
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Phillips, Yvonne F. & Towsey, Michael W.
(2017)
The Clustering of Acoustic Indices derived from Long-duration Recordings
of the Environment.

This file was downloaded from: https://eprints.qut.edu.au/110659/

c© 2017 The Author(s)

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

https://eprints.qut.edu.au/view/person/Phillips,_Yvonne.html
https://eprints.qut.edu.au/view/person/Towsey,_Michael.html
https://eprints.qut.edu.au/110659/


TECHNICAL REPORT 

Title: The Clustering of Acoustic Indices derived from Long-duration Recordings of the 

Environment. 

Author: Yvonne Phillips and Michael Towsey 
y.phillips@hdr.qut.edu.au.  m.towsey@qut.edu.au  

Date: September 2017, 2nd edition. 

Institution:  QUT Ecoacoustics Research Group | www.ecosounds.org 

Science and Engineering Faculty, 
Queensland University of Technology, 
Brisbane, Australia 

Keywords: Acoustic environment, acoustic indices, k-means clustering, hierarchical 
clustering. 

This paper outlines the recording dataset and methods used to choose a clustering algorithm for a 

large twenty-six month acoustic dataset. The recordings were of the natural environment and consist 

of thirteen months of recording from each of two sites in two national parks 160 km north of Brisbane, 

Queensland. This paper also explains the calculation and use of the intra-three-day-distance (I3DD) 

error measure used to determine the optimum clustering result. Site maps and photos are provided at 

the end of this document. 

Site Description 

The two recording sites were at Gympie National Park (26º 3’S, 152º 42’ E), elevation 225 m and 

Woondum National Park (26º 16’ S, 152º 47’ E), elevation 118 m. Recording commenced at both sites 

on the 22 June 2015 and continued until the 23 July 2016 inclusive. Both sites are Eucalypt woodland, 

located about 160 km north of Brisbane. The Gympie National Park site is a Spotted Gum (Corymbia 

citriodora subspecies variegata) and Grey Gum (Eucalyptus propinqua) woodland. The Woondum 

National Park site is closer to the coast and receives a higher rainfall. Consequently, its canopy is less 

open. Dominant species are Gympie Messmate (E. cloeziana), Pink Bloodwood (C. intermedia) and Grey 

Gum (E. propinqua) and bordered by Flooded Gum (E. grandis). Both sites support resident and migrant 

birds including many nectar and insect feeders. The Gympie National Park site has large birds including 

the Australian Magpie (Cracticus tibicen), Pied Currawong (Strepera graculina) and species of owl. The 

Woondum sites supports more fruit eaters. 

Data Acquisition 

Song Meter (SM2+) recorders were used with a continuous schedule and a sample rate of 22050 Hz. 

Files were saved in stereo 16-bit WAVE format. Each recorder was wired to a tree at 1.5 m with two 

omnidirectional microphones attached directly to each meter. Batteries were changed weekly resulting 

in some loss of minutes. To maintain the time scale for visualization the missing minutes were inserted 

as zeros. For analysis and clustering these minutes were removed. There was a total of 773 missing 

minutes, 241 due to battery changes and 532 due to two corrupt files. 
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The Summary Indices 

The recordings were divided into one-minute non-overlapping segments yielding a total of 1,141,147 

segments. Acoustic indices were calculated on one-channel only, due to occasional microphone 

problems. We calculated twelve summary acoustic indices for each one-minute segment. A brief 

description of each index is given below. More detail can be obtained from (Towsey, 2017). 

The first four indices are derived from the waveform envelope converted to decibels. 

1. Background Noise (BGN): Calculated as described in Towsey (2017). 

2. Signal to Noise Ratio: Obtained by subtracting the BGN value (summary index 1) from the maximum 

decibel value in the waveform envelope (Towsey, 2017). 

3. Activity: The fraction of frames whose decibel value exceeds a threshold of 3 dB above the value of 

BGN. 

4. Events per Second: The number of times per second (averaged over 60 seconds) that the waveform 

envelope crosses a threshold, θ, from below to above, where θ = BGN + 3 dB. 

