB) Solution

2.1.3.2 Sodium Hydroxide (NaOH) Solution, 0.1 M

2.1.3.3 Hydrochloric Acid (HCl) Solution, 0.1 M

2.1.3.4 Standard Copper (II) Solution, 20 mg/L

2.1.3.5 Standard Lead (II) Solution, 20 mg/L

2.1.3.6 Standard Cadmium (II) Solution, 20 mg/L

2.1.3.7 Standard Chromium (II) Solution, 20 mg/L

2.1.3.8 Standard Zinc (II) Solution, 20 mg/L

2.1.3.9 Standard Iron (II) Solution, 20 mg/L

2.1.3.10 Standard Manganese (II) Solution, 20 mg/L

2.1.3.11 Standard Nickel (II) Solution, 20 mg/L

2.1.3.12 Mixture of Tridodecylamine (TDA) and kerosene

2.2 Analytical Technique

2.2.1 General Procedure for Voltammetric Technique Analysis

2.2.2 Cyclic Voltammetry (CV) for Determination of RB5 Dye Standard Solution

2.2.2.1 Effect of pH of BRB Solution

2.2.2.2 Method Optimization

2.2.2.2a Effect of Scan Rate (v)

2.2.2.2b Effect of Increasing Dye Concentrations

2.2.2.2c Effect of Repetitive Cycles

2.2.3 Differential Pulse Cathodic Stripping Voltammetric (DPCSV) for Determination of RB5 Dye Standard Solution

2.2.3.1 Effect of pH of BRB Solution

2.2.3.2 Optimization of Instrumental Conditions

2.2.3.2a Effect of Scan Rate (v)

2.2.3.2b Effect of Accumulation Time (t_{acc})

2.2.3.2c Effect of Accumulation Potential (E_{acc})
CHAPTER III – RESULTS AND DISCUSSION

3.1 Cyclic Voltammetric Studies of RB5 Dye

3.1.1 BRB Solution and Instrumental Conditions

3.1.1.1 Effect of pH of BRB Solution

3.1.1.2 Effect of Various Scan Rate (v)

3.1.1.3 Effect of Increasing Dye Concentrations

3.1.1.4 Effect of Repetitive Cycles
3.1.2 Summary of Electroanalytical Properties of RB5 Dye 85

3.2 Differential Pulse Cathodic Stripping Voltammetric (DPCSV) Studies of RB5 Dye 86

3.2.1 BRB Solution and Instrumental Conditions 86

3.2.1.1 Effect of pH of BRB Solution 86

3.2.2 Optimization of Instrumental Conditions 90

3.2.2.1 In BRB Solution at pH 2.5 90

3.2.2.1a Effect of Scan Rate (ν) 91

3.2.2.1b Effect of Accumulation Time (t_{acc}) 92

3.2.2.1c Effect of Accumulation Potential (E_{acc}) 94

3.2.2.1d Effect of Pulse Amplitude 95

3.2.2.2 In BRB Solution at pH 9.0 96

3.2.2.2a Effect of Scan Rate (ν) 96

3.2.2.2b Effect of Accumulation Time (t_{acc}) 97

3.2.2.2c Effect of Accumulation Potential (E_{acc}) 98

3.2.2.2d Effect of Pulse Amplitude 99

3.2.3 Summary of the Overall Optimization Procedures 99

3.2.4 Calibration Curve of RB5 Dye and Validation of the Developed Method in BRB Solution at pH 2.5 102

3.2.4.1 Calibration Curve of RB5 Dye 102

3.2.4.2 Validation of the Developed Method 105

3.2.4.2a Precision and Repeatability 105

3.2.4.2b Accuracy 105

3.2.4.2c Ruggedness 108

3.2.4.2d Robustness 110

3.2.5 Calibration Curve of RB5 Dye and Validation of the Developed Method in BRB Solution at pH 9.0 112

3.2.5.1 Calibration Curve of RB5 Dye 112

3.2.5.2 Validation of the Developed Method 114

3.2.5.2a Precision and Repeatability 114

3.2.5.2b Accuracy 114
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.5.2c</td>
<td>Ruggedness</td>
<td>117</td>
</tr>
<tr>
<td>3.2.5.2d</td>
<td>Robustness</td>
<td>118</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Determination of Limit of Detection (LOD)</td>
<td>120</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Determination of Limit of Quantification (LOQ)</td>
<td>122</td>
</tr>
<tr>
<td>3.3</td>
<td>Interference Studies</td>
<td>123</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Interference Studies of Possible Heavy Metals</td>
<td>123</td>
</tr>
<tr>
<td>3.3.1.1</td>
<td>In BRB Solution at pH 2.5</td>
<td>124</td>
</tr>
<tr>
<td>3.3.1.2</td>
<td>In BRB Solution at pH 9.0</td>
<td>129</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Interference Studies of Other Possible Azo Dyes</td>
<td>131</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>In BRB Solution at pH 2.5</td>
<td>131</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>In BRB Solution at pH 9.0</td>
<td>134</td>
</tr>
<tr>
<td>3.4</td>
<td>Batik Wastewater Samples Analysis</td>
<td>136</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Physical Parameters of Batik Wastewater Samples</td>
<td>136</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Recovery Studies of RB5 Dye in Batik Wastewater Samples</td>
<td>137</td>
</tr>
<tr>
<td>3.4.2.1</td>
<td>In BRB Solution at pH 2.5</td>
<td>138</td>
</tr>
<tr>
<td>3.4.2.2</td>
<td>In BRB Solution at pH 9.0</td>
<td>141</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Voltammetric Determination of RB5 Dye in Batik Wastewater Samples</td>
<td>144</td>
</tr>
<tr>
<td>3.4.4</td>
<td>UV-VIS Spectrophotometric Determination of RB5 Dye as Comparison Method</td>
<td>151</td>
</tr>
<tr>
<td>3.5</td>
<td>Liquid-liquid Extraction (LLE) of RB5 Dye Standard Solution</td>
<td>156</td>
</tr>
</tbody>
</table>

CHAPTER IV-CONCLUSIONS AND RECOMMENDATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Conclusions</td>
<td>159</td>
</tr>
<tr>
<td>4.2</td>
<td>Recommendations</td>
<td>161</td>
</tr>
</tbody>
</table>

