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Summary

In Li and Atick’s [1, 2] theory of efficient stereo coding, the
two eyes’ signals are transformed into uncorrelated binoc-

ular summation and difference signals, and gain control is
applied to the summation and differencing channels to opti-

mize their sensitivities. In natural vision, the optimal channel
sensitivities vary frommoment tomoment, depending on the

strengths of the summation and difference signals; these
channels should therefore be separately adaptable, whereby

a channel’s sensitivity is reduced following overexposure to
adaptation stimuli that selectively stimulate that channel.

This predicts a remarkable effect of binocular adaptation
on perceived direction of a dichoptic motion stimulus [3].

For this stimulus, the summation and difference signals
move in opposite directions, so perceived motion direction

(upward or downward) should depend on which of the two
binocular channels is most strongly adapted, even if the

adaptation stimuli are completely static. We confirmed this
prediction: a single static dichoptic adaptation stimulus pre-

sented for less than 1 s can control perceived direction of

a subsequently presented dichoptic motion stimulus. This
is not predicted by any current model of motion perception

and suggests that the visual cortex quickly adapts to the pre-
vailing binocular image statistics to maximize information-

coding efficiency.
Results and Discussion

We ran three experiments to investigate the effect of binocular
adaptation on the perceived direction of a dichoptic motion
test stimulus based on that of Shadlen and Carney [3]. In their
stimulus, each eye received a flickering horizontal grating
pattern (with maximum contrast a) that had no net motion in
any direction, but the summation (S+) and difference (S2)
signals were smoothly drifting gratings that moved in opposite
directions. Shadlen andCarney reported that observers gener-
ally perceived motion in the S+ direction [3], so, to remove this
bias, we boosted the S2 signal by adding drifting gratings of
opposite contrast, 6b, in each eye. To selectively adapt the
summation or differencing channels (which are sketched out
in Figure 1) prior to presentation of the test stimulus, we pre-
sented static binocular stimuli that were either identical or
contrast reversed between the eyes. The procedure for all
experiments is illustrated in Figure 2 (see Supplemental Exper-
imental Procedures available online for details).
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In experiment 1, the binocular adaptors were pairs of natural
images selected from a previously described set [4] and pro-
cessed to avoid luminance artifacts. There were four adapta-
tion conditions, involving different interocular correlations:
correlated+, correlated2, anticorrelated, and uncorrelated
(described in Figure 3). The results are shown in Figure 4A.
The stimulus contrasts, a and b, were chosen so that, for
uncorrelated adaptation, observers were equally likely to
report motion in the S+ or S2 direction, so performance was
close to the 50% level on this condition by design. For corre-
lated adaptation, which would selectively adapt (i.e., desensi-
tize) the summation channel, the stimulus wasmost often seen
tomove in the S2 direction, whereas for anticorrelated adapta-
tion, which would selectively desensitize the differencing
channel, the stimulus was most often seen to move in the S+

direction.
Most observers found the perceived motion to be subjec-

tively weak, so performance was generally away from ceiling.
This is not surprising, because the summation and difference
signals provide conflicting information about stimulus direc-
tion, so neither inference (motion upward or downward) would
be well supported by the pattern of neural activity in the visual
cortex. Observers were faced with the task of selecting the
more likely of two weakly supported hypotheses under
a forced choice. The interobserver differences in effect size
may have resulted from differences in neural noise, or ‘‘calcu-
lation efficiency’’ [5, 6], during the decision process under
conflict. For our purpose (which does not extend to explaining
the strength of the motion percept), we only need to assume
that the preferred choice (S+ direction or S2 direction) is influ-
enced by the relative sensitivities to the S+ and S2 signals.
Experiment 2 examined the orientation selectivity of the

adaptation mechanisms. It was the same as experiment 1,
except that the adaptors were 1D vertical or horizontal noise.
The test stimulus was always horizontal. Figure 4B shows
that, for two of the four observers (AB and KAM), the size of
the adaptation effect was barely affected by the orientation
of the adaptor, suggesting that the adaptation for these
observers depended mainly on non-orientation-selective
neurons in the visual cortex. The summation channel would
be implemented by cells with identical isotropic receptive
fields in the two eyes, and the differencing channel would be
implemented by cells with isotropic receptive fields in which
the polarity in one eye was opposite to that in the other.
A few examples of the latter type of cell have been reported
[7, 8]; as required by Li and Atick’s theory [1, 2], Livingstone
and Hubel found that ‘‘the responses from the two eyes,
although opposite in sign, were algebraically additive’’ ([7],
p. 324]). They remarked that they were ‘‘at a loss to imagine
any plausible benefit these collector’s items could offer the
animal’’ ([7], p. 324). We suggest that these cells form part of
the implementation of our proposed differencing channel.
The other two observers in experiment 2 showed either

a weaker (PS) or nonexistent (KMZ) effect of interocular corre-
lation for the vertical adaptor. We used a chi-square test to
see whether interocular correlation had had a significant effect
for each observer and adaptor orientation (see Table 1).
Although KMZ showed an overall bias to perceive motion in
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Figure 1. Li and Atick’s Theory of Efficient Stereo Coding