The following three indices (5, 6 and 7) compare acoustic energy in the low, middle and high 

frequency bands of the decibel spectrogram. The mid-band frequency bounds were chosen to capture 

most of the bird vocalisations but avoid much of the anthropophony predominant at low frequencies. 

Insect vocalisations predominate in the high frequency band. 

5. Low-frequency Cover (LFC): The fraction of spectrogram cells that exceed 3 dB in the low frequency 

band (< 1000 Hz) of the noise reduced spectrogram. 

6. Mid-frequency Cover: As for LFC but in the mid frequency band (1000 - 8000 Hz)  

7. High-frequency Cover: As for LFC but in the high frequency band (8000 – 10982 Hz). 

The following three indices (8, 9 and 10) describe the spectral distribution of acoustic energy in the 

one-minute recording segment. They are similar in purpose to the Gini index used for example in 

Briggs et al. (2012) to describe energy distribution within acoustic events. 

8. Entropy of Peaks Spectrum: A measure of the dispersal of spectral maxima across the frequency 

range of 1000-8000 Hz.. 

9. Entropy of Average Spectrum: Equivalent to the entropy of the power density spectrum derived from 

a one-minute recording. 

10. Entropy of the spectrum of Coefficient of Variation: The Entropy of the spectrum derived from the 

ratio of the standard deviation and mean of the spectral power in each frequency bin. 

Indices 11 and 12 are ‘ecological indices’ which attempt an acoustic measure of species richness. 

11. Acoustic Complexity Index (ACI): this summary index is obtained by averaging the 256 values of the 

corresponding spectral index (Farina, Pieretti, & Morganti, 2013; Pieretti, Farina, & Morri, 2011). It is 

widely used as a measure of biophony in environmental recordings. Unfortunately, it is also highly 

sensitive to some non-biological sound sources, such as rain. Normal practice in ecological studies 

is to manually exclude recordings containing rain and wind. However, in this study, the visualization 

of wind and rain in a soundscape is also important. 

12. Cluster Count: The number of distinct spectral clusters in a one-minute segment of recording. 

Calculated as described in Towsey (2017). This index is an attempt to measure the degree of internal 

acoustic structure within a one-minute recording. It is expected that greater vocal diversity will 

increase the spectral cluster count. 



We did trial other summary indices but found that they were highly correlated with at least one of the 

above twelve indices (R
2
 > 0.7). No pair of the above twelve summary indices was correlated above 

the 0.7 threshold. 

Choosing a clustering method 

When comparing clustering algorithms or optimum parameter values, it is necessary to have some 

performance criterion with which to make the comparison. Typically, the optimum parameter values 

for clustering are determined by an index, such as the Dunn Index (Dunn, 1974) or the Silhouette 

index (Rousseeuw, 1987), which measures the discreteness and tightness of the resulting cluster set. 

(Higher values for these indices indicate better, i.e. more discrete, clusters.) 

When we used these indices to determine the optimum number of clusters, the results were 

ambiguous. For example, when attempting to cluster the entire dataset of 1,141,147 12-element 

acoustic feature vectors using a hybrid clustering technique (to be described below), the Dunn index 

indicated that the optimum number of clusters would be 5 or 80 (Fig 1, left). By contrast, the 

Silhouette index implied that the data could not be well clustered (Fig 1, right). The maximum 

Silhouette value of 0.14 at five clusters was well below the 0.25 threshold, which is usually interpreted 

as indicating “no substantial structure” in the data (Kononenko &  Kukar, 2007 p. 343). Lamirel (2016) 

demonstrated that many of the well known cluster validity indices including the Dunn and Silhouette 

indices. 

The Dunn and Silhouette indices were calculated on the clusters obtained from step 1 and 2 of the 

three step clustering described in “The Algorithms” section. The Dunn Index was calculated using the 

clv.Dunn function in the R “clv” package (Nieweglowski, 2013). Where, the intra-cluster diameter 

(complete) represents the maximum distance between any two objects within the cluster. The inter-

cluster distance (single) is the minimum distance between two objects belonging to two different 

clusters. The Silhouette index was calculated using the distcritmulti function in the R “fpc” package 

(Hennig, 2014). 