REFERENCES | 163
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Various supporting electrolyte in voltammetric determination</td>
<td>33</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Electroducible and electrooxidisable functional groups</td>
<td>37</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>The characteristics of different type of electrochemical reactions</td>
<td>40</td>
</tr>
<tr>
<td>Table 1.4</td>
<td>Information on properties and characteristics of RB5 dye</td>
<td>48</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Dates and times of the first and second collection of batik wastewater samples</td>
<td>68</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Parameters used for UV-VIS Spectrophotometric analysis</td>
<td>70</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Summary of ranges of pH of BRB solution and ranges of E_p for obtained peaks</td>
<td>73</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Summary of the electroanalytical properties of RB5 dye in the electrochemical system based on the obtained results by CV technique</td>
<td>85</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Optimum instrumental parameters of developed DPCSV technique for 2 mg/L RB5 dye</td>
<td>102</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>I_p (nA) obtained for intra-day and inter-day precision measurements of 2 mg/L RB5 dye by the developed DPCSV technique (n=5)</td>
<td>106</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Mean values for recovery of RB5 dye by the developed DPCSV technique (n=3)</td>
<td>107</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Results of ruggedness study for 2 mg/L RB5 dye by two different analysts using the same voltammetry analyzer (n=5)</td>
<td>109</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Results of ruggedness study for 2 mg/L RB5 dye by the same analyst using two different voltammetry analyzers (n=5)</td>
<td>109</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>Robustness study of 2 mg/L RB5 dye by the developed DPCSV technique (n=5)</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Table 3.9</td>
<td>I_p (nA) obtained for intra-day and inter-day precision measurements of 2 mg/L RB5 dye by the developed DPCSV technique (n=5)</td>
<td></td>
</tr>
<tr>
<td>Table 3.10</td>
<td>Mean values for recovery of RB5 dye by the developed DPCSV technique (n=3)</td>
<td></td>
</tr>
<tr>
<td>Table 3.11</td>
<td>Results of ruggedness study for 2 mg/L RB5 dye by two different analysts that using the same voltammetry analyzer (n=5)</td>
<td></td>
</tr>
<tr>
<td>Table 3.12</td>
<td>Results of ruggedness study for 2 mg/L RB5 dye by same analyst that using the two different voltammetry analyzers (n=5)</td>
<td></td>
</tr>
<tr>
<td>Table 3.13</td>
<td>Robustness study of 2 mg/L RB5 dye by the developed DPCSV technique (n=5)</td>
<td></td>
</tr>
<tr>
<td>Table 3.14</td>
<td>The estimation of LOD value by four different methods</td>
<td></td>
</tr>
<tr>
<td>Table 3.15</td>
<td>The estimation of LOQ value by four different methods</td>
<td></td>
</tr>
<tr>
<td>Table 3.16</td>
<td>Heavy metals analysis in batik and textile wastewater</td>
<td></td>
</tr>
<tr>
<td>Table 3.17</td>
<td>Effect of Cu, Pb, Cd and Cr on the peak height (I_p) of 2 mg/L RB5 dye</td>
<td></td>
</tr>
<tr>
<td>Table 3.18</td>
<td>Effect of Fe, Ni, Mn and Zn on the peak height (I_p) of 2 mg/L RB5 dye</td>
<td></td>
</tr>
<tr>
<td>Table 3.19</td>
<td>Effect of other azo dyes on the peak height (I_p) of 2 mg/L RB5 dye</td>
<td></td>
</tr>
<tr>
<td>Table 3.20</td>
<td>Physical parameters of batik wastewater samples from second last pond (dyebath 3) in batik making processes</td>
<td></td>
</tr>
<tr>
<td>Table 3.21</td>
<td>Physical parameters of batik wastewater samples from last pond (dyebath 4) in batik making processes</td>
<td></td>
</tr>
<tr>
<td>Table 3.22</td>
<td>Recovery for RB5 dye standard solution in the batik wastewater samples for analysis in BRB solution at pH 2.5 (n=3)</td>
<td></td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>3.23</td>
<td>Recovery for RB5 dye standard solution in the batik wastewater samples for analysis in BRB solution at pH 9.0 (n=3)</td>
<td></td>
</tr>
<tr>
<td>3.24</td>
<td>Content of RB5 dye in the sample S1-A1 and S5-A1 using VA 757 and VA 797</td>
<td></td>
</tr>
<tr>
<td>3.25</td>
<td>The content of RB5 dye in the batik wastewater samples using two different methods for the first collection (second last pond)</td>
<td></td>
</tr>
<tr>
<td>3.26</td>
<td>The content of RB5 dye in the batik wastewater samples using two different methods for the first collection (last pond)</td>
<td></td>
</tr>
<tr>
<td>3.27</td>
<td>The content of RB5 dye in the batik wastewater samples using two different methods for the second collection (second last pond)</td>
<td></td>
</tr>
<tr>
<td>3.28</td>
<td>The content of RB5 dye in the batik wastewater samples using two different methods for the second collection (last pond)</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1 Mechanism of vinylsulphone reactive dye fixation to the cellulose polymer fabric</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1.2 Typical arrangements for electrochemical cell of voltammetry</td>
<td>22</td>
</tr>
<tr>
<td>Figure 1.3 Different types of the WE and their potential windows</td>
<td>24</td>
</tr>
<tr>
<td>Figure 1.4 The diagram of HMDE</td>
<td>25</td>
</tr>
<tr>
<td>Figure 1.5 The platinum AE</td>
<td>29</td>
</tr>
<tr>
<td>Figure 1.6 The diagram of Ag/AgCl RE</td>
<td>30</td>
</tr>
<tr>
<td>Figure 1.7 The diagram of SCE RE</td>
<td>31</td>
</tr>
<tr>
<td>Figure 1.8 The types of cyclic voltammograms for (a) reversible (b) irreversible (c) quasi-reversible reaction</td>
<td>39</td>
</tr>
<tr>
<td>Figure 1.9 Potential as a function of time for ASV technique</td>
<td>42</td>
</tr>
<tr>
<td>Figure 1.10 Waveform for DPV technique</td>
<td>45</td>
</tr>
<tr>
<td>Figure 1.11 Waveform for SWV technique</td>
<td>46</td>
</tr>
<tr>
<td>Figure 1.12 Chemical structure of RB5 dye</td>
<td>47</td>
</tr>
<tr>
<td>Figure 2.1 A VA 757 Computrace Metrohm Voltammetric Analyzer with 663 VA Stand, consisted of MME and computer for data processing</td>
<td>52</td>
</tr>
<tr>
<td>Figure 2.2 MME consists of (a) platinum auxiliary electrode (b) mercury working electrode (c) Ag/AgCl reference electrode</td>
<td>52</td>
</tr>
<tr>
<td>Figure 2.3 UV-VIS Spectrophotometer (Gary 100)</td>
<td>53</td>
</tr>
<tr>
<td>Figure 2.4 Location of the nine sampling stations of batik wastewaters at Pantai Cahaya Bulan and Kota Bharu areas</td>
<td>66</td>
</tr>
</tbody>
</table>
Figure 2.5 The flow of wet processes in batiks making.

Figure 3.1 Cyclic voltammogram of 200 mg/L RB5 dye in BRB solution at pH (a) 4.0 (b) 7.0 and (c) 9.0 with \(v\) of 25 mV/s.

Figure 3.2 Plot of \(I_p\) of the second reduction peak against pH of BRB solution for 200 mg/L RB5 dye in (a) acidic and (b) basic medium.

Figure 3.3 Plot of \(E_p\) of second reduction peak against pH of BRB solution for 200 mg/L RB5 dye in (a) acidic and (b) basic medium.

Figure 3.4 Dependence of \(I_p\) on the \(v\) for 200 mg/L RB5 dye in BRB solution at pH 4.0 and 9.0. \(E_i = +200\) mV, \(E_{\text{switch}} = -800\) mV; -950 mV, \(E_f = +200\) mV.

Figure 3.5 Linear relationship of \(I_p\) to the \(\sqrt{v}\) for 200 mg/L RB5 dye in BRB solution at pH 4.0 and 9.0. Instrumental parameters are the same as in Figure 3.4.

Figure 3.6 Plot of \(I_p\) to the log \(v\) for 200 mg/L RB5 dye in BRB solution at pH 4.0 and 9.0. Instrumental parameters are the same as in Figure 3.4.

Figure 3.7 Plot of \(E_p\) to the log \(v\) for 200 mg/L RB5 dye in BRB solution at pH (a) 4.0 and (b) 9.0. Instrumental parameters are the same as in Figure 3.4.

Figure 3.8 \(I_p\) of RB5 dye with increasing concentrations. The instrumental parameters are \(E_i = +200\) mV, \(E_{\text{switch}} = -800\) mV; -950 mV, \(E_f = +200\) mV, \(v = 100\) mV/s and \(t_{\text{acc}} = 0\) s.

Figure 3.9 \(I_p\) of RB5 dye with repetitive cycles. Instrumental parameters are \(E_i = +200\) mV, \(E_{\text{switch}} = -800\) mV; -950 mV, \(E_f = +200\) mV, \(v = 100\) mV/s and \(t_{\text{acc}} = 0\) s.

Figure 3.10 Voltammograms of 2 mg/L RB5 dye in BRB solution at pH 3.0.

Figure 3.11 Plot of \(E_p\) of the first reduction peak against pH of BRB solution for 2 mg/L RB5 dye in (a) acidic and (b) basic medium.
Figure 3.12 Dependence of I_p of the reduction peak of RB5 dye on the various pH of BRB solution which are (a) acidic and (b) basic medium.

Figure 3.13 Voltammograms of 2 mg/L RB5 dye in BRB solution at pH of (a) 2.5 (b) 9.0 for representing both acidic and basic medium.

Figure 3.14 Effect of various ν on the (a) I_p and (b) E_p of 2 mg/L RB5 dye in BRB solution at pH 2.5. Initial instrumental parameters are $E_i = +150$ mV, $E_f = -650$ mV, $t_{acc} = 0$ s, $E_{acc} = 0$ mV and pulse amplitude = 50 mV.

Figure 3.15 Voltammograms of I_p of 2 mg/L RB5 dye for the first and second reduction peak as t_{acc} increased from (a) 0 s (b) 10 s and (c) 20 s.

Figure 3.16 Effect of various t_{acc} on the (a) I_p and (b) E_p of second reduction peak of 2 mg/L RB5 dye in BRB solution at pH 2.5. Initial instrumental parameters are $E_i = +150$ mV, $E_f = -650$ mV, $\nu = 5$ mV/s, $E_{acc} = 0$ mV and pulse amplitude = 50 mV.

Figure 3.17 Effect of various E_{acc} on the (a) I_p and (b) E_p of 2 mg/L RB5 dye in BRB solution at pH 2.5. Initial instrumental parameters are $E_i = +150$ mV, $E_f = -650$ mV, $\nu = 5$ mV/s, $t_{acc} = 80$ s and pulse amplitude = 50 mV.

Figure 3.18 Effect of various pulse amplitude on the (a) I_p and (b) E_p of 2 mg/L RB5 dye in BRB solution at pH 2.5. Initial instrumental parameters are $E_i = +150$ mV, $E_f = -650$ mV, $\nu = 5$ mV/s, $t_{acc} = 80$ s and $E_{acc} = 0$ mV.

Figure 3.19 Effect of various ν on the (a) I_p and (b) E_p of 2 mg/L RB5 dye in BRB solution at pH 9.0. Initial instrumental parameters are $E_i = -100$ mV, $E_f = -1000$ mV, $t_{acc} = 0$ s, $E_{acc} = 0$ mV and pulse amplitude = 50 mV.

Figure 3.20 Effect of various t_{acc} on the (a) I_p and (b) E_p of 2 mg/L RB5 dye in BRB solution at pH 9.0. Initial instrumental parameters are $E_i = -100$ mV, $E_f = -1000$ mV, $\nu = 15$ mV/s, $E_{acc} = 0$ mV and pulse amplitude = 50 mV.
Figure 3.21 Effect of various E_{acc} on the (a) I_p and (b) E_p of 2 mg/L RB5 dye in BRB solution at pH 9.0. Initial instrumental parameters are $E_i = -100$ mV, $E_f = -1000$ mV, $v = 15$ mV/s, $t_{acc} = 30$ s and pulse amplitude = 50 mV.