If the visual scene contains objects at various distances

from the observer, including some at very short

distances, the two retinal images will be quite different

from each other. On the other hand, if the visual scene

consists entirely of faraway objects (such as a distant

landscape), the two retinal images will be highly corre-

lated and form a redundant, inefficient, representation.

Li and Atick [1] showed that this inefficient representation

could be transformed into an efficient one in two concep-

tual stages. First, the signals from the left and right eyes,

SL and SR, are transformed into two uncorrelated signals:

the sum, S+, and the difference, S2. Second, gains

applied to the summation and differencing channels

(g+ and g2, respectively) are dynamically optimized to

the prevailing interocular correlation. As long as the

signal-to-noise ratio is not too low, this optimization

amounts to equalization of the channel amplitudes (i.e.,

whitening) [30, 31]. This maximizes information-coding

efficiency because information is a compressive function

of signal-to-noise ratio [32], which gives a diminishing

return of information as signal strength increases; so,

for a given energy budget, information capacity is maxi-

mized by attenuating strong signals and boosting weak ones until all channels have the same signal amplitude. When the images in the two eyes are weakly

correlated, the S+ and S2 signals will have similar amplitudes and the optimal gains will be similar; when the images in the two eyes are strongly correlated,

the S+ signal will be stronger than S2, so the gain in the summation channel should be lower. The bottom row of this figure represents the channels as Carte-

sian axes, with scatter plots representing hypothetical distributions of responses in the two channels.
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the S+ direction with vertical adaptors, this bias was not signif-
icantly affected by the interocular correlation. This suggests
that, for KMZ, adaptation to interocular correlation is orienta-
tion selective and our effect depends on neurons tuned to
the same orientation as the test stimulus. KMZ’s overall S+

bias for vertical adaptors is consistent with this account, as
we explain later, in our discussion of experiment 3.

Experiment 3 investigated the time course of adaptation.
The initial adaptation period was identical to that in the
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Figure 2. Procedure
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The results of experiment 3 are shown in Figure 4C. The data
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Figure 3. Adaptation Stimuli

Examples of the different adaptation types. Each row shows binocular stim-

ulus pairs for a different adaptation condition. Adaptation stimuli for all

experiments are shown to the same scale. ‘‘Left’’ and ‘‘Right’’ headings

indicate left and right eyes. Experiment 1 had four types of adaptation, all

using processed natural images. With anticorrelated adaptation, each eye

saw the photographic negative of the other eye’s image; these stimuli

would cancel each other out in the summation channel, so only the differ-

encing channel was stimulated. With uncorrelated adaptation, each eye

received a completely different, randomly selected, positive image; this

condition would stimulate both channels equally, on average. Finally, there

were two correlated adaptation conditions: correlated+, in which each eye

saw the same positive image, and correlated2, in which each eye saw

the same negative image. The correlated conditions would stimulate only

the summation channel. In experiment 2, the adaptors were 1D 1/f noise

patterns, either identical in each eye (correlated), contrast reversed

between the eyes (anticorrelated), or a different, random pattern in each

eye (uncorrelated).
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for top-up durations greater than around 0.25–1 s, depending
on the observer. As in experiment 1, the test stimulus had an
added drifting grating that was calibrated to give unbiased
performance for uncorrelated adaptation in experiment 1. In
experiment 3, the average correlation across all types of adap-
tation within every session was zero, like the uncorrelated
condition of experiment 1, yet there was an overall bias toward
S+, especially for short or zero top-up durations. This probably
reflects adaptation to the brief test stimulus, with the differenc-
ing channel adapting more quickly than the summation
channel (a likely possibility given that, in natural vision, the
strength of the S2 signal fluctuates more rapidly than S+); the
brief test stimulus preceded and followed by a blank screen
would then have little effect on adaptation of the summation
channel, but the differencing channel might adapt quite
strongly within the first fewmilliseconds of the stimulus, allow-
ing the summation channel to dominate perception of it. This
would explain the perceptual bias toward the S+ direction in
Shadlen and Carney’s original experiment. It also explains
the S+ bias with vertical adaptors in KMZ’s data in experiment
2: our analysis of that experiment suggested that the effects of
adaptation were mediated largely by horizontally tuned cells
for KMZ, so the vertical adaptation condition would be similar
to having no adaptation at all, which should give a bias in theS+