Lamirel (2016) tested the Dunn and Silhouette indices on baseline datasets and found these and other 

validity indices had low-rates of correct prediction of the actual number of clusters. Lord, Willems, 

Lapointe, and Makarenkov (2017) also showed the Silhouette index gave predictions that were not 

  

Fig 1: Graphs of cluster ‘integrity’ against two clustering parameters, k1 and k2. Note that k2 

represents the final number of clusters. The Dunn index indicates that the optimum number of 

clusters is either 5 or 80. The maximum value of the silhouette index (0.14) indicates that there is no 

structure in the data to cluster. 

 



well matched with the established number of clusters in the tested datasets. 

Due to the ambiguity of the Dunn and Silhouette indices, we turned to the formulation of an error 

function based on acoustic signatures of 24-hour recordings that contain maximum biophony. It 

should be noted that the Dunn and Silhouette indices are ecologically agnostic. Consequently, we 

implemented an ‘error’ index that quantified how well a cluster set partitioned the biophony in a set of 

recordings. Our goal was to achieve a clustering result that maximised useful ecological information. 

Our approach to this problem rests on two assumptions: 

1. That the biophony of two days (rain and wind free) will be more similar, the closer their 

recordings are in time and space. Conversely, changes in vocal species (and therefore in 

biophony) will accumulate with increasing seasonal and landscape separation. 

2. That acoustic signatures (calculated according to the method in Sankupellay, Towsey, 

Truskinger, and Roe (2015) of days having similar biophony will be closer than the 

acoustic signatures of days having dissimilar biophony. An acoustic signature derived 

from a set of N clusters is an N-bar histogram, each bar of which is the count of the 

number of times that acoustic state or cluster occurs within the 24-hour day. 

These two assumptions are based on the results of Sankupellay et al. (2015), although they use the 

term acoustic fingerprint rather than acoustic signature. They found that 24-hour acoustic signatures 

from the same site and time-of-year are more similar than acoustic signatures from different sites and 

different times of year. 

To make use of this result, we selected six days of recording from each of the two sites (Table 1). The 

days were carefully chosen to be wind and rain free, that is, to maximize the content of biophony. And 

we wanted the six days at each site to be grouped into two sets of three days, separated by 30 days. 

Note that to find 12 days which satisfied the above criteria was made much easier by inspecting false-

colour spectrograms prepared as described in (Towsey et al., 2014). Finding the 12 days by listening 

would not have been feasible otherwise. It should be noted that the two sites (Gympie and Woondum) 

are only 25 kilometres apart and they contain many common vocalising species. The relatively small 

ecological and seasonal separation between the 3-day groups was designed to increase the difficulty 

of the optimisation task. Note also, that days 6 and 12 in Table 1 were not quite sequential due to the 

intervention of two days of rain and/or wind. 

The ability of a clustering result to separate these 12 days into four groups of three days became our 

measure of clustering “error” and was used to optimize the values of k1 and k2. For a given clustering 

result that produces N clusters, each of the 12 days in Table 1 was converted to an acoustic signature 

(normalized N-bar histogram). These twelve acoustic signatures were then clustered hierarchically 

(using hclust in the R stats package (R Core Team, 2016), distance metric = ward.D2) to produce a 12-

leaf dendrogram. 

Ideally, a clustering run should produce clusters (and subsequent acoustic signatures) that divide the 

12 days into four groups of three. We derived an error index, the intra-three-day-distance (I3DD), 

which quantifies the extent to which the dendrogram grouping of days departs from the ‘ideal’ 

Table 1.  Summary of twelve-day dataset, 6 days from each of the two sites 

 Gympie NP site Woondum NP site 

Mid-winter 30 July 2015 (day 1) 

31 July 2015 (day 2) 

1 Aug 2015 (day 3) 

30 July 2015 (day 7) 

31 July 2015 (day 8) 

1 Aug 2015 (day 9) 

Early-spring 31 Aug 2015 (day 4) 

1 Sept 2015 (day 5) 

4 Sept 2015 (day 6) 

31 Aug 2015 (day 10) 

1 Sept 2015 (day 11) 

4 Sept 2015 (day 12) 



grouping shown in Table 1. To calculate I3DD, we find the average of the maximum heights linking 

pairs within a three-day group using dendrograms such as Fig 2. 

