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Abstract 

Policy makers in the United Kingdom (UK), as in many countries around the world, are 

confronted with a situation of legally binding commitments to reduce carbon emissions. 

In this context it remains an open question of how to find a cost-efficient approach to 

climate change mitigation. Marginal abatement cost (MAC) curves have already been 

applied to help understand the economics of many different environmental problems 

and can likewise assist with illustrating the economics of climate change mitigation. 

Current approaches to generate MAC curves rely mostly on the individual assessment of 

each abatement measure, which are then ranked in order of decreasing cost-efficiency. 

These existing ways of generating MAC curves fail to allow both the graphical 

representation of the technological detail and the incorporation of system-wide behavioural, 

technological, and intertemporal interactions. They also fail to provide a framework for 

uncertainty analysis. This dissertation addresses these shortcomings by proposing a new 

approach to deriving MAC curves through the combination of an integrated energy 

system model, UK MARKAL, and index decomposition analysis. The energy system 

model is used to capture system-wide interactions, while decomposition analysis 

permits the analysis of measures responsible for emissions reduction. Sensitivity 

analysis and stochastic modelling are also employed to represent how sensitive the 

measures are to variations of the underlying drivers and assumptions, as well as how 

they interact. With a focus on the UK and the year 2030, as an important intermediate 

emissions reduction target, system-wide MAC curves are presented accompanied by a 

detailed analysis of the power, transport, and the residential sectors. This analysis 

allows important insights to be made into the economics of emissions mitigation, as 

well as investigating the robustness of findings. The results of the dissertation project 

represent a suitable orientation base for decision making in long-term climate policy.  
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1 INTRODUCTION 

1.1 Abatement cost curves and climate policy 

Policy makers in many countries around the world are confronted with the task of how 

to reduce carbon emissions. The first concerted, multilateral effort to tackle rising 

greenhouse gas emissions (GHG) was undertaken at the third Conference of the Parties 

(COP 3) of the United Nations Framework Convention on Climate Change (UNFCCC) 

with the Kyoto Protocol (United Nations 1998). In this Protocol, mostly industrialised 

countries commit themselves to a reduction target of six GHGs for the years 2008 to 

2012. Within the European Union, member states agreed to reduce GHG emissions by 

at least 20% by 2020 compared to 1990 (Commission of the European Communities 

2008). Additionally, the United Kingdom (UK) has adopted a law with the goal to 

ensure that carbon emissions in 2050 are 80% below the level in 1990 (The Parliament 

of the United Kingdom of Great Britain and Northern Ireland 2008). 

Figure 1.1: Sample MAC curve 

 

Confronted with a situation of legally binding commitments, the question arises of how 

to reduce carbon emission in a cost-efficient way. For this purpose, marginal abatement 

cost (MAC) curves have frequently been used to illustrate the economics of climate 

change mitigation and have contributed to decision making in the context of climate 

policy (see Figure 1.1). The complexity of climate change mitigation and the diversity 

of involved stakeholders make a shorthand communication like MAC curves very 
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useful. In addition, economic criteria have been singled out as dominant in the policy 

discussion (see e.g. DECC 2009b). 

A MAC curve is the first derivative of the total cost curve, which is dependent on the 

abatement level. A MAC curve is defined as a graph that indicates the marginal cost of 

emission abatement for varying amounts of emission reduction (Ellerman and Decaux 

1998, p. 3). It allows one to analyse the cost of the last abated unit of emissions, such as 

carbon dioxide (CO2), for a defined abatement level while obtaining insights into the 

total abatement costs through the integral of the abatement cost curve. 

CO2 emissions are seen as an externality whose cost do not have to be borne by the 

emitters. To change this situation a range of climate policy instruments are at the 

disposal of policy makers, ranging from taxes and cap-and-trade schemes, to standards 

and deployment policies. MAC curves can be used as a first tool to assess the impact 

and usefulness of different climate policy instruments. Kesicki and Strachan (2011)  

discuss in more detail the use of MAC curves for the assessment of specific policy 

instruments and the implicit CO2 price for policy instruments. 

1.2 Use of MAC curves in the United Kingdom and beyond 

MAC curves are used in many countries. In 2005, a report for the UK Department for 

the Environment, Food and Rural Affairs (Watkiss et al. 2005, p.10) did not find many 

governments using MAC curves for policy and decision making. Since then many 

countries have begun to assess their climate policies through MAC curves. Within the 

scope of the attempt to introduce a carbon tax in France for example, model-based 

estimations of MACs were used during the consultation process (Quinet 2009).  

Official institutions of the European Union (EU) have relied heavily on MAC curve 

studies for the cost assessment of emissions reductions concerning different sectors and 

gases (see e.g. Blok et al. 2001). Similarly, the US Environmental Protection Agency 

(2006) and the US Climate Change Science Program (Clarke et al. 2007) have 

commissioned reports using MAC curves as an illustrative tool. 

Moreover, MAC curves have influenced actions of supranational bodies, such as the 

World Bank and the International Maritime Organisation (Buhaug et al. 2009), and 

governments in many other countries around the world including Ireland (Kennedy 

2010), Mexico (Johnson et al. 2009), and China (World Bank 2004). While most of the 
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MAC curve studies have focused on the energy sector, cost curves have also gained in 

importance in the agriculture and forest sector over the last years. From the early 2000s, 

studies have examined abatement costs for methane and nitrous oxide emissions from 

agriculture (Vermont and De Cara 2010). In the mid-2000s, MAC curves started to be 

used in the forest sector as reducing emissions from deforestation and forest degradation 

(REDD) increasingly became to be seen as a low-cost abatement alternative to the 

energy sector (Dresner et al. 2007). They have been used, for example, by national 

governments for their REDD readiness plan, e.g. Congo (Ministry of Environment 

Conservation of Nature and Tourism 2010, p. 49). 

The UK provides a good and transparent example, in the sense that many policy support 

documents are published, of the extensive use of MAC curves in shaping Government’s 

climate change policy. This is emphasised by government reports that use MAC curves, 

such as the UK Low Carbon Transition Plan (HM Government 2009) and the carbon 

valuation approach by the Department of Energy and Climate Change (DECC) (2009a).  

On a domestic level, the Committee on Climate Change (CCC), an independent body 

set up to advise the UK Government on reducing GHG emissions, established MAC 

curves for several sectors. These include the waste sector (Hogg et al. 2008), the 

transport sector (AEA Energy & Environment et al. 2008), renewable heat (NERA 

Economic Consulting and AEA Energy & Environment 2009) and industry and 

buildings (Weiner 2009). In total, ten studies have been commissioned either by the 

CCC and other Government departments to establish MAC curves for various parts of 

the energy sector. In addition, some findings are based on earlier MAC curves, which 

have been calculated by McKinsey & Co. for the Confederation of British Industry 

(2007). 

The sectoral abatement reports influence the recommendations of the CCC presented to 

the Parliament (Committee on Climate Change 2008; Committee on Climate Change 

2009; Committee on Climate Change 2010). Furthermore, the UK government itself 

used MAC curves as a guide to the potential and future costs of technical measures for 

the Energy White Paper (HM Government. Department of Trade and Industry 2007, p. 

286), the UK Low Carbon Transition Plan (HM Government 2009, p. 40ff) and the 

Government’s report entitled “Warm Homes, Greener Homes: A Strategy for 

Household Energy Management” (HM Government 2010). However, there are 

difficulties in transforming insights from these curves into political action since a 
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government does not always target individual technologies and has to deal with 

overlapping policies. 

For carbon reduction in an international context, the decisions of DECC in international 

negotiations for a post-Kyoto protocol are to some extent based on the results of the 

Global Carbon Finance model (GLOCAF) (Carmel 2008; Gallo et al. 2009). This model 

uses a business-as-usual emission scenario as well as MAC curves for different regions 

and sectors as inputs. With these assumptions, the model can be used to estimate costs 

and international financial flows that arise from international emission reduction 

commitments. 

Further to these practical applications, MAC curves have been used in theoretical policy 

considerations of emission abatement and the influence of innovation (McKitrick 1999; 

Klepper and Peterson 2006; Bauman et al. 2008). These theoretical discussions focus on 

the abatement possibilities of single enterprises, rather than the whole economy or the 

energy sector as is the case in policy-directed MAC curves. Klepper and Peterson 

(2006) describe how an economy-wide MAC curve is linked to a curve for a single 

production plant. 

1.3 Main research objectives 

The goal of this thesis is to generate technologically detailed, consistent MAC curves 

with the help of an energy system model considering behavioural, intertemporal, 

technological and economic interactions. Furthermore, the sensitivity of the MAC curve 

in respect to the key assumptions should be studied giving an indication of the 

robustness of the curve. This is of particular importance because of uncertainties 

concerning assumptions on technology costs, technology availability or energy prices, 

as well as interactions between technologies and intertemporal interactions, i.e. how 

earlier actions determine later abatement costs. 

With the proposed approach, it will be also possible to open the black box nature of the 

energy model to a certain extent. The importance of drivers in the model can be 

represented in greater detail with a technologically detailed MAC curve. Moreover, this 

can give information on the basic assumptions and parameters of the model (see also 

2.4). 

Accordingly, the thesis turns towards the following questions: 



18 

 What contribution can measures (technologies, behavioural changes, efficiency 

gains, fuel switches) achieve for the reduction of CO2 up to the year 2050? 

 What influences the abatement costs and to what extent? (e.g. emission driver, 

energy prices, emission trade, level of substitution possibilities) 

 How do the reduction measures interact, and what then is the robustness of 

otherwise economically attractive portfolios and abatement strategies? 

The relevance of this thesis in the context of climate change mitigation consists in 

advancing current research in the way that it presents a MAC curve with a detailed 

description of technologies in the energy system. By the means of an energy system 

model, it will be possible to quantify effects of changes in the choice of substitution 

possibilities or fuel prices on the MAC curve. In this way not only technological detail, 

but also a degree of uncertainty in the form of sensitivity analysis and stochastic 

modelling is integrated into a model-based abatement curve. This again can give 

insights into the cost efficiency of strategies for the reduction of CO2 emissions and 

represents a suitable orientation base for robust decision making in long-term climate 

policy. Consequently, policy decisions that are currently partially based on MAC 

curves, as e.g. in the UK, can be improved by considering system-wide interactions and 

a degree of robustness by highlighting the results’ dependency on key drivers. To 

present the best information taking into account associated uncertainties is crucial, as it 

is the basis for long-lasting decisions in the context of climate policy. The reason is that 

the transition period to a low-carbon world is likely to take 40 to 60 years (Weyant 

1993) because of long-lasting investments in the energy sector. 

1.4 Focus of thesis 

This section outlines the focus of the thesis and sets out the scope of the study. In the 

context of climate change, this thesis focuses on the mitigation of climate change. 

Therefore, it does not consider any costs or actions associated with adaptation to climate 

change nor any damage costs provoked by climate warming.  

Furthermore, the focus is on the UK as one developed country committed to carbon 

emission reduction. Thus, the thesis does not consider the option to buy carbon permits 

from other countries in order to offset emissions.  
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As the MAC curve is a key concept in this thesis, it has to be made clear what terms are 

contrasted in such a graph. On one side, the thesis studies energy-related CO2 emissions, 

and does not consider “land-use” CO2, forest related emissions or other GHGs, like 

methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons 

(PFCs) and sulphur hexafluoride (SF6) emissions. Kesicki and Ekins (2011), for 

example, discuss the use of MAC curve in the forestry sector. 

Figure 1.2 shows that the restriction to energy-related CO2 emissions still captures the 

vast majority of all GHG emissions with 82.5%. This restriction can be put into 

perspective in the light of the political focus on CO2 emissions and the fact that part of 

CH4 and N2O emissions have the same source as CO2emissions. Nevertheless, MAC 

curves have been equally applied for non-CO2 GHGs. For examples see Reilly et al. 

(1999), Hayhoe et al. (1999), and US EPA (2006). 

Figure 1.2: Anthropogenic greenhouse gas emissions (weighted according to global warming 

potential) in the UK in 2009 

 

Source: Based on DECC (2011)
1
 

On the other side, the costs considered in the MAC curves rely on calculation with an 

energy system model. Therefore, costs presented in this thesis are direct costs in the 

energy system for which other macro-economic variables are assumed to be given. That 

means no macro-economic costs or social costs, which include the value of externalities, 

are considered in the calculation. Externalities arising from CO2 are to some extent 

                                                 
1
 Permission to reproduce this Figure has been granted by the National Archives 
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considered via pricing CO2 emissions although the tax level does not necessarily reflect 

the value of externalities. For a more detailed discussion of costs see chapter 3.4 and 

Halsnaes et al. (2007, p. 134).  

At the same time, the model does not capture any ancillary benefits generated by 

implementing restrictions on CO2 emissions. In detail, that means that all the costs 

associated with CO2 reduction are completely attributed to CO2 even when they reduce 

the emissions of other GHGs or local air pollution. The reduction of air pollution and 

particulate emissions can improve health and therefore offset part of the costs of CO2 

abatement. In addition, the use of fossil fuels is responsible for the biggest share of CO2 

emissions. Reducing the consumption of fossil fuels and thereby the reliance on imports 

of crude oil, natural gas or coal can significantly improve energy security, as long as 

local energy forms such as wind or tidal energy are used. Accelerating energy efficiency 

in homes by improving insulation or double glazing can help to reduce fuel poverty. 

This can be a very effective way to reduce excess winter deaths, which amount to 

30,000 per year in the UK (Whitty and Cooper 2000). 

1.5 Overview 

The rest of the thesis is structured as follows: Chapter 2 reviews the literature on 

different methodologies to generate MAC curves. This includes abatement cost curves 

generated with expert judgement and those based on different types of models. This 

chapter concludes with a review of index decomposition analysis before explaining the 

contribution of this thesis to the existing literature. 

Chapters 3 to 5 explain the methods used in this thesis, including energy system 

modelling, decomposition analysis and uncertainty analysis. All three chapters describe 

possible other methods that can be used for the purpose of obtaining a MAC curve. The 

employed method is then discussed and further explanations about its use are given. 

Chapter 3 deals with different ways of energy modelling and energy system analysis. 

The focus of chapter 3 is on the partial-equilibrium model used in the context of this 

thesis. The goal of index decomposition, its history and methods are explained in 

chapter 4. In addition, this chapter explains the use of decomposition analysis in 

combination with an energy model to construct technologically detailed abatement 

curves. Chapter 5 concludes the methodological component of the thesis first by 

explaining the uncertainty inherent to abatement curves and second by demonstrating 
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how sensitivity analysis and stochastic modelling can help to set out the uncertainty in 

reference to key assumptions. 

Chapters 6 to 9 present the main results of the thesis. Chapter 6 presents abatement cost 

and abatement potential estimates in the form of MAC curves as a result of a sensitivity 

analysis for the electricity sector. Chapter 7 discusses the influencing factors on MAC 

curves for the transport sector, while chapter 8 is dedicated to the residential sector. 

Chapter 9 presents system-wide MAC curve and the influence of diverse factors on the 

cost curves. In addition, the stochastic variant of the energy system model is used to 

expand uncertainty analysis and derive further insights. Chapter 10 concludes the thesis. 



22 

1.6 References 

AEA Energy & Environment, E4Tech, Metronomica, Ricardo, IEEP and CE Delft 

(2008). Building a UK Transport Supply-side Marginal Abatement Cost Curve. 

London, Committee of Climate Change. 

Bauman, Y., M. Lee and K. Seeley (2008). "Does Technological Innovation Really 

Reduce Marginal Abatement Costs? Some Theory, Algebraic Evidence, and 

Policy Implications." Environmental and Resource Economics 40(4): 507-527. 

Blok, K., D. de Jager, C. Hendriks, N. Kouvaritakis and L. Mantzos (2001). Economic 

Evaluation of Sectoral Emission Reduction Objectives for Climate Change - 

Comparison of 'Top-down' and 'Bottom-up' Analysis of Emission Reduction 

Opportunities for CO2 in European Union. Brussels, Ecofys Energy and 

Environment, National Technical University of Athens. 

Buhaug, O., J. J. Corbett, V. Eyring, O. Endrese, J. Faber, S. Hanayama, D. Lee, D. Lee, 

H. Lindstad, A. Markowska, A. Mjelde, D. Nelissen, J. Nilsen, C. Palsson, W. 

Wanquing, J. J. Winebrake and K. Yoshida (2009). Second IMO GHG study 

2009. London, International Maritime Organisation. 

Carmel, A. (2008). Paying for mitigation - The GLOCAF model. United Nations 

Framework Convention on Climate Change COP 13. Bali, Indonesia. 

Clarke, L., J. Edmonds, H. D. Jacoby, H. Pitcher, J. M. Reilly and R. Richels (2007). 

Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations. Sub-

report 2.1A of Synthesis and Assessmnet Product 2.1 by the U.S. Climate 

Change Science Program and the Subcommittee on Global Change Research. 

Washington, DC., Department of Energy / Office of Biological & 

Environmental Research. 

Commission of the European Communities (2008). 20 20 by 2020 - Europe's climate 

change opportunity. Brussels. 

Committee on Climate Change (2008). Building a low-carbon economy - the UK's 

contribution to tackling climate change. London. 

Committee on Climate Change (2009). Meeting Carbon Budgets - the need for a step 

change. London. 

Committee on Climate Change (2010). Meeting Carbon Budgets - ensuring a low-

carbon recovery. 2nd Progress Report to Parliament. London. 

Confederation of British Industry (2007). Climate change: Everyone's business. 

London. 

DECC (2009a). Carbon Valuation in UK Policy Appraisal: A Revised Approach. 

London, Department of Energy and Climate Change. 

DECC (2009b). Climate Change Act 2008 Impact Assessment. London, Department of 

Energy and Climate Change. 

DECC (2011). 2009 final UK greenhouse gas emissions: data tables. London, 

Department of Energy and Climate Change. 

Dresner, S., P. Ekins, K. McGeevor and J. Tomei (2007). Forests and Climate Change: 

Global Understandings and Possible Responses. Forestry & Climate Change. P. 

H. Freer-Smith, M. S. J. Broadmeadow and J. M. Lynch. Wallingford, CAB 

International: 38-48. 

Ellerman, A. D. and A. Decaux (1998). Analysis of Post-Kyoto CO2 Emissions Trading 

Using Marginal Abatement Curves. Cambridge, MA, Massachusetts Institute of 

Technology. 

Gallo, F., A. Carmel, S. Prichard, J. Rayson, N. Martin, R. Dixon and A. MacDowall 

(2009). Global Carbon Finance - A quantitative modelling framework to explore 



23 

scenarios of the Global Deal on Climate Change. London, Office of Climate 

Change. 

Halsnaes, K., P. Shukla, D. Ahuja, G. Akumu, R. Beale, J. Edmonds, C. Gollier, A. 

Grübler, M. H. Duong, A. Markandya, M. McFarland, E. Nikitina, T. Sugiyama, 

A. Villavicencio and J. Zou (2007). Framing Issues. Climate Change 2007: 

Mitigation. Contribution of Working Group III to the Fourth Assessment Report 

of the Intergovernmental Panel on Climate Change. B. Metz, O. R. Davidson, P. 

R. Bosch, R. Dave and L. A. Meyer. Cambridge, UK and New York, NY, USA, 

Cambridge University Press. 

Hayhoe, K., A. Jain, H. Pitcher, C. MacCracken, M. Gibbs, D. Wuebbles, R. Harvey 

and D. Kruger (1999). "Costs of Multigreenhouse Gas Reduction Targets for the 

USA." Science 286(5441): 905-906. 

HM Government (2009). Analytical Annex - The UK Low Carbon Transition Plan. 

London. 

HM Government (2010). Warm Homes, Greener Homes: A Strategy for Household 

Energy Management. London. 

HM Government. Department of Trade and Industry (2007). Meeting the energy 

challenge : a white paper on energy. London, Stationery Office. 

Hogg, D., A. Baddeley, A. Ballinger and T. Elliot (2008). Development of Marginal 

Abatement Cost Curves for the Waste Sector. Committee on Climate Change. 

Bristol, eunomia research & consulting. 

Johnson, T. M., C. Alatorre, Z. Romo and F. Liu (2009). Low-Carbon Development for 

Mexico. Washington D.C., World Bank. 

Kennedy, M. (2010). Ireland's Future: A Low Carbon Economy? The Impact of Green 

Stimulus Investment. IAEE European Conference. Vilnius, Lithuania. 

Kesicki, F. and P. Ekins (2011). "Marginal Abatement Cost Curves: A call for caution." 

Climate Policy(forthcoming). 

Kesicki, F. and N. Strachan (2011). "Marginal abatement cost (MAC) curves: 

confronting theory and practice." Environmental Science & Policy 14(8): 1195-

1204. 

Klepper, G. and S. Peterson (2006). "Marginal abatement cost curves in general 

equilibrium: The influence of world energy prices." Resource and Energy 

Economics 28(1): 1-23. 

McKitrick, R. (1999). "A Derivation of the Marginal Abatement Cost Curve." Journal 

of Environmental Economics and Management 37(3): 306-314. 

Ministry of Environment Conservation of Nature and Tourism (2010). Readiness Plan 

for REDD 2010-2012. Kinshasa, Democratic Republic of Congo. 

NERA Economic Consulting and AEA Energy & Environment (2009). The UK Supply 

Curve for Renewable Heat - Study for the Department of Energy and Climate 

Change. London. 

Quinet, A. (2009). La valeur tutélaire du carbone. Paris, Centre d'analyse stratégique - 

Premier Ministre. N°16. 

Reilly, J., R. Prinn, J. Harnisch, J. Fitzmaurice, H. Jacoby, D. Kicklighter, J. Melillo, P. 

Stone, A. Sokolov and C. Wang (1999). "Multi-gas assessment of the Kyoto 

Protocol." Nature 401(6753): 549-555. 

The Parliament of the United Kingdom of Great Britain and Northern Ireland (2008). 

Climate Change Act 2008. London. 

United Nations (1998). Kyoto Protocol to the United Nations Framework Convention 

on Climate Change. United Nations. New York. 

United States Environmental Protection Agency (2006). Global Mitigation of Non-CO2 

Greenhouse Gases. Washington, DC. 



24 

US EPA (2006). Global Mitigation of Non-CO2 Greenhouse Gases. Washington, DC, 

United States Environmental Protection Agency. 

Vermont, B. and S. De Cara (2010). "How costly is mitigation of non-CO2 greenhouse 

gas emissions from agriculture?: A meta-analysis." Ecological Economics 69(7): 

1373-1386. 

Watkiss, P., D. Anthoff, T. E. Downing, C. Hepburn, C. Hope, A. Hunt and R. S. J. Tol 

(2005). The Social Costs of Carbon (SCC) Review - Methodological 

Approaches for Using SCC Estimates in Policy Assessment. London, AEA 

Technology Environment. 

Weiner, M. (2009). Energy Use in Buildings and Industry: Technical Appendix. 

London, Committee on Climate Change. 

Weyant, J. P. (1993). "Costs of Reducing Global Carbon Emissions." Journal of 

Economic Perspectives 7(4): 27-46. 

Whitty, J. L. and Y. Cooper (2000). Fuel Poverty and Health. Department of Health. 

World Bank (2004). Clean Development Mechanism in China. Washington, D.C. 

 



25 

2 LITERATURE REVIEW 

This chapter gives an overview of the existing approaches explained in the literature 

concerning the elaboration of a key concept of this thesis – the marginal abatement cost 

(MAC) curve – and its wider role in the context of climate change mitigation. This 

section provides a summary of the literature in this field, while determining the most 

important works in the relevant areas and their impact on the research field. 

The chapter starts by giving a broad overview of the most important literature on the 

financial costs associated with climate change mitigation. Subsequently, it turns to the 

concept of MAC curves and their role in the wider context of assessing a cost-effective 

pathway towards a decarbonisation of the energy system. The different methods to 

derive MAC curves are discussed in detail together with their respective strengths and 

weaknesses. In a further section, reasons for using decomposition analysis are given and 

the literature regarding this method is reviewed. Finally, the chapter is concluded with a 

section that explains research gaps in existing literature and details how the thesis’ 

contribution fits into existing research on the economics of climate change mitigation. 

2.1 International background to climate change mitigation 

In general, decision makers have three possibilities to confront anthropogenic global 

warming: adaptation, mitigation and suffering (Holdren 2006, p. 12). Adaptation to 

climate change aims to reduce the adverse impacts of climate change, while mitigation 

aims to reduce greenhouse gas emissions. All three options are not mutually exclusive, 

e.g. a larger amount of mitigation can limit adaptation efforts or suffering from adverse 

impacts. For the reasons explained in chapter 1, this thesis focuses on mitigation. Issues 

concerning climate change adaptation were, for example, discussed by Parry et al. 

(2007) and Willows and Connell (2003). Literature on the trade-offs between mitigation 

of and adaptation to climate change can be found in Tol (2005) and van der Zwaan and 

Rabl (2008). In the Stern report (2007, p. 26), MAC curves were compared to the social 

cost of carbon in order to determine the optimal degree of abatement. Nevertheless, both 

cost estimates are subject to temporal dynamics and uncertainty. 
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Soon after CO2 emissions aroused the interest of the research community, the 

quantification of the costs that are needed to abate greenhouse emissions provoked a 

great research effort, which started in the 1970s (see e.g. Nordhaus 1977). 

The United Nations Framework Convention on Climate Change (UNFCCC), which is 

an international body to coordinate the intergovernmental efforts to tackle the challenge 

posed by climate change, highlighted in article 3 (United Nations 1992, p. 4) 

“[...] policies and measures to deal with climate change should be cost-effective so as 

to ensure global benefits at the lowest possible cost.” 

This highlights the fact that cost-effectiveness was considered a very important aspect 

from the beginning of international treaties on climate change mitigation. 