direction.
Our results follow naturally from the proposal of indepen-

dently adaptable binocular summation and differencing chan-
nels that are central to Li and Atick’s [1, 2] theory of efficient
stereo coding. We know of only two other papers to have
argued for the existence of binocular differencing channels
[9, 10], and this feature is missing from most contemporary
models of binocular combination [11–16], which sum the
ocular signals. In many of these models, binocular summation
is preceded by divisive suppression of each eye by the other
[12–16], and one might wonder whether this interocular
suppression mechanism, rather than a binocular differencing
channel, could explain our results. In fact, no model of this
kind can account for our results, because the manipulations
in our study would have the same effect on each eye, and
this symmetry would ensure that any change in interocular
suppression before summation due to adaptation would be
identical in the two eyes; the effect would be an overall change
in effective stimulus contrast, but the effective contrast would
not differ between the eyes, and the two eyes’ signals would
still sum together to produce motion in the S+ direction, as in
Equation 6 of the Experimental Procedures section below.
The reversal of perceived direction requires a change of sign
of one eye’s signal (Equation 7), implying the existence of
a binocular differencing channel. However, our conclusions
are not fundamentally incompatible with current models of
binocular combination [11–16], and we suggest that these
models could usefully be extended by including both a binoc-
ular differencing channel and gain-control mechanisms that
are sensitive to the interocular correlation.
In this study, we used horizontal stimuli because vergence

adjustments (which would disrupt our binocular stimuli) are
smaller for horizontal than vertical stimuli [17, 18]. However,
Li and Atick’s theory of efficient stereo coding predicts
summation and differencing channels at all orientations and
uses the vertical summation and differencing channels for
disparity or 3D depth computation. Other models of disparity
computation do not explicitly recognize the statistical separa-
bility of the summation and differencing channels, or how
crucial it is for efficient coding that the gains on these channels
be independently adaptable.
There has been an intense debate about whether ‘‘cyclopean

motion’’ of the kind used in this study is detected by dedicated
motion sensors, or by tracking the changing positions of
features over time [19–27]. But to date, all models of motion
perception that can accommodate cyclopean motion have
a key omission in common: they lack a binocular differencing
channel. Our results provide strong evidence for the existence
of binocular summation and differencing channels in human
vision; thegainson thesechannelscanadaptstrongly to thepre-
vailing interocularcorrelation in less than1s, tomaximizecoding
efficiency. This fast adaptation may explain why the difference
between the effects of adapting to natural versus nonnatural
stereograms was very weak in a previous study [28], in which
a test stimulus appeared 472 ms after the offset of the adapting
stimulus.When the binocular summation and difference signals
move in opposite directions, the perceived direction of motion
can be reversed by changing the interocular correlation of the
adaptation stimuli, even if the adaptation stimuli are static.
This finding provides particularly strong support for Li and
Atick’s theory of efficient stereo coding [1, 2], because it is diffi-
cult to imagine any other reasonwhy adaptation to static stimuli
would lead to a reversal of perceived motion direction. With the
recent surge in popularity of 3Dmovies and video games, there
iscurrently agreatdeal of interest in theeffects of viewing stereo
displays, given that theyare likely todiffer from the normal visual
environment. Our study shows one way in which human binoc-
ular vision mechanisms adapt to stereo displays, and how this
could lead to perceptual biases. Our finding that adaptation is
fast suggests that at least some effects of stereoscopic viewing
may be short lived.
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Figure 4. Results

Vertical axes give the percentage of times that the test stimulus was re-

ported to be moving in the S+ direction.

(A) Experiment 1. Each color represents data from a different observer, as

indicated along the top of the panel. Bars are grouped according to adapta-

tion condition (C+, correlated+; C2, correlated2; U, uncorrelated; A, anti-

correlated). Dashed lines with long dashes indicate performance levels

significantly different from chance at the 0.05 level; dashed lines with short

dashes indicate a significant difference from chance at the 0.001 level.

These were calculated according to a two-tailed binomial test with 200

trials, so they do not apply to observer PBH,who did 100 trials per condition;

however, PBH’s performance on the correlated+, correlated2, and anticor-

related conditions was still significantly different from chance, the highest p

value from these three conditions being 0.00179, for correlated+.

(B) Experiment 2. Each color is assigned to the same observer as in (A). Left

and right panels give data for horizontal and vertical adaptors, respectively.

Dashed lines have the same meaning as in (A) and apply to all observers.