Given a set of N cluster centroids derived from one of the above four clustering algorithms, an 

acoustic signature is calculated for each of the twelve days. These twelve acoustic signatures are then 

clustered hierarchically (using hclust in the R stats package, distance metric = ward.D2) to produce a 

twelve-leaf dendrogram as shown in Fig 2. 

From each dendrogram (derived from a single clustering run for a fixed value of k), we calculated a 

new error index, which we refer to as the intra-three-day distance (I3DD). I3DD is a measure of total 

intra-group integrity, that is, how far the dendrogram differs from the expected ‘ideal’ dendrogram, 

which would consist of four groups of three days: days 1, 2, 3; days 4, 5, 6; days 7, 8, 9; and days 10, 

11, 12. For each three-day group, we calculated the average of the maximum of the three heights 

separating the pairs of group members. For example, in Fig 2, the I3DD value for the group of days 7, 

8, 9 is (131 + 86)/2 = 108.5. Likewise, the I3DD value for days 10, 11, 12 is (240 + 1508)/2 = 874. And 

for days 1, 2, 3, I3DD = 362 and for days 4, 5, 6, I3DD = 547.5. The sum of the four I3DD values is 

normalised by dividing by the height of the highest node, in this case 1508, yielding a composite I3DD 

value of (362+547.5+108.5+874)/1508 = 1.26 for the entire dendrogram. This composite I3DD value is 

an ‘error’ in the sense that it measures the degree to which the dendrogram branches differ from the 

‘ideal’ four branches as described above. 

 

 

Fig 2. Example of a dendrogram derived from clustering 12 acoustic signatures obtained after clustering 

the 12-day dataset using k-means, k= 8. 

Our expectation is that smaller values of I3DD will be obtained when the clusters (from which the I3DD 

value is derived) have partitioned the dominant sources of biophony in the 12-day data set. The 

achievement of a minimum quantisation ‘error’ is not the only criterion for selecting a clustering 

method. We also require that the method should not be highly sensitive to small changes in optimum 

parameter values and that the method should scale. 

Experiment 1: Comparing four clustering methods 



The Dataset 

The dataset for experiment 1 was derived from the 12 days of recording in table 1. This resulted in 

17280 vectors of acoustic indices, one vector per minute. After removing one of each pair of indices 

having a Pearson’s correlation greater than 0.7, we retained seven indices per feature vector: 

Background Noise (BGN), Signal to Noise Ratio (SNR), Events per second (EVN), Low Frequency Cover 

(LFC), Acoustic Complexity (ACI), Entropy of Peaks Spectrum (EPS) and Entropy of Coefficient of 

Variation (ECV). The values for each index were normalised between the 2
nd

 and 98
th

 percentiles. 

The Algorithms 

The following four clustering algorithms were applied to the twelve-day dataset: 

1. Algorithm 1.  K-means clustering using kmeans in the R stats package (R Core Team, 2016) 

using k values of 5, 10, 15, 20, 25 and 30. An advantage of k-means clustering is that it scales 

to large datasets. A disadvantage is that it produces different results depending on how the 

cluster seeds are chosen. 

2. Algorithm 2.  Hierarchical clustering using hclust in the R stats package (R Core Team, 2016) 

using the average and ward.D2 methods for comparison. This method produced a 17280 leaf 

dendrogram, which was cut at the heights of 5, 10, 15, 20, 25 and 30 using the cutree function 

(Becker, Chambers, & Wilks, 1988). An advantage of Hierarchical clustering is that it is 

deterministic (after choice of the distance metric). A disadvantage is that the algorithm 

typically requires holding the entire data set in memory which does not scale to very large 

datasets. 

3. Algorithm 3.  Model-based clustering using Mclust in the R mclust package (Fraley, Raftery, 

Murphy, & Scrucca, 2012). Mclust uses the Bayesian Information Criterion (BIC, closely related 

to the Akaike Information Criterion) to select a single optimal cluster model from a finite set of 

models. BIC balances error minimisation (more clusters reduce error) with model complexity 

(more clusters increases complexity). We calculated the BIC for 1-50 clusters. 

4. Algorithm 4.  A hybrid clustering method which combines k-means partitioning and 

hierarchical clustering. This method attempts to take advantage of the best aspects the k-

means and hierarchical algorithms: k-means is fast and can be used on large datasets; 

hierarchical clustering does not scale well but is deterministic once a distance metric is 

selected. The hybrid method consists of three steps: 

Step 1:  Partition the total dataset into a large number (k1) of clusters using k-means. For the 

twelve day dataset we used values of k1 from 2000 to 4000 in steps of 500, these values 

increase with the size of the dataset, the values used for the 26 month dataset (given later in 

the paper). 

Step 2:  Cluster the k1 cluster-centroids (from step 1) using hierarchical clustering, cutting  the 

tree using values of k2 ranging from 10 to 100 in steps of 5. 

Step 3:  Assign each minute in the dataset to one of the k2 clusters from step 2 using knn (k-

nearest-neighbour) in the R class package (Venables & Ripley, 2002) where the number of 

neighbours considered is the square root of k2 (Lantz, 2015). 

Optimising parameter values 

Algorithms 1 and 2 require the parameter k (cluster number) to be optimised and Algorithm 4 has 

parameters k1 and k2 that need optimisation. Typically, the optimum value of k is determined by 

some measure of quantisation error, which declines as k increases. An optimal k value would be 



expected to coincide with a sharp decrease in quantisation error. Unfortunately, in our case the 

quantisation error (measured in several ways) declined gradually and did not reveal obvious choices 

for a value of k. we therefore used the measure of I3DD described above to determine the optimum 

parameter values. 

In the case of algorithm 3, there are no parameters to optimise because the optimum number of 

clusters is incorporated into the BIC. However, we use the I3DD criterion to compare the BIC result 

with the other three algorithms.  

Results 

A comparison of the I3DD ‘error’ curves in Fig 3a, indicates that the optimum number of clusters for 

the 12-day dataset (Table 1) is close to 10 for all three methods. However, k-means achieved a lower 

error than both hierarchical methods. The single result obtained from model-based clustering 

produced 39 clusters (an ellipsoidal model with variable cluster volumes, shapes and orientations - 

VVV) and an I3DD ‘error’ of 1.8 (result not shown in Fig 3a). Due to this relatively high value for 

minimum I3DD (the highest of all the four clustering methods) and due to its long computation time, 

we decided not to give this method further consideration. 

Conclusion 

The lowest I3DD error and corresponding number of clusters was similar for both the hybrid and k-

means methods (Figs 3a and 3b). When the criteria of low sensitivity to small changes in the k1 and k2 

values is applied we observe that although the minimum I3DD value for hybrid and k-means 

clustering is similar, the range of k-values over which this minimum is achieved is much broader for 

the hybrid method and the hybrid method scales. Consequently, the hybrid algorithm (Algorithm 4) 

was chosen for clustering the large 26-month dataset. 

 

Fig 3.  I3DD error curves for different values of k. 3a The I3DD error curves for different values of k for kmeans 

and hclust clustering of the 12-day dataset.  3b. The I3DD error curves for different values of k1 and k2 for the 

hybrid clustering method on the same 12-day dataset. 

  



Experiment 2: Clustering 26 months of acoustic data 

The Dataset 

The dataset for experiment 2 was derived from the 13 months of recording from the 22 June 2015 

to the 23 July 2016. This resulted in 1,141,147 vectors of acoustic indices, one vector per minute. After 

removing one of each pair of indices having a Pearson’s correlation greater than 0.7, we retained 

twelve indices per feature vector: Background Noise (BGN); Signal to Noise Ratio (SNR); Activity; 

Events per second; Low Frequency Cover (LFC); Mid Frequency Cover; High Frequency Cover; Entropy 

of Peaks Spectrum; Entropy of Average Spectrum; Entropy of spectrum of Coefficient of Variation; 

Acoustic Complexity (ACI) and Cluster Count. The values for each index were normalised between the 

1.5 and 98.5 percentiles. 

Methods 

To accommodate the increased size and complexity of the 26-month data set (compared to the 12 

day data set), the optimum values for k1 and k2 in Algorithm 4 were recalculated. The range of k1 

values explored was 15000 to 27500 in steps of 2500. We expect this range of k1 values will capture 

the complexity of most datasets. K2 values were tried from 10 to 100 in steps of five. The optimum 

combination was k1 = 25000 and k2 = 60 (Fig 4). The corresponding dendrogram for the 12 acoustic 

signatures is shown in Fig 5. Note that the dendrogram has two main branches corresponding to the 

sites of Woondum and Gympie. Only day 12 (4
th

 September) is ‘misplaced’ in the tree. This may be 

due to a continuing response to rain events that occurred on the previous day (3
rd

 September 2015). 

Cluster interpretation 

Five methods were used to determine the acoustic content of the one-minute audio segments in each 

cluster. The seven major classes of acoustic event found were: Quiet, Wind, Birds, Orthopterans 

(crickets), Cicadas, Rain and Planes. 

The majority of clusters contained events from a dominant source and their assignment to a class was 

relatively straight forward. Deciding how to group the remaining clusters (helpful because it allowed 

colour coding for subsequent imaging), was based on the dominant event types as well as multiple 

sources of evidence as described below. 

In addition to listening to a sample of each cluster, we also employed a number of statistical based 

methods to confirm the consistency of the clusters. The five methods were: 

i. Listening to a random sample of 20 one-minute recordings from each cluster. 

ii. Mapping of the cluster medoids onto two dimensions using a Sammon projection (sammon 

function in R MASS package (Venables & Ripley, 2002); pam function in R cluster package 

(Maechler, Rousseeuw, Struyf, Hubert, & Hornik, 2015)). A Sammon map is used to map high 

dimensional data to a lower dimension (in our case two dimensions) while attempting to 

preserve the inter-point distances (Sammon, 1969). This visualises the relationships between 

the clusters/acoustic states. 

iii. Plotting the temporal distribution of clusters:  24-hour histograms of cluster occurrence are 

likely to reveal cluster content. For example, clusters (acoustic states) dominant around dawn 

suggests their content is morning bird chorus. Clusters dominant at evening suggests insect 

chorus or quiet. 



iv. Producing composite false-colour spectrograms: These images are prepared by concatenating 

the one-minute representations (from the corresponding 24-hour false-colour spectrogram) 

of 600 randomly selected minutes from each cluster. 

v. Comparing cluster medoids using radar plots: The values of the 12 acoustic indices 

(normalised) in each cluster medoid indicate which indices are important in defining the 

cluster. 

 

Fig 4.  I3DD ‘error’ versus k1 and k2 for the hybrid clustering method on the 26 month dataset. 

 

Fig 5. Dendrogram for the optimal (i.e. minimum I3DD error) hybrid run (k1 = 25000, k2 = 60). The left 

branch of the tree corresponds to recordings from the Gympie Site (except for day 12) and the right branch 

corresponds to recordings from Woondum. Only leaf 12 is not in its ‘correct’ branch. 



Maps and photos of site 

 

Fig 6: Regional map showing the relative location of the two sites (in red) and the city of Gympie and the 

Queensland coast (drawn by author YP). 

  Fig 7: Location of acoustic recorder within Gympie National Park (left) and Woondum National Park 

(right) (Adapted from shape files available from the Australian Government Geoscience Australia (2006)). 

  

Fig 8: Photographs of the recording sites, Gympie National Park (left) and Woondum National Park 

(right). (photos taken by author YP). 
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