Figure 3.22 Effect of various pulse amplitude on the (a) I_p and (b) E_p of 2 mg/L RB5 dye in BRB solution at pH 9.0. Initial instrumental parameters are $E_i = -100$ mV, $E_f = -1000$ mV, $v = 15$ mV/s, $t_{acc} = 30$ s and $E_{acc} = -100$ mV.

Figure 3.23 Voltammograms of 2 mg/L of RB5 dye obtained under (a) unoptimized and (b) optimized parameters in BRB solution at pH 2.5

Figure 3.24 Voltammograms of 2 mg/L of RB5 dye obtained under (a) unoptimized and (b) optimized parameters in BRB solution at pH 9.0

Figure 3.25 Increasing I_p with concentrations of RB5 dye in BRB solution at pH 2.5. The instrumental parameters are $E_i = +250$ mV, $E_f = -600$ mV, $v = 5$ mV/s, $t_{acc} = 80$ s, $E_{acc} = 0$ mV and pulse amplitude = 75 mV

Figure 3.26 Linear curves of I_p against concentrations of RB5 dye in BRB solution at pH 2.5. Instrumental parameters are the same as in Figure 3.25.

Figure 3.27 Increasing I_p with concentrations of RB5 dye in BRB solution at pH 9.0. The instrumental parameters are $E_i = -100$ mV, $E_f = -1000$ mV, $v = 15$ mV/s, $t_{acc} = 30$ s, $E_{acc} = -100$ mV and pulse amplitude = 150 mV.

Figure 3.28 Linear curves of I_p against concentrations of RB5 dye in BRB solution at pH 9.0. Instrumental parameters are the same as in Figure 3.27.

Figure 3.29 Voltammograms of Cu with concentrations of (a) 0 (b) 2 (c) 3 (d) 4 and (e) 5 mg/L in voltammetric cell containing 2 mg/L RB5 dye standard solution.

Figure 3.30 Voltammograms of Pb with concentrations of (a) 0 (b) 2 (c) 3 (d) 4 and (e) 5 mg/L in voltammetric cell containing 2 mg/L RB5 dye
standard solution.

Figure 3.31 Voltammograms of Cd with concentrations of (a) 0 (b) 2 (c) 3 (d) 4 and (e) 5 mg/L in voltammetric cell containing 2 mg/L RB5 dye standard solution.

Figure 3.32 Voltammograms of Cr with concentrations of (a) 0 (b) 2 (c) 3 (d) 4 and (e) 5 mg/L in voltammetric cell containing 2 mg/L RB5 dye standard solution.

Figure 3.33 Voltammograms of Zn with concentrations of (a) 0 (b) 2 (c) 3 (d) 4 and (e) 5 mg/L in voltammetric cell containing 2 mg/L RB5 dye standard solution.

Figure 3.34 Voltammograms of Ni with concentrations of (a) 0 (b) 2 (c) 3 (d) 4 and (e) 5 mg/L in voltammetric cell containing 2 mg/L RB5 dye standard solution.

Figure 3.35 Voltammograms of Orange 16 dye with concentration of (a) 2 (b) 3 (c) 4 (d) 5 and (e) 6 mg/L in voltammetric cell containing 2 mg/L RB5 dye standard solution (BRB solution at pH 2.5).

Figure 3.36 Voltammograms of Red 106 dye with concentration of (a) 2 (b) 3 (c) 4 (d) 5 and (e) 6 mg/L in voltammetric cell containing 2 mg/L RB5 dye standard solution (BRB solution at pH 2.5).

Figure 3.37 Voltammograms of Yellow 42 dye with concentration of (a) 2 (b) 3 (c) 4 (d) 5 and (e) 6 mg/L in voltammetric cell containing 2 mg/L RB5 dye standard solution (BRB solution at pH 2.5).

Figure 3.38 Voltammograms of Orange 16 dye with concentration of (a) 2 (b) 3 (c) 4 (d) 5 and (e) 6 mg/L in voltammetric cell containing 2 mg/L RB5 dye standard solution (BRB solution at pH 9.0).

Figure 3.39 Voltammograms of Red 106 dye with concentration of (a) 2 (b) 3 (c) 4 (d) 5 and (e) 6 mg/L in voltammetric cell containing 2 mg/L RB5 dye standard solution (BRB solution at pH 9.0).
Figure 3.40 Voltammograms of Yellow 42 dye with concentration of (a) 2 (b) 3 (c) 4 (d) 5 and (e) 6 mg/L in voltammetric cell containing 2 mg/L RB5 dye standard solution (BRB solution at pH 9.0).

Figure 3.41 Voltammograms for recovery studies of RB5 dye standard solution with concentrations of (a) 0.5 (b) 1.0 and (c) 2.0 mg/L in the batik wastewater sample (S1-B1) in BRB solution at pH 2.5.

Figure 3.42 Voltammograms of RB5 dye standard solution with concentrations of (a) 0.5 (b) 1.0 and (c) 2.0 mg/L in the batik wastewater samples (S1-B1) in BRB solution at pH 9.0.

Figure 3.43 DPCSV voltammograms of (b) sample S5-A1 with (c) addition of 2 mg/L RB5 dye standard solution in BRB solution at pH 2.5 (a) as the blank. Instrumental parameters are $v = 5$ mV/s, $t_{acc} = 80$ s, $E_{acc} = 0$ mV and pulse amplitude = 75 mV.

Figure 3.44 DPCSV voltammograms of (b) sample S7-A1 with (c) addition of 2 mg/L RB5 dye standard solution in BRB solution at pH 2.5 (a) as the blank. Instrumental parameters are the same as in Figure 3.43.

Figure 3.45 DPCSV voltammograms of (b) sample S1-A1 with (c) addition of 2 mg/L RB5 dye standard solution in BRB solution at pH 2.5 (a) as the blank. Instrumental parameters are the same as in Figure 3.43.

Figure 3.46 DPCSV voltammograms of (b) sample S5-A1 with (c) addition of 2 mg/L RB5 dye standard solution in BRB solution at pH 2.5 (a) as the blank using VA 797 Computrace Metrohm.

Figure 3.47 DPCSV voltammograms of (b) sample S1-A1 with (c) addition of 2 mg/L RB5 dye standard solution in BRB solution at pH 2.5 (a) as the blank using VA 797 Computrace Metrohm.
Figure 3.48 Spectra of RB5 dye standard solution with the increasing concentration (a) 1 (b) 2 (c) 10 (d) 20 (50) (f) 100 and (g) 150 mg/L.

Figure 3.49 Linear curve of absorbance against concentrations of RB5 dye standard solution.

Figure 3.50 Spectra of (b) sample S5-A1 with (c) addition of 3.333 mg/L RB5 dye standard solution in (a) the blank.

Figure 3.51 Spectra of (b) sample S7-A1 with (c) addition of 3.333 mg/L RB5 dye standard solution in (a) the blank.

Figure 3.52 Spectra of (b) sample S1-A1 with (c) addition of 3.333 mg/L RB5 dye standard solution in (a) the blank.

Figure 3.53 DPCSV voltammograms of (b) sample S1-A1 with (c) addition of 2 mg/L RB5 dye standard solution in BRB solution at pH 9.0 (a) as the blank. Instrumental parameters are $v = 15$ mV/s, $t_{acc} = 30$ s, $E_{acc} = -100$ mV and pulse amplitude = 150 mV.

Figure 3.54 Voltammograms of 2 mg/L RB5 dye standard solution that was (a) not extracted and (b) extracted for pre-treatment study with three replicates of measurement (n=3).
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP</td>
<td>Alternate current polarography</td>
</tr>
<tr>
<td>AdCSV</td>
<td>Adsorptive cathodic stripping voltammetry</td>
</tr>
<tr>
<td>AdSV</td>
<td>Adsorptive stripping voltammetry</td>
</tr>
<tr>
<td>AE</td>
<td>Auxiliary electrode</td>
</tr>
<tr>
<td>ASV</td>
<td>Anodic stripping voltammetry</td>
</tr>
<tr>
<td>BDD</td>
<td>Boron doped diamond</td>
</tr>
<tr>
<td>BiFE</td>
<td>Bismuth film electrode</td>
</tr>
<tr>
<td>BRB</td>
<td>Britton Robinson buffer</td>
</tr>
<tr>
<td>CE</td>
<td>Capillary electrophoresis</td>
</tr>
<tr>
<td>CPE</td>
<td>Carbon paste electrode</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical oxygen demand</td>
</tr>
<tr>
<td>CSV</td>
<td>Cathodic stripping voltammetry</td>
</tr>
<tr>
<td>CV</td>
<td>Cyclic voltammetry</td>
</tr>
<tr>
<td>DAD</td>
<td>Diode array detection</td>
</tr>
<tr>
<td>DB</td>
<td>Drimarene Blue</td>
</tr>
<tr>
<td>DCP</td>
<td>Direct current polarography</td>
</tr>
<tr>
<td>DME</td>
<td>Dropping mercury electrode</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved oxygen</td>
</tr>
<tr>
<td>DPC CSV</td>
<td>Differential pulse cathodic stripping voltammetry</td>
</tr>
<tr>
<td>DPP</td>
<td>Differential pulse polarography</td>
</tr>
<tr>
<td>DPV</td>
<td>Differential pulse voltammetry</td>
</tr>
<tr>
<td>DS</td>
<td>Derivative spectrophotometry</td>
</tr>
<tr>
<td>GCE</td>
<td>Glassy carbon electrode</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross domestic product</td>
</tr>
<tr>
<td>HMDE</td>
<td>Hanging mercury dropping electrode</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency Research on Cancer</td>
</tr>
<tr>
<td>IR</td>
<td>Infra red</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Liquid chromatography-mass spectroscopy</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>LLE</td>
<td>Liquid-liquid chromatography</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of detection</td>
</tr>
<tr>
<td>LOQ</td>
<td>Limit of quantification</td>
</tr>
<tr>
<td>LSV</td>
<td>Linear sweep voltammetry</td>
</tr>
<tr>
<td>MiFE</td>
<td>Mercury film electrode</td>
</tr>
<tr>
<td>MSC</td>
<td>Multisyringe chromatography</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>NP</td>
<td>Normal polarography</td>
</tr>
<tr>
<td>PbFE</td>
<td>Lead film electrode</td>
</tr>
<tr>
<td>PGE</td>
<td>Pyrolytic graphite electrode</td>
</tr>
<tr>
<td>PR</td>
<td>Procion Red</td>
</tr>
<tr>
<td>PY</td>
<td>Procion Yellow</td>
</tr>
<tr>
<td>RB5</td>
<td>Reactive Black 5</td>
</tr>
<tr>
<td>RE</td>
<td>Reference electrode</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RR120</td>
<td>Reactive Red 120</td>
</tr>
<tr>
<td>RR19</td>
<td>Reactive Green 19</td>
</tr>
<tr>
<td>SCE</td>
<td>Standard calomel electrode</td>
</tr>
<tr>
<td>SMDE</td>
<td>Static mercury dropping electrode</td>
</tr>
<tr>
<td>SPE</td>
<td>Solid phase extraction</td>
</tr>
<tr>
<td>SWP</td>
<td>Square wave polarography</td>
</tr>
<tr>
<td>SWV</td>
<td>Square wave voltammetry</td>
</tr>
<tr>
<td>SY</td>
<td>Sunset yellow</td>
</tr>
<tr>
<td>TBAF₄</td>
<td>Tetrabutylammonium tetrafluoroborate</td>
</tr>
<tr>
<td>TDA</td>
<td>Tridodecylamine</td>
</tr>
<tr>
<td>TSS</td>
<td>Total suspended solid</td>
</tr>
<tr>
<td>TT</td>
<td>Tartrazine</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>UV-VIS</td>
<td>Ultraviolet-visible</td>
</tr>
<tr>
<td>VA</td>
<td>Voltammetry analyzer</td>
</tr>
<tr>
<td>WE</td>
<td>Working electrode</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs</td>
<td>Absorbance</td>
</tr>
<tr>
<td>Ag/AgCl</td>
<td>Silver-silver chloride</td>
</tr>
<tr>
<td>(E_{\text{acc}})</td>
<td>Accumulation potential</td>
</tr>
<tr>
<td>(E_i)</td>
<td>Initial potential</td>
</tr>
<tr>
<td>(E_f)</td>
<td>Final potential</td>
</tr>
<tr>
<td>(E_p)</td>
<td>Peak potential</td>
</tr>
<tr>
<td>(E_{\text{switch}})</td>
<td>Switch potential</td>
</tr>
<tr>
<td>(g/\text{mol})</td>
<td>Gram per mol</td>
</tr>
<tr>
<td>HAc-NaAc</td>
<td>Acetic acid-sodium acetate</td>
</tr>
<tr>
<td>(I_p)</td>
<td>Peak height</td>
</tr>
<tr>
<td>(M)</td>
<td>Molar</td>
</tr>
<tr>
<td>(\text{mg/L})</td>
<td>Miligram per liter</td>
</tr>
<tr>
<td>(\text{mL})</td>
<td>Mililiter</td>
</tr>
<tr>
<td>(\text{mM})</td>
<td>Milimolar</td>
</tr>
<tr>
<td>(\text{mV})</td>
<td>Milivolt</td>
</tr>
<tr>
<td>(\text{mV/s})</td>
<td>Milivolt per second</td>
</tr>
<tr>
<td>(nA)</td>
<td>Nano ampere</td>
</tr>
<tr>
<td>(\text{nm})</td>
<td>Nanometer</td>
</tr>
<tr>
<td>(\text{nm/min})</td>
<td>Nanometer per min</td>
</tr>
<tr>
<td>(nM)</td>
<td>Nano molar</td>
</tr>
<tr>
<td>(\text{rpm})</td>
<td>Rotation per minute</td>
</tr>
<tr>
<td>(s)</td>
<td>Second</td>
</tr>
<tr>
<td>(t_{\text{acc}})</td>
<td>Accumulation time</td>
</tr>
<tr>
<td>(t_{\text{eq}})</td>
<td>Equilibration time</td>
</tr>
<tr>
<td>(V)</td>
<td>Volt</td>
</tr>
<tr>
<td>(\mu g/g)</td>
<td>Microgram per gram</td>
</tr>
<tr>
<td>(\mu g/\text{L})</td>
<td>Microgram per liter</td>
</tr>
<tr>
<td>(\mu g/\text{mL})</td>
<td>Microgram per mililiter</td>
</tr>
<tr>
<td>(\mu m)</td>
<td>Micrometer</td>
</tr>
<tr>
<td>(\mu M)</td>
<td>Micromolar</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>R^2</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength</td>
</tr>
<tr>
<td>ν</td>
<td>Scan rate</td>
</tr>
</tbody>
</table>
KAJIAN VOLTAMMETRI REAKTIF BLACK 5 DAN APLIKASINYA DALAM AIR SISA DARI INDUSTRI BATIK

ABSTRAK

Pewarna azo dan reaktif merupakan dua kelas pewarna organik digunakan secara meluas dalam pelbagai aplikasi terutamanya industri pembuatan batik. Pewarna Black 5 Reaktif (RB5) dikategorikan dalam pewarna azo vinylsulfonat disebabkan kewujudan ikatan –N=N- yang bergabung dengan vinylsulfonat sebagai kumpulan reaktif. Pembentukan amine aromatik yang bersifat karsinogen hasil daripada proses penurunan kumpulan azo memberi risiko pengumpulan bio dalam rantai makanan manakala pewarna reaktif mempunyai jangka hayat yang lama dalam persekitaran.

Pelbagai kaedah telah digunakan untuk penentuan pewarna seperti kromatografi dan elektroforesis kapilari (CE) tetapi kaedah-kaedah tersebut kompleks dan mempunyai kos peralatan yang tinggi, keperluan dan kepelbagaian yang tinggi terhadap bahan kimia dan penyediaan sampel, penyelenggaraan serta pekerja mahir. Untuk mengatasi masalah-masalah ini, teknik voltammetri menggunakan titisan raksa tergantung (HMDE) sebagai elektrod bekerja dan larutan penimbal Britton-Robinson (BRB) sebagai elektrolit penyokong telah dicadang untuk dibangunkan dalam kajian ini. Teknik ini telah digunakan untuk mengkaji sifat elektroanalitikal dan analisis kuantitatif pewarna RB5 pada elektrod raksa. Pewarna RB5 didapati terkumpul dan melalui proses penurunan tidak berbalik pada elektrod raksa. Beberapa parameter voltammetri eksperimen telah dioptimumkan bagi memperoleh respons maksima yang dirujuk kepada puncak penurunan kedua serta pengesahan analisa untuk pembangunan kaedah bagi pewarna RB5. Parameter-parameter optimum untuk
Differential Pulse Cathodic Stripping Voltammetry (DPCSV) di dalam medium berasid ialah larutan BRB pada pH 2.5, keupayaan awal (E_i): +250 mV, keupayaan akhir (E_f): -600 mV, kadar imbasan (v): 5 mV/s, masa pengumpulan (t_{acc}): 80 s, keupayaan pengumpulan (E_{acc}): 0 mV and amplitud denyut: 75 mV. Untuk medium beralkali, parameter-parameter optimum ialah E_i: -100 mV, E_f: -1000 mV, v: 15 mV/s, t_{acc}: 30 s, E_{acc}: -100 mV dan amplitud denyut: 150 mV di dalam larutan BRB pada pH 9.0. Menggunakan semua parameter optimum ini, pewarna RB5 berkepekatan 2 mg/L telah menghasilkan puncak penurunan kedua pada -65.50 mV di dalam medium berasid manakala pada -570 mV bagi puncak yang sama di dalam medium beralkali. Had pengesanan (LOD) bagi pewarna RB5 ialah 12.15 µg/L dan 7.97 µg/L bagi medium berasid dan beralkali masing-masingnya. Teknik yang dibangunkan diaplikasi untuk analisa pewarna RB5 dalam sampel air sisa batik dan keputusan analisa dibanding dengan yang diperoleh menggunakan kaedah spektrofotometri UV-VIS. Kesimpulannya, teknik yang dibangunkan adalah jitu, tepat, melibatkan kos yang rendah dan berpotensi besar untuk menjadi kaedah alternatif dalam analisa kandungan pewarna RB5 di dalam air sisa batik.
Azo and reactive dyes are two classes of organic dye mostly used in various applications especially in batik industry. Reactive Black 5 (RB5) dye is categorized in vinylsulphonate azo dye group due to the presence of –N=N- bonds combined with vinylsulphone as the reactive group. The production of carcinogenic aromatic amines, resulted from azo reduction has a significant risk of bioaccumulation in the food chains whereas reactive dyes have a long half-life in environment. Various methods have been used for dye measurements such as a chromatography and capillary electrophoresis (CE) but they are well-known for their complex and high cost instrumentation, high and multiple requirements on chemicals and sample preparation, maintenance and skilled labour. To overcome these problems, the voltammetric technique using Hanging Mercury Dropping Electrode (HMDE) as a working electrode and Britton-Robinson Buffer (BRB) as a supporting electrode was proposed to be developed. This technique was used for investigating the electroanalytical properties and quantitative analysis of RB5 dye at the mercury electrode. The RB5 dye was found to be accumulated and undergone irreversible reduction process at the mercury electrode. The experimental voltammetric parameters were optimized in order to obtain a maximum response which referred to the second reduction peak with analytical validation of the technique for RB5 dye. The optimum parameters for the differential pulse cathodic stripping voltammetry (DPCSV) technique in acidic medium were the BRB at pH 2.5, initial potential (E$_i$):
+250 mV, final potential (E_f): -600 mV, scan rate (v): 5 mV/s, accumulation time (t_acc): 80 s, accumulation potential (E_acc): 0 mV and pulse amplitude: 75 mV. In basic medium, the optimum parameters were E_i: -100 mV, E_f: -1000 mV, v: 15 mV/s, t_acc: 30 s, E_acc: -100 mV and pulse amplitude: 150 mV in BRB at pH 9.0. Using both optimized parameters, RB5 dye at a concentration of 2 mg/L has produced second reduction peak at -65.50 mV in acidic medium whereas the same peak at -570 mV in basic medium. The limit of detection (LOD) of RB5 dye was approximately 12.15 µg/L and 7.97 µg/L for acidic and basic medium, respectively. The developed technique was applied for the analysis of RB5 dye in batik wastewater samples and the results were compared with those obtained by the UV-VIS Spectrophotometry method. It can be concluded that the developed technique is precise, accurate, rugged, robust, low cost, fast and has potential to be an alternative method for routine analysis of RB5 dye in batik wastewater samples.
CHAPTER I

LITERATURE REVIEW

1.1 Overview

East Coast of Peninsular Malaysia, especially in Kelantan and Terengganu is very well known for its homemade textile industry or more precisely the batik industry among local people. This industry is one of the oldest industries in Malaysia, which believed to have existed around the year of 1921 (Wan Hashim, 1996). It is traditionally inherited from generation to generation and becomes a source of income for many local families since there is a high demand from both local and foreign markets. Furthermore, it has also becomes one of the main attractions for tourists to visit these places (Ahmad et al., 2002; Hapsah, 2006; Rashidi et al., 2012).

Batik is defined as a fabric which traditionally uses a manual wax-resist dyeing technique. Modern advances in the textile industry have led to extended of this term to include fabrics which add in traditional patterns and designs even if they are not produced using the wax–resist dyeing techniques. Generally, the making of batik can be classified into three processes which are fabric preparation (waxing), dyeing and de-waxing (Diana, 2010).
In the making of batik, the first step includes washing of cotton fabric in order to remove starch. The fabric is then dried, ironed and stretched on a wooden frame. After that, a rough charcoal sketch is made as guidance for the painting. Wax, a melted mixture of resin, paraffin and yellow bee wax is poured into a brass shaped pen or canting tool called Tjanting and then applied to the sketch. The Tjanting is like a small cup with single or double spout. The wax becomes a protective agent in the dyeing process since it protects dye from spreading.

In the second process, dyeing is applied to colour the sketched area. Chemical substance like ludigol is added into dilute dye to obtain a brighter and more vibrant colour. Alum is used in pre-treatment process of fabric before marbling to ensure the sketched design can be applied well on the fabric, whereas sodium alginate is used to thicken the dye for screening, printing, painting and control spreading purposes. Dyeing needs skills in order to produce a good combination of colours.

In the third process, the decorated and painted fabric is boiled to remove all the wax that protects the dye from spreading during the painting and dyeing process. This process can be repeated until the entire wax has been removed from the fabric. The fabric is then rinsed in cold water and dried under mild sun to protect the colours. The rinsed water after the boiling process is normally discharged without any treatment and can be considered as wastewater from the batik industry (Ahmad et al., 2002).
1.2 Batik Wastewaters, Characteristics and Environment Impacts

Textile industry is considered as one of the major water consumers as it utilizes large volume of water and chemicals for wet processing of the textiles and thus contributes to the river pollution (Norasikin et al., 2010; Saratale et al., 2011; Ellouze et al., 2012; Radi et al., 2013a). Homemade batik industry is a part of this textile industry. Preliminary studies show that discharged wastewaters from the homemade batik industry contain dyes, heavy metals, grease, wax, suspended solid (TSS) and have high chemical oxygen demand (COD) (Nora’aini and Suhaimi, 2009; Rashidi et al., 2012).

Heavy metals such as copper (Cu), zinc (Zn) and chromium (Cr) are harmful wastes that give a risk of contaminating groundwater and other water resources (Normala and Goh, 2010). They are also not biodegrade in the environment and this condition makes them tend to accumulate in living organisms (Chuah et al., 2005). The contaminated groundwater and aquatic food then may lead to the diseases like cancer, tumor and may disrupt the endocrine system of human as well (Imtiazuddin et al., 2012).

Lokhande et al. (2011) have mentioned that the discharged of untreated industrial effluents, which contain various amounts of metals have the potential to contaminate crops, enter the food chain and finally will affect human health. The discharged wastewaters with high COD may cause the depletion of dissolved oxygen (DO), thus leads to anaerobic condition (Diana, 2010).
1.3 Dyes in General

Dyes are generally defined as coloured substances which have the affinity to the applied substrates to produce significant degree of coloration. The first organic dye, Mauve was accidentally discovered by English chemist, William Henry Perkin in 1856 while he was trying to synthesize quinine in aniline (Saratale et al., 2011). Before that time, colouring materials were extracted from natural sources like barks, roots, seeds, leaves and shellfish (www.dyes-pigments.com). The discovery of organic dyes has overwhelmed the role of natural dyes since they have low cost, brighter colours, better resistance towards environmental factors and easy to apply to fabrics (Ngah et al., 2011).

Nowadays, as the world population increases, the demand for clothing has also increases with improving sense of fashion and lifestyle. As a result, textiles are extensively produced to fulfill the demand, which subsequently intensify the development of the organic dye industries. In some countries, like India and Sri Lanka, textile production becomes the main source of income that highly contributes to their Gross Domestic Product (GDP) (Ahmad et al., 2006; Normala and Goh, 2010).

More than 700,000 tons and 100,000 types of dyes are annually produced worldwide in large quantities and commercially used (Cristóvão et al., 2009). In 2008, the worldwide market for organic dyes increases up to $11 billion (Salari et al., 2009). They are mostly used in textile, food, printing, pharmaceutical, cosmetic, nutritional and tannery industries (Joe et al., 2008; Karatas et al., 2009; Tanyldizi, 2011).
1.4 Organic Dyes and the Subclasses

The organic dyes can be namely according to the chemical structure of their particular chromophoric groups (www.dyes-pigments.com). They can be classified into several subclasses such as azo dyes, vat dyes, reactive dyes, basic dyes, acid dyes and sulphur dyes (www.iiem.com). Azo, reactive and vat dyes are as follows;

1.4.1 Azo Dyes

The azo dyes are considered as the oldest and the largest class of synthesized organic dyes with 3000 different varieties and are also usually considered as the class with the fullest shade range and mostly used (Xu et al., 1995). They account for 60 % to 70 % of the total organic dyes, have bright and high colour intensity. They are most widely used dyes in the textile, food, drug, cosmetic, automobile, leather and papermaking industries (Gupta et al., 2007; Muthukumar et al., 2007; Karipcin et al., 2009; Bogdanowicz et al., 2013; Saratale et al., 2013).

The azo dyes are characterized by the presence of one or more azo groups (-N=N-), produced by diazotization of aromatic amines and coupling of the diazonium salts with a phenol or aromatic amine at free ortho or para position (Jayadevappa et al., 2006). The azo group, which is chromophore, enables the dyes to absorb light in the visible spectrum and responsible for the corresponding colour of the dyes (Colindres et al., 2010; Méndez-Martínez et al., 2012). The benzene or naphthalene group which is attached to the azo group may consists of many substituents like chloro (-Cl), methyl (-CH₃), nitro (-NO₂), amino (-NH₂), hydroxyl (-OH) and carboxyl (-
COOH) (Saratale et al., 2011). According to Aguedach et al. (2005), half-lives of some azo dyes in sunlight are usually greater than 2000 hours.

The colour produced by the textile wastewaters is mainly due to azo dyes and the discharged of the wastewaters into the environment is a matter of aesthetic, although at low concentrations, which are from 10 mg/L to 50 mg/L. Improper discharge of these wastewaters into environment will lead to reduction in sunlight penetration, which in turn affects aquatic photosynthesis and inhibits the growth of biota, depletion of DO, water quality and toxic to organisms (Koupaie et al., 2011; Hanafiah et al., 2012; Sarala and Venkatesha, 2012; Solís et al., 2012; Saratale et al., 2013).

The azo group that has reductively cleaved when in contact with sweat, saliva or gastric juices is responsible for the aromatic amines formation. Examples of such aromatic amines are benzidine and 4-biphenylamine. After the oral ingestion of azo dyes, an aerobic intestinal microflora and mammalian azo reductase in the intestinal wall can reduce them to free aromatic amines. Hence, the intestines would be one of the first target organs to suffer by the ingestion of the azo dyes (Xu et al., 1995; Umbuzeiro et al., 2005; de Lima et al., 2007; Chequer et al., 2011). Goyal et al. (1998) have mentioned that various azo dyes tend to induce tumors in rats and mice. The azo dyes give inhibitory effects on the biosynthesis of deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and proteins.
1.4.2 Reactive Dyes

The reactive dyes become one of the most significant innovation technologies for dyes field in the 20th century. They are covalently bonded with -OH or –NH\textsubscript{2} groups that present on the fibers, expectedly to give excellent wash fastness property compared to an ordinary dye-substrate system (Karcher et al., 2002; Esteves and Cunha, 2005; Jović et al., 2013). This excellent property has made them not easy to be biodegraded. Fixation efficiency of 60 % to 90 % causes large amounts of the unfixed dyes to be discharged into the environment (Riera-Torres and Gutiérrez, 2010). The mechanism of vinylsulphone reactive dye fixation to the cellulose polymer fabric is shown in Figure 1.1 (www.chm.bris.ac.uk).

![Mechanism of vinylsulphone reactive dye fixation to the cellulose polymer fabric](www.chm.bris.ac.uk)

Figure 1.1 Mechanism of vinylsulphone reactive dye fixation to the cellulose polymer fabric

The fibre-reactive group may react with the OH ions in the alkali solution and become hydrolysed. The alkali used for maintaining pH depends on brand of dye and dyeing temperature. Generally, caustic soda, soda ash or sodium carbonate is used as alkali, depending on reactivity of the dyes. They create proper pH in dye bath and act
as the dye-fixing agent (textilelearner.blogspot.com). According to Zanoni et al. (1997), typically about 12 % of reactive dyes are lost to waste during manufacturing processes and about 20 % of these losses are discharged into the environment through textile effluents. The reactive dyes have shown potential to have a long half-life in the neutral medium of environment.

For instance, in voltammetric analysis of reactive dye, Turquoise Blue 15 based on copper-phthalocyanine as chromophore and a monochlorotriazine as a reactive group has been investigated for its electrochemical behaviour and quantitative determination using cyclic voltammetry (CV) and cathodic stripping voltammetry (CSV) technique by Osugi et al. (2003).

1.4.3 Vat Dyes

The vat dyes made up 15 % of total consumption of textile dyes, which have high requirement on fastness to produce coloured fibers with excellent colour fastness as well a particularly to light, washing and chlorine bleaching. The dyes fall into two groups which are indigoid and anthraquinonoid. Besides, the vat dyes are insoluble in water, but with the presence of an alkali or reducing agent, they can be reduced to form a soluble dye, called leuco dyes (Carneiro and Fogg, 2005; Kariyajanavar et al., 2013). As an example, Komboonchoo et al. (2009) have studied indirect cathodic reduction of the vat dye indigo by cathodically reduced Lawson, the major natural colourant in the henna leaves in the alkaline aqueous solution.
1.5 Analytical Methods for Determination of Textile Azo Dyes

Several analytical methods have been employed to determine textile azo dyes and the intermediates in various samples such as electrophoresis, chromatography, infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) and spectrophotometry method (Bersier and Bersier, 1986). Zanoni et al. (1999) have mentioned that chromatography and spectrophotometry method are extensively used for determination of the textile azo dyes. Meanwhile, Santos et al. (2013) have mentioned that the most common used methods to determine these dyes are spectrophotometry and voltammetry methods.

1.5.1 Spectrophotometric Determination of Textile Azo Dyes

The UV-VIS spectrophotometric method for textile azo dye analysis for comparison purpose with voltammetric technique was studied by Radi et al. (2013a). In this study, they have measured Reactive Red 231 dye in phosphate buffer at pH 3.77 using wavelength, λ range of 200 to 600 nm. The absorbance was linear to dye concentration at maximum λ of 536 nm from 20 to 200 µM. A limit of detection (LOD) was 10 µM, 50 times higher than the LOD obtained in voltammetric study. They have reported that this spectrophotometric method was not able to analyze the dye in real samples at a lower concentration than 10 µM due to its low sensitivity.

In addition, Radi et al. (2012) have also studied the UV-VIS spectrophotometric method for Reactive Black 5 dye determination. A series of dye concentration from 5.0×10^{-6} to 1.0×10^{-4} M was measured in the range 200 to 800 nm and the highest
absorbance was obtained at \(\lambda \) of 600 nm. The obtained regression equation was \(y = 0.029 \times x + 0.015 \), while the LOD and quantification limit (LOQ) were \(4.7 \times 10^{-6} \) M and \(15.6 \times 10^{-6} \) M, respectively. However, an application of this developed method in real samples analysis was not carried out.

This spectrophotometry method is reported to be limited by the fact that absorption of the certain compounds may appear in the same range of the electromagnetic spectrum which leads to spectral interference operational steps even though it offers very low running and instrumental costs (Santos et al., 2013). Moreover, Pinheiro et al. (2004) have mentioned that this method gives only the moderate LOD.

Derivative spectrophotometry (DS) was used to analyze the binary mixture of five textile dyes which were yellow, scarlet, red, blue and navy blue by Nateri and Ekrami (2009). The absorption spectrum of the binary mixture that prepared in different ratios was recorded between \(\lambda \) of 400 to 700 nm. The obtained spectrum was divided by standard spectrum of individual component of the binary mixture to calculate the derivative spectra. Other applications of DS method for textile dyes determination were reported by Turabik (2008), Almeida et al. (2009), Gözmen et al. (2009), Gao et al. (2010), Nateri (2010) and Özer and Turabik (2010).

Although the DS method is developed to give higher sensitivity and minimize spectral interference in terms of overlapping spectrum compared to the normal spectrophotometry, it is mentioned to have main disadvantage for very dependence on instrument parameters such as scan rate and slit width. The instrument parameters
for recording parent zero-order spectrum should have given strict attention since it strongly influences the shape and intensity of the derivative (Ojeda and Rojas, 2013).

1.5.2 Chromatographic Determination of Textile Azo Dyes

Fernández et al. (2010) have developed a method based on multisyringe chromatography (MSC) with monolithic column using UV detection to determine sulphonated azo dyes Acid Yellow 23, Yellow 9 and Red 97. Ion pair reagent used was dodecyltrimethylammonium bromide, whereas mobile phase used was mixture of acetonitrile and water. The first dye to elute to column is Acid Yellow 9, followed by Yellow 23 and Red 97. Tap water, well water and lagoon biological wastewater were spiked with different amounts of each dye for validation purpose.

García-Lavandeira et al. (2010) have optimized procedure based on ultrasound assisted-extraction of textile samples with 20 mL methanol under controlled conditions and followed by separation and analysis using liquid chromatography-mass spectroscopy (LC-MS) for the control of dyes in textile products. In this study, the LOD found to be lower than 0.4 µg/g. Ràfols and Barceló (1997), Sarzanini et al. (1997), Smyth et al. (1999), De Lima et al. (2007) and Vaněková et al. (2007) have also studied chromatography method for textile azo dyes determination.

Instead of offering very low detection limit, the chromatography method is well-known for its complex and high cost instrumentations, high and multiple requirements on maintenance, skilled labours, chemicals and samples preparation, and low speed of analysis as well. A part from that, the samples need to be pre-
treated before being analyzed to minimize interferences during analysis (Pinheiro et al., 2004; Al-Degs et al., 2008).

It is necessary for the solid phase extraction (SPE) to be carried out as the pre-treatment step in azo dyes analysis using chromatography. However, the extraction materials of polymeric SPE sorbents are non-selective and interferences are extracted together from the complex matrices such as textile effluents. In addition, co-elution of the most polar analytes with humic substances for surface water samples exhibits peak at the beginning of the chromatogram. Although additional clean up using silica can be performed to overcome the problem, it is always laborious and time intensive (Bouzige et al., 1999).

1.5.3 Capillary Electrophoresis Determination of Textile Azo Dyes

Peláez-Cid et al. (2008) have studied non-aqueous capillary electrophoresis (CE) with electrochemical detection for Basic Blue 41, Blue 9, Green 4, Violet 16 and Violet 3 dye determinations. The electrophoresis buffer for the dyes separation was a solvent mixture of 75:25 volume of acetonitrile/methanol which containing 1 M acetic acid and 10 mM sodium acetate. The LOD found to be from 0.1 to 0.7 µg/mL. The SPE was successfully carried out for distilled, river and water samples pre-treatment.

Pérez-Urquiza et al. (2000) have developed capillary zone electrophoresis coupled with photodiode-array detection (DAD) to determine several sulfonated azo dyes such as Acid Orange 7, Orange 12, Orange 52, Red 26, Red 27 and Red 88. They
used electrophoresis buffer that contains a 1:5 dilution of 10 mM phosphoric acid and tetrabutylammonium hydroxide buffer and 25 nM of triethylamine. The obtained LOD was range from 0.1 to 4.53 µg/mL. The spiked river waters were analyzed after acidification at pH 3.0 and SPE pre-concentration step.

There are many limitations in applying capillary electrophoresis (CE) method for textile dyes determination. There is requirement of matrix to change from the aqueous to non-aqueous medium for determination of basic dyes in real aqueous samples. Noisy signal and distorted peaks will be obtained if the aqueous samples are directly injected to the non-aqueous CE with electrochemical detection (Peláez-Cid et al., 2008).

Besides, precipitation of organic salts results in complicated dyes determination which leads to time consuming sample pre-treatments like liquid-liquid extraction (LLE) and SPE. The LLE is only appropriate for spiked samples such as distilled water but not for more complexes aqueous matrices such as lake and river water (Peláez-Cid et al., 2008). Furthermore, the usage of organic solvent system in non-aqueous CE method instead of aqueous buffer to overcome hydrophobic interaction of dyes with the capillary wall in aqueous system causes difficulty in selecting the appropriate solvents and ratios. The choice of solvents and ratios is very important in order to achieve good resolution and selectivity of the method (Peláez-Cid et al., 2008).
1.5.4 Voltammetric Determination of Textile Azo Dyes

Modern polarography and voltammetric methods are particularly appropriate for azo dyes analysis due to their high sensitivity, applicability over an unusually wide concentration range, high satisfactory results, relatively short time and direct analysis without any sample extraction or pre-treatment procedure and also low running cost (Barek et al., 1996; Fogg et al., 1998; Radi et al., 2013a).

The electrochemical behaviour and quantitative analysis of textile azo dye, Reactive Red 231 has been investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) technique, respectively. Glassy carbon electrode (GCE) was used as the working electrode (WE) and phosphate buffer at pH 3.77 as the supporting electrolyte. The oxidation of hydroxyl-substituted azo dye exhibited two well-defined anodic peaks on the voltammograms when scanned from 0.0 V to +1.0 V. A linear plot between peak height (I_p) of the first anodic peak and the concentrations of the dye were in the range from 2 to 200 µM with the LOD of 0.20 µM. The method was evaluated by determining the dye in river water, synthetic effluent and tap water samples with recoveries from 89 % to 97 % (Radi et al., 2013a).

Santos et al. (2013) have studied adsorptive cathodic stripping voltammetry (AdCSV) technique using hanging mercury dropping electrode (HMDE) for quantification of two textile azo dyes, Procion Red (PR) and Procion Yellow (PY). In Britton-Robinson buffer (BRB) at pH 8.0, the PR has exhibited two cathodic peaks and PY has only exhibited one cathodic peak, which corresponding to the azo
group reduction. The linearity ranges obtained by plotting I_p at -0.422 V and -0.538 V for the PY and PR as a function of concentration were from 30.15 to 633.15 nM and from 62.56 to 982.291 nM, respectively. The method was then applied in synthetic textile dyes samples.

Radi et al. (2012) have also studied the electrochemical behaviour of Reactive Black 5 (RB5) dye and its quantitative determination using the GCE in phosphate buffer at pH 4.20. The CV and DPV technique were employed for this study. The dye exhibited one well-defined anodic peak due to amino group oxidation at +0.560 V against silver-silver chloride (Ag/AgCl) by using the DPV technique. The linear plot of I_p and dye concentrations enabled the DPV to determine the dye over a wide concentration range, which was from 6.0×10^{-7} to 1.5×10^{-6} M. The LOD, LOQ and accuracy of 4.0×10^{-7} M, 1.1×10^{-6} M and 98.2 % were respectively obtained.

Radi et al. (2011) have investigated the electrochemical behaviour and determination of Drimarene Blue X-BLN (DB), also by employing the CV and DPV technique. In CV, oxidation of DB at the GCE in phosphate buffer found to exhibit two pairs of quasi-reversible anodic and cathodic peaks on the voltammograms. Using DPV technique and phosphate buffer at pH 2.85, linear relationship between I_p and concentrations of dye was observed in the range of 2.0×10^{-6} to 3.0×10^{-5} M and 6.0×10^{-6} to 3.0×10^{-5} M for the first and second anodic peak, respectively. The LOD for the first and second peak were 8.7×10^{-7} M and 5.7×10^{-7} M, while the LOQ were 2.9×10^{-6} M and 1.9×10^{-6} M. The method was successfully tested to the DB in tap water samples.
The textile azo dye, Reactive Red 238 has been studied using the CV and DPV technique for its electrochemical behaviour and quantitative analysis at the GCE by Radi et al. (2010). The voltammetric behaviour showed that the dye exhibited one irreversible anodic peak at +0.692 V against Ag/AgCl in phosphate buffer at pH 3.34. A linear I_p with dye concentration from 2.0×10^{-6} to 1.0×10^{-5} M was obtained. The respective LOD and LOQ were 4.49×10^{-7} M and 1.49×10^{-6} M with satisfactory recovery when applied in the synthetic wastewater samples.

The CV has been performed in sulphuric acid medium using GCE as the WE for electrochemical behaviour study of Cibacron Navy WB. The potential range used for the dye scanning was from +700 to -450 mV. The electrochemical reaction exhibited three cathodic peaks at +50 mV, -155 mV and -317 mV. Two anodic peaks were shown at +382 mV and +547 mV. These results have indicated quasi-reversible electrochemical nature of the dye (Kariyajjanavar et al., 2010).

Gupta et al. (2007) have studied CV of Reactofix Red 3 BFN at the platinum electrode using potassium chloride (KCl) as the supporting electrolyte. The dye exhibited one reduction peak in the forward scan and one oxidation peak in the reverse scan. At different scan rates, a reduction peak was exhibited at +0.75 V and a corresponding oxidation peak at +0.65 V. In this study, the electrode reaction was found to be mainly diffusion-controlled with some adsorption contribution.

Li et al. (2007) have studied CV and linear sweep voltammetry (LSV) of Basic Brown G in ammonia-ammonia chloride (NH$_3$-NH$_4$Cl) at pH 9.1. One cathodic peak was exhibited at -0.67 V against the Standard Calomel Electrode (SCE). From the
CV results, the electrochemical irreversible reaction was controlled by diffusion. The
I_p was linear to the dye concentration over the range of 3.0×10^{-8} to 1.0×10^{-4} M at
the HMDE by using the LSV. The LOD was found to be 9.0×10^{-9} M and the
recoveries were varied from 95.3 % to 102 %.

Guo et al. (2004) have examined Orange II in acetic acid-sodium acetate (HAc-
NaAc) buffer at pH 3.62, on the mercury electrode using CV and LSV technique.
Using CV, they have found that the dye exhibited one cathodic peak at -0.364 V and
no anodic peak, which indicate irreversible electrode reaction. A linear relationship
between I_p and concentrations of Orange II was observed in the range of 1.0×10^{-8} to
1.0×10^{-3} M with LOD of 2.0×10^{-9} M by using LSV. Recovery test was performed
in artificial samples and it varied from 95 % to 104 % with mean recovery of 99.1 %.

Guaratini et al. (2001) have studied Reactive Red 120 (RR120) and Reactive Green
19 (RG19) using CV and cathodic stripping voltammetry (CSV) technique with
HMDE as the WE. Britton-Robinson buffer (BRB) was used as the supporting
electrolyte. BRB solution at pH 4.0 and 3.0 were the optimum conditions for RR120
and RG19 analysis, respectively. Linear calibration graphs were obtained, which
were from 1.5×10^{-8} to 1.4×10^{-7} M and from 1.2×10^{-8} to 2.0×10^{-7} M with
accumulation time (t_{acc}) of 180 s and 240 s for respective RR120 and RG19. The
LOD of 7×10^{-10} M was obtained for RR120 and 5×10^{-10} M for RG19.

The vinylsulphone based reactive group dyes are generally used to dye silk fabric.
Zanoni et al. (1999) have determined vinylsulphone azo dye, remazol orange 3R in
BRB solution by the CSV technique at HMDE. One cathodic peak was exhibited
against Ag/AgCl over the whole pH range (pH 2.0 to 12.0) attributed to reduction of azo group. Under optimum parameter conditions, the I_p was linear to dye concentration from 30 to 300 µg/L in BRB at pH 4.0 and from 6.2 to 62 µg/L at pH 10.0 with t_{acc} of 60 s and 40 s, respectively. The LOD was found to be 1.5 µg/L in BRB at pH 10.0 with t_{acc} of 120 s.

Goyal et al. (1998) have investigated electrochemical reduction of Direct Orange 31 at a pyrolytic graphite electrode (PGE) using LSV and CV in the phosphate buffer with pH range from pH 2.0 to 10.3. Two reduction peaks corresponding to the reduction of azo groups and two anodic peaks corresponding to oxidation of the generated products were exhibited on the voltammograms. They have found that the reduction process does not stop at the hydrazo stage but subsequently reduced to give off amino compounds as the final products in acidic medium.

Fogg et al. (1998) have used polarography and voltammetry method for determination of triazine-based reactive azo dyes which containing two different leaving groups, 4-carboxypyridyl and 1,4-diazabicyclo[2,2,2]octanyl. One cathodic peak and other peaks at more negative potentials were observed, respectively attributed to the reduction of azo group and reactive groups. Based on the azo group reduction, the calibration curve was found to be linear from 1.0 x 10^{-7} to 1.0 x 10^{-5} M with LOD of 0.5 x 10^{-7} M and 1.0 x 10^{-8} to 5.0 x 10^{-7} M with LOD of 5.0 x 10^{-8} M for differential pulse polarography (DPP) and differential pulse cathodic stripping voltammetry (DPCSV) technique, respectively. Other voltammetric determinations of azo dyes and their hydrolysis products were also studied by Fogg et al. (1997), Zanoni et al. (1997) and Barek et al. (1996).
1.6 Voltammetric Determination of Azo Dyes in Various Applications

A determination of azo dyes in various samples by voltammetric techniques with low LOD has been developed and reported in the literature. For example, the voltammetric determination of azo dyes such as Sudan I in food samples. According to Wu (2010), Sudan I is an organic azo dye, commonly used as a colorant in chemical industries and an additive for those foods containing chili powders due to its strong red-orange colour. The presence of this dye at any level is not safe for human and the International Agency for Research on Cancer (IARC) has classified it as a category 3 carcinogen (Yin et al., 2011).

Mo et al. (2010) have studied a gemini surfactant – ionic liquid – multiwalled carbon nanotube composite film modified glassy carbon electrode for voltammetric determination of Sudan I in chili powder and ketchup samples. The obtained LOD for this study was 0.03 µM. The determination of Sudan I has also been carried out at the single-walled carbon nanotubes and iron (III) - porphyrin modified glassy carbon by square wave voltammetry (SWV). The obtained LOD was 0.01 µM. Chili powder, chili juice and ketchup samples were used to find out the potential of this method for Sudan I detection (Wu, 2010).

Yang et al. (2009) have determined Sudan I at an ordered mesoporous carbon modified GCE. The linear range was from 0.403 to 66 µM and the LOD was down to around 0.00244 µM by using DPV technique. In this study, ketchup was used as the sample. Other examples of azo food dyes were tartrazine (TT) and sunset yellow (SY) which have been studied by DPV technique using pretreated boron-doped
diamond (BDD) as the WE. The obtained LOD were 62.7 nM and 13.1 nM for TT and SY, respectively. This method was applied in powdered juice drinks, gelatins and nutrient-enhanced sport drink beverages samples (Medeiros et al., 2012). Other applications of voltammetric techniques for azo dyes detection in food samples were reported by Song (2010), Zhang et al. (2010) and Ma et al. (2013).

In an automobile application, dye is commonly added to fuels in order to act as a visible marker for quality control purpose in order to distinguish liquids with chemical and physical similar properties (Trindade and Zanoni, 2009). In Brazil, the gasoline is a mixture of standard gasoline and concentration of 20 to 26 % of dehydrated ethanol, which produced from sugar cane. However, the gasoline is being adulterated by using ethanol with higher amount of water or by adding a higher amount of ethanol. Since the adulterated fuels may give problems to the car engine, health hazards and cause loss of tax revenues to the government, a dye with orange coloration is prescribed by law to be added to dehydrated ethanol for quality control purpose (Romanini et al., 2009). Voltammetric determination of azo dye in fuel samples has been studied by Romanini et al. (2009). They have developed SWV technique to determine dye solvent Orange 7 in fuel ethanol using GCE and the obtained LOD was 0.9 x 10^{-7} M.

Moreover, an application of azo dye in drugs analysis has been reported by Pereira et al. (2002). In this study, they have used Reactive Red 120 (RR120) which has two azo groups as chromophore and two monochlorotriazine groups as reactive site for derivatization of a clotrimazole. Clotrimazole, an effectively used antimycotic agent in against dermal infections and vulvovaginal candidiasis was mentioned not suitable
for direct reduction due to its ill-defined peak. The DPP analysis of a mixture of RR120 dye and clotrimazole with various concentrations exhibited a new peak that was well separated from all the RR120 dye peaks. Thus, the indirect determination of the clotrimazole can be carried out in the presence of RR120 dye excess.

1.7 Voltammetric Techniques

Voltammetry technique is reported to offer several important advantages such as has possibility to analyze real matrices without preliminary complicated and time consuming separations for individually or simultaneously determination of analytes, has similar selectivity as chromatography, offers faster analysis, low expenses on the instrument and also can be carried out in turbid solutions (Amorello and Orecchio, 2013; Švorc et al., 2013). It offers high sensitivity and low waste emissions (Jian and Li-Ping, 2013).

The application of voltammetric techniques has been reported in literature for various samples such as food samples (Meiju et al., 2007; Gambarra-Neto et al., 2009; Hajian and Ensafi, 2009; Santos et al., 2009; Makhotkina and Kilmartin, 2010; Sia et al., 2010; Tyszczuk et al., 2011), pharmaceutical samples (Ghoneim and Tawfik, 2004; Torriero et al., 2004; Álvarez-Lueje et al., 2008; Starek, 2009; Tyszczuk and Korolczuk, 2010; Gupta et al., 2011a; Jain and Sharma, 2012; Jain and Yadaz, 2012), toxicology and environment samples (Arancibia and Muñoz, 2007; Gibbon-Walsh et al., 2010; Mahesar et al., 2010; Kamat et al., 2011; Li et al., 2011; Koper and Grabarczyk, 2012) and forensic samples (Woolever et al., 1999;
1.7.1 **Instrumentation in Voltammetric Measurement**

The voltammetric techniques consist of three electrodes system in a voltammetric cell, which are working electrode (WE), auxiliary electrode (AE) and reference electrode (RE). There are also included magnetic stirrer and gas line for purging the supporting electrolyte. The RE is placed close to the WE, while the WE is placed between the RE and AE. A potentiostat monitors voltage over the WE and AE which is automatically adjusted to give correct applied potential (Fifield and Haines, 2000; Christian, 2004). Figure 1.2 shows the typical arrangement for electrochemical cell of voltammetry (Fifield and Haines, 2000).

![Typical arrangements for electrochemical cell of voltammetry](image)

Figure 1.2 Typical arrangements for electrochemical cell of voltammetry (AE: Auxiliary Electrode, WE: Working Electrode, RE: Reference Electrode)
1.7.1.1 Working Electrode (WE)

Working electrode (WE) provides a site for the redox reaction of electroactive species and also for the charge transfers from and to electroactive species to take place (www.cem.msu.edu). It strongly influences the performance of the voltammetric technique. The ideal characteristics of this electrode are has wide potential range, low resistance and be able to provide a high signal-to-noise response. The WE must also has a characteristic of chemical inertness, which means it should be made from the materials that do not react with solvent and any compounds of the solutions over as wide a potential range as possible.

There are two classes of electrode for the WE, which are liquid electrode like mercury and solid electrode such as carbon, gold and platinum. Mercury electrode offers several advantages to act as the WE. Its large activation overpotential for reduction of hydronium ion to form hydrogen enables the reduction of many species in acidic solution (Fifield and Kealey, 2000). In addition, mercury has ability to form amalgam with the most metals and provide uncontaminated surface from previous analysis due to readily formed new drops or new thin mercury films.

The only disadvantage of mercury is itself oxidizing at potential of +0.3 V and cannot be used at positive applied potentials more than +0.4 V against the SCE (Fifield and Haines, 2000; Fifield and Kealey, 2000). Figure 1.3 shows the different types of WE and their potential windows against SCE in various supporting electrolyte (Skoog et al., 2004).
Dropping mercury electrode (DME), hanging mercury drop electrode (HMDE) and static mercury drop electrode (SMDE) are the three main types of mercury electrode in voltammetry. The DME is used in polarography, an earlier subclass of voltammetric technique. In the DME, each self-renewing mercury drop at the end of a narrow capillary after continues growing due to gravity gives an advantage of uncontaminated surface from the previous analysis by any adsorbed electroactive species. In addition, this type of mercury electrode does not need to be polished or cleaned like solid electrodes such as carbon electrode.

The HMDE is reported as the only electrode type that sufficiently sensitive for metal speciation and drug residues in complex matrices such as natural waters and...