On an international level, the Intergovernmental Panel on Climate Change (IPCC), a 

UN institution aiming to present a clear scientific view on the current state of 

knowledge in climate change and its potential environmental and socio-economic 

impacts, focused the research attempts in this area starting in 1988. The IPCC is 

composed of three working groups, where one of the core objectives of working group 3 

(mitigation of climate change) is to analyse the costs and benefits of the different 

approaches to mitigation, considering equally the available instruments and policy 

measures. This was manifested in the four assessment reports that were published in 

1990, 1995, 2001, and 2007 and represent the most comprehensive scientific report in 

this area. The fact that mitigation costs play a pivotal role in the IPCC’s reports can be 

seen in the Fourth Assessment Report that indicates estimates for a mitigation potential 

and a cost range for each sector in the energy system (Barker et al. 2007, p. 632). 

2.2 MAC curve 

Many studies have attempted to quantify the costs of reducing greenhouse gas emissions 

with respect to their potential and cost and to put them in the context of global 

mitigation strategies. Different modelling approaches were applied to this problem, and 

most of them reverted to the concept of MAC curves. 

Such concepts are not only restricted to the reduction of greenhouse gases. Carbon 

MAC curves are inspired by earlier cost curves that were developed after the two oil 

price shocks in the 1970s for the saving of crude oil consumption [$/bbl]. Then in the 

early 1980s, technology cost curves where developed for the saving of electricity 
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consumption [$/kWh]. In this context, the curves were called conservation supply 

curves (CSC) and date back to the work of Meier (1982). CSCs quickly became a 

widely-used, analytic tool for the assessment of efficiency improvements mainly in 

industry and buildings (Difiglio and Duleep 1990; Farugui et al. 1990; Ledbetter and 

Ross 1990; Rosenfeld et al. 1993; Blumstein and Stoft 1995). This was in parts 

supported by the requirement for utilities in the USA to implement cost-effective 

conservation measures before permitting the construction of a new power plant (Meier 

1982, p. 7). Furthermore, MAC curves were widely used for the assessment of 

abatement potential and costs of air pollutants [$/kt] (Rentz et al. 1994), waste reduction 

[$/kg] (Beaumont and Tinch 2004) and lately for additional water availability [$/m
3
] 

(Addams et al. 2009). 

A MAC curve not only allows for the analysis of the cost of the last abated unit of CO2 

emissions for a defined abatement level, but also demonstrates insights into the total 

abatement costs via the integral of the curve. It provides an informative snapshot of 

emission mitigation options for decision-makers. The advantage of contrasting marginal 

cost to abatement level is that it shows in a very simple way the CO2 tax (=marginal 

abatement cost) associated with a certain reduction level or the carbon price resulting 

from an emissions cap in a cap-and-trade system. This is based on the logic that all 

abatement measures up to the CO2 tax will be implemented. Thus, MAC curves can be a 

first guide for policy makers concerning market-based climate policy instruments. For 

the other category of climate policy instruments, command-and-control measures, MAC 

curves can indicate subsidy levels for feed-in-tariffs or the abatement potential of 

building standards. Technology-specific MAC curves can also reveal what measures or 

sectors should be considered first for emissions reduction from a cost-effectiveness 

perspective. Summarising, MAC curves do not only reveal important information on the 

economics of climate change mitigation, but also provide helpful insights for the 

assessment of climate policy tools. Compared to more complex scenario analysis based 

on energy models, MAC curves have the advantage that essential information is 

presented in an easy-to-understand format. For these reasons, MAC curves are judged a 

good way to assess and communicate the cost-effectiveness of emissions reduction. 

However, there are some weaknesses associated with MAC curves. Abatement costs are 

usually shown only for a specific year, although the MAC curve depends on actions in 

earlier time periods and also how much CO2 emission are assumed to be abated in the 
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following years. Thus, the MAC curve is subject to intertemporal dynamics. Moreover, 

MAC curves usually include direct costs, i.e. the cost reduction due to ancillary 

benefits, such as health improvement, and transaction/implementation costs are not 

considered in the abatement cost. Most MAC curves in the existing literature do not 

present the assumptions that were used for calculating abatement costs and potentials 

and do not represent the influence of uncertainty in their assumptions. This can reduce 

the usefulness of MAC curves. Comparative studies can help to make the influence of 

model assumptions on MAC curves more transparent. 

Related to the graphical representation of a MAC curve, one can distinguish between 

those that specify abatement measures and those that merely show an abatement curve 

without showing the measures that are responsible for the abatement. This is important 

for decision-makers as technology-detailed MAC curves present a lot more information 

than a simple abatement curve. Referring to the underlying method used to construct a 

MAC curve, one can distinguish two categories of abatement curves: expert-based 

approaches and model-based approaches. 

MAC curves can be either displayed with the emission level on the abscissa (see Figure 

2.1, left) or the emissions reduction (see Figure 2.1, right). Both representations are 

MAC curves, but to avoid any confusion the former concept is described as an emission 

curve in this thesis. This representation not only allows insights into the emission 

reduction from a baseline, but also puts the absolute emissions into perspective. 

Figure 2.1: Different MAC curve representation: emissions (left) and emissions reduction (right) 

 

2.2.1 Expert-based approaches 

Expert-based approaches, sometimes also called technology cost curves, are generated 

by assessing the emission reduction potential and the corresponding costs of individual 

measures or technologies. Subsequently, the technologies are ranked from the cheapest 
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to most expensive to represent the costs of achieving incremental levels of emissions 

reduction. Expert information input in those studies can vary significantly from 

brainstorm meetings to detailed sectoral analysis combined with calculations in 

spreadsheets. 

The earliest examples of carbon-focused expert-based curves, which used similar 

methods to the ones used by earlier cost curves for energy savings, date back to the 

early 1990s (Jackson 1991; Mills et al. 1991; Sitnicki et al. 1991). In Figure 2.2, one can 

see an early example of an abatement curve for the United Kingdom. In the graph, the 

width of each bar represents the abatement potential and the height represents the 

respective marginal abatement cost. In contrast to later studies, nuclear power is one of 

the most expensive abatement options. In contrast to many expert-based MAC curve at 

the time, Jackson (1991) tried to integrate a certain aspect of uncertainty into his work 

by varying the degree of leakage from natural gas pipelines. Further on, he pointed out 

the significance of the base case against which mitigation measures are judged. Building 

on this work similar studies on the costs associated with the reduction of energy-related 

CO2 emissions were created, summarised in Grubb et al. (1993). 

Figure 2.2: Early expert-based abatement curve for the United Kingdom in 2005 

 

Source: Jackson (1991)
1
 

In 1992, Rubin et al. (1992) presented a marginal cost curve for the abatement of CO2 

for the United States. In this context, the article focused in particular on end-use 

technologies in the building sector, but noted as well the significant differences in 
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abatement potentials between the USA and the rest of the world. Furthermore, the 

authors mention problems when constructing MAC curves. Indirect costs and agency 

issues are discussed as reasons for much higher implicit discount rates of investments in 

mitigation measures. 

Over the course of the last two decades many other abatement cost curves have been 

constructed for national economic sectors, whole countries or even on a global level. 

During this process the curves were refined by including more and more abatement 

measures and trying to incorporate more than technology inherent costs and barriers, 

such as a heterogeneous population or gradual technology diffusion. Blok et al. (1993) 

established, for example, a very detailed abatement cost curve for the Netherlands. In a 

next step, they considered the payout time of some of the mitigation measures under the 

assumptions of an investment grant or a carbon tax. 

After a period at the start of the 21
st
 century, where interest in expert-based MAC curves 

seemed to be limited, such curves again received much attention in recent years due to 

the work of McKinsey & Company (Enkvist et al. 2007; Vattenfall 2007; Nauclér and 

Enkvist 2009). While McKinsey & Company started with abatement cost curves on a 

country level (see for example Vahlenkamp et al. 2007), in 2009 they published one of 

the few global expert-based MAC curves (see Figure 2.3). This study shows not only a 

depth of detail concerning the different situations in various parts of the world, but also 

concerning the abatement possibilities in various sectors of the energy system and 

beyond. McKinsey & Company assessed every single measure drawing on expertise of 

many experts and associations. The global study stands out for its technological detail 

incorporated into the abatement cost curve, as well as for its attempt to bring in a certain 

degree of uncertainty into such cost curves. Various degrees of implementation of the 

abatement potential are discussed, as well as sensitivity to energy prices, technological 

learning rates and interest rates levels (Nauclér and Enkvist 2009, pp. 50ff). 

This very significant work engaged many stakeholders into a debate about climate 

change mitigation that did not participate before. The simple layout of MAC curves 

illustrating the costs associated with CO2 emissions reduction is well suited to 

communicate this issue to a broader audience and was well marketed by McKinsey & 

Company. Nevertheless, the McKinsey abatement curves were not only used as a 

communication device but were also presented as a decision-making aid for policy 

makers in the field of climate change mitigation. Regulatory measures were related to 
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different parts of the abatement cost curve to provide insights for energy efficiency 

standards, deployment policies, and long-term incentives for the power sector (Nauclér 

and Enkvist 2009, p. 19). Next to the general disadvantages of the expert-based 

approach, the drawbacks of this work include the non-disclosure of the majority of all 

input assumptions, which makes it impossible to reproduce the results. Furthermore, all 

calculations are implemented from a societal perspective with an interest rate set at four 

percent. This can answer questions about what is best for a society as a whole, but it 

does not tell the reader what will happen in reality as investors and individuals face 

substantially higher interest rates. 

Figure 2.3: McKinsey global expert-based abatement curve in 2030 

 

Source: Nauclér and Enkvist (2009)
2
 

MAC curves gain also more and more importance in developing countries as emissions 

reduction is viewed as a potential path to address poverty and energy access. Casillas 

and Kammem (2010) published a MAC curve for a small community in Nicaragua 

based on monitoring. The authors point out that development in the context of climate 

change mitigation was hampered by the lack of easy-to-understand metrics that can be 

addressed by MAC curves. A report by the EBRD (2011) displays MAC curves for 

Russia and Turkey and noted particularly that the curves were influenced by political 

conditions in those countries, such as distortionary taxes and subsidies, an elevated 

investor risk and high transaction costs. 

                                                 
2
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The International Energy Agency (IEA) adopted the approach to represent abatement 

potentials and costs in its Energy Technology Perspectives report  based on expert 

information from the IEA Implementing Agreements (International Energy Agency 

2008a). In this study, the authors use a cost band to represent optimistic and pessimistic 

assumptions on specific technology developments. Even if the cost curve is not 

technologically detailed, it gives some understanding of the cost of broad technological 

categories that have to be used to achieve predefined reduction scenarios. 

Figure 2.4: IEA global marginal abatement curve in 2050 

 

Source: International Energy Agency (2008a)
3
 

The CCC established expert-based MAC curves for several sectors (Committee on 

Climate Change 2008). Results of this work were used as one decision-making aid to 

specify actions for the UK government on carbon reduction. 

2.2.1.1 Mitigation wedges 

A similar approach to MAC curves is the decomposition of emission pathways over 

time, also called mitigation wedges. In this expert-base case, an emission pathway is 

mapped for a reference case and usually one (sometimes more) reduction scenario. In a 

next step, the difference between both scenarios is decomposed into reduction amounts 

that are assigned to supply technologies and demand measures. In contrast to the usual 

MAC curves, this approach does not report the actual marginal cost of the mitigation 

measures, but includes a temporal component. In addition, these curves do not consider 

the market abatement potential, but limit the technical potential by considering some 

implementation constraints. 

                                                 
3
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The first such approach were the “stabilisation wedges” by Pacala and Socolow (2004) 

(see Figure 2.5). The stabilisation triangle, which represents the area between the 

baseline emission pathway and the reduction scenario emission pathway, is divided into 

seven equal wedges representing each a reduction measure. Each wedge represents a 

linearly increasing annual emission saving that reaches 1 Gt of Carbon in 2050. 

Examples for a wedge are efficient vehicles, CO2 capture at baseload plants or wind 

power instead of coal power. Although possible interactions between the wedges are 

mentioned in the article, it is not clear to what extent they are considered. 

Figure 2.5: Stabilisation wedges between a baseline and reduction scenario 

 

Source: Pacala and Socolow (2004)
4
 

A similar approach is the “PRISM” analysis of the Electric Power Research Institute 

(James et al. 2007; James 2008). The creators use the same graphical representation as 

Pacala and Socolow, but constrain their analysis to the electric sector in the United 

States up to 2030. In contrast to the stabilisation wedges, the “PRISM” approach is 

technologically more detailed, drawing on their own expertise in the power sector. 

In the same way, the International Energy Agency compared in the World Energy 

Outlook 2008 (International Energy Agency 2008b, p. 446), a reference scenario with 

two different scenarios and decomposed the emission reduction into different measures. 

The authors distinguish between different supply options in the electricity sector, 

biofuels and end-use efficiency, but do not state how the emission saving is 

decomposed. 

2.2.1.2 Advantages and disadvantages of expert-based MAC curves 

MAC curves of the type presented in this section show some advantages, but also some 

drawbacks compared to other approaches. It should be noted that some of the 
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disadvantages linked to expert-based abatement curves were already discussed in the 

context of conservation supply curves (CSC). Meier (1982) mentioned the problem to 

capture market failure (i.e. that the curves only show the technical potential) and 

demand response, while Stoft (1995) discussed measure interaction, consistent baseline 

assumptions and rebound effect as problems in the construction of CSCs. Willemé 

(2003) tried to overcome the problem of measure interaction by developing a statistical 

approach. 

On the one hand, the biggest advantage of expert-based abatement cost curves is that 

they are easily understood. In most of the presented abatement cost curves, the marginal 

costs and the abatement potential can be unambiguously assigned to one mitigation 

option. Furthermore, the technological detail can be very extensive, depending on the 

refinement of the study. This is a major advantage, especially compared to model-based 

studies, which often lack the technological detail in the representation of MAC curves. 

As expert-based MAC curves consider each measure individually, they can integrate 

technology-specific tax and subsidy distortion in their assessment. In most cases, a 

technical abatement potential is considered, which provides little information if 

important institutional and implementation barriers are neglected. For a further 

discussion on different definitions of abatement potentials see section 3.4. In most 

cases, MAC curves of this type focus on technical abatement measures without 

considering demand adaptations. An exception is Blom et al. (2007), who include 

demand-related factors although without taking into account interactions with supply. 

On the other hand, these types of curves achieve some of the mentioned aspects by 

simplifying reality in a drastic way when assuming an “average world” (Fleiter et al. 

2009). It is, for example, implausible to assign a technology only one cost level, as is 

done in most cases. The cost-effectiveness of many renewable energy sources, like 

photovoltaic or wind, however depends on the siting of the power generation capacities 

and its environmental conditions. In addition, an enormous effort in data collection is 

necessary to cover all technologies, their implementation potential, interactions and 

dependencies. That is why in certain cases only a selection of technologies are 

considered as mitigation options, e.g. according to the probability of realisation. 

Most country studies do not consider international interactions. However, regional 

abatement cost curves can be heavily influenced by international trade according to 
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Klepper and Peterson (2003). This includes technology transfer and also indirect effects, 

e.g. via energy prices. For sectoral studies, a problem can arise when mitigation costs 

are implemented from perspectives of different decision makers, such as individuals or 

companies. This would mean that an accumulation of abatement costs across sectors is 

not possible. 

Besides the use of average costs and the negligence of international interactions, expert-

based cost curves can have possible inconsistencies in their baseline assumptions. This 

concerns, for example, the assumptions on the reference case. The calculation for the 

abatement potential and marginal cost is done by a comparison to a reference 

development. In this context, it is important to adapt the reference scenario to the extent 

that cheaper abatement options have already been implemented in order to avoid double 

counting.  

A further inconsistent aspect can be the non-consideration of intertemporal interactions 

of emission abatement. The form of the emission pathway, i.e. the abated emission 

amount prior and after the considered point in time has a significant impact on the 

abatement curve. 

A last disadvantage concerns the representation of uncertainty considering many 

factors, like technology costs, energy prices, discounting or demand development. 

Although there have been some attempts to consider a degree of uncertainty in expert-

based abatement cost curves, in most cases this is missing. In particular, concerning 

curves for years far in the future, e.g. 2030 or 2050, there exist major uncertainties 

concerning several factors with an influence on the abatement curve. Moreover, this 

includes interdependencies between uncertainties and how they interact. Those 

uncertainties should be represented in an appropriate way as has been done for energy 

prices by McKinsey & Company in their latest study (Nauclér and Enkvist 2009, p. 54). 

The advantages and disadvantages of expert-based curves are summarised in Table 2.1. 
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Table 2.1: Strengths and weaknesses of MACCs based on expert judgement 

STRENGTHS WEAKNESSES 

 Extensive technological detail  

 Possibility of taking into account 

technology specific market distortions 

 Easy understanding of technology-

specific abatement curves  

 No consequent incorporation of 

behavioural factors 

 No integration of different types of 

interaction and dependencies between 

mitigation measures 

 Possibility of inconsistent baseline 

emissions 

 No representation of intertemporal 

interactions 

 Very limited representation of 

uncertainty 

 In some cases, limited to one 

economic sector without the 

possibility to accumulate abatement 

curves across sectors 

 No representation of macroeconomic 

feedbacks 

 Simplified technological cost 

structure 

 No consideration of international 

interactions 

2.2.2 Model-based approaches 

Another widespread approach is to derive the cost and potential for emission mitigation 

from model runs. A number of models have been used in this way using a range of 

techniques (Barker et al. 2007). There have been various criteria established to 

differentiate modelling approaches: e.g. the purpose of the model, model structure, 

analytical approach, underlying methodology, geographical or sectoral coverage. The 

most common way is to distinguish models into economy-orientated top-down models 

and engineering-orientated bottom-up models (Hourcade et al. 2006; Böhringer and 

Rutherford 2008). 

The two categories of models differ in certain ways. Bottom-up energy models 

represent only the energy sector. In contrast, top-down models endogenously cover 

economic responses. For more detail on the two modelling categories, refer to chapter 

3.2. 
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2.2.2.1 Top-down models 

Top-down models can be distinguished into computable general equilibrium (CGE) 

models, growth models, and macroeconometric models (Löschel 2002). CGE-models 

are most often used for the calculation of MAC curves, while only a few 

macroeconometric models have been used in the past to derive such curves. For more 

detail on the different top-down model categories see section 3.2.2. 

At the start of the 1990s, the Energy Modeling Forum (EMF) conducted a study, EMF-

12, to compare the abatement cost for the United States primarily using top-down 

economic equilibrium models under standardised assumptions (Gaskins and Weyant 

1993; Weyant 1993). In this context, different scenarios were calculated and MAC 

curves presented for 10 models, which were developed at different institutes. 

The carbon tax, which is equal to the marginal abatement cost, required to reduce 

emissions to 80% of the 1990 level, varied enormously between $1990 50 and $1990 330. 

The difference in the estimates can be mainly explained with different baseline 

developments, which are strongly dependent on the assumed decrease in energy use per 

unit of economic output. Other factors explaining the differences are the price elasticity 

of energy demand and how fast the capital stock adapts to higher energy prices. In 

addition to that, a sensitivity analysis concerning the cost of non-carbon energy supply 

technologies, GDP growth and natural gas resources was performed within EMF-12. 

The result of the technology cost scenario is that the costs for emission mitigation can 

be substantially reduced in the latter part of the 21
st
 century, but not as much in the 

earlier periods since fossil fuel technologies are still being used. A reduction of the 

assumed GDP growth can lead to significantly lower costs as the reference base line is 

reduced, while higher natural gas resources provide a comparably cheap abatement 

option in the supply sector in the near term. 

Dean and Hoeller (1992) performed a similar study to the EMF-12 with 6 models with 

the difference being that the used models cover the whole world . Their results confirm 

the big difference in abatement costs between models from the EMF study. The reasons 

for the differences are the different assumptions concerning, e.g., the energy efficiency 

improvement and the substitution elasticity, but also large differences in the detail of the 

representation of mitigation options. Some general equilibrium models represent the 

energy sector only with a carbon and a carbon-free technology option. A big advantage 
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of global studies is that they are able to take into account spillover that are created in 

one country by mitigation actions in another country. In the same way leakage effects 

can be considered, i.e. the relocation of carbon-intensive production or other distortions 

caused by unilateral implementation of carbon constraints. 

More recently, the EMF conducted a project on the cost of the Kyoto Protocol (EMF-

16) and a project on multi-gas mitigation, referred to as EMF-21, where the results of 19 

mostly top-down models were compared. This study does not only cover CO2 

emissions, but also the emissions of other greenhouse gases, notably methane and 

nitrous oxide. Within the scope of this study, the costs associated with climate change 

policies were calculated and compared between the models in order to assess the range 

of results and what are the reasons for differences. The overall results were that the 

inclusion of non-carbon greenhouse gases can substantially decrease the marginal 

abatement cost. In 2025, the average reduction in marginal cost across the 19 models 

due to the inclusion of other greenhouse gases was 48 percent, which was slightly lower 

in 2100 with 39 percent. The large difference in the estimation of marginal abatement 

costs between the models is comparable to the EMF-12 project. For instance, the PACE 

model estimates a marginal cost of $200010.3/t C in 2050, whereas GTEM estimates 

$20001,806.9/t C for the same year when stabilising radiative forcing at 4.5 W/m
2
 

(Weyant et al. 2006). Some of the differences can be explained with the degree of 

carbon trading permitted in the models. 

Next to those comparison projects, there exist a great number of national studies (see 

Hourcade et al. 1995). Major problems are found in studies that try to estimate 

mitigation costs in developing or emerging countries, because the usual model 

assumptions (i.e. perfect information, optimising behaviour and competitive economic 

dynamics) generally hold to a lesser extent than in developed countries. This is the case 

because some economies are no free market economies, where regulations, 

inefficiencies and subsidised energy prices hinder perfect competition. Moreover, 

income discrepancies in developing countries are larger than in developed countries, 

which makes the use of a representative agent particularly difficult. Consequently, 

models assuming a market equilibrium fail to represent energy use in an appropriate 

way. Abatement costs for developing countries have been only discussed together with 

other regions in the context of global studies (e.g. Dean and Hoeller 1992). They 
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indicated relatively high cost estimates, reflecting the difficulties of such models to 

represent the economic restructuring in developing countries. 

Compared to MAC curves from top-down models in the early 1990s, the calculation of 

MAC curves with the Emissions Prediction and Policy Analysis (EPPA) model (Paltsev 

et al. 2005) was a development step forward in the derivation of MAC curves from top-

down models as it was much more detailed. The EPPA model belongs to the class of 

Computable General Equilibrium (CGE) models that model the flows of products, 

services and money in the whole economy. 

Ellerman and Decaux (1998) were the first to use a top-down model, the EPPA model, 

to study the effect of international abatement with the help of MAC curves. One of their 

results was that the MAC curve of one country does not depend on the abatement level 

of other countries. Their findings concerning emission trading indicate that there can be 

huge potential gains for all regions resulting from international permit trading. 

However, the result of MAC curves being robust to fuel price changes is in strong 

contrast to the findings of Klepper and Peterson (2003). Theoretically, Klepper and 

Peterson (2003) show that a change in abatement level of one region can lead to a 

change in energy demand. If this region is large enough, this demand change can affect 

the price for internationally traded primary energy carriers, such as oil and gas, and 

influence the demand for energy in another region. This again will have an influence on 

the marginal abatement costs.  

Moreover, Klepper and Peterson use the top-down Dynamic Applied Regional Trade 

(DART) model, which indicates that regional MAC curves can shift significantly 

depending on the level of emission mitigation in other regions. This is mainly due to the 

change in world energy prices. In a later study, Morris et al. (2008) address the 

differences between the Klepper and Peterson (2003) study and the Ellerman and 

Decaux (1998) study. They explain the difference with the fact that Klepper and 

Peterson did not adapt the baseline in the case of international trading, whereas 

Ellerman and Decaux did so. Consequently, one only sees a major difference between 

both curves in the case that the baseline remains fixed and is not adjusted for trade 

effects. Furthermore, Morris et al. (2008) address additional issues, such as path 

dependency, measures of welfare and other greenhouse gases apart from CO2. The 

authors conclude that the stronger and longer the climate policy in the past, the lower 

the MAC curve in a given year. Concerning other GHG gases, it is noted that the MAC 
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curve is altered in the way that it has a low shallow slope in the initial part of the curve 

caused by relatively cheap abatement options for non-CO2 gases.  

Viguier et al. (2003) studied the cost of the Kyoto Protocol in the European Union with 

the EPPA model. For this purpose, the authors calculated MAC curves for different 

European countries and compared them to curves from two bottom-up models (see 

Figure 2.6). 

Figure 2.6: MAC curve for Germany in 2010 

 

Source: Viguier et al. (2003)
5
 

While the EPPA model explicitly takes into account economy-wide feedbacks and 

effects of climate change policies, those aspects are not considered in partial-

equilibrium bottom-up models. An interesting result is that MAC curves from EPPA are 

in general lower than in the two bottom-up models. This is caused by different reference 

emissions and divergence in abatement measures. In addition, trade and income effects 

tend to decrease abatement costs. 

Advantages and disadvantages of top-down model-based MAC curves 

The most important advantage of top-down models for the calculation of MAC curves is 

that they are able to explicitly take into account macroeconomic feedbacks and effects 

of climate change policies on income and trade. In contrast to bottom-up models or 

expert-based MAC curves, the system boundaries are extended beyond the energy 

sector in top-down models (Hourcade et al. 2006). Moreover, international trade 

between regions, as well as the influence of global mitigation efforts on a single region 

can be taken into account in global models. A drawback concerning the representation 
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of international trade, is that an absolute flexibility for carbon abatement is assumed. 

This, however, does not represent trade barriers in a realistic way, which causes the 

marginal costs to be lower limits of the actual marginal abatement costs. 

In addition, top-down models permit the consistent, though possibly not always 

accurate, account of interactions between mitigation measures. There is also no problem 

in accumulating sectoral abatement curves, in contrast to some expert-based approaches. 

This is due to the fact that the models maximise welfare from a societal perspective. 

Top-down models are not nearly as susceptible to inconsistencies as expert-based 

approaches because overall welfare is optimised. Intertemporal interactions and 

consistent baseline emission pathways can be represented within the scope of a model 

(Zhang and Folmer 1998, p. 104). Models, in general, are far more capable in 

representing uncertainty. This has been demonstrated in comparison studies via 

structured sensitivity analyses, where the focus has been mainly on inter-model 

comparison. 

Regarding the disadvantages of a MAC curve based on top-down models, one has to 

mention the lacking technological detail. Most MAC curves do not permit any insights 

into what technologies or measures are responsible for emission abatement. Top-down 

models lack transparency because an explicit illustration of technologies used for 

emission reduction is difficult due to a high degree of aggregation in the model 

structure. Although there were some improvements, top-down models generally lack a 

sufficient technological detail, which can result in unrealistic physical implications. 

They do not reflect the different substitution possibilities in the energy system, their 

different costs and technical characteristics in the same way as bottom-up models. 

Another disadvantage is that models often assume the behaviour of a rational agent. It is 

difficult to integrate more realistic behaviour, such as existing market distortions, which 

are independent of cost. Furthermore, top-down models rely on nested production 

functions and substitution elasticities between input factors. Those substitution 

elasticities are, however, based on discrete historic data, and it is unlikely that the 

substitution elasticities will be constant in the future. Table 2.2 summarises the 

strengths and weaknesses of MAC curves derived with top-down models. 
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Table 2.2: Strengths and weaknesses of MACCs generated by top-down models 

STRENGTHS WEAKNESSES 

 Consideration of macroeconomic 

feedbacks 

 Incorporation of behavioural changes 

in the presence of price signals 

 Marginal abatement cost are macro-

economic cost that can be put in 

context to welfare measures 

 Representation of international trade 

in global models 

 Integration of interactions between 

mitigation measures 

 Consistent baseline emission pathway 

 Taking into account intertemporal 

interactions 

 Possibility to represent uncertainty 

 No representation of trade barriers 

 Lack of technological detail and 

transparency 

 Possibility of unrealistic physical 

implications for energy use 

 Assumption of a rational agent, 

without taking into account market 

distortions 

 Reliance on substitution elasticity, 

estimated on historic data, for the 

calculation of future abatement cost 

2.2.2.2 Bottom-up models 

Compared to top-down models, bottom-up models are not as frequently used for the 

calculation of MAC curves. In contrast to top-down models, bottom-up models do not 

cover the whole economy, but pursue a partial equilibrium approach of the energy 

system or simulate the energy system (see also 3.2.3). Specific technologies and their 

emissions, inputs, outputs, variable costs and further technological and economic costs 

are integrated in such models (Hourcade et al. 2006). This section also includes hybrid 

models, i.e. those models that combine bottom-up models with top-down characteristics. 

The reason for this is that hybrid models, which are used for the calculation of MAC 

curves, have been bottom-up model with a reduced form representation of a top-down 

model. 

Similar to the comparison studies with top-down models, there have been projects to 

compare the abatement cost estimates from bottom-up models since the early 1990s. 

The third assessment report of the IPCC gives an overview of the early bottom-up 

approaches to marginal abatement costs (Hourcade et al. 1995, p. 317ff). One example 

is a study by the Energy Technology Systems Analysis Programme (ETSAP) of the 

International Energy Agency (IEA) (Kram 1993). In this research project the efforts of 

nine research groups were compared, where all teams applied the bottom-up model 
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MARKet ALlocation (MARKAL) for different regions (for more details on MARKAL 

see chapter 3.3) in order to derive MAC curves (see Figure 2.7). 

Figure 2.7: Bottom-up marginal abatement cost of CO2 in 2020 by country 

 

Source: Kram (1993)
6
 

One conclusion of the comparison study is that an emission abatement based on equal 

abatement in each country is significantly more expensive than global emissions 

reduction with an emissions trading system. Most of the lower abatement potential, in 

the majority of models, is represented by nuclear energy, whereas renewable energy is 

only used in categories of over $100 per ton CO2. Another finding is the big variety of 

marginal abatement costs for the various countries ranging from $50 (Netherlands) to 

$450/t CO2 (Sweden) for a 20% reduction in 2020 compared to the 1990 level (Kram 

1993). The stated reason is the different level of baseline emissions, which is to some 

extent due to the available energy resources and the heterogeneity of technology data 

used in the respective national studies (e.g. the availability of carbon capture and 

storage). The large difference in abatement costs between countries and models is 

similar to differences found when using different top-down models. 

A similar study by the United Nations Environment Programme (UNEP) (Risø National 

Laboratory 1994) summarised the results of bottom-up models for France, Denmark, the 

Netherlands and a range of developing countries. While the studies for the Netherlands 

and Brazil used the MARKAL model, others relied on simulation tools and other 

bottom-up models. Two MAC curves were calculated with a hybrid model, where 

macro-economic assumptions were integrated into the model. MAC curves, which are 

presented for the year 2010 in the UNEP study (Risø National Laboratory 1994), exhibit 

some similarities between countries. In the developing countries included in the study 
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there is a large potential for negative cost mitigation options up to almost 20% of 

emission reduction particularly in industry and households. Negative costs are related to 

the fact that these models represent direct costs including investment and running costs, 

but do not take into account institutional constraints, which limit the uptake of 

mitigation technologies. Furthermore, the shape of the mitigation curves is similar to the 

extent that they show negative abatement costs, while the middle part of the curve 

indicates a big potential of relatively low cost abatement options (up to $30), mostly in 

electricity supply. The similarity of the results can be explained by a similar 

optimisation approach and comparable energy demand assessment. 

The results for the industrialised countries are more varied. Some models do not give 

any negative abatement potential, because they already include all negative abatement 

cost options in the reference scenario. Thus, the model choice is important for the shape 

of the MAC curve as no-regret options are integrated into the baseline development of 

an optimisation model in contrast to a simulation models. No-regret mitigation options 

describe those measures that are cost-effective to be realised even in the absence of any 

CO2 policy. Furthermore, a comparison of long-term abatement curves and short-term 

abatement curves shows a lower and flatter long-term abatement curve. This reflects 

more effective future abatement technologies, which are cheaper than the replacement 

of existing equipment. 

The latest comparison of MAC curves derived with bottom-up models is documented in 

the fourth IPCC assessment reports, which intends to assess scientific, technical and 

socio-economic information concerning climate change (Fisher et al. 2007). The 

overview of the results confirms the conclusions from earlier comparison projects with 

bottom-up, as well as top-down models, namely that mitigation costs tend to rise with a 

higher baseline scenario and with stricter reduction targets (Fisher et al. 2007). 

Furthermore, abatement costs are found to be significantly higher in 2100, than in 2050 

and 2030 for the same radiative forcing target. In 2100 carbon prices tend to vary over a 

wider range, which can be explained with different baseline emissions and technology 

developments. 

In addition to top-down models, bottom-up models are equally used for studying the 

benefits of an international trade in carbon permits via MAC curves. Criqui et al. (1999) 

conducted a study similar to the one with the EPPA model (Ellerman and Decaux 

1998), with their Prospective Outlook on Long-term Energy Systems (POLES) model, 
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which has mostly characteristics of a bottom-up model. It is a simulation model that 

calculates energy demand, supply and prices up to 2030 (see 3.2.3). The costs 

considered in POLES are restricted to the energy sector, in contrast to EPPA that takes 

into account the economy-wide impact of reduction policies. 

Criqui et al. (1999) confirm the high cost reduction potential of international trade 

calculated with the EPPA model. Moreover, the authors find the MAC curves from 

POLES to be higher for all regions except Japan and the United States, despite the fact 

that EPPA shows higher CO2 emissions in the reference scenario due to higher 

assumptions on economic growth. In this context, the authors give three causes for 

differences in abatement costs: the initial level of energy prices, the energy supply 

structure and the potential for developing carbon free energy sources. 

A study for the European Commission (Blok et al. 2001) examined the emission 

reduction opportunities for CO2 in the European Union in 2010 using MAC curves. This 

study compared the results of a bottom-up model, PRIMES (Capros et al. 2001), with an 

expert-based approach, the GENESIS database (Hendriks et al. 2001). MAC curves 

were derived for the whole energy system for the year 2010. Figure 2.8 shows the MAC 

curves for the bottom-up model and the expert-based approach. Whereas the expert-

based approach (GENESIS) displays negative abatement costs, the corresponding 

measures are incorporated in the base case in the model runs, so that they do not figure 

in the curve of the PRIMES model. The model-based approach based on PRIMES 

shows a bigger abatement potential at higher carbon values compared to the individual 

assessment of abatement measures with the GENESIS database due to interaction in the 

system, structural changes, and demand adaptation. 

There are equally some fundamental differences between both approaches: the expert-

based approach uses a social discount rate of 4% p.a., while PRIMES uses substantially 

higher market discount rates; PRIMES explicitly models interactions in the energy 

system and GENESIS accounts for them on an ad-hoc basis; GENESIS uses project 

costs, while the cost definition in PRIMES is wider; GENESIS assumes a frozen 

technology reference development, while efficiency improvements are allowed in 

PRIMES; finally technology data differ between both approaches, e.g. the GENESIS 

database does not consider nuclear power as a mitigation option. In summary, the 

bottom-up model PRIMES is able to represent interactions and technology development 

in a superior way to the expert-based approach based on GENESIS.  
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Figure 2.8: Comparison of PRIMES and GENESIS MAC curve for the EU in 2010 

 

Source: Blok et al. (2001)
7
 

Not only pure bottom-up models, but also hybrid models are used to calculate 

abatement curves. Akimoto and Tomoda employed the model “Dynamic New Earth 21” 

(DNE 21) for an analysis of the cost connected to a stabilisation of the atmospheric CO2 

concentration and of the contribution of single technologies and measures (Akimoto et 

al. 2004; Akimoto and Tomoda 2006). The DNE 21 model is a model that links a macro 

economic model to an energy system model and a climate change model. The authors 

analyse different stabilisation scenarios ranging from 650 ppm (parts per million) to 450 

ppm CO2 in the atmosphere in 2100 and using different assumptions for underlying 

drivers, such as population and economic growth. 

The findings indicate that global marginal abatement costs are more sensitive to the 

baseline assumptions, population, GDP and final energy demand, than the atmospheric 

concentration level of CO2. In addition, a sensitivity analysis of the cost of CO2 

sequestration techniques show that the marginal abatement costs are relatively robust 

against those changes (Akimoto and Tomoda 2006). In their 2004 study, Akimoto et al. 

(Akimoto et al.) present a decomposition of emission pathways, similar to some bottom-

up approaches. While this approach does not permit many insights into the marginal 

abatement costs, it decomposes emission reduction along different technologies over 

time. In the 550 ppm scenario, global CO2 emissions reduction comes mainly from 

energy saving, biomass use and fossil fuel switching fossil fuels. For the decomposition, 
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the authors use a specific mixed Laspeyres/Paasche technique (see section 4.3), but give 

no reason for using it and do not explain the further technology breakdown. 

Another example of a hybrid model employed for MAC curve calculation is the 

MARKAL-MACRO model. Chen (2005) used this model, which links the bottom-up 

model MARKAL with MACRO, a neoclassical macroeconomic growth model, to map 

interactions between the energy sector and the rest of the economy. In this study, Chen 

(2005) conducts a sensitivity analysis concerning the use of nuclear energy in China 

during the first half of the 21
st
 century. She finds that the results are very dependent on 

the degree of expansion of nuclear energy and that the MAC curve between the 

reference and the restricted nuclear energy scenario enlarges significantly with the 

reduction amount. However, the model does not consider carbon capture and storage 

(CCS), so that nuclear power plants are the only non-CO2 base-load option. 

Chen also compares her findings with other results from top-down and bottom-up 

models (Figure 2.9). While it is questionable to present the results of MARKAL as a 

regression line due to the technology-explicit character of the model, the author 

concludes that MAC curves are lower in general equilibrium models than in partial 

equilibrium models. This can result from revenue recycling generated by a carbon tax. 

Other reasons given by Chen (2005) include the different scope of abatement 

opportunities, assumptions on basic drivers, and the handling of no-regret options. 

Figure 2.9: Comparison of MAC curve for China in 2010 

 

Source: Chen (2005)
8
 

van Vuuren et al. (2004) used the Targets IMage Energy Regional (TIMER) model in 

order to quantify the impact of endogenous technological learning and temporal aspects 

                                                 
8
 Permission to reproduce this Figure has been granted by Elsevier. 
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on MAC curves. It focuses on several dynamic relationships within the energy system, 

such as inertia, endogenous learning-by-doing, fossil fuel depletion and trade among the 

different regions. The authors do not present a MAC curve, but they look at the ”system 

response” in periods after the introduction of a carbon tax (see Figure 2.10). The 

response characterises the emission reduction in percent a certain time period after the 

tax is introduced compared to baseline emissions. Abscissa and ordinate are 

interchanged in comparison to earlier figures of abatement curves. 

Figure 2.10: CO2 reduction compared to baseline development against a carbon tax 

 

Source: van Vuuren et al. (2004)
9
 

The results reveal that the same amount of emission reduction can be achieved at lower 

marginal costs in later periods. Here, induced technological learning, system immanent 

inertia and baseline learning, i.e. more rapid cost decrease of carbon-free options 

compared to fossil-based technologies, play a pivotal role. Nevertheless, the authors 

highlight how important baseline assumptions are, as they can heavily influence the 

marginal abatement costs. 

Van Vuuren et al. (2004) present in the same way as Akimoto et al. (2004) the origin of 

emission reduction between a reference and stabilisation scenario of 550 ppm in 2100. 

They find the biggest contribution to come from energy efficiency in the first two 

decades of the 21
st
 century and a fuel-switch away from coal. From 2030, biofuels and 

non-thermal electricity production options become important. However, the results 

depend on the order of attribution of emission reduction levels to measures as the 

contribution is apparently determined by different scenario runs. 

                                                 
9
 Permission to reproduce this Figure has been granted by Elsevier. 
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The MESSAGE model is one of the bottom-up models widely used in the assessment of 

mitigation costs in the scope of EMF studies and the IPCC (Rao et al. 2006; Rao and 

Riahi 2006). The model results indicate that carbon capture and storage technologies 

play an important role in the scenario where no technological change is implemented. 

Riahi et al. (2007) present mitigation wedges and discuss the robustness of mitigation 

technologies for various scenarios and their implementation over the 21
st
 century. The 

authors identify the baseline development as an important driver of overall abatement 

and energy conservation, nuclear, biomass and CH4 emissions reduction as key 

mitigation measures. 

Advantages and disadvantages of bottom-up model-based MAC curves 

In the same manner as top-down models, MAC curves calculated with bottom-up 

models permit to take into account system-wide interactions between mitigation 

measures and intertemporal interactions. Like top-down models, bottom-up models can 

more easily avoid inconsistencies, as e.g. the double counting of emission reduction, 

which are sometimes present in expert-based MAC curves. Nevertheless, the calculation 

of technology-rich bottom-up models are constrained to the energy system and can 

therefore not consider macro-economic feedbacks. In addition, the calculation of 

abatement curves in models is relatively simple, because the analyst merely needs to 

implement emissions restrictions or a CO2 price. 

Furthermore, bottom-up models have the big advantage of technological detail. This 

detail permits, in theory, the tracking of emission reductions to the measures and 

technologies that are responsible for this change, e.g. efficiency gains or technology 

switches. Decomposition analysis can help in this context to show how mitigation goals 

are achieved (see 2.5). Next to the influence of changing technologies on useful energy, 

the impact of behavioural aspects can be included in bottom-up models in the form of 

energy conservation and a price-elastic demand function. In the same way, uncertainty 

concerning technology costs, efficiencies, start date or limits of scope and its influence 

on cost curves can be addressed with bottom-up models via sensitivity analysis, 

stochastic or probabilistic modelling. In addition, it is possible to construct sectoral 

abatement cost curves or aggregate them to an abatement curve for the whole energy 

system in contrast to some expert-based curves. 
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Furthermore, as most bottom-up models are linear models and do not rely on 

substitution elasticity in contrast to most top-down models, the modeller has to limit the 

phenomenon of penny-switching. Penny-switching is a term to describe that very small 

changes in costs can initiate big shifts in technology portfolio. The phenomenon can be 

limited by adding more steps into the investment and variable cost function or limiting 

the uptake of new technologies. This approach was not implemented for fuel costs due 

to their exogenous character for the UK and modelling constraints (see also chapter 

6.5). 

A further disadvantage is the insufficient representation of technology specific 

imperfections in bottom-up models compared to cost curves that can in principle 

incorporate this. The result can be that bottom-up optimisation models show a high 

uptake of energy efficiency measures. Nevertheless, there are possibilities to incorporate 

higher hurdle rates and upper limits for the use of mitigation technologies to represent 

problems connected to high upfront investment costs and other non-cost aspects in 

bottom-up models. Upper bounds based on regulation or lacking information in a 

reference scenario, which are then gradually removed with rising CO2 prices, can in 

theory clarify the abatement potential at negative costs. The problem with hurdle rates, 

however, is that non-financial costs would be quantified in monetary terms so that the 

marginal abatement cost shows at what tax level a measure would be realised, but the 

total costs of abatement would be diluted and overestimated. Kesicki and Ekins (2011) 

discuss the issue of negative costs in MAC curves. 

Another problem linked to the use of bottom-up models is the procedure to calculate 

marginal abatement costs. Usually, a carbon price is implemented in the model, which 

corresponds to the marginal cost, or a limit is imposed on carbon emissions, which 

generates a shadow value, i.e. the marginal cost. However, other user constraints in the 

model on the capacity of a technology, and implemented taxes or subsidies can lead to a 

distortion of the marginal abatement costs. Table 2.3 summarises strengths and 

weaknesses of MAC curves generated by bottom-up models. 
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Table 2.3: Strengths and weaknesses of MACCs generated by bottom-up models 

STRENGTHS WEAKNESSES 

 Great technological detail 

 Incorporation of some behavioural 

changes via a price elastic demand 

function  

 Integration of interactions between 

mitigation measures 

 Consistent baseline emission pathway 

 Taking into account intertemporal 

interactions 

 Possibility to represent uncertainty 

 Limited to the energy sector, i.e. no 

representation of macroeconomic 

feedbacks 

 Marginal abatement costs are direct 

cost in the energy sector 

 Possibility of penny-switching 

 Possibility of other constraints 

diluting marginal abatement costs 

 No technological detail in graphical 

representation 

2.2.2.3 Decomposing MAC curves 

A couple of studies in the last years have tried to overcome the lacking technological 

detail in the graphical representation of most model-based marginal abatement cost 

curves. Therefore, approaches were spelled out to attribute emissions reduction levels to 

mitigation measures. 

Hummel (2006), for example, developed an algorithm to decompose the sources of 

mitigation for different stabilisation scenarios in his PhD thesis. He used the results of 

three bottom-up models, MESSAGE-MACRO, MiniCAM and IMAGE. With his novel 

algorithm it is possible to decompose the emission pathway and attribute emission 

reductions to demand reduction, fuel switching, end-use efficiency or carbon 

sequestration.  

However, this algorithm is flawed in a number of respects. First of all, while the 

decomposition is relatively detailed for the power sector, there is nothing said about 

mitigation measures in the industry or transport sector. Furthermore, the author assumes 

arbitrarily that in mitigation scenarios natural gas always replaces coal in electricity 

generation and hydrogen always petroleum. Any changes in the ratio of primary energy 

to final energy are considered as demand changes rather than efficiency changes. The 

biggest drawbacks of this approach is certainly that the attributed reduction amount 

depends on the order of analysis of mitigation sources, i.e. the reduction potential of a 

measure is different if it is considered in the first or last place. In addition, this approach 

tries to explain changes in CO2 emission only with first-order changes. This will, 

however, always leave a residual term. Since the residual term is not explicitly disclosed 
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in Hummel’s approach, it is hidden in one of the first order changes, in this case in the 

change of carbon intensity, which contains higher order effects. 

The European Environment Agency (EEA) pursued a similar approach to decompose 

historic CO2 emissions from public electricity production, manufacturing industries and 

households (Jol and Karakaya 2006; Wiesenthal and Fernández 2006). For the public 

heat and electricity generation, SO2 (sulphur dioxide) and NOx (nitrogen oxides) 

emission are also decomposed. Decomposed factors include efficiency improvement, 

fossil fuel switching, share of nuclear and share of renewable. The same problem as in 

the Hummel study can be found here, i.e. that the attribution of emissions reduction to 

measures is not exact. In this case, the explaining factors are interlinked, so that e.g. the 

results can indicate a CO2 reduction due to fossil fuel switch when there is no change in 

fossil fuels but rather efficiency improvements. Summing up, Hummel (2006) and the 

EEA (Wiesenthal and Fernández 2006) tried to bring technological detail into emissions 

reduction, but their approaches are technically not precise. 

Gracceva and Ciorba (2008) used the bottom-up model MARKAL to establish a 

technologically detailed abatement cost curve. The important advantage of this 

approach is that a MAC curve is constructed within the framework of a model, where 

emission amounts can be directly attributed to a mitigation group. The resulting cost 

curves are, though, not MAC curves, but rather specific policy scenario average 

abatement cost curves. The reason is that separate runs with the MARKAL model are 

used to determine the cost and the amount of emission reduction for each predefined 

policy scenario. Information on the contribution of specific technologies is not revealed 

in all cases because not each technology corresponds to a scenario. Crucially, the 

specific policy scenarios cannot guarantee that emission reduction is due to the specified 

changes, because interactions are not accounted for. Additionally, the emission 

reduction amount for one defined technology group depends on the logical order of the 

scenarios, and the scenarios will not exactly add up because of interactions. 

In 2009, Renders (2009) proposed a representation of no-regret measures in marginal 

abatement costs based on the MARKAL model. The methodology based on the concept 

of marginal investment costs can reveal the negative marginal abatement costs for 

efficiency measures in the household sector. Nevertheless, this approach gives only 

insights into abatement costs, but not on the scope of emission reduction attributable to 

one measure. 
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2.3 Common aspects of all types of MAC curves 

While model-derived and expert-based MAC curves have different strengths and 

weakness, which affect their suitability to derive MAC curves, all MAC curves share 

some common characteristics independent of the underlying methodology. Strengths of 

MAC curves include: first, they represent the marginal abatement cost associated with a 

given reduction level. Second, the total abatement costs can be derived by integrating 

the MAC curve up to the emission reduction level. Third, the average abatement costs 

can be calculated when the total abatement costs are divided by the amount of reduced 

emissions. Forth, MAC curves can be helpful for the assessment of climate policy tools. 

Expert-based MAC curves can indicate the reduction potential, e.g., associated with 

introducing a building standard, and model-derived MAC curves give an indication of 

the resulting carbon price in a cap-and-trade scheme or the reduction level when a 

carbon tax is introduced. 

Weaknesses of the MAC curve concept include that it does not consider ancillary 

benefits of carbon emissions reduction, such as reduced air pollution or increased 

energy security. Furthermore, transaction and implementation costs of mitigation 

measures are not considered when establishing mitigation costs and costs related with 

policy implementation are beyond the scope of a MAC curve. Since a MAC curve is a 

snapshot of one point in time, it is not possible to depict the influence of intertemporal 

dynamics on abatement costs and potentials. Other weakness, which can be overcome in 

the future, include the lack of transparency concerning the input assumptions and the 

limited representation of uncertainty in MAC curves. Common characteristics for model 

and expert-based abatement cost curves are summarised in Table 2.4. 

So far, an important weakness of model-based MAC curves has been the lacking 

technological detail in the representation of the results. While a technology rich 

representation is not possible to realise in top-down models, since they lack the 

necessary technological detail, it is in principle possible for bottom-up models. In 

combination with a bottom-up model, decomposition analysis can help to disentangle 

the contribution of different technologies, efficiency gains and behavioural aspects to 

the reduction of CO2 emissions. 
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Table 2.4: Common strengths and weaknesses of MAC curves of all three types 

STRENGTHS WEAKNESSES 

 Present the marginal abatement cost 

for any given total reduction amount 

 Give the total cost necessary to abate 

a defined amount of carbon emissions 

 Possible to calculate average 

abatement costs 

 Give helpful information for the 

assessment of climate policy 

instruments 

 No consideration of ancillary benefits, 

transaction and implementation costs 

 In general limited to one point in time, 

no consideration of intertemporal 

dynamics (path dependency) 

 Lacking transparency of assumptions 

 Limited representation of uncertainty 

2.4 Influencing factors of MAC curves 

Several studies have looked into the influence of various factors on the shape of MAC 

curves. In a theoretical framework, a few researchers have studied the influence of 

technological learning and innovation on MAC curves. Amir et al. (2008) challenge the 

previously established belief that innovation always leads to a uniform downward shift 

of the MAC curve. He argues that this is only the case for end-of-pipe technologies, 

while efficiency gains or lower capital costs can lead to an upward shift. Bauman et al. 

(2008) argue in a similar way that production process innovations can lead to higher 

marginal abatement costs. Baker and Shittu (2007) review the literature on 

technological innovation and MAC curves. They find that the majority of studies 

indicate that innovation shifts a MAC curve downwards rather than upwards. 

Nevertheless, based on several examples, the authors stress the point that an upward 

shift of MAC curves at high abatement levels is perfectly possible. 

Other categories of papers that have looked at quantifying the impact of influencing 

factors on MAC curves are model comparisons and meta analyses. The latter type 

employs econometric techniques in the form of regression analyses based on several 

MAC curve studies. While this statistical approach is not without problems, e.g. low 

statistical significance, selection bias, assumptions of linear relationship, 

multicollinearity and heteroskedasticity, it delivers some insights into what are the most 

important influencing factors of MAC curves. 

Concerning the model type, Repetto and Austin (1997) find that the use of CGE models 

as opposed to macro models lower the cost related to emission reduction for the same 

carbon reduction target. The results from Barker et al. (2006) indicate that hybrid 
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models tend to increase abatement costs compared to top-down models, which could 

result from a better representation of market constraints. In the presence of a 

comparably low coefficient of determination, Kuik et al. (2009) could not measure any 

significant influence on abatement costs due to the model type, i.e. top-down, bottom-up 

or hybrid. This result is confirmed by a model comparison undertaken by van Vuuren 

(2009). Amann et al. (2009) performed a model comparison of eight models of different 

type and come to the conclusion that top-down models show higher abatement 

potentials in particular at higher carbon tax levels compared with bottom-up models 

owing to the characteristic that they include trade-balances and that most bottom-up 

models in the study do not include behavioural change. Currently, however, the 

majority of bottom-up models incorporate price-elastic demand functions. 

In the past, top-down models were accused of overestimating marginal abatement costs. 

These models rely in general on substitution elasticities between input factors, which 

are estimated using historic data and therefore project a limited transformation potential 

of the economy into the future. Consequently, they can generate comparably high costs 

for the mitigation of CO2 emissions (Hourcade et al. 2006). Bottom-up models, on the 

other hand, were accused of underestimating marginal abatement costs. They rely on 

technology specifications and, in the case of simulation models, show an abatement 

potential at negative costs. Reasons for comparably low abatement costs are the failure 

to include micro- and macroeconomic feedback effects, such as e.g. price induced 

demand changes (Hourcade et al. 2006). Existing meta-analyses and model 

comparisons, however, do not give a consistent picture (Repetto and Austin 1997; 

Barker et al. 2006), while the latest studies do not find any influence of the model type 

on the MAC curve (Kuik et al. 2009; van Vuuren et al. 2009). 

According to Repetto and Austin (1997) and Barker et al. (2006), the rather crude 

concept of backstop technologies, found in top-down models, generally reduces 

marginal abatement costs, while Fischer and Morgenstern’s (2006) results indicate the 

opposite. Fischer and Morgenstern (2006) explain this rather surprising finding with the 

fact that modellers might include a backstop technology because other model 

assumptions lead to high marginal abatement costs. 

Global emissions trading was identified by Repetto and Austin (1997), Fischer and 

Morgenstern (2006), Criqui et al. (1999) and Klepper and Peterson (2003) to lower 

abatement costs, while Ellerman and Decaux (Ellerman and Decaux 1998) indicate the 
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opposite. Equally, abatement possibilities across greenhouse gases can lower abatement 

costs according to Stern (2007, p. 243ff), Kuik et al. (2009) and Morris et al. (2008). 

Incorporating efficient revenue recycling can additionally lower marginal abatement 

costs according to Repetto and Austin (1997). The influence of a higher detail of energy 

sources is not unambiguous: it does either have no influence (Repetto and Austin 1997), 

reduces abatement costs (Kuik et al. 2009) or can even lead to higher marginal 

abatement costs due to the better representation of rigidities (Fischer and Morgenstern 

2006). Barker et al. (2006) come in their meta-analysis to the conclusion that the 

modelling of a higher disaggregation of sectors reduces marginal costs. 

Barker et al. (2006), Edenhofer et al. (2006) and Clapp et al. (2009) pointed out that 

Induced Technological Change (ITC) can significantly drive down MACs. ITC 

represents endogenous, policy-influenced technological change where early policy 

action induces research and development into low-carbon technologies, which in turn 

lowers technology costs in later periods. Edenhofer et al. (2006) found via a model 

comparison that the transformation to a carbon-free energy system can become stable as 

renewable energy technologies turn out to be cost-effective resulting from induced 

technical progress. Amann et al. (2009) similarly find technological progress to have a 

large influence on MAC curves. Morris et al. (2008, p. 14) state in this context that 

MACs will be lower, the stronger and longer the policy has been in the past. 

Another intensely debated influencing factor is fuel prices. McKinsey (Creyts et al. 

2007, p.25) state, for example, that oil and gas prices have a substantial impact on the 

abatement curve for the United States, while this impact is found to be a lot more 

moderate on a global level (Nauclér and Enkvist 2009, p. 53). Moreover, the latest 

assessment report of the IPCC explains that estimated ranges of mitigation costs and 

potentials reflect key sensitivities to baseline fossil fuel prices (Barker et al. 2007, p. 

621). Siddiqui (2010), using a general equilibrium approach, found a MAC curve for the 

Canadian economy to be sensitive to changes in the price for crude oil. The findings are 

dependent on the oil intensity of an economy and if the country is a fossil fuel exporter 

or importer. 

Klepper and Peterson (2003) studied the influence of energy prices on MAC curves 

with a computable general equilibrium (CGE) model. Their results indicate that energy 

prices play a decisive role and that MAC curves depend strongly on energy prices 

(Klepper and Peterson 2003, p.25). This statement is, however, qualified in a later 
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paper, where the authors state that relative price effects do not affect MAC curves in a 

significant way (Klepper and Peterson 2006, p. 18). 

Three studies that looked at the influence of the availability of mitigation measures on 

marginal abatement costs are Clarke et al. (2007), Clapp et al. (2009) and Azar et al. 

(2010). MAC curves were found to be diverging owing to different assumptions on the 

availability of key mitigation options, such as biofuels, renewable electricity generation 

or the availability of CCS. Clapp et al. (2009) points out that the non-availability of 

nuclear and carbon capture and storage (CCS) technologies significantly increases 

abatement costs. While Azar et al. (2010) use a slightly different concept to MAC 

curves by presenting additional total costs associated with a lower atmospheric 

concentration of CO2, they find that including CCS especially in combination with 

biomass reduces mitigation costs. 

Lastly, concerning the choice of the discount rate, AEA et al. (2008) found that a shift 

from a social perspective to a private perspective significantly changes the MAC curve 

for the UK transport sector. Nauclér and Enkvist (2009) also study the influence of a 

different discount rate on MAC curves, but only disclose results on the average 

abatement costs, which indicate a substantial increase in costs for rising discount rates. 

To summarise, the discussion on the robustness of MAC curves has mainly focused on 

fossil fuel prices, (induced) technological learning, model type, emission trading and 

inclusion of non-CO2 greenhouse gases. The existing studies do not present uniform 

results, but generally report that fossil fuel prices have a moderate to significant 

influence on MAC curves, while induced technological change significantly lowers 

MACs. Emissions trading and including further greenhouse gases next to CO2 is in most 

cases responsible for a reduction of abatement cost. The non-availability of key 

mitigation options, such as CCS, nuclear and renewables, is found to significantly 

increase abatement costs. 

2.5 Decomposition analysis 

Decomposition analysis (used as a synonym for index decomposition analysis) is 

chosen as a technique to attribute emission changes to mitigation measures. Using this 

method, the emissions reduction amount of a mitigation measure does not depend on the 

order of attribution nor are the effects interlinked. Such issues occur with other 
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methods, which are very similar to decomposition analysis (see section 2.2.2.3). The 

goal of decomposition analysis is to explicitly set forth the contribution of driving 

factors behind the change of an aggregate variable 

Decomposition analysis is a well established research methodology to decompose an 

aggregated indicator, usually either energy use or CO2 emission, into its driving forces 

(Ang and Zhang 2000). After the two oil price shocks in the 1970s, this technique was 

used to determine the factors behind historical industrial energy use and how to reduce 

future energy consumption in the industry sector (Thomas and MacKerron 1982; 

Hankinson and Rhys 1983; Jenne and Cattell 1983). In the 1990s the focus of 

decomposition shifted from energy use towards CO2 emissions (Torvanger 1991) based 

on the Kaya identity (Kaya 1989). The Kaya identity was the first identity to relate CO2 

emissions to the human impact via the factors population, GDP per capita, energy 

intensity of the economy and carbon intensity of energy. Over the course of the 1990s 

and the early 21
st
 century there have been numerous studies for different regions and 

energy sectors that have tried to find the underlying causes of CO2 emission 

development with the help of various decomposition techniques (see e.g. Diakoulaki et 

al. 2006; Shrestha et al. 2009). The International Energy Agency (2004) used 

decomposition analysis to perform a comprehensive study on energy use in IEA 

countries, in households, transport, service sector and manufacturing.  

To illustrate the application of decomposition analysis, a simple example is given based 

on the Kaya identity. In this equation of several ratios, all numerators and denominators 

cancel out, except for the aggregated variable: 

       
   

 
 
   

   
 
   

   
 (2.1) 

where P stands for population, GDP for gross domestic product, PEC for primary 

energy consumption and CO2 for CO2 emissions. 

Decomposing the change of CO2 emissions according to the predefined drivers results 

in the following equation: 
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(2.2) 

In this equation the first term on the right hand side represents the implication of a 

change in population on the CO2 emissions, the so called activity effect where 

population is the activity. The second summand represents the influence of affluence 

(measured in GDP per capita) on the aggregate variable, while the third summand 

represents the emission change due to energy intensity and the last ratio represents the 

impact of a change in CO2 intensity on emission development. The latter three 

summands in the brackets are all intensity effects. 

As the decomposition in equation (2.2) is a series expansion truncated at first order, a 

residual of higher order remains. The residual can be comparably large for large 

changes in the decomposed variable. To avoid this problem, several methods have been 

developed in the last years to distribute the residual among the factors, which are 

described in more detail in 4.3. It is important to keep the residual small because 

otherwise an important share of the change in the aggregate remains unexplained. 

In recent years, studies have not only looked back into the past to decompose CO2 

emissions, but also into the future to decompose future mitigation scenarios. Kawase et 

al. (2006) compared the historical development of drivers of CO2 emissions in European 

countries and Canada to projected developments up to 2050. Their results indicate that 

energy intensity (i.e. ratio of final energy consumption and economic activity) and 

carbon intensity (i.e. the ratio of CO2 emissions and primary energy) must be improved 

more than 2-3 times as fast as the historical trend to meet reduction targets. 

Another study that analyses forward-looking scenarios is a study by Hanaoka et al. 

(2009) that looks at the contribution of energy efficiency for future CO2 emission 

reduction. Their results indicate that improvements in the energy intensity ratio, defined 

as total primary energy supply per economic activity, will play the most important role 

contributing to reduced CO2 emissions. Agnolucci et al. (2009) used decomposition 

analysis to determine future CO2 emissions. In this study decomposition was used to 

define the growth rate of the explaining variables and then to aggregate them to gain 

insight into the development of CO2 emissions. 

The IPCC (Rogner et al. 2007, p. 107ff) used decomposition analysis to separate the 

contribution of population growth, affluence, carbon and energy intensity of the 
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reference IEA scenario. The findings confirm prior results that baseline energy 

efficiency improvements alone are not sufficient to stabilise global CO2 emission over 

the next 20 years. 

The cited examples show that decomposition analysis has moved from a narrow focus 

on industrial energy use towards a broader perspective, which includes the 

decomposition of CO2 emissions. Furthermore, in recent years research studies have not 

only analysed historic data, but have looked at emission scenarios with a horizon up to 

2050 (Kawase et al. 2006; Agnolucci et al. 2009). Issues that should be kept in mind 

when using decomposition analysis, is that results depend on the drivers included in the 

analysis. Moreover, most decomposition analyses presume that the drivers are 

independent of each other, which is not necessarily the case. However, one can notice 

that decomposition has always been applied through time to gain insight into the 

development of emissions in recent or future decades. This has not been extended to a 

decomposition along rising CO2 taxes or stricter atmospheric CO2 concentrations to 

obtain a technologically detailed MAC curve. 

2.6 Critique and conclusions 

The discussion of the present literature revealed that there are different approaches to 

presenting the cost associated with the mitigation of climate change. MAC curves, a 

major concept in this area, have been constructed with different methods, which have 

their respective advantages and disadvantages (see Table 2.1, Table 2.2 and Table 2.3). 

Expert-based abatement curves have the important advantage of technological and 

market detail, while they lack a representation of interactions and energy system-wide 

dependencies. Model-based approaches are capable of integrating interactions, but often 

lack the technological detail, so that there are insights into marginal costs without 

permitting any insights on mitigation sources. Recently, there have been some 

approaches in literature towards the decomposition of mitigation sources in model-

based approaches, which either do not reveal the methodology or have an inadequate 

methodology (see section 2.2.2). 

To conclude, so far no MAC curve has been constructed that presents the technological 

detail based on consistent assumptions, while being able to take into account 

technological, intertemporal, economic and behavioural interactions, to incorporate the 
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technological complexity and to provide a framework for a structured consideration of 

uncertainty. 

To fill in those gaps in research, combining energy system modelling with 

decomposition analysis is useful approach. An energy system model permits one to use 

consistent assumptions for the whole energy system, take into account technological, 

intersectoral and behavioural interactions. Moreover, a sensitivity analysis or stochastic 

modelling based on such a model provides a structured approach to study uncertainty. 

Decomposition analysis uses the technologically detailed results of the energy system 

model as an input in order to bring in the technological detail into the MAC curve. It is 

the time that decomposition analysis is used to decompose a MAC curve instead of 

historical emissions over time.  

In a first step, model runs with an energy system model serve to construct a MAC curve 

by recording the emission reduction associated with imposed carbon prices. In a second 

step, decomposition analysis quantifies the changes in the energy system and traces 

back emission reduction to technologies and measures. By applying decomposition 

analysis to this new field, it is possible to explicitly attribute a reduction amount to the 

respective mitigation measure. The advantages of this approach are that it incorporates 

all the advantages of a model-based approach, while bringing in the technological detail 

into MAC curves usually attained with expert judgments.  

Compared to expert-based MAC curves, the combination of decomposition analysis and 

an energy system model permits an adequate representation of technological 

complexity, for example with different cost steps for renewable energy, as wind or solar 

power. Furthermore, a model-based approach makes it much easier to avoid 

inconsistencies, and considers intertemporal and intersectoral interactions. 

In comparison to usual top-down model-based MAC curves, the approach based on an 

energy system model and decomposition analysis allows the attribution of emission 

reduction amounts to measures, such as efficiency improvements of one technology, 

demand reduction or fuel switching to a carbon-free electricity source. In addition, the 

technological detail of a bottom-up model avoids possible technologically unrealistic 

results of top-down models. Compared to the current approaches to generate MAC 

curves with bottom-up models (see 2.2.2.3), the use of decomposition analysis does not 

depend on the logical order of mitigation measures in scenario runs. Decomposition 
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analysis is theoretically sound and permits to assign unambiguously emission reduction 

amounts to mitigation measures. Moreover, this analysis can open the black box of a 

model, to a certain extent, by giving insights on the underlying assumptions, which are 

mostly lacking in current model-based MAC curves. In contrast to existing model-based 

studies that present mitigation wedges, the approach used in this thesis gives insights on 

marginal abatement costs and is transparent as well as mathematically sound. 

Another component of the proposed approach is uncertainty analysis. MAC curves are 

only a snapshot of a specific point in time depending on many assumptions and 

uncertainty in relation to MAC curves has been poorly represented in the past. A 

sensitivity analysis and stochastic modelling of the most important input assumptions, 

such as technology costs, energy prices, discount rates or behavioural aspects can give 

insights into interaction of uncertainty for any given year. In addition, the variation of 

the carbon tax trajectory within a bottom-up model can reveal important insights with 

respect to time dynamic aspects. 

In conclusion, the combination of a traditional model-based abatement curve with 

decomposition analysis and uncertainty analysis enables the derivation of a robust and 

technologically detailed MAC curve. This has clear advantages over conventional 

model-based MAC curves, which lack the technological detail in the graphical 

representation, and over expert-based MAC curves, which are, amongst others, not able 

to consider the full extent of technological, intersectoral and behavioural interactions. 
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3 ENERGY SYSTEM MODELLING 

This section explains the underlying modelling framework MARKAL (MARket 

ALlocation) used in this thesis to generate MAC curves. It starts with the background 

and goals of energy system analysis. Energy models, which help to simplify interactions 

in the energy system, are presented in the next section. Subsequently, the model 

structure of MARKAL (version 3.21), its implementation and the mathematical 

description is presented, followed by a subsection on the generation of MAC curves 

with MARKAL. The chapter concludes with a discussion of the cost and abatement 

potential concepts used in the context of climate change mitigation. 

3.1 Energy system analysis 

Energy system analysis is intended to help support decisions in energy policy and 

energy research with regard to technologies and infrastructures for the energy supply 

and behavioural aspects on the demand side in a scientific and systematic manner. In 

this context, the energy system can be investigated at very different scales, ranging from 

a global, continental, national or regional system towards an industrial site or a house. 

For this thesis the energy system is defined as that which includes the energy sector of 

the economy from energy supply, including energy transformation towards energy 

demand sectors. This system can in general be divided into the upstream sector for 

energy supply, electricity/heat/hydrogen/refining sectors as the transformation part and 

industry, transport, residential sector, service sector and agriculture as demand sectors. 

In contrast to the assessment of single technologies, system analysis is concerned with 

the investigation of structural elements of a system, i.e. the descriptive representation of 

the functioning of a system. It takes a holistic, abstract and object independent view, i.e. 

it is not focused on a single, specific element of the system but is rather interested in the 

interactions within the whole system. A necessity for system orientated planning 

methods exists because of increasing technical knowledge and specialisation of 

knowledge areas, the increasing number of people involved, the impact of planning 

consequences and the need for integration of areas of knowledge. Developments in 

energy management and key technologies, limited fossil resources and climate change, 

demographic change, political, social and economic framing conditions, the ambition 
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for sustainability – all these are only some of the factors that have to be taken into 

account in the analysis of the energy system. Integrated analysis is particularly 

important in the energy system because of the following characteristics. 

Crucial parts of the energy system, such as infrastructure, possesses a long-term nature 

and bound change in the whole system. Changes in the power sector need several 

decades to materialise, even very fast adjustments, like for example the expansion of 

nuclear power plants in France, take more than a decade. However, developments in 

other sectors, such as vehicle or boiler replacement occur in smaller time intervals. 

Exceptions are demand-related measures, e.g. daily or seasonal changing transport or 

residential heating patterns. Single decisions, such as the construction of a refinery or 

the planning of an oil pipeline, have an impact on the whole energy system and have to 

be seen in the wider context, i.e. how they interact with other decisions. Complexity and 

multi-dimensionality appears not only in the technological structures of single plants but 

also in the interactions of different units, such as in the electricity system, and the 

interplay of different stakeholders participating in the energy sector (Voß 2009). Those 

stakeholders include people from the energy sector, politics, environment, resources and 

other parts of the economy. Like many other parts of the economy, the energy sector is 

subject to uncertain influencing factors (see chapter 5). The future development of key 

variables, such as fossil fuel prices, technology costs and availabilities are uncertain. A 

final point is that the energy sector is marked by conflicting goals. Accepted goals of 

many stakeholders include the pursuit of sustainability, energy security and making the 

energy infrastructure available to as many citizens as possible. While the use of 

domestic coal, for example, would satisfy the goal of energy security it stands in 

contrast to a sustainable, low-carbon society. In addition, the energy sector is 

characterised by market failures and market barriers, which hamper the realisation of 

such goals. 

Closely connected to the term „system‟ is the term „model‟, which is an abstract 

representation of the real system describing the behaviour and interactions of system 

elements in a qualitative or quantitative manner (Möst and Fichtner 2009). Models are 

used to gain insights about the behaviour of the real system for example as a decision 

support aid and for the determination of consequences from decisions. Models are 

expected to identify the necessary part of reality and elaborate the crucial aspects, but 

nevertheless reduce the degree of complexity in order to remain manageable. The model 
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building and the degree of aggregation is usually driven by the question the model is 

supposed to answer. Furthermore, models should be free of contradictions, verifiable, 

modifiable, comprehensible and user friendly. It is important to stress that the developed 

models are in general a quantitative support mechanism or an exercise to gain 

information and help in this way to arrive at well-informed decisions. A precise forecast 

of the future is not possible because of uncertain assumptions affecting the energy 

system, which become even less predictable with a model horizon of several decades. A 

model rather presents a consistent tool to investigate how a system develops under 

certain conditions. Huntington et al. (1982, p. 450) summarised this as using models to 

develop insights rather than forecast numbers. 

3.2 Energy models 

The oil embargo in 1973 and the unfamiliar circumstances at that time created the 

motivation for the development of energy modelling. Early models concentrated mostly 

on specific sectors, such as the electricity sector or oil sector (Huntington et al. 1982). A 

second-generation of energy models comprised energy system models that look at the 

whole energy system from energy supply via energy transformation to energy demand. 

A further development represented energy-economy models that not only focus on the 

energy sector but also include economy-wide interactions. Integrated assessment models 

represent again a more comprehensive category that include interactions across different 

sectors, such as forestry, agriculture and energy, as well as with the environment, i.e. the 

impact of rising emissions on the environment and in some cases feedback on the 

economy through a damage function. Those models try to address the issues of equity 

across space and time, possible damage costs and uncertainty (see e.g. Rotmans and van 

Asselt 2001; Stanton et al. 2008). 

A modelling approach mainly used in other disciplines is agent-based modelling. These 

models consider the behaviour and interaction of individual agents and therefore 

provide insights into the behaviour of organisations and their implications for 

technology adoption (DeCanio et al. 2001; Worrell et al. 2004, p. 365). This approach 

tries to challenge the common objective in energy models of cost minimisation or profit 

maximisation by incorporating a more realistic organisational network structure to 

examine its overall influence. It can contribute to change implicit assumptions that are 

generally used when trying to find a solution for environmental problems. Bower et al. 

(2000) have applied an agent-based model to the UK electricity market. 



73 

Energy models can be distinguished according to their planning period. While short-

term energy models are used for the portfolio management of single companies and 

consider a period of days to a year, medium to long-term models also include 

investment decisions. With the last category of models it is possible to explore 

questions in energy and environment policy. As this thesis focuses on long-term 

developments of carbon reduction portfolios the following categorisation focuses on 

long-term models. 

3.2.1 Categorisation 

Energy models can be distinguished by many characteristics. Many hybrid types of 

approaches make a clear distinction impossible and permit only a general categorisation. 

This is related to the fact that some models were initially built for a specific purpose and 

were then applied to integrate other aspects. Many models, for example, were developed 

with a fossil fuel-based energy system in mind that cannot represent intermittent 

systems based on renewable energy sources. Table 3.1 gives an overview of the possible 

classifications of energy models. Many researchers have reviewed existing energy 

models and classified them in various ways (Löschel 2002; Springer 2003; Jebaraj and 

Iniyan 2006). 

The most common separation of such models is into bottom-up and top-down (see e.g. 

Hourcade et al. 1995). A top-down approach breaks down a system to gain insight into 

its compositional sub-systems, while a bottom-up approach puts together elements of a 

system to give rise to grander systems, thus making the original systems sub-systems of 

the emergent system. In the energy field, bottom-up models are used to describe the 

current and prospective competition of energy technologies in detail, both on the 

supply-side (the substitution possibilities between primary forms of energy) and on the 

demand-side (the potential for end-use energy efficiency and fuel substitution). Typical 

examples of bottom-up models are energy system models. Top-down models on the 

other side address the consequences of policies in terms of public finances, economic 

competitiveness and employment (Hourcade et al. 2006). Typical examples of top-down 

models are computable general equilibrium (CGE) models. Conventional bottom-up 

models are known for their technological detail and lack of microeconomic realism, 

whereas conventional top-down models include economy-wide interactions based on 

market behaviour, but lack the technological explicitness. 
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Both model types address the same problem from different perspectives. On the one 

hand, top-down models are based on historical trends and can therefore only give useful 

results in the case that historical relationships among key underlying variables remain 

constant. Bottom-up models, on the other hand, include predominantly only the energy 

sector and are therefore only suited for analytical purposes when there are no important 

feedbacks between the energy sector and the other sectors of the economy (van Beeck 

1999). 

The distinction between top-down and bottom-up models is almost two decades old 

(Grubb et al. 1993; Wilson and Swisher 1993). Since then it became more difficult to 

maintain this clear distinction between bottom-up and top-down models because 

bottom-up models have integrated microeconomic aspects like a price-elastic demand 

and top-down models have integrated more technological detail into the nested 

production functions (Hourcade et al. 2006, p. 5f). Moreover, hybrid models have been 

developed that combine in different ways the top-down and bottom-up approach in one 

model. Böhringer et al. (2008) distinguish in this context three different types of hybrid 

models: combination of independently developed bottom-up and top-down models, a 

bottom-up or top-down model used together with a reduced form representation of the 

other and a completely integrated model based on solution algorithms for mixed 

complementarity problems. 

Another possibility to divide energy models is according to their treatment of 

uncertainty, i.e. if they are deterministic or for example stochastic. Many energy models 

were constructed as deterministic models thus relying on specific input assumptions. In 

this case uncertainty can only be considered via the variation of input assumptions, i.e. 

sensitivity analysis. In contrast, stochastic models incorporate uncertainty about 

technology development, energy prices or other parameters by assigning probabilities to 

different developments of these input assumptions. This enables the modeller to derive 

hedging strategies for different scenarios. 

According to the time frame one can distinguish energy models into static, dynamic and 

recursive dynamic. Since many energy models cover several decades, static models, 

which optimise only one period, are relatively rare. Dynamic models describe states and 

changes in the system by means of differences and differentials over the course of time. 

Dynamic models possess perfect foresight, which means that they optimise the system 

over the whole planning period. Dynamic recursive models, also called myopic models, 
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do not consider the whole planning period but optimise for a subset of periods, where 

decisions of earlier periods are inputs to the following period (Keppo and Strubegger 

2010). 

The mathematical implementation of energy optimisation models can broadly be 

divided into linear and non-linear with separate integer formulation or mixed integer 

variants when only a subset of the variables are required to be integers. Linear models 

need less computational capacities and calculate a global optimum but restrict the 

modelling to linear relationships, which sometimes approximate non-linear 

relationships. Non-linear models are in general more time intensive to optimise than a 

comparable linear model. They allow the consideration of non-linear relationships but 

may only find one of several local optima rather than a global optimum. One can 

assume an optimum to be global in the non-linear context only in the case of convex 

model equations and a convex objective function. 

A further well-known differentiation between models is into simulation and 

optimisation. Optimisation models give an answer to the question of how to achieve a 

given goal described in an objective function subject to constraints. An example is cost 

minimisation, where many possible solutions exist and the model chooses the optimal, 

i.e. the most cost-effective one. One could say that optimisation models simulate some 

physical aspects of the energy system depending on the degree of endogenisation, i.e. 

the input parameters, and optimise the rest. Simulation models answer the question: 

what happens for a set of given conditions? This does not necessarily lead to a full 

equilibrium or an optimum. It means that these models investigate in an explorative 

manner the consequences for given options. Mathematically this corresponds to a set of 

equations with an equal number of variables. In contrast to an optimisation model, 

where the model chooses the optimum among possible solutions, a simulation model 

has no degrees of freedom. Optimisation models can also be described as prescriptive 

models as they give insights on what to do to make the best of a set of conditions, while 

simulation models can be characterised as descriptive since they clarify what would 

happen in a specified situation. The advantage of simulation models is that they can 

better model real, imperfect markets in contrast to optimisation models. Nevertheless, 

given decision making rules determine the model outcome and interactions between 

different rules are unclear (Möst and Fichtner 2009, p. 22). In this context, sensitivity 
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analysis can help to a certain extent to shed some light on these interactions (see section 

5.2.1). 

The degree of endogenisation, i.e. the degree to which parameters are incorporated into 

the model, can be another metric for the categorisation of models. Energy models must 

have at least one external parameter and can have all parameters determined externally, 

while the majority of models lie in between. Exogenous assumptions include in most 

cases parameters, such as population growth, economic growth, price elasticity of 

energy demand and can further include energy demand, supply and existing taxes (van 

Beeck 1999). The degree of endogenisation tends to be higher in optimisation models 

compared to simulation models. In recent years several exogenous assumptions have 

been endogenised in bottom-up models, like price elastic demand curves, use of 

endogenous technological learning or stochastic programming in order to endogenise 

uncertainty related to input assumptions (Remme 2006, p. 81). In addition, top-down 

models endogenise economy wide interactions, while bottom-up models rely on 

external assumptions in this respect. 

Lastly, one can distinguish energy models according to the geographical scope. This 

includes models on a local, regional, national, continental and global level. In addition, 

energy models differ according to the sectors they include. Models can be restricted to a 

single sector, such as electricity generation, the energy system or the whole economy. 

Table 3.1: Taxonomy for the differentiation of energy models 

The analytical approach: Bottom-up and top-down 

Treatment of uncertainty: deterministic and stochastic 

Treatment of foresight: static, dynamic and recursive dynamic 

Mathematical implementation: linear and non-linear programming 

Underlying methodology: optimisation and simulation 

Degree of endogenisation: fuel prices, economic growth, taxes, energy demand 

Geographical scope: local, regional, national, continental and global 

3.2.2 Top-down models 

This section should give a brief overview of typical types of top-down models. Models 

in this category can be divided into growth models, CGE models and macroeconometric 

models. 
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Growth models are based on modern growth theory maximising aggregated social 

welfare, which is discounted over the future. Optimal growth models facilitate the 

understanding of growth dynamics, i.e. transition paths, over long term horizons under 

the assumption of what decentralised markets can achieve in the presence of appropriate 

policy instruments. Global growth is partly explained in terms of research and “learning 

by doing” affecting the stock of knowledge, which in turn enters the production 

functions of the model. Important assumptions include representative agents and full 

employment. In this context growth models can be distinguished as first best models, 

which implicitly assume perfect markets and optimal policy tools, whilst second best 

models include market imperfections and sub-optimal policy tools (Edenhofer et al. 

2006, p. 62ff). 

Examples of growth models are: 

 DEMETER (DE-carbonisation Model with Endogenous Technologies for 

Emission Reductions) (Gerlagh and van der Zwaan 2004; Gerlagh 2006) 

 DICE (Dynamic Integrated Climate-Economy) (Nordhaus 1993) 

 FEEM-RICE (Regional Integrated Model of Climate and the Economy) (Bosetti 

et al. 2006) 

The most widely used type of top-down models are CGE models, which are, as their 

name implies, based on equilibrium theory and thus do not capture short term 

adjustments but concentrate on the long term. This model type also relies on the 

assumption of representative agents, but can incorporate the stock of knowledge and can 

include unemployed labour in contrast to growth models. CGEs optimise over a series 

of static equilibria, generating insights on how the economy shifts from one equilibrium 

to another and calculate numerically demand, supply and the resulting price. In these 

models every sector is mapped with a nested production function, where production 

factors are substitutable according to a defined elasticity, so that policy responses can be 

modelled. 

Top-down models have been criticised for their dependence on the elasticity of 

substitution between energy and labour/capital and the autonomous energy efficiency 

index (AEEI). The elasticity of substitution represent price induced changes in the 

demand for energy and the AEEI represent the non-price induced energy intensity 

reduction. Both parameters are used to describe complex behaviour, but are neither 
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observable nor measurable. Knowing that the rate of non-price induced efficiency 

improvement has changed historically, it is disputable to assume that it cannot change, 

or be changed, in the future as is assumed in top-down models (Wilson and Swisher 

1993). In effect, this modelling approach assumes that market behaviour remains in line 

with historical observations, so that institutional innovations as well as technological 

adjustments beyond current practice aimed at improving energy efficiency are excluded. 

Provocatively, Wilson et al. (1993, p. 254) stated that top-down models tell us that if it 

had been expensive to reduce CO2 emissions in the past, and the economy stays the 

same as it was at that time, it will also be expensive in the future. 

That is the reason why top down models have been said to suggest that efforts to reduce 

carbon emissions are relatively costly, i.e. the economy‟s potential for technological 

transformation is limited as portrayed by historically-based elasticities (Hourcade et al. 

2006, p.4). In recent years, this problem has been recognised and top-down modellers 

have tried to model induced technological change (ITC) in the presence of ambitious 

policies (Edenhofer et al. 2006). 

In addition, top-down models can consider the rebound effect. This effect describes a 

phenomenon where efficiency improvements do not lead to the expected reduction in 

final energy consumption because part of it is compensated by an increase of energy 

service consumption due to a cheaper energy service (Sorrell 2007). Top-down models 

take account of the effect in the way that a price decrease results in the recycling of 

economic savings that leads to increased consumption. However, they do not consider 

that it can result in the substitution of energy consumption by the consumption of other 

economic inputs, such as labour.  

Lastly, some CGE-models possess the abstract construct of a backstop technology, 

which can provide infinite energy at a comparably high price and thus set a maximum 

limit for a CO2 price in the case of a carbon constraint. The reason for the modelling of 

a backstop technology can be found in the poor technological detail of top-down 

models. 

Examples of CGE models are: 

 AIM (Asia-Pacific Integrated Model) (Fujino et al. 2006) 

 EPPA (Emissions Prediction and Policy Analysis) (Ellerman and Decaux 1998; 

Paltsev et al. 2005) 
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 GCAM (former MiniCAM) (Global Change Assessment Model) (Clarke et al. 

2008; Luckow et al. 2010) 

 GEM-E3 (General Equilibrium Model for Energy-Economy-Environment) (van 

Regemorter 2005) 

 MERGE (Model for Evaluating Regional and Global Effects of GHG reduction 

policies) (Manne et al. 1995; Manne and Richels 2006) 

 WIAGEM (World Integrated Assessment General Equilibrium Model) 

(Kemfert 2002) 

 WorldScan (Lejour et al. 2006) 

A third category of top-down models is macroeconometric models. This model type is 

also called „neo-Keynesian‟ as it assumes output to be demand determined in contrast to 

CGE models, which are supply driven. This approach simulates monetary flows 

between sectors, based on input-output tables. Therefore, a system of equations is 

created that map the economy. The equations are estimated with the help of statistical 

techniques, such as regression analysis based on time-series data. Thus, econometric 

methods are used to extrapolate past market behaviour into the future. 

In contrast to CGE models, these models focus on the short to medium term with the 

focus on the dynamics of adjustment. They can explore the representation of growth 

pathways. This model type can explore pathways under disequilibrium at a high level of 

sectoral disaggregation linking investment to historical demand and investment trends. 

In this way, it enables the analysis of interactions in the economy and of consequences 

of policy changes, like the introduction of a CO2 tax. Nevertheless, as it is based on 

historic estimations, this model is not able to integrate intertemporal preferences and 

structural breaks. 

An example of macroeconometric models is: 

 E3MG (Energy-Environment-Economy Model of the Globe) (Barker et al. 

2006) 

3.2.3 Bottom-up models 

In contrast to top-down models, bottom-up models are predominantly partial 

equilibrium models that are limited to a part of the economy, the energy sector. Energy 

system models (the most common form of bottom-up models) usually derive a cost-
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minimum sequence of energy technologies for an exogenously given energy demand 

using linear programming. The focus is on the technological representation of the 

energy sector from primary energy through to the level of useful energy or energy 

service including energy transformation, transport and distribution of final energy. The 

main advantages of this approach are the detailed depiction of the energy sector and the 

possibility to base technological change on an engineering assessment of different 

technologies (Edenhofer et al. 2006). A key aspect of the approach to MAC curves 

presented in this thesis is the incorporation of technological detail into the 

representation of the curve. Since bottom-up models possess the technological detail, 

this type of model is used in the thesis. However, they do not take into account 

interactions with the wider economy and tend to neglect micro-economic aspects, such 

as market barriers or rebounds in demand. 

The real energy system is represented via the flow of energy carriers and other 

commodities. Commodities are linked through technical facilities, such as power plants 

or refineries, which are described with technical and economic parameters. In general, 

technologies of the real system are aggregated, while the level of aggregation depends 

on the spatial and sectoral detail. Many energy system models use a network 

presentation as a mean of representing the real system that is based on a concept, which 

was developed in the early 1970s at the Brookhaven National Laboratory. This concept, 

the Reference Energy System (RES), is a physical representation of the energy flows 

from resources to end use. 

The RES includes two types of objects: commodities and processes. The term 

commodities characterises all quantifiable factors, e.g. energy carriers, gases, services 

and industrial goods. Processes transform one or more commodities into other 

commodities. A link represents the flow of a commodity from or into a process, i.e. the 

produced or consumed good. The process “coal-fired power plant”, for example, 

consumes the commodity “coal” and produces the commodity “electricity” and “carbon 

dioxide”. A simplified RES from the UK MARKAL model is given in Figure 3.1. Since 

the RES is a bipartite graph, commodities and process alternate, so that a process cannot 

be linked directly to another process and a commodity not to another commodity. The 

reference contains, in addition to processes and commodities, attributes, which can be 

divided into process attributes, e.g. life time of a power plant, commodity attribute, e.g. 

the price of coal, process-commodity attributes, e.g. the variable costs of a power plant, 
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process-commodity-commodity attributes, e.g. the efficiency of a power plant and lastly 

global attributes, such as the discount rate (Voß 2009). 

Figure 3.1: A simplified reference energy system from the UK MARKAL model 

 

Source: Kannan et al. (2007)
1
 

The RES is designed to permit the assessment of individual technologies, explaining the 

associated impact on the cost of energy and environmental emissions, of technology 

groups and of policy options, including taxes and standards (Beller et al. 1979). 

Examples for the use of a RES include the assessment of combined cycle gas turbines 

instead of oil-fired power stations or the assessment of a large-scale electrification. 

Some early versions of energy system models formed a special type of partial 

equilibrium models, which minimised the system cost assuming fixed energy service 

demands. This means, that energy service demand remained price independent and a 

change in useful energy could only be provoked by technological options including 

conservation. Energy service demands are either directly given or are assumed to be 

influenced by other given macroeconomic indicators. More recent versions of energy 

system models, however, can include a price elastic demand. If the model does not 

represent different efficiency options on the demand side (depending on the system 

boundaries), a price elastic characterisation can include more than pure price 

responsiveness. In a price-elastic version, the objective function changes from cost 

                                                   
1
 Permission to reproduce this Figure has been granted by UKERC. 
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minimisation to welfare (the sum of producer and consumer surplus) maximisation 

(Loulou and Lavigne 1996). 

Energy system models cover different geographical levels, ranging from regional 

models to global models, as well as different time scales ranging from several years to 

many decades. In order to reduce the size of the model, the spatial resolution of energy 

system models is generally poor, incorporating only general distribution losses, instead 

of a geographical precise representation of energy facilities. The same holds true for the 

temporal resolution, where not every single year, season or time of day is optimised. 

Rather, several years are aggregated into a period, which is characterised by a 

representative year. In order to map daily or seasonal consumption patterns, energy 

system models revert to time slices, which should approximate for example the daily 

load curve for electricity. 

The next few paragraphs briefly present the most widely used bottom-up models and 

their characteristics: 

MESSAGE 

The energy system model MESSAGE (Model for Energy Supply Strategy Alternatives 

and their General Environmental Impact) was developed at the International Institute 

for Applied Systems Analysis (IIASA) in Laxenburg, Austria (Schrattenholzer 1981). 

The model represents all sectors of the energy system from energy supply including 

extraction and conversion via the distribution of energy to energy end-use sectors. The 

time horizon ranges from 1990 to 2100. Next to the six Kyoto greenhouse gases, such as 

CO2 and CH4, the model includes as well local pollutants like SOX and NOX and a 

simplified carbon cycle model for the estimation of atmospheric CO2 concentrations 

(Rao and Riahi 2006). In the standard global version, the model optimises the energy 

system of 11 world regions by minimising total system costs. In addition, the most 

recent model version includes whole year storage and storage losses of electricity and 

the non-energy use of energy carriers. Other model variants include several versions of 

stochastic optimisation (Krey and Riahi 2009) and mixed integer programming. 

The MESSAGE model can be linked to the MACRO model in order to include macro-

economic impact of policies on energy demand. In the MACRO model the capital stock, 

labour and energy inputs determine the total output of an economy according to a nested 

constant elasticity of substitution (CES) production function. Both models are linked 
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iteratively to obtain a fully consistent evolution of energy demand quantities, prices and 

macroeconomic indicators (Messner and Schrattenholzer 2000). 

TIMER / IMAGE 

IMAGE (Integrated Model to Assess the Global Environment) was developed in the 

late 1980s at the National Institute for Public Health and the Environment (RIVM) in 

Bilthoven, Netherlands, in order to describe global trends in the driving forces and the 

consequences of climatic change and impacts on key sectors (Kram and Stehfest 2006). 

The integrated assessment model, IMAGE, consists of different sub-models, such as an 

agricultural, land use and land cover and carbon cycle model. The energy system is 

represented within the TIMER (The IMage Energy Regional) model, which is an 

energy simulation model, describing the demand and supply of 12 different energy 

carriers for 17 world regions (van Vuuren et al. 2006). In contrast to MESSAGE, 

TIMER does not optimise the energy system, but simulates long-term trends in energy 

demand and efficiency and the possible transition towards renewable energy sources. It 

includes autonomous and price-induced changes in energy-intensity, fossil fuel 

exploration, including dynamics of depletion and learning and biomass-derived 

substitutes for fossil fuels and their impact on land-use (de Vries et al. 2001). 

The model particularly focuses on several dynamic relationships within the energy 

system, such as inertia, learning-by-doing, depletion and trade among regions. The 

energy demand sub-model calculates the final energy demand for five end-use sectors as 

a function of changes in population, economic activity and energy efficiency. 

PRIMES 

PRIMES (Price Induced Model of the Energy System), is a multi-regional energy 

system model, that maps similar to EFOM the energy supply and demand for the 

member countries of the European Union. It was developed within the JOULE II 

programme of the European Commission in the early 1990s amongst others at the 

National Technical University of Athens, Greece. It includes in its latest version all 27 

EU member countries plus seven other European countries. The current version of the 

model is formulated as a non-linear mixed complementarity (MCP) problem. It 

simulates a market equilibrium solution for energy supply and demand in the EU 

member state (Capros 2005). 
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It is characterised by its modular structure, with separate modules for each demand and 

supply sector and separate decision making. This structure of PRIMES should reflect a 

distribution of decision making among agents that decide individually about their 

supply and demand. Thus, it tries to address issues that have been criticised in other 

models, such as the lack of explicit representation of markets and the lack of realism in 

formulating demand and the individual behaviour of agents. Market equilibrium prices 

drive energy balancing of demand and supply for each energy commodity. The supply 

sectors in PRIMES are optimised based on relative costs (i.e. cost minimisation), while 

the overall model is iteratively solved based on Gauss-Seidel iteration. Although the 

model is behavioural and price driven, it simulates as well the technology choice in 

energy demand and energy production, including technology dynamics and vintages. In 

addition, the modules include learning by doing curves and parameters that represent 

subjective perception of technology costs as seen by consumers (Capros 1995). 

It can be used for medium- to long-term policy analysis up to 2030 referring to 

environmental issues, security of supply, pricing policies, taxation or standards, 

conversion decentralisation and many others. In PRIMES it is further possible to 

consider a wide range of policy instruments for the environment (Capros 2005). 

POLES 

The POLES (Prospective Outlook on Long-term Energy Systems) model is a global, 

recursive simulation model for the analysis of energy systems and their environmental 

impacts up to 2050 for 46 different regions. It is disaggregated into 15 energy demand 

sectors and consists of 12 renewable and 12 power generation technologies. It was 

developed during the 1990s under different EU research programmes at the Laboratoire 

d‟Economie de la Production et de l‟Intégration Internationale (LEPII) (2006) of the 

University Pierre Mendès France in Grenoble, France. It combines features of a top-

down approach, e.g. the importance of prices for adjustment of most variables, with 

bottom-up characteristics, for example the detail in the treatment of technologies. 

POLES allows one to project the energy demand and supply for different regions, the 

simulation of technology development of electricity supply, as well as the simulation of 

CO2 emissions and in particular the analysis of CO2 abatement policies. Endogenous 

technological developments subject to an influence of public and private investment in 

R&D and cumulative experience with learning by doing, as well as induced 
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technological change is incorporated into POLES. Furthermore, it simulates the 

discoveries and reserves of oil and gas and treats international energy prices and 

markets endogenously as a function of capacity utilisation and the world reserve to 

production (R/P) ratio. 

Model applications include studies for the European Union, but also research projects 

for the calculation of MAC curves (Criqui et al. 1999; European Commission 2006). 

3.3 Energy system model UK MARKAL 

3.3.1 The choice for MARKAL 

UK MARKAL was chosen for this thesis since the MAC curves are required to be 

technologically explicit and incorporate technological, behavioural and intersectoral 

interactions. While, top-down models lack the necessary technology detail, this issue 

can be addressed with a bottom-up, technology-oriented model, such as UK MARKAL. 

The macro-economic performance is not the focus of this study so that using a partial-

equilibrium model is not a major disadvantage. 

The advantages of UK MARKAL include its systems character, which allows one not 

only to consider interactions between mitigation measures but also between different 

sectors of the energy system, such as the power and transport sector. In contrast to some 

other bottom-up models, the demand-elastic version of UK MAKRAL takes into 

account price-induced demand changes and hence captures some behavioural aspects. 

In addition, MARKAL is a model generator, which has been applied for more than 30 

years and has been used since then in many international policy studies. This will help 

to disseminate the results of the thesis to decision makers that are already familiar with 

the features of this type of model. 

3.3.2 Model development 

The MARKAL (MARket ALlocation) model has been developed at the Brookhaven 

National Laboratory in Upton, USA, and the Kernforschungsanlage in Jülich, Germany 

within the scope of the Energy Technology Systems Analysis Programme (ETSAP) of 

the International Energy Agency (IEA) in the late 1970s (Fishbone and Abilock 1981). 

MARKAL is a flexible, multi-time period, linear programming energy system model. In 

its standard version, MARKAL minimises the total system costs ensuring that all 
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specified end-use demands for energy services are satisfied for every time period. The 

model specifies energy supply, transformation and conversion, demand for energy 

services and constraints or policy assumptions for the energy system. MARKAL can be 

used for different policy applications, such as least cost strategies to limit greenhouse 

gas emissions, identifying the potential role of new energy technologies, and assessing 

the impact of demand side influences. A detailed documentation of the MARKAL 

model can be found in Loulou et al. (2004). 

Since MARKAL was established as a model generator that enables the application of 

this general model schema to different energy systems it is comparably widely used in 

the field of energy system analysis (Goldstein and Tosato 2008). Over time a set of 

different MARKAL variants have been developed (Seebregts et al. 2001). 

The current UK MARKAL model builds on an earlier model version from the year 2003 

developed by AEA Technology and was extended by the Policy Studies Institute (PSI) 

and AEA Technology (Strachan et al. 2006). A documentation of the model can be 

found in Strachan et al. (2005; 2006) and Anandarajah et al. (2008). Since then it was 

used to inform policy makers for example in relation to the UK Energy White Paper‟s 

long term policy targets (HM Government. Department of Trade and Industry 2007). 

Furthermore, it was used in various academic studies (Strachan and Kannan 2008; 

Kannan and Strachan 2009; Strachan et al. 2009). 

3.3.3 Model structure 

The UK MARKAL model is a technology-rich model, including resource supplies, 

imports, energy conversion technologies, end use demands and the technologies used to 

satisfy these demands. As a perfect foresight model, all market participants are assumed 

to have perfect inter-temporal knowledge of future policy and economic developments. 

In its current version the model consists of one region for the entire United Kingdom. It 

is characterised by a modular approach to describe the overall Reference Energy 

System. These modules include on the supply side an energy resource module, which 

describes the extraction processes for fossil fuels, as well as the supply of renewable 

energy sources. The conversion module specifies the electricity, heat and hydrogen 

sector and the transmission of these secondary energy carriers. On the demand side, the 

model is divided into five different energy demand sectors: agriculture, industry, 

residential, service and transport (see Figure 3.2). 
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Figure 3.2: Structure of the UK MARKAL model 

 

Source: Kannan et al. (2007)
2
 

The model is based on range of different inputs. A wide-ranging application of policy 

and physical constraints, implementation of all taxes and subsidies, and inclusion of 

base-year capital stocks and energy flows enable the calibration to the UK energy 

system. Resource supply curves represent a key input parameter for the model. From 

these baseline costs, multipliers are used to generate both higher cost supply steps as 

well as imported refined fuel costs. A second key input are dynamically evolving 

technology costs. Future costs are based on expert assessment of technology vintages, or 

for less mature electricity and hydrogen technologies via exogenous learning curves 

derived from an assessment of learning rates combined with global forecasts of 

technology uptake. A third key input are assumptions on average infrastructures costs 

and distribution losses, physical and policy constraints. A final key input for the UK 

MARKAL model are exogenous demand levels for energy services – derived from 

standard UK forecasts for residential buildings, transport, service sector and industry. 

Generally these sources entail a low energy growth projection, with saturation effects in 

key sectors. This is reflective of recent historical trends on sustained modest economic 

growth and the continuing dematerialisation of the UK economy. 

Parameters 

MARKAL uses a variety of parameters, which can be divided into system parameters, 

useful energy demands, energy carriers, technology characterisation and environmental 

variables. System-wide parameters apply to the entire model. Two important such 

parameters are the discount rate and the temporal disaggregation, which affects the 

                                                   
2
 Permission to reproduce this Figure has been granted by UKERC. 
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treatment of intermittency. Useful energy demands or energy service demands describe 

the requirement for specific end-use energy services to be delivered to individuals and 

companies. This demand for an energy service does not refer to the consumption of a 

particular type of final energy, but rather to the provision of services such as lighting, 

cooling, travelling or machine drive. Useful energy demand development is one of the 

key assumptions, which has to be detailed for different sectors and for intraday patterns. 

In the elastic demand version, the own-price demand elasticity is a further parameter 

that indicates how much the demand changes with a change in the price for this energy 

service demand. 

Energy carriers are various forms of energy produced and consumed in the energy 

system. They include fossil fuels, electricity, heat, synthetic fuels and renewable energy. 

The energy carriers provide the interconnections between the technologies (or 

processes) in the model. All energy carriers are tracked annually with the exception of 

electricity, which is divided into three seasons and day/night and heat, which is 

specified for different seasons. Data related to energy carriers involves overall 

transmission efficiency, a reserve margin and resource availability for primary energy 

carriers. 

Technology parameters play an important role in the technology-rich energy system 

model. They include information on technology costs (investment cost, fixed and 

variable operating and maintenance costs), input and output commodities, technical 

efficiencies, the start year of a new technology, availability factors and current existing 

installed capacity. Furthermore, user limits can be specified in the form of absolute or 

growth constraints for the installed capacity or for future investment. Hurdle rates, or 

technology specific discount rates can be applied to represent non-economic, 

behavioural aspects of investment choices. Resource technologies, which represent all 

flows of energy carriers into and out of the system, are in general characterised using 

stepwise supply cost curves. Other technologies include process technologies that 

change the form of energy carriers, such as oil refineries and hydrogen production 

plants, and conversion technologies that model electricity and heat production. Lastly, 

demand technologies map those devices that are used to directly satisfy end-use service 

demands. 

In addition to energy technologies, MARKAL has the capacity to track the production 

or consumption of environmentally-relevant gases. Emissions are specified per unit for 
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relevant technology activity and emission constraints can be implemented. Finally, 

subsidies and taxes, as well as the representation of policy instruments are key 

parameters that help to map the political aspects in more detail. 

Temporal resolution 

The model horizon covers the time period from 2000-2050. This time period can be 

divided into an optional number of periods of an arbitrary but equal length. Those time 

periods are represented by a milestone year. Although the shortest length for a period is 

one year, this is generally not used as it would lead to a big model with a long 

computation time. The UK MARKAL model solves in 5-year time steps for an optimal 

evolution of energy pathways. Because of the dynamic structure of the MARKAL 

model there exist intertemporal relations between the model periods. An example is a 

power plants that is built in one period and, given a corresponding life time, can be used 

in the following periods. In contrast to TIMES (The Integrated MARKAL EFOM 

System), which was built upon the MARKAL model generator, technical parameters 

cannot be modelled dependent on the construction period (vintage). Nevertheless, 

separate technologies can be implemented if technical parameters change over time. 

Energy consumption can vary significantly during a year in most cases due to 

fluctuations in the demand sectors. Typical examples are the demand for heat, which is 

highest in the winter, or the demand for electricity, which is subject to fluctuations over 

the course of the day. On the supply side, fluctuations are caused by an unsteady 

electricity production from wind, photovoltaic and hydro power stations. In order to 

represent these temporal changes within a year, the model period can be divided in 

representative time slices. Concerning the annual temporal disaggregation, MARKAL 

can have an unlimited number of time slices. The UK MARKAL model is divided into 

three seasons (summer, winter and intermediate) and two times of day (day and night), 

i.e. six time slices in total (see Figure 3.3). In principle, it is possible to choose another 

segmentation, for example the representation of a year in twelve equal time slices, if 

intraday issues are of no concern. 
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Figure 3.3: Temporal disaggregation in the UK MARKAL model 

 

Processes and commodities in MARKAL can, but do not have to, be described with the 

highest temporal resolution. It makes sense to specify the demand for residential heating 

differently for different seasons or for electricity in the form of load curves, because 

currently electricity supply has to match electricity demand as storage is not widely 

available. In the transport sector, a detailed temporal resolution is not required since fuel 

storage in vehicle is sufficient. However, this could change once electricity is used on a 

large scale in the transport sector. 

Different versions of MARKAL 

In its standard version, MARKAL is a linear program that minimises the total system 

costs while energy demand levels are given exogenously. Over time many different 

versions have been developed in order to improve the standard version and incorporate 

different aspects that address existing shortcomings (Seebregts et al. 2001). In the 

MARKAL Elastic Demand version (MARKAL-ED), which is used in this thesis, the 

exogenously given demand levels in the reference run are endogenously adjusted in 

response to price changes via own price elasticities. Thus, the optimisation is no longer 

a cost minimisation, but a welfare (consumer plus producer surplus) maximisation. 

The standard MARKAL model is limited to the energy sector. In order to take into 

account economy-wide feedbacks, the model variant MARKAL-MACRO was 

developed. In this version, MARKAL is coupled to a simple macro-economic 
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neoclassical growth model that maximises the discounted log of utility (derived as the 

log of consumption). Furthermore, a non-linear, convex programming variant developed 

to represent price sensitive useful energy demands and non-zero cross-price elasticities 

for different demand technologies is implemented in MARKAL-MICRO. Since this 

variant is non-linear, the demand curve does not have to be represented as step-wise 

linear approximation as it is the case in MARKAL-ED. In addition, cross-price 

elasticities allow inter-demand substitution, which is of interest in the transport sector, 

e.g. between car and rail transport. 

A further alternative is the stochastic version of MARKAL. This version applies 

stochastic programming to the standard version of MARKAL in order to incorporate a 

degree of uncertainty. It enables the user to specify different states of the world with 

corresponding probabilities, which are provided by the analyst. Another extension is the 

MARKAL-ETL version, which represents endogenous technological learning based on 

learning-by-doing curves. This means that cost decreases of a technology are modelled 

as a function of cumulative installed capacity. 

Shortcomings 

Next to its strengths as a technology-rich model that encompasses the entire energy 

system and allows the analysis of different policy goals, MARKAL possesses, like all 

energy models, some weaknesses. These include the data intensiveness, including the 

characterisation of technologies. For an independent observer this might make the 

model look like a black-box. Nevertheless, clear indication of data sources and 

sensitivity analysis can help to prevent such problems. Small changes in data 

assumptions can cause big shifts in the model solution, but can be limited by stepped 

supply cost curves and market share constraints. Moreover, MARKAL has a limited 

ability to model behavioural aspects and the heterogeneity of energy consumption (see 

section 3.2.1). This concerns mainly hidden costs, such as the cost of searching for 

information and other market barriers and failures. But also a large variety in 

consumption patterns and the lack of specific details, such as downsizing of vehicles or 

speed limits in the transport sector, can significantly affect the outcomes of the model. 

Those factors can be addressed via growth constraints, demand elasticities and 

technology-specific hurdle rates in MARKAL. 
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The MARKAL model is a perfect foresight optimisation model using a social discount 

rate, thus representing the perspective of a social planner under optimal conditions. 

Therefore, it tells decision makers how a given objective, e.g. environmental 

constraints, can be met with least costs. However, investors and individual neither 

operate under optimal conditions nor do they possess perfect foresight because in reality 

market barriers and failures exist and investors face various risks over the short- and 

long-term. Therefore, results from MARKAL should be seen as a lower bound to 

overall costs and results should not be expected to represent what will happen in reality 

in the future. 

Another aspect concerns the limited scope of MARKAL as it is restricted to the energy 

sector. In this way, the model is not able to take into account macroeconomic feedback 

effects and the economic impact of energy policy. This means that the model considers 

only direct costs in the energy sector, which cannot be put into perspective with 

economic indicators, such as GDP. The linkage of MARKAL to a simple neoclassical 

growth module was implemented in a model variant in order to address this issue. Other 

shortcomings concern the poor spatial disaggregation and the poor representation of 

international trade relations. Lastly, MARKAL does not consider ancillary benefits of 

carbon reduction policies, such as improvements for human health, which can lead to an 

overestimation of carbon reduction costs. 

3.3.4 Implementation 

The structure of the model generator MARKAL is represented in Figure 3.4. The 

necessary input data includes qualitative information of the model, i.e. the topologic 

structure based on a RES, the model horizon, the time periods and time slices. 

Furthermore, this qualitative structure then has to be specified with quantitative 

information in the form of parameters, i.e. the technical and economic description of 

processes, demand levels, import/export prices. All this information can be entered into 

a windows-based graphical user interface, ANSWER (Noble 2007). This software 

supports the analysts during the construction of the model, the data input and scenario 

definition. ANSWER transforms the user‟s input data into DDS files, which can 

subsequently be read by the MARKAL model generator. MARKAL is programmed in 

the modelling environment GAMS (General Algebraic Modeling System) (McCarl et 

al. 2009). 
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Figure 3.4: MARKAL model generator 

 

Within MARKAL the data is processed in the pre-processor, where internal sets and 

parameters (energy carriers, technologies, demands, emissions) are calculated, lacking 

time series value are interpolated or extrapolated and default values put in place for 

lacking input data. In addition, parameters are aggregated or passed on to different 

levels of time slices and coefficients in the objective function are calculated. In a next 

step, model equations are either directly established to be passed on to a solver or the 

equation matrix is first reduced in a reduction algorithm to simplify and accelerate the 

optimisation. The solver optimises the energy system, for example via the simplex 

algorithm for a linear program, and gives the optimised matrix back to MARKAL, 

which is processed and exported in VD, VDE and VDS files. For a result analysis, those 

files can be read again by ANSWER or by another interface developed by KanORS 

Consulting (Kanudia 2010), VEDA (VErsatile Data Analyst). Different extensions or 

variants of the standard version of MARKAL, which require special equations and 

parameters, can be activated in ANSWER before the input parameters are optimised in 

GAMS. 

3.3.5 Mathematical description 

This section gives an overview of the most important equations, on which the 

MARKAL model is based. Starting with the objective function and then explaining in 

more detail the most important constraints. 
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The abstracted energy system can be described via a system of equations. A linear 

optimisation problem consists either of a minimisation or maximisation problem. In the 

standard MARKAL version, the total cost of the energy system is minimised subject to 

different constraints. These constraints include the satisfaction of energy service 

demands, balance for commodities, peaking reserve constraint and emission constraints. 

Thus, in the most general form, an optimisation problem looks as follows: 

Objective function:  

         

 

 
(3.1) 

subject to: 

           

 

            
(3.2) 

                (3.3) 

where xi is the decision variable of the primal problem, ci is the cost coefficient of 

variable xi , aji is the coefficient of variable xi in equation j and bj is the right hand side 

of equation j.  

 

Objective function in the standard version 

The objective function in the standard version is the minimisation of the total 

discounted energy system costs or the net present value of the total cost. It can be 

written as: 

                            

   

   

                                

(3.4) 

where ANNCOST(t) is the annual cost for period t, d is the general discount rate, p is the 

number of periods in the planning horizon and y is the number of years in each period t. 

The first term in the equation is responsible for discounting the total cost of one period 

to its present value, the second term represents the annual costs and the third term in the 

bracket discounts the costs of each year in a period to the start of that period. Typical 
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values for the parameters in the UK MARKAL model are for example p=10 periods 

(model horizon from 2000 to 2050), y= 5 years in one period and d=5%. 

The term ANNCOST(t) can be further specified: 

             
            

       
  

       

         

 

                     

                       

            

                                            

 

 

           

 

                                  

   

                             
 

 
 

                                  

                                    

                     

 

 

(3.5) 

where in the first sum (corresponding to technology related costs) 

 the first term represents the annualised investment costs, with INVCOST(t,k) 

being the specific investment costs of technology k in period t, INV(t,k) the new 

capacity addition for technology k in period t, jk the life time of technology k and 

hk the discount rate used for this technology, called hurdle rate.  

 the second term represents the fixed operating and maintenance costs, where 

FIXOM(t,k) are the specific fixed operating and maintenance costs of technology 

k in period t and CAP(t,k) is the installed capacity of technology k in period t. 

 the third term stands for the variable operating and maintenance costs, where 

VAROM(t,k) stands for the specific variable operating and maintenance costs of 

technology k in period t and ACT(t,k,s) is the activity level of technology k, 

period t and time slice s. This latter variable is summed over all time slices. 

 the fourth term corresponds to the commodity costs, where DELIVCOST(t,k,c) 

stands for the delivery costs per unit of commodity c in period t and for 

technology k and INPUT(t,k,c) is the amount of commodity c required to operate 

one unit of technology k in period t, the inverse of the commodity specific 

efficiency. 
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in the second sum (corresponding to commodity related costs) 

 the first term represents the mining costs, where MININGCOST(t,c,l) stands for 

the specific cost of mining commodity c at price level l and period t and 

MINING(t,c,l) represents the quantity of commodity c extracted at price level l 

and period t. 

 the second term corresponds to trade or transaction costs, where 

TRADECOST(t,c) stands for specific transport cost for commodity c in period t 

and TRADE(t,c,s,i/e) is the quantity of commodity c sold (e) or purchased (i) 

from other regions in period t and time-slice s (only applicable to electricity). 

 the third term stands for the import costs due to imports from regions within the 

model, where IMPORTPRICE(t,c,l) represents the exogenous specific import 

price of commodity c for price level l in period t and IMPORT(t,c,l) is the 

quantity of commodity c at price level l that is imported in period t (this is not 

applicable in a one-region model). 

 the fourth term stands for the export profits due to exports to regions within the 

model, where EXPORTPRICE(t,c,l) represents the exogenous specific export 

price of commodity c for price level l in period t and EXPORT(t,c,l) is the 

quantity of commodity c at price level l that is exported in period t (this is not 

applicable in a one-region model). 

in the third sum (corresponding to costs related to emission taxes) 

 the term stands for the costs associated with an emission tax, where TAX(t,p) is 

the specific tax on the emission of pollutant p in period t and ENV(t,p) represents 

the emission amount of pollutant p in period t. 

Objective function in the elastic demand version 

Since the thesis at hand uses the elastic demand version of MARKAL, its objective 

function is described in this section. In the elastic demand version of MARKAL, the 

objective function changes from total cost minimisation (standard version of 

MARKAL) to maximisation of welfare surplus by incorporating a linearly 

approximated price elastic demand function (see Figure 3.5). 
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Figure 3.5: Consumer and producer surplus 

 

The MARKAL model variant assumes elastic demand in the way that: 

          (3.6) 

where q(p) is the demand (depended on the price p), K is a constant and E is the own 

price elasticity of demand. K can be known, if one point (q0,p0) of the curve is known. 

Then the inverse price function becomes: 

        
 

  
 
 
  (3.7) 

To maximise the total surplus, consumer and producer surplus have to be maximised at 

the same time. Regarding Figure 3.5, this corresponds to the maximisation of the area 

under the demand function up to the equilibrium price minus the area under the supply 

curve (blue plus red area). 

Integrating the demand function from 0 to q* yields the area under the demand curve up 

to q*: 

       

  

 

 (3.8) 

Inserting the inverse price function: 

    
 

  
 
 
    

  

 

     
 

  
 
 
    

 
 

  

 

    (3.9) 

Integrating results in: 
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(3.10) 

To obtain the welfare surplus, the area under the production function, which is nothing 

else than the discounted present value of the stream of annual costs for the entire model 

horizon, has to be deducted from equation (3.10). This corresponds to the objective 

function of the cost minimisation approach in the standard version of MARKAL (3.4). 

Here, this is abbreviated as c*X, where c represents specific costs and X is the vector of 

all decision variables. 

Summing over all demands d and over all time periods t, the new objective function 

becomes: 

           
  

 

    
  

 
    

 

 
  

  
     

 
 
  

  

  

         
(3.11) 

Objective function in the stochastic version 

The stochastic version of MARKAL is one option to incorporate a degree of uncertainty 

into the optimisation of the energy system (see also 5.2.4 and 9.2.1). The stochastic 

MARKAL version is based on the two-stage stochastic programming paradigm, in 

which all uncertainties are resolved at a single future stage (Loulou et al. 2004, p.76). 

Stochastic MARKAL uses the concept of an event tree, where each scenario is 

represented by a path from beginning to end of horizon and each path has a discrete, 

user-specified probability of occurrence. In each period, there are as many replications 

of the MARKAL variables as there are different outcomes (states of the world) in that 

period. In addition, each set of variables corresponding to a possible scenario must 

satisfy all constraints, also multi-period constraints, such as cumulative emission limits. 

Then the objective function is equal to the weighted sum of the scenarios‟ objective 

functions, each weighted by the scenario‟s probability of occurrence. 

Using again c*X as a simplified version of the standard objective function (3.4), the 

stochastic objective function looks like: 

          
       

          
(3.12) 

where t is the time period, w represents the state of the world and W(t) is the set of states 

of the world for time period t. For all t prior to resolution time t*, W(t) has a single 
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element (stage one), for all t subsequent to t*, W(t) has multiple elements (stage two). 

ct,w represents the specific costs and Xt,w the vector of all decision variables. Finally pt,w 

is the probability of scenario w in period t. pt,w  is equal to 1 for all t prior to t* and 

thereafter              . Note that it is possible to combine the stochastic version with 

the elastic demand version, where a simplified parameter is used for the elastic demand 

function. 

Main constraints 

One of the important equations is the satisfaction of demand, which says that energy 

service demands must be met. 

         

                     

        
(3.13) 

The equation says that for each time period t and demand d, the total activity of end-use 

technologies k servicing demand d, ACT(t,k), must be at least equal to the specified 

demand, D(t,d). 

The capacity transfer assures that the available capacity in one period corresponds to 

earlier investments. Mathematically this can be expressed as: 

                              

                         

                 
        

 

(3.14) 

where CAP(t,k) is the installed capacity of technology k in period t, the sum over 

INV(t’,k) includes all investments made by the model at past and current periods and 

whose physical life has not yet ended and RESID(t,k) is the capacity of technology k 

resulting from investments that were made prior to the initial model period. 

The equation for the use of capacity makes sure that the activity of a technology does 

not exceed its available capacity: 

                                      (3.15) 

where ACT(t,k,s) is the activity of technology k in time period t and time slice s, 

AF(t,k,s) stands for availability factor of technology k in period t and time slice s, 

CAPUNIT is the factor that converts capacity units into production units, e.g. 31.536 for 

the conversion of GW capacity into PJ/year production and CAP(t,k) corresponds to the 

capacity of technology k in period t. 
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The equation for the energy balance makes sure that consumption of a commodity does 

not exceed its supply or that the sum of the produced, mined and imported (either from 

another region or from outside the model scope) amount of a commodity is bigger than 

or equal to the sum of the exported (to another model region or an external region) and 

consumed amount of a commodity: 

                         

 

               

 

                                              

 

                             

                                                

  

 

(3.16) 

where OUTPUT(t,k,c) is the amount of commodity c produced per unit of technology k 

in period t, MINING(t,c,l) represents the quantity of commodity c extracted at price 

level l and period t, FR(s) is the fraction of the year covered by time-slice s, 

IMPORT(t,c,l) is the quantity of commodity c at price level l that is imported in period t 

(this is not applicable in a one-region model), XCVT(c,i/o) is a commodity conversion 

factor in the case that external trade relations are defined in another unit for commodity 

c, EXPORT(t,c,l) is the quantity of commodity c at price level l that is exported in 

period t (this is not applicable in a one-region model) and INPUT(t,k,c) is the amount of 

commodity c required to operate one unit of technology k in period t. 

The electricity and heat peak reserve constraint guarantees that the installed capacity for 

electricity or heat exceeds the required capacity in the season with the largest electricity 

or heat demanded by a reserve factor: 

                                             

 

                                   
                   

                                         

 

                                   

(3.17) 

where PEAK(t,k,c) specifies the fraction of technology k‟s capacity for a period t and 

commodity c that is allowed to contribute to the peak load and ERESERVE(t,c) is the 

reserve coefficient for a commodity c and period t, which allows for unexpected down 

time of equipment, for demand at peak and for uncertain renewable availability. 
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An emission constraint can be introduced by an analyst in order to ensure that the total 

emission of pollutant p will not be greater than a user-defined upper bound: 

                                             

 

                         

 

                 
(3.18) 

where EMINV(t,p,k) is the emission coefficient of pollutant p linked to the construction 

of technology k in period t, EMCAP(t,k,p) is the emission coefficient of pollutant p 

linked to the capacity of technology k in period t, EMACT(t,k,p) is the emission 

coefficient of pollutant p linked to the activity of technology k in period t and 

ENV_LIMIT(t,p) is the upper limit set by the user on the total emission of pollutant p in 

period t. 

It is also possible for the analyst to implement various taxes and subsidies in the same 

way as described for an emission tax. Other typical constraints to represent the political 

reality are limitations on new technologies in the form that the new capacity addition 

INV(t,k) has to be less than a predefined number. 

A further policy implemented in many industrialised countries is a minimum share of 

specific technologies, such as a minimum share of biodiesel or renewable electricity. 

This can be implemented in the following way for a biodiesel share: 

                                                 

 

   
(3.19) 

where SHARE is the specified minimum share of commodity c1 in the sum c1 + c2. 

FLO(t,k,s,c) is the flow of commodity c into technology k in time period t and time slice 

s. In the case of a biodiesel constraint k includes all technologies that consume biodiesel 

c1 and diesel c2. 

3.3.6 Generating MAC curves with MARKAL 

In this thesis, MAC curves are derived based on the information of the UK MARKAL 

model. Therefore, scenarios with different strict constraints are generated in order to 

represent the resulting emission reduction for an increasing CO2 tax or vice versa. 

The analyst has three possibilities to derive a MAC curve in MARKAL: the 

implementation of a CO2 tax, an annual emission limit and a cumulative emission limit 
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over the entire model horizon. Implementing different CO2 taxes for a specific year will 

result in different CO2 reduction amounts, which can then be consolidated into a MAC 

curve. The same holds true for the implementation of an annual emission limit. The 

stricter the limit for a year is, the higher the marginal abatement costs will be. The third 

option, the cumulative emission limit, lets the model decide the emission pathway over 

the model horizon. As for the other two options, stricter bounds result generally in 

higher MACs for a year. 

While the analyst has to specify the development of the CO2 tax or the emission limits 

over time in the first two cases, the cumulative emission bound does not need this 

specification. In order to determine the impact of such intertemporal interactions, 

different emission pathways or CO2 tax trajectories will be applied. The CO2 tax can for 

example be flat, increase linearly or increase exponentially with the discount rate. 

3.4 Concepts of abatement cost and abatement potential in 

energy modelling 

Abatement cost 

Costs play a pivotal role in MAC curves. As many different abatement cost definitions 

are used for the generation of MAC curves, this section gives an overview of different 

cost concepts and how they relate to energy modelling. The different cost concepts 

apply in the same way to marginal costs, average costs and total costs. For more 

detailed information, the third assessment report of the IPCC contains a whole chapter 

on costing methodologies (Markandya et al. 2001). Broadly, one can distinguish five 

different cost levels, from the narrowest to the widest, they are: project cost, technology 

cost, sectoral cost, macroeconomic cost and welfare cost. 

Abatement cost at the lowest level, so called project cost, describes the cost of an 

individual abatement option, which is assumed not to have significant indirect economic 

impacts on markets and prices beyond its activity itself (Halsnaes et al. 2007, p.135). It 

considers for example technical change in production plants, efficiency improvements, 

fuel switches or the implementation of infrastructure. Cost measurement includes 

investment cost, operation and maintenance cost and fuel cost (Risø National 

Laboratory 1994, p. 11ff). 
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The next level, technology cost (or direct cost) considers cost related to mitigation 

technologies, usually with several applications in different projects (Halsnaes et al. 

2007, p. 135). Thus cost components are the same as in the project cost and the 

analytical approach is also similar to project-level analysis. 

Sectoral cost, also called partial equilibrium cost, since they can be derived from partial 

equilibrium models, represent the next level of the cost hierarchy. This cost definition is 

used in this thesis. In most cases, the cost is calculated for the energy sector, but can 

equally be calculated for forestry or agriculture sector. This level includes cost of 

implementing a comprehensive abatement strategy at the sector level, made up of 

several abatement options and assumes macroeconomic variables as given. As for 

project cost, investment cost, operation and maintenance cost, as well as fuel cost are 

included in this measurement. In addition to project level cost, sectoral cost also include 

indirect cost, such as the cost of foregone demand from consumers and non-financial 

costs. Demand-related cost, nevertheless, considers only adjustments in a sector, for 

example to changing electricity prices, but assumes that other prices are held constant. 

Non-financial cost includes the cost to wait for a craftsman at home when insulating the 

home, the cost of searching for information or the additional cost related to finance high 

upfront payments for certain investments. 

Macroeconomic cost, the next more comprehensive cost level, is also called general 

equilibrium cost as it can be calculated by CGE models. It considers economy-wide 

costs across all sectors, where indirect impacts on economic decision in other markets 

are taken into account. For example if a company, which produces gas-fired boilers, is 

affected by a carbon price, then not only this particular company will be concerned, but 

also suppliers and labour income. This cost type can be measured as an impact on the 

gross domestic product (GDP) (Hourcade and Robinson 1996, p. 864). 

Not all dimensions of human welfare are reflected in the value of goods and services. 

Therefore, the most comprehensive cost definition, welfare costs, reflects welfare 

implications such as consumption possibilities, environmental benefits and equity. More 

specifically, this can include the quantification of less leisure time for households in 

order to comply with environmental regulation or the increase of unemployment due to 

temporary adjustments (Söderholm 2007). Furthermore, welfare costs can include 

negative effects related to the introduction of renewable energy, such as the increase in 
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local air pollution in the case of biomass power plants. It is important to note that there 

exist different welfare cost definitions, which do not include health and equity issues. 

Other cost concepts include private, social and external costs. Private costs describe the 

costs faced by individual decision-makers based on market prices and include cost 

elements, like labour cost, fuel cost and equipment cost. Social costs are private cost 

plus external costs. External costs arise when markets do not provide a link between the 

entity that produces the externality and the entity that is affected by this externality. In 

the case of CO2 emission it means that entities, which emit CO2, do not have to bear the 

consequences of emitting CO2. In other words there exist no property rights for a certain 

level of carbon concentration in the atmosphere (Halsnaes et al. 2007, p. 135). As well 

as external costs, there are also external benefits, for example the reduction of air 

pollution in the case of many CO2 abatement options. An overview of possible external 

effects of carbon reduction is given in Markandya et al. (2001, p. 463). 

Abatement potential 

Often, the cost type used is unclear, and the abatement potential can also mean different 

things in different circumstances. The abatement potential can be differentiated into four 

broad categories: physical potential, technical potential, economic potential and market 

potential. 

The physical potential is the theoretical upper limit to mitigation in a thermodynamic 

sense relying on the development of new technologies. This is the broadest definition, 

which is often uncertain and of little use in the context of MAC curves. 

The technical abatement potential states by what amount a given increment of 

technological capacity within a particular system can reduce CO2 emissions, when it is 

only limited by technical factors, such as appropriate sites for wind turbines or the 

number of gas boilers to be replaced. This definition is, in general, used in expert-based 

MAC curves as technologies are individually assessed. It is sometimes improved by 

considering technology-specific constraints imposed by the political or market context. 

The market potential indicates the abatement amount that might be expected to occur 

under market conditions, including technological, behavioural and intersectoral 

interactions, policies and measures in place at the time, all market barriers in place and 

including hidden costs (Halsnaes et al. 2007, p. 140). The market potential can in theory 
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be further distinguished according to the extent of interactions that are considered from 

sectoral to macro-economic. Energy models come close to this definition as they 

include different types of interactions, map a great amount of current policies and try to 

integrate market barriers and hidden costs. 

Economic potential is defined as the abatement potential when non-market social costs 

and benefits are included with market costs and when using social discount rates instead 

of private ones (Halsnaes et al. 2007, p. 140). It includes explicitly the consideration of 

externalities, for example ancillary benefits such as the reduction of air pollution. A 

second difference compared with the market potential is that the economic potential 

applies a comparably low discount rate based on social costs. This definition is of 

limited use for MAC curves because the majority of existing abatement curves does not 

include any co-benefits of CO2 emission reduction. 
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4 INDEX DECOMPOSITION ANALYSIS 

The goal of this chapter is to present the second methodological tool, index 

decomposition analysis, used in this thesis for the generation of MAC curves. Index 

decomposition analysis (IDA) helps in this context to analyse the results of the energy 

system model and to disentangle the technological measures and behavioural aspects 

responsible for the reduction of carbon emissions. 

The chapter begins by giving an introduction to decomposition analysis, which is used 

within this thesis as a synonym to index decomposition analysis. In the next step, the 

origins of decomposition analysis are traced back to the problem of index numbers. 

Subsequently, the mathematical foundation of the main decomposition methods are 

explained and the theoretical foundation on the index number problem demonstrated. 

These different methods are compared according to their properties and evaluated 

according to their usefulness. The chapter is concluded by a discussion of issues 

concerning the application of IDA for the derivation of a carbon abatement cost curve. 

4.1 Introduction to decomposition analysis 

Decomposition analysis is a statistical approach, which can be defined as: 

“... techniques of decomposing an aggregate indicator to give quantitative 

measures of the relative contributions of a set of pre-defined factors leading to 

the change in the aggregate indicator (adapted from Ang and Liu 2001, p. 

537).” 

Thus, the goal of decomposition analysis is to explicitly describe the contribution of 

driving factors behind the change of an aggregate variable. In the context of this thesis, 

decomposition analysis uses the results of the energy system model as an input. Based 

on this data, decomposition analysis allows one to attribute CO2 emission changes to 

different measures. The insights on the driving forces can provide important information 

for decision makers. In the past, this technique has been widely applied to energy 

consumption or carbon emissions. This said, decomposition analysis can be used very 

broadly and is not restricted to an application in the energy/environment area. Methods 

used in decomposition analysis can be traced back to the calculation of price indices. 
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There are two specifications of decomposition analysis that can be distinguished: Index 

Decomposition Analysis (IDA) (the focus of this chapter) and Structural Decomposition 

Analysis (SDA), which was developed independently. The main difference between 

these two decomposition methodologies rests on the model being used. Whereas the 

first one decomposes an aggregate index using usually sector-level or country level 

data, the latter one uses the common economic concept of input-output tables as a basis 

for decomposition (Hoekstra and van den Bergh 2003). With SDA it is possible to 

include indirect demand effects used in the input-output model (see e.g. Dietzenbacher 

and Los 1998). In this way, SDA can achieve a greater detail of results, coming, 

however, with the necessity for more detailed data. Due to reduced data requirements, 

one can find more time and country studies using IDA. 

4.2 Origin and development of IDA 

Looking at the origins of index decomposition analysis, one has to distinguish between 

the methodological background and the conceptual origin. The methodologies used in 

decomposition analysis date back to index number problems, as discussed in section 

4.3. The ideological inspiration of decomposition analysis in the energy/environment 

field goes back to the debate on deteriorating environmental conditions in the United 

States at the beginning of the 1970s. During that time the so-called IPAT (Impact, 

Population, Affluence, Technology) analysis started. The goal of this analysis is to 

determine the key drivers behind environmental impact, such as air pollution. The IPAT 

identity states very generally that impact is the result of the product of three different 

factors: population (P), affluence (A) and technology (T). 

        (4.1) 

This undefined identity was suggested by Ehrlich and Holdren (1971) as a reaction to 

researchers doubting any causality between U.S. population growth and environmental 

impact. Originally, the purpose of this equation was to find the single variable that is 

most damaging to the environment. Soon a debate started of which variable was to 

blame. Whereas Commoner and others pointed to new production technologies as the 

source of more pollution, his opponents at that time, Ehrlich and Holdren, saw 

population growth as the predominant reason for damage to a broadly defined 

environment (Ridker 1972). Consequently, population control was considered as an 

option by Ehrlich and Holdren to control environmental pollution. Other researchers 
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held the position that negative consequences of population growth and rising affluence 

would be balanced by technological improvements. 

Commoner, the first to make the equation operational, chose production per capita as a 

measure of affluence and emission per production as a proxy for technology. In many 

studied examples, he found technology to be behind much of the environmental 

degradation. A question raised early on concerned the independence of the factors 

explaining the aggregate of environmental impact, such as interdependencies between 

affluence and technological improvement. This debate heavily influenced U.S. policy 

makers in the early 1970s and led to an unprecedented level of environmental legislative 

activity, leading to policies such as the Clean Air Act. Later on, the IPAT identity was 

extended to study causal linkages and to be applied to regression analysis (see e.g. Dietz 

and Rosa 1994; Rosa and Dietz 1998) or to include other factors such as intensity of 

use, e.g. energy intensity (Waggoner and Ausubel 2002). 

The oil price shocks in the 1970s made the broader public aware of the reliance on 

energy and were a starting point for researchers to look more closely at energy 

consumption. The academic world was interested in quantifying the drivers behind 

changes of industrial energy demand and to single out the influence of structural 

changes in the industry sector. This was the starting point for index decomposition 

analysis in the context of energy. Although this research stream developed relatively 

independently from the IPAT analysis, the structure looked broadly similar despite its 

clear focus on energy. The first studies in the early 1980s therefore investigated how 

output growth, energy/electricity intensity, structural change and technological change 

influenced industrial energy/electricity demand (Thomas and MacKerron 1982; 

Hankinson and Rhys 1983; Jenne and Cattell 1983). New to this approach was an 

attempt to explain how structural changes in industrial output influenced energy 

demand. A typical decomposition equation looked like Equation (4.2), where the first 

term on the right hand side indicates the influence of output, the second the influence of 

industrial structure and the last the influence of sectoral energy intensity on overall 

industrial energy consumption. 

                               
       
      

        

 
                   

       
 (4.2) 

While in 1987, a survey by Huntington and Myers (1987) found only eight 

decomposition studies undertaken up to this date in this area, the application of these 
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techniques was becoming more and more popular in the 1990s so that Ang (1995a) 

listed 51 studies in the context of industrial energy decomposition. In the 1980s and 

early 1990s the focus of decomposition analysis was on industrial energy consumption 

or energy intensity, defined as a unit of energy consumption per unit of output. 

Differences had appeared, however, regarding the choice of studied fuel, the level of 

sector disaggregation and in particular the countries studied, ranging from industrialised 

countries like Japan, UK and Germany to developing countries like Mexico, China and 

South Korea. 

From the 1990s, the focus of decomposition analysis was no longer mainly restricted to 

industrial energy use, but expanded to other sectors and to the analysis of gas emissions, 

predominantly CO2 but also SO2 and NOx. Consequently, the last survey on 

decomposition studies performed by Ang and Zhang (2000) found that 33, out of a total 

of 124 studies, dealt with the decomposition of gas emissions. The first identity to be 

specified in the context of the analysis of carbon emission was the Kaya identity (Kaya 

1989): 

              
   

          

              

   

   

              
 (4.3) 

This identity looks very similar to the original IPAT identity simply with the technology 

factor detailed into both the energy intensity of the economy and the carbon intensity of 

energy. Torvanger (1991) was the first to quantify the impact of different drivers, such 

as industry structure, fuel share and energy intensity, on the development of CO2 

emissions within the scope of a cross-country analysis. Traditionally, decomposition 

techniques have been applied to decompose changes in an aggregate indicator over 

time. However, there exist some exceptions of the sort of Proops et al. (1992) and 

Zhang et al. (2001) that decompose the difference in an aggregate indicator between 

countries. This means that the factors on the right hand side capture differences between 

countries and not between points in time. Moreover, some studies applied the concept of 

decomposition analysis beyond energy onto manufacturing and transport issues (Ang 

and Zhang 2000, p. 1163). 

Decomposition techniques have not only been applied to study historical data, but also 

to analyse future perspectives of the development of environmental indicators. Olsen 

(1994) for example, based on the traditional IPAT identity, studied three scenarios of 

future developments. In the same way, the Intergovernmental Panel on Climate Change 
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(IPCC) used decomposition analysis, based on the Kaya identity, to project future trends 

in CO2 emissions. In this study, the importance of technological improvement in the 

light of population growth and economic growth is acknowledged: 

“Admittedly, there are many possible combinations of the four Kaya identity 

components, but with the scope and legitimacy of population control subject to 

ongoing debate, the remaining two technology-oriented factors, energy and 

carbon intensities, have to bear the main burden (Rogner et al. 2007, p.108).” 

This confirms a more accepted view nowadays that technological systems offer the best 

possibility to balance environmental impacts of affluence and population increases. 

After the last survey of studies on decomposition analysis, this research field has 

extended beyond the industry sector and now includes studies on electricity generation, 

the residential sector, the service sector and transport (see e.g. International Energy 

Agency 2004). Moreover, several studies have been published that project future 

developments of CO2 emissions based on assumptions on key drivers (Kawase et al. 

2006; Agnolucci et al. 2009). In addition, decomposition analysis has been used for 

energy efficiency monitoring and to study material flows (Ang 2004). 

Summing up, decomposition analysis is based on the IPAT debate, which started in the 

1970s. The quantification of energy intensity changes and structural changes in the 

industry sector were first studied after the first two oil price shocks. In the 1990s the 

focus of decomposition studies changed from energy towards environmental indicators, 

such as CO2 emissions. Nowadays, decomposition analysis is a well-established 

research area, studying different energy sectors and different energy and environmental 

indicators. However, except for a couple of studies on cross-country comparisons, 

analyses have been restricted to decomposing the change of aggregate indicators over 

time. Further studies have been undertaken that decompose the share of measures 

towards emissions reduction over time, but do not represent marginal abatement costs. 

To the knowledge of the author, no studies have been undertaken to decompose 

changing CO2 emissions over increasing CO2 prices, i.e. to decompose a MAC curve, 

instead of doing so over time. In summary, the thesis at hand presents a transparent and 

methodologically detailed approach of bringing together energy system modelling and 

decomposition analysis to derive MAC curves. 
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4.3 Methods of IDA 

This section explains the methods used in index decomposition analysis. After a brief 

overview, it first traces back the origins to the index number problems and then presents 

the different decomposition methods. This section concludes with an application 

example to the electricity sector. 

4.3.1 Introduction 

This section introduces in mathematical terms the intention of decomposition analysis 

and distinguishes between multiplicative and additive decomposition analysis. 

Furthermore, the approaches of different decomposition techniques to explain the 

change of an aggregate variable are graphically explained. 

Assume an aggregate variable (for example CO2 emissions or energy consumption) can 

be subdivided by an attribute r (e.g. a fuel type in the context of energy or an industry 

sector) 

               
 

 
(4.4) 

and that   changes in the range t=[0,T] from    to    (superscripts in this chapter 

denote either the base situation or the comparison situation). Equation (4.4) can be 

extended, assuming that Vr is made up of different vectors               
      

          

                

 

       

 

    

 (4.5) 

The interest in decomposition is not directed at the level of an aggregate variable, but 

rather on its change. One usually differentiates between two possible forms of 

decomposition. The first is the multiplicative decomposition 

     
  

 

  
 
         (4.6) 

This decomposition form decomposes the relative change of a variable into the relative 

change of each factor. On the other hand, there exists the additive decomposition 

     
    

                   

 

   

 (4.7) 
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,where   represents the total change of the aggregate variable and     the change of 

the aggregate V due to a change in factor i. This decomposition form regards absolute 

changes, i.e. the absolute change of the aggregate indicator is decomposed in an 

absolute change of each explaining driver. Since the goal of decomposition analysis in 

this thesis is on the decomposition of absolute changes in CO2 emissions, the following 

discussion focuses exclusively on additive decomposition. For further detail on the 

relation between additive and multiplicative decomposition see Choi et al. (2003) and 

Balk (2003). 

Assuming that the aggregate V depends only on two drivers, a change in this aggregate 

is depicted in Figure 4.1. This figure maps the change in a two-dimensional aggregate, 

in this case a value index consisting of a quantity vector and a price vector. The value 

index changes in this example from i    
    

   to d    
    

  , which are the only data 

points known to the analyst. The light grey shaded area illustrates the change of variable 

   and the dark grey shaded area represents the change of variable   . Thus, 

decomposition analysis can also be described as an approximation to a continuous 

integral describing a particular path. As the path is not known, it is not possible with 

decomposition analysis to correctly attribute the changes in the aggregate variable to the 

underlying driver. 

Figure 4.1: Graphical illustration of the index number problem 

 

The total change of the aggregate variable consists of three squares: abih, bdki and ikml. 

While it is plausible to attribute the area abih to a change in variable    and the area ikml 

to a change in variable   , the situation for the area bdki is more complicated as the exact 

path is usually not known. Different solutions are proposed according to specific 

techniques. A possible approach is to attribute the problematic area to none of the 
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underlying variables (Laspeyres index) or to both (Paasche index). This will result in an 

under- or overestimation of the aggregate indicator and in a residual. A residual is the 

portion of the change in an aggregate variable that is not attributed to an underlying 

driver and is therefore left unexplained. If this residual is large in comparison to the 

overall change of the aggregate, it can render the decomposition meaningless. Another 

procedure is to attribute one half of the whole area egki to variable    and the other half 

bdge to variable   , the approach of the Edgeworth-Marshall index. This will yield a 

complete decomposition, i.e. without any residual, only in the 2-variable case. In other 

cases, the calculation will leave a residual, though smaller than the residual of the 

Laspeyres and Paasche index. If a decomposition does not leave a residual, the 

decomposition is called perfect or complete. 

Another decomposition technique, the refined Laspeyres, always results in a complete 

decomposition because it splits the problematic area into two triangles and attributes the 

area bdi to variable    and area idk to variable   . It is important to note that the refined 

Laspeyres is indeed complete or perfect, but does not necessarily attribute the overall 

change correctly. In the above example the refined Laspeyres would assign areas abih 

and bdi to a change in the aggregate variable due to quantity changes. Yet, this would 

not be correct, as the light grey shaded area extends into the triangle idk. Therefore, one 

has to be cautious with complete decomposition results. On the one hand, they possess 

the advantage of no residual, but on the other hand this is achieved by more or less 

arbitrarily allocating the residual to the variables. 

4.3.2 Index number problem 

The first decomposition was applied to the index number problem of price indices, 

which are used to determine inflation. Price indices try to answer the question of how 

much of the change of a given basket of goods can be explained with price changes and 

how much with changing commodity weights. Since the interest is on the relative 

change of prices, multiplicative decomposition is used throughout inflation calculation. 

Thus attribute r in Equation (4.5) are goods and the vectors are the price vector P and 

the quantity vector Q, which form the value index V 

                           

 

 
(4.8) 
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Comparing the wealth of Louis XII in the 16
th

 century and Louis XV of France in the 

18
th

 century, Dutot (1738, p. 120) was the first to propose a price index: 

  

  
     

 
  

    
      

 

  
    

      
 

 
   

 
 

   
 

 

 (4.9) 

This price index is a ratio of the sum of all prices at the point in time T and the point in 

time 0. The unsuitability of this price index to calculate inflation becomes clear, if one 

imagines that the price index will change merely with a change in the unity of 

measurement of one good. 

The earliest price index that was the first to be used in index decomposition analysis of 

the energy sector is the Laspeyres index (Laspeyres 1871) given by: 

  

  
         

 
  

   
    

   
      

   
 

  
   

    
   

      
   

 
 

   
   

 
 

   
 

   
 
  (4.10) 

At the time when Laspeyres proposed his price index, consumption and price statistics 

were so badly developed that his approach was only of little use. Nevertheless, price 

indices of this type are still used around the world as an indicator for inflation. Both, the 

Harmonised Index of Consumer Prices (HICP) of the European Union, as well as the 

United States Consumer Price Index (CPI) use the Laspeyres index. The characteristic 

of the Laspeyres index is that the goods‟ quantities are fixed in the base situation. The 

opposite, where the quantities are fixed in the observed situation, is called after 

Herrmann Paasche (1874), who applied this index to prices on the Hamburg exchange: 

  

  
       

 
  

   
    

   
      

   
 

  
   

    
   

      
   

 
 

   
   

 
 

   
 

   
 
  (4.11) 

A combination of the Laspeyres and Paasche approach, i.e. taking the arithmetic 

average of the quantities in the base situation and the observed situation, represents the 

Edgeworth-Marshall index 

  

  
     

 
  

    
    

  
    

    
    

  
      

    
    

  
 

  
    

    
  

    
    

    
  

      
    

    
  

 

 
   

    
    

  
  

   
 

 
   

    
  

 

  (4.12) 

This index was independently suggested by Marshall (1887) and Edgeworth (1925).  

Another milestone in the development of index numbers was the work by Fisher (1922), 

who developed the „ideal‟ index, a geometric mean of the Paasche and Laspeyres index. 

As this index is only used in multiplicative decomposition, it is not discussed here in 
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more detail. The last type of index to be proposed in the context of index numbers and 

heavily used in decomposition analysis is the Divisia index (Divisia 1925; Divisia 

1928). Divisia based his reasoning on the equation of exchange. In this way, he defines 

the change of the value index V in Equation (4.8) as a total differential 

     

  
 

     

  
     

     

  
      

      

  
 

       
      

  
 

      (4.13) 

where the first summand is the price index and the second one the quantity index. 

Extracting the price index and dividing by P(t) yields 

     

  
 

 

    
   

      

  

     

             

 

 

 (4.14) 

Transforming the right hand side results in 

     

  
 

 

    
   

      

  

 

     

           

             

 

 

 (4.15) 

Incorporating 
    

  
 

  

  
 

 

 
 (with f being an arbitrary function) gives 

         

  
   

          

  

           

             

 

 

 (4.16) 

Integrating  

   
  

  
    

           

             

          

  
   

 

 

 

 (4.17) 

As a ratio the price index looks the following: 

  

  
       

        
           

             

 

 

     
  

 

  
 
 

 

 

    (4.18) 

Divisia was aware of the fact that his index was nothing more than a curvilinear integral 

(Divisia 1925, p. 1004) so that the calculation of the price index depends not only on the 

values in the base and observed situation, but on all values in between. As the Divisia 

index is an integral, it needs to be approximated in order to be used as a price index. 

Vogt (1978) concluded that if it is assumed that the relationship, which is being 

decomposed, is continuous, each index represents a time path between two discrete 
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points. This is illustrated in Figure 4.2, which presents different paths for price indices 

with the commodity vector on the ordinate and the price vector on the abscissa. 

Figure 4.2: Representation of the Index Problem in the 2n-dimensional Quantity-Price Space 

 

Source: adapted from Vogt (1978)
1
 

The path in a) represents the Laspeyres index, b) corresponds to the Paasche index, c) 

corresponds to the Edgeworth-Marshall index and e) to the exponential Divisia index. 

The path in d) was called the “natural” index or the Divisia index on a straight line in 

the context of index number and became better known under the term Refined 

Laspeyres in the index decomposition context (see 4.3.3). 

Montgomery (1937, p.51f) was the first to propose an approximation of the Divisia 

index using the logarithmic mean (without using the term logarithmic mean), defined as 

  
     

   
 

 
 
   , resulting in the following Divisia index 

  

  
          

     
 

 

  
    

   
   

   
  

 

  
  

   
  

   
 

  
   

  
    

 

  
   

    
   

     
  

 

  
 
  (4.19) 

                                                   
1
 Permission to reproduce this Figure has been granted by Springer. 
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This approach has several desirable properties that will be discussed in section 4.4. 

Other averages include the arithmetic mean (Hulten 1973; Törnqvist et al. 1985), 

geometric means (Theil 1973; Sato 1974) and rediscoveries of the logarithmic mean 

(Sato 1976; Vartia 1976; Törnqvist et al. 1985). In the context of decomposition 

analysis one speaks of the logarithmic mean I and II according to Vartia‟s (1976) 

definitions. All of the presented indices are possible approaches to the index number 

problem. 

Series expansion is another way of explaining the nature of the residual term in 

decomposition analysis. Referring back to Equation (4.13), the total differential can be 

approximated in the following way, representing a first-order Taylor expansion 

     

  
 

     

  
     

     

  
                                (4.20) 

The assumption is that the changes are very small so that the differential can be 

approximated. Nevertheless, infinitesimal calculus is only an approximation of 

differential calculus and therefore leaves a residual if only first order changes are 

considered as it is the case in decomposition analysis. The approximation on the right 

hand side is a series expansion that is truncated after the first order terms. Higher order 

terms or interaction terms form the residual in the case where it is not redistributed to 

the variables. Proops et al. (1992, Appendix A4) give an explanation on the use of 

differences instead of differentials. 

4.3.3 Decomposition methods 

After having discussed the origin of index decomposition in conjunction with the index 

number problem, the following discussion gives an overview of the additive 

decomposition methods used in the energy/environment context and their derivation. 

Early decomposition studies in the energy/environment context predominantly did not 

mention the method used, but it can be assumed that they used Laspeyres decomposition 

method, which was the most common at that time. In the late 1980s, Reitler et al. (1987) 

and Boyd et al. (1988) were the first to discuss methodological questions in the context 

of energy decomposition.  
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Laspeyres 

The Laspeyres index decomposition, where all variables except for the explaining one 

are held constant in the base period, is rooted in the Laspeyres price index. Since it is 

one of the simplest decomposition forms, it was used from the very beginning of 

decomposition analysis (Hankinson and Rhys 1983). 

Starting from Equation (4.5), the absolute change in the aggregate indicator due to 

variable xi in the Laspeyres form is mathematically described in the following way 

                   
     

       
      

         
     

 

 

 
(4.21) 

Paasche 

In contrast to the Laspeyres decomposition, the Paasche decomposition (named 

according to the Paasche price index) holds all variables except for the explaining 

variable constant at the observed period, resulting in the following formula 

                 
     

       
      

         
     

 

 

 
(4.22) 

This decomposition method has been relatively rarely applied, one example is Thomas 

et al. (1982). 

Edgeworth-Marshall 

The Edgeworth-Marshall decomposition combines, like its corresponding price index, 

the Laspeyres and Paasche index by taking the arithmetic average of the values in the 

base and observed period. 

           
 

 

 

 
 
     

       
 

 

   
   

 

   
    

 
 

     
      

  

 

 (4.23) 

This decomposition form was already applied in the 1980s by Reitler et al. (1987). 

Refined Laspeyres 

The Refined Laspeyres decomposition has been known under different names, which is 

due to the fact that it can be formulated in different ways. Sun (1998) was the first to 

suggest this method in the context of decomposition analysis. He started from the 
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common Laspeyres index and had a closer look at the disregarded terms of higher order 

or so-called interactions terms. He coined the phrase “jointly created, equally 

distributed” to distribute the change arising from the interaction terms to the involved 

variables. An example in the three variable case looks like  

                     

       
      

      
     

  
 

 
     

      
       

      
      

 

 

 
 

 
     

      
       

      
      

  
 

 
     

      
       

      
       

      
   

(4.24) 

where the interaction terms are proportionally attributed to variable 1. 

Another formulation dates back to a game theoretic approach of Shapley (1953). He 

gave a formula to evaluate the real power of a voter with transferable utility in a 

coalition voting game. 

Dietzenbacher et al. (1998) used the same approach within structural decomposition 

analysis. They started from a combination of the Laspeyres and Paasche index, i.e. 

holding some of the variables in the base period and some in the observed period. 

Following this technique, there exist n! possible permutations and accordingly exactly 

the same number of decomposition methodologies. Taking the average of all possible 

permutations yields a complete decomposition. 

Albrecht et al. (2002) suggested this method the first time within index decomposition 

analysis, referring to Shapley (1953). As some combinations appear more than once in 

the permutation, these are weighted according to the Shapley value (Shapley 1953, p. 

311) 
            

  
, where n is the total number of variables and s the number of variables 

held at the observed period T plus the studied variable. In the three variable case this 

results in 

           

  
 

 
     

      
      

     
  

 

 
     

      
          

  
 

 
     

      
      

     
 

 

 
 

 
     

      
      

     
  

(4.25) 

It can be shown that this formulation is equivalent to the refined Laspeyres formulation 

(Equation (4.24)). For a more detailed discussion on the equality of the Shapley and 

Refined Laspeyres decomposition, see Ang et al. (2003) and Lenzen (2006). 
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In the n-factor case, the refined Laspeyres decomposition takes the following form 

                     

    
  

 

    
      

      
   

 

 

  
 

    
     

      
      

       
      

  

 

 
 

 

  
 

    
     

     
      

      
       

      
       

      
    

 
 

 
     

      
       

      
        

      
                  

(4.26) 

The above formula demonstrates that the equation becomes more complicated as the 

number of factors increases. This can be a significant disadvantage in the context of 

CO2 emission analyses with several explanatory variables. 

The multiplicative equivalent to the refined Laspeyres is the generalised Fisher index 

(Ang et al. 2004). 

Mean Rate of Change Index 

In response to possible distortions in the Refined Laspeyres decomposition method, 

Chung and Rhee (2001) proposed the Mean Rate of Change Index (MRCI), which uses 

a more complicated form compared to the previous decomposition methods. The 

Refined Laspeyres, which is equal to the Edgeworth-Marshall decomposition in the 

two-factor case, was criticised for its uniform allocation of the residual term without 

taking into account the relationship between the original effects (Casler 2001, p. 146). 

In the presence of a comparably large residual, this can lead to a considerable change 

even with only a small scale effect. Therefore, de Bruyn (2000, p. 171) called for a 

method that is based on the condition that the relative increase due to the allocation of 

the residual remains the same for all effects. He introduced the concept of relative 

growth rates for the two-factor case to achieve this goal. Chung and Rhee (2001) 

extended this concept to a situation with multiple factors. 

The decomposition makes use of the weight term Mi,r(*), which involves the rates of 

change of all the relevant variables Ai,r(*) 

               
 

    
      

 

 

     
      

  

 

                    
      

     
(4.27) 

where 
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 (4.28) 

and 

        
    

      
 

    
      

 

 
 

                  
      

     
(4.29) 

In words, the equation for the change due to one variable is described by the total 

change of the aggregate indicator    
    

   times the relative change (the authors call 

it mean rate of change) of the analysed variable 
     

      
  

    
      

 

 

 divided by the sum of the 

relative change of all variables          . In this way, the weighting method makes sure 

that the decomposition does not leave a residual and is therefore perfect. However, in 

particular the sum of the relative change of all variables           is prone to distortions 

in the case of summands having mixed positive and negative signs. It can result in a 

situation where the sign in the decomposition term is opposite to the one in the relative 

change of the variable. In the extreme, this can lead to the sum becoming zero and 

therefore rendering the MRCI undefined. A general expression for the MRCI, which is 

not only restricted to mid-point weights, is given by Lenzen (2006, p. 193). 

Arithmetic Mean Divisia Index 

All of the following Divisia decomposition methods have their origin in the Divisia 

price index (Divisia 1925). The big difference between the previous decomposition 

forms and the Divisia index is that the Divisia decomposition methods are usually based 

on a logarithmic change in contrast to a change on a percentage basis. The general 

Divisia decomposition can be derived by differentiating Equation (4.5), which yields the 

total differential 

     

  
    

        

  
        

      

 
(4.30) 

Integrating one factor i, Equation (4.30) on both sides gives 

  
    

          
        

  
        

    

 

 

   (4.31) 

Equation (4.31) can be rewritten in the following way 
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(4.32) 

Incorporating 
    

  
 

  

  
 

 

 
  

           
            

  
  

 

 

 

 (4.33) 

An approximation to this path-dependent integral, proposed by Hulton (1973), is the 

arithmetic mean, which results in 

      
  

    
 

 
    

    
 

    
  

 

  (4.34) 

Boyd et al. (1988) suggested the Arithmetic Mean Divisia Index the first time within the 

scope of decomposition analysis. It multiplies the logarithmic change in variable i with 

the mid-point weight of the aggregate indicator. 

The multiplicative equivalent to the additive version of the Arithmetic Mean Divisia 

Index was first introduced in Boyd et al. (1987). 

Adaptive Weighting Divisia Index 

A further and more flexible way of specifying the weighting is presented in the 

Adaptive Weighting Divisia Index (AWDI) (Liu et al. 1992a), which is based on the 

generalised first mean value theorem. According to this theorem (see e.g. Spiegel 1963, 

p. 82), if f(x) and g(x) are continuous in [a,b], and g(x) does not change sign in the 

interval, then there is a point   in (a,b) such that 

                       
 

 

 

 

 (4.35) 

According to this theorem, Equation (4.33) can be solved for i=1,2,n 
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 (4.38) 

Liu et al. (1992a) refer to the above equation as the Parametric Divisia Method 1. This 

method is based on logarithmic changes. It is called parametric, because the choice of 
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α,β,ω determines the weighting, where 0 would be a Laspeyres weighting, 0.5 a 

Edgeworth-Marshall weighting and 1 a Paasche weighting. 

If one applies the mean value theorem to Equation (4.31), the result is as follows for 

i=1,2,n 

           
 

   

         
 

   

      
 

   

        
      

  

 

 (4.39) 
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 (4.41) 

The underlying condition in equations (4.36-4.41) is 0 ≤ α,β,...,ω ≤ 1. Analogue to the 

first three equations, the three equations above are called Parametric Divisia Method 2 

(Liu et al. 1992a). The difference to method 1 is that it regards absolute changes and not 

logarithmic changes.  

As Equations (4.36-4.38) and (4.39-4.41) are two different analytical expressions, but 

are mathematically equivalent, one can specify the parameters α,β,...,ω. For the 

parameter α we have by identifying the αr-term in Equation (4.36) and the term in 

Equation (4.39) 

   
       

    
       

    
 

    
  

       
 

   

         
 

   

      
 

   

        
      

   
(4.42) 

Transformation yields: 

   

     
      

      
     

    
    

 

    
     

   
    

     
    

 

    
         

 
         

 
         

      
  

 (4.43) 

The parameter values, such as in this example   , can then be entered in Equation 

(4.36) or (4.39) to solve the equation. The parameters give an indication of how to 

weight the basis and avoid any arbitrary guess work. Instead of choosing a value, as is 

done in the Arithmetic Mean Divisia Index or the Laspeyres index, the parameters can 

be analytically estimated based on the two deterministic approximations. In this way, 
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the AMDI provides a basis for choosing the parameter values. Consequently, this 

method is superior to other decomposition methods on theoretical grounds. 

Logarithmic Mean Divisia Index I 

Instead of using the arithmetic mean for an approximation of the Divisia integral, Ang 

et al. (1998) proposed to use the logarithmic mean. This mean was independently 

described by Sato (1976, p.224) and Törnqvist et al. (1985, p.44). According to 

Törnqvist et al. (1985), this logarithmic mean was already presented by himself in a 

report for the Bank of Finland in 1935. The first to publish an approximation of the 

Divisia index based on the logarithmic mean (without using the term logarithmic mean) 

was Montgomery (1937, p.51f). 

The logarithmic mean is defined as follows 

       
   

   
 
  

 
(4.44) 

where both x and y are positive numbers and x ≠y. Two further special cases are 

defined: L(x,x)=x and L(0,0)=0. For nonnegative numbers the logarithmic mean lies 

between the arithmetic and the geometric mean (Vartia 1976, p. 122). 

If one uses the logarithmic mean from (4.44), then equation (4.33) becomes 

      
  

    
 

   
  

 

  
  

    
    

 

    
  

 

  (4.45) 

which gives a perfect decomposition. 

Like the Arithmetic Mean Divisia Index, the Logarithmic Mean Divisia Index I (LMDI 

I) uses the logarithmic change of the variable. The weighting consists of the logarithmic 

mean instead of the arithmetic mean, which gives higher values than the logarithmic 

mean. 

The equivalent multiplicative decomposition of the LMDI I is given in Ang et al. 

(2001). 
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Logarithmic Mean Divisia Index II 

Another Logarithmic Mean Divisia Index, suggested by Ang et al. (2003) is the 

Logarithmic Mean Divisia Index II (LMDI II), which is different to the LMDI I 

concerning its weighting. 

Within the context of price index numbers Vartia (1976) proposed two different 

logarithmic mean index formulas for a multiplicative index. The Vartia Index I is used 

in the LMDI I and Vartia Index II in the LMDI II. Assuming    
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weights in the Vartia Index I are 

            
    

    
  

     
      

   

 (4.46) 

while in the Vartia Index II they are defined as 

             
    

    
  

     
     

  
 (4.47) 

Using Vartia Index II equation (4.33) is transformed into 

       
    

    
  

     
     

  
             

    
 

    
  

 

 (4.48) 

In Equation (4.48),    
    

 

    
   describes the logarithmic change of the variable,          

the logarithmic mean of the aggregate indicator and  
    

    
  

     
     

  
  a normalised weight 

function. The normalised weight function is used, because     
    

   on its own does 

not add up to unity (Sato 1976, p. 224). The Vartia II weighting is more complicated 

and is in contrast to the Vartia I weighting not consistent in aggregation (Ang et al. 

2003). 

The equivalent multiplicative decomposition of the LMDI II is given in Ang et al. 

(1997). 

4.3.4 Illustrative example 

This section presents an example, which helps to visualise decomposition analysis and 

show the outcome of different decomposition methods. In this example, the change in 

CO2 emissions in the electricity generation between a scenario 0 without CO2 price and 

1 with CO2 price is decomposed into the main categories of emissions reduction. Four 
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effects are differentiated in the decomposition (4.49): activity effect (measures the 

influence of a change of the level of electricity generation), structure effect (measures 

the influence of structural changes in electricity generation, i.e. fuel switching), fuel 

intensity (measures the influence of changes in the fuel consumed per unit of electricity 

generated, i.e. efficiency changes) and CO2 intensity (measures the influence of changes 

in the CO2 emissions per unit of fuel consumed). The choice of these four factors is 

discussed in more detail in section 4.5.4. 

                           

                                                              

           
(4.49) 

Having a look at the data (Table 4.1), one sees that electricity generation rises by about 

11%, while structural shifts occur towards nuclear and other renewables. With the 

introduction of carbon capture and storage (CCS) technology for coal the fuel intensity 

deteriorates (as CCS involves an efficiency loss), while the CO2 intensity decreases for 

coal. 

Table 4.1: Fictitious data for electricity production in scenario 0 and 1 

  scenario 0     scenario 1     

Electricity Sector 

Electricity 

[PJ] = a 

Structure 

= s 

Fuel 

Input 

[PJ] = f 

CO2 

[Mt] = e 

Electricity 

[PJ] = a 

Structure 

= s 

Fuel 

Input 

[PJ] = f 

CO2 

[Mt] = e 

Total 1311 

 

2613 195 1459 

 

3208 138 

Coal 1048 80% 2183 192 821 56% 1817 134 

Natural Gas 30 2% 56 3 48 3% 86 5 

Nuclear 31 2% 97 0 297 20% 940 0 

Hydro 19 1% 19 0 19 1% 19 0 

Biomass 37 3% 112 0 38 3% 110 0 

Oth. Renewables 147 11% 147 0 236 16% 236 0 

By way of example, the calculation steps for the LMDI I are subsequently presented in 

detail. Based on equation (4.45, the aggregate variable to be decomposed is CO2 

emissions and accordingly the emissions change due to changes in demand (activity 

effect) looks as follows: 

               

 
 
 
 
 
     

       
 

   
     

 

     
  

 
 
 
 
 

   
      

 

      
  

            

  (4.50) 
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Since only coal and gas power plants emit CO2, it is sufficient to regard these two 

technologies to calculate CO2 emissions changes:  

             

  
                     

   
          

          
 

     
       

       
 

  
                 

   
        

        
 

    
       

       
              

(4.51) 

The first summand represents the contribution from coal power plants and the second 

summand from gas power plants. 

Similarly, the equation for structure-related changes is given by: 

                

 
 
 
 
 
     

       
 

   
     

 

     
  

 
 
 
 
 

   
  
 

  
 
 

            

  (4.52) 

Based on the data given in the example, the structure effect is calculated as follows: 

              

  
                     

   
          

          
 

     
    

   
 

  
                 

   
        

        
 

    
    

    
               

(4.53) 

This emissions reduction amount can subsequently be attributed to low-carbon 

technologies according to their increased electricity production. In this case the majority 

of CO2 emissions is saved due to an increase in electricity production from nuclear and 

other renewables (see third column in Table 4.1).  

Third, emissions changes related to fuel efficiency are based on the following equation: 

                     

 
 
 
 
 
     

       
 

   
     

 

     
  

 
 
 
 
 

   

  
 

  
 

   

  
 

 

            

  (4.54) 

Inserting data into equation (4.62), yields: 



133 

                   

  
                     

   
          

          
 

     

       
      
       
       

 

  
                 

   
        

        
 

    

     
     
     
     

             

(4.55) 

Last, CO2 intensity-related emissions changes are calculated in the following way: 

                       

 
 
 
 
 
     

       
 

   
     

 

     
  

 
 
 
 
 

   

  
 

  
 

  
 

  
 

 

            

  (4.56) 

Using the given data, results in: 

                     

  
                     

   
          

          
 

     

          

       
          

       

 

  
                 

   
        

        
 

    

        

     
        

     

             

(4.57) 

Figure 4.3 indicates that the increase of electricity generation and the increasing fuel 

intensity have a positive effect on CO2 emissions. By contrast, structural changes 

towards carbon-free energy sources and a decreasing CO2 intensity have a comparably 

larger negative effect on CO2 emissions. 

Figure 4.3: Decomposition results with different methods 
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As all nine previously discussed decomposition methods are displayed, interesting 

insights are generated into the results depending on the applied method. First of all, the 

residual does not exceed 1% of the total change except for the Laspeyres and Paasche 

decomposition with 4% and 6% respectively. For all effects, the Laspeyres 

decomposition describes the largest value and the Paasche index the lowest one. This is 

not surprising because in the Laspeyres index all variables are fixed in scenario 0 (with 

comparably low electricity generation, low fuel intensity and high CO2 intensity) and in 

the Paasche index  they are fixed in scenario 1 (with comparably high electricity 

generation, high fuel intensity and low CO2 intensity). For the rest of the decomposition 

methods, the similarity of the results is striking, having a maximum difference for one 

effect of less than 5% in this example. Although the results depend on the given data 

variability, choosing one method over the other does not have a distortionary effect on 

the decomposition results, except for the Laspeyres and Paasche decomposition. This 

does, however, require the compared CO2 prices not to be far apart. 

4.4 Comparison of methods 

Fisher (1922) coined in his work the geometric mean of the Laspeyres and the Paasche 

index as the ideal index, also known as the Fisher index. Nonetheless, there is no ideal 

index, not even Fisher‟s ideal index. Acknowledging this fact, he wrote himself that 

“index numbers are not and never can be absolutely precise (Fisher 1922, p. 224)”. This 

conclusion is typical for the axiomatic approach to index numbers. It analyses properties 

of indices, so that the judgement of an index depends on the axioms considered most 

important. 

4.4.1 Theoretical soundness 

To assess the theoretical soundness, one can use the same approach as with index 

numbers, i.e. to compare different methods along several axioms, tests and theorems. 

While axioms describe desired properties, which are used to define index numbers, 

theorems can be deduced from axioms. Tests cannot be deduced from axioms, but 

nevertheless require desirable properties (Vogt and Barta 1997, p.42). 

Three relative well-known tests are the time-reversal test, the factor reversal test and the 

circular test. The time reversal test states that interchanging the base and comparison 

situation should result in the same decomposition result in absolute terms. 
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             (4.58) 

Decomposition results are required to be consistent whether the decomposition is 

carried out prospectively or retrospectively. This test cannot be fulfilled by indices that 

rely on fixed weights, such as the Laspeyres and Paasche index. 

The factor reversal test is another reversal test. This test requires all the decomposed 

components when summed up to give the observed change of the aggregate indicator. 

        

 

 
(4.59) 

Decomposition methods that satisfy this property do not leave a residual term, i.e. they 

are called perfect or exact. As discussed earlier, this only means that the residual term is 

distributed to the explaining variables and does not tell the analysts anything about the 

soundness of the distribution. Advantages and disadvantages of a residual are explained 

in section 4.4.3. 

The circular test determines whether the decomposition effect taken from situation 0 to 

T is the same as the sum of the decomposition effect from situation 0 to S and S to T, 

assuming that S is between 0 and T. 

                  (4.60) 

Passing this test means that the decomposition result does not depend on how the 

indicator develops between the periods 0 to T. Already Fisher (1922) pointed out that 

this test can only be fulfilled if an index possesses fixed weights. This is not the case for 

any practical index number so that all the decomposition methods fail this test. 

Next to these three well-known tests, there exists a number of other tests. The linearity 

homogeneity test requires the decomposition result to vary by the same factor as the 

change in the underlying variable changes. 

                         
     (4.61) 

As most of the decomposition methods do not only rely on the change of the observed 

variable, but also depend on other variables in order to eliminate the residual term, the 

majority of decomposition methods fails this test. 

The monotonicity axiom states that     is strictly increasing with respect to   
  and 

strictly decreasing with  respect to   
 . 
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  (4.62) 

        
    

              
    

              
     

  (4.63) 

While this axiom is fulfilled by the indices based on percentage changes it is not met by 

the Divisia indices as they involve the interaction with other variables in addition to the 

observed one. 

The identity theorem expresses that the value of the decomposition is zero if the 

observed variable remains constant, irrespective of any change in the other variables. 

        
    

                
    

  (4.64) 

This test is met by all decomposition forms. 

The plausibility test says that the sign of the decomposition effect always has the same 

sign as the change in the observed variable 

                            (4.65) 

                            (4.66) 

Even if this condition seems simple to meet, distortions due to distributing higher order 

terms means that the refined Laspeyres and the MRCI decomposition fail this test. Betts 

(1989, p.152) showed that interaction terms in the refined Laspeyres decomposition can 

be higher compared with the ceteris paribus term and thereby change the sign of the 

expression. Lenzen (2006, p.194) showed the same distortive effects for the mean rate 

of change index. 

Finally the zero-value robustness test, checks if a decomposition method is rendered 

zero, infinite or indeterminate by one variable becoming zero. None of the methods 

using logarithms pass this test nor does the mean rate of change index when the variable 

is zero in both periods. Table 4.2 provides an overview of the decomposition methods‟ 

properties. 

Among all the tests, the plausibility test and time-reversal test are judged to be the most 

important. An index should show a plausible results, i.e. when a variable decreases, the 

associated effect should be negative and vice versa. Furthermore, the index should have 

the same result in the case that base and comparison period are interchanged. The factor 

reversal test is only fulfilled with perfect decompositions, which does not say anything 

about the theoretical soundness. The problem concerning the use of zero values in 

decomposition techniques using a logarithm can be overcome in practice. 
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Table 4.2: Properties of decomposition methods 

 

Monotonicity
Linear 

Homogeneity
Identity Circular Test

Time Reversal 

Test
Factor Reversal Plausibility

Zero-value 

robustness

Laspeyres
Yes Yes Yes No No No Yes Yes

Paasche
Yes No Yes No No No Yes Yes

Marshall-Edgeworth
Yes No Yes No Yes No* Yes Yes

Refined Lapseyres
Yes No Yes No Yes Yes No Yes

Mean Rate of Change Index 

(MRCI)
Yes No Yes No Yes Yes No No

Arithmetic Mean Divisia Index 

(AMDI)
No No Yes No Yes No Yes No

Adaptive Weighting Divisia Index 

(AWDI)
No No Yes No Yes No Yes No

Logarithmic Mean Divisia Index I 

(LMDI I)
No No Yes No Yes Yes Yes No

Logarithmic Mean Divisia Index II 

(LMDI II)
No No Yes No Yes Yes Yes No

* only exception is the 2-variable case



138 

4.4.2 Complexity of calculation 

Next to the theoretical soundness of an index, the ease of application can be an 

important criterion for an analyst deciding whether to use or not to use a specific 

method. When a decomposition method is very hard to apply, because it involves many 

calculation steps, it may deter analysts from using the method. This section briefly 

reviews the complexity of each decomposition method. The formulae in section 4.3.3 

already gave a first impression of the complexity involved with each decomposition. 

The Laspeyres and Paasche index with their fixed weights are very easy to calculate and 

the Edgeworth-Marshall index as the arithmetic mean of both indices is only slightly 

more complicated. On the other side, the refined Laspeyres index, built upon the 

Laspeyres index, is relatively complicated compared to the standard Laspeyres. The big 

inconvenience of the refined Laspeyres index is that the formula becomes larger with 

the number of variables included in the aggregate indicator, as the number of higher 

order terms increases. This can lead to a considerable effort in applying the refined 

Laspeyres index. The same holds true for the mean rate of change index. This 

decomposition method involves the calculation of a weight term, which relies on the 

arithmetic mean of all variables. This means that the complexity of calculation increases 

linearly with the number of variables. 

The Divisia indices, the LMDI I using a logarithmic mean, and the AMDI, using the 

arithmetic mean, are relatively simple to apply. The LMDI II uses a normalised weight 

function, which is more complicated to use in comparison to the mean function of the 

LMDI I. However, the most calculation intensive decomposition method is the Adaptive 

Weighting Divisia Index. It uses two different equations to calculate the adaptive 

parameter, which then has to be inserted into one of the equations. Additionally, the 

number of parameters to be calculated increases with the variables and the number of 

attributes. 
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4.4.3 Clarity of decomposition / importance of residual 

In decomposition analysis literature there has been a long debate about the residual term 

(see e.g. Muller 2007, p. 14ff). On the one hand, it is argued that each decomposition 

method represents an approximation to an integral path that is not known. Therefore, it 

is only obvious that each decomposition should show a residual term and not assign it 

arbitrarily to the variable effects. On the other hand, a residual term, which is not 

allocated to one specific variable, raises questions in explaining the results and can pose 

significant problems if the residual becomes big in comparison to changes due to 

variable changes. This leads to a trade-off between the arbitrariness in allocating 

residuals and a non-exact decomposition method with a residual term. 

The Laspeyres index, as well as the Paasche index, have the advantage of clear 

interpretation of the decomposition components. The same holds true for the 

Edgeworth-Marshall decomposition as the arithmetic mean of both. The interaction 

terms hidden in the Divisia indices are explicitly accounted for in the Laspeyres index 

approach. The downside is the resulting residual that creates problems in result 

interpretation. Since the residual can be considerable when there are large changes in the 

underlying data, Ang and Liu (2007a, p. 1431) classified the Laspeyres index not to be a 

good choice. 

The disadvantage with all Divisia indices is that it arbitrarily assigns interaction terms to 

the factors (Howarth et al. 1991, p. 137). Looking again at Equation (4.34), this problem 

becomes obvious. The expression  
  

    
 

 
  can be rewritten into  

  
        

 

 
 , thus   

  is 

the sum of   
  and    . Since     not only depends on variable i, but also on the change 

in other variables, the decomposition result for variable i can change even if solely the 

other variables (≠i) change. The same holds true for the logarithmic mean, for which 

there exists no reason from the integral and derivative approximations to use this weight. 

Consequently, the calculation of the Divisia indices are more difficult to understand 

because of their complex procedure to distribute the higher order terms. This applies 

especially to the Adaptive Weighting Divisia Index, which requires a relatively 
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complicated calculation and does not give a perfect decomposition. Within the Divisia 

indices, the Logarithmic Mean Divisia Index I and the Arithmetic Mean Divisia Index 

are the easiest of the perfect decomposition methods to understand. 

The remaining indices, the Refined Laspeyres and the MRCI, are more complicated to 

assess. While the Refined Laspeyres index tries to logically distribute only those 

interaction terms (higher order terms) to a variable, in which the considered variable is 

involved, one cannot determine a logic in the MRCI concerning the elimination of the 

residual. 

4.4.4 Rating 

In the past, several researcher have attempted to rate decomposition methods and pick 

their preferred method. These ratings clearly depend on the preferences of the 

researcher, the problem to be solved, and on the criteria alongside the methods are 

compared. 

Ang et al. (1994, p.88ff) comes to the conclusion (at a time where the LMDI and 

Refined Laspeyres methods had not yet been used in energy decomposition) that the 

Edgeworth-Marshall and the AMDI were the best decomposition methods. This 

selection is based on the robustness of the methods, i.e. giving stable results and not 

being subject to extreme results, and on the theoretical “superiority” of the AMDI 

compared to other methods. Ang et al. (1994) also generally prefer a small residual and 

ease of use in terms of computational complexity. The authors qualify this last aspect 

because computing no longer presents any significant limits, not taking into account the 

analyst‟s efforts. 

Six years later, Ang et al. (2000, p.1165ff) come to another conclusion, namely that the 

LMDI I and the Refined Laspeyres are the most robust methods. In this study, the 

authors base their decision on some index tests, the importance of the residual and the 

complexity of the formula. Given its ease of calculation the LMDI I (proposed by Ang) 

is preferred over the Refined Laspeyres. In a paper on the preferred decomposition 

method for policymaking in energy, Ang (2004) proposes again the LMDI I as the 
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preferred decomposition method and recommended it for general use. This decision is 

based on the results of the factor reversal, time reversal, proportionality and consistency-

in-aggregation tests, ease of use and ease of result interpretation. The consistency-in-

aggregation test verifies that a single stage index can also be computed in two stages, i.e. 

by first computing the indices for subaggregates and from these the index for the 

aggregate indicator. 

Ang (2004) reports that the LMDI I performed best in these tests, because the factor 

reversal test was judged to be the most important, a residual term is disapproved 

(complicating result interpretation) and the link between multiplicative and additive 

decomposition is easily established. Yet, from an unbiased point of view, there is no 

reason to prefer the factor reversal test over the others. From a mathematical point of 

view, rejecting a residual means accepting an arbitrariness in distributing the residual. 

Finally, the link between multiplicative and additive decomposition might be a 

beneficial feature, but is not essential when one concentrates only on additive 

decomposition, as in this thesis. Ang et al. (2009) give another reason in favour of the 

LMDI I, namely that this method distributes the residual term of each sub-category 

proportionately according the effects. 

Diekmann et al. (1999, p. 100ff) base their decision on decomposition methods on the 

following criteria: size of the residual, theoretical soundness, complexity of calculation, 

comprehensibility of results and purpose of study. According to the authors, the purpose 

of the study can have an influence on the choice of the decomposition method 

depending on whether many sectors are considered and whether it is prospective or 

retrospective (to choose the index weights appropriately). Admitting that a silver bullet 

does not exist, Diekmann and his colleagues reach the conclusion that the complexity of 

calculation and the difficult comprehensibility of the AWDI outweigh the advantage of 

its theoretical soundness. Given its clarity and easier calculation, the authors recommend 

the Refined Laspeyres index to be generally used in decomposition analysis. 

Muller (2007) questions the LMDI I method as the default best method because of 

reservations towards a zero residual and the consistency-in-aggregation. Nevertheless, 