(C) Experiment 3. Each panel gives data for a different observer. The hori-

zontal axis represents the duration of the top-up stimulus (tick marks repre-

sent durations of 0, 2, 8, 32, 128, and 512 frames of 120 Hz). The two colored

lines represent data for trials preceded by different types of top-up adapta-

tion stimulus (A, anticorrelated; C+, correlated+). The lines necessarily

converge at zero (0) frames top-up duration because then the two adapta-

tion conditions are identical and the data were pooled. For nonzero top-

up adaptation durations, adaptation switched between correlated+ and

anticorrelated on alternate trials within a session. Dashed lines have the

same meaning as in (A) and (B) and are based on 48 trials per condition

for observer PBH and 196 trials per condition for all other observers.

Table 1. Effect of Adaptor Interocular Correlation on Perceived Direction

Judgments in Experiment 2

Observer

Horizontal Adaptor Vertical Adaptor

c2 p c2 p

AB 135 <1.11 3 10216 157 <1.11 3 10216

KAM 293 <1.11 3 10216 324 <1.11 3 10216

KMZ 24.8 4.13 3 1026 5.75 0.0563

PS 59.4 1.24 3 10213 27.9 8.95 3 1027

For each observer and adaptor orientation, the trials were classified accord-

ing to reported direction (S+ or S2 direction) and interocular correlation of

adaptor. The resulting 2 3 3 contingency table was subjected to a chi-

square test to see whether interocular correlation of the adaptor had signif-

icantly affected the responses. KMZ showed no significant effect for vertical

adaptors (p > 0.05); in every other case, the effect was highly significant.
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Experimental Procedures

Apparatus and Observers

Stimuli were displayed on a Clinton Monoray CRT monitor with fast-decay-

ing (DP104) phosphor and frame rate 120 Hz, driven by a ViSaGe stimulus

generator (Cambridge Research Systems). Images were presented on

a 768 3 768 pixel, 19 cd/m2 background with dark surround. Human

observers (four male, two female) viewed the screen through FE-1 stereo

goggles (Cambridge Research Systems) from a distance of 120 cm, giving

1 arcmin of visual angle per pixel. Informed consent was obtained from all

observers, and approval of the study was obtained from the UCL

Psychology Ethics Committee.

Test Stimuli

In the following exposition, the stimulus signals are expressed in terms of

the contrast signal [29], c(x, y, t), at each point in space (x, y) and time t,

so the stimulus luminance, L(x, y, t), is obtained from the contrast as

Lðx; y; tÞ=L0½1+ cðx; y; tÞ�; (1)

where L0 is the background luminance.

In Shadlen and Carney’s stimulus [3], one eye receives a horizontal coun-

terphase grating, S1 (i.e., a stationary sine wave grating with contrast that

reverses sinusoidally over time); the other eye receives a similar counter-

phase grating, S2, which is shifted in spatial and temporal phase by p/2

radians relative to S1. We can express S1 as

S1 =a cos Y cos T ;

where a is the stimulus contrast and Y and T are vertical distance and time,

converted to instantaneous phase:

Y =2pfyy +4y (2)

T =2pftt+4t; (3)

where y is vertical distance in degrees of visual angle, t is time in seconds, fy
and ft are the spatial and temporal frequencies, respectively, and 4y and 4t

are the spatial and temporal initial phases (at y = 0 and t = 0, respectively). S2

is given by

S2 =a sin Ysin T :

Our proposed summation and differencing channels would see gratings

drifting in opposite directions:

S+ =S1 + S2 =a cosðY2TÞ

S2 =S1 2 S2 =a cosðY +TÞ:

Shadlen and Carney reported that subjects generally perceived motion in

the summation direction [3], so, to remove this bias, we added drifting grat-

ings, 6bcos(X + T), with opposite contrast in each eye:

S1 =a cos Y cos T + b cosðY +TÞ (4)

S2 =a sin Y sin T 2 b cosðY +TÞ (5)
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The drifting gratings cancel out in the summation channel but boost the

difference signal:

S+ =S1 +S2 =a cosðY 2TÞ (6)

S2 =S1 2S2 = ða+2bÞcosðY +TÞ (7)

The test stimulus was a horizontal dichopticmotion stimulus as described

in Equations 2–5, with a = 0.1, b = 0.02 (experiments 1 and 3) or b = 0.025

(experiment 2), fy = 0.25 cycles/degree, and ft = 66 Hz. We used the same

stimulus parameters (including a and b) for all observers. 4y and 4t were

randomized on each trial. S+ direction (upward or downward, controlled

by the sign of ft) and assignment of signals S1 and S2 to left and right eyes

were counterbalanced across trials within each session.

Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures

and can be found with this article online at doi:10.1016/j.cub.2011.11.025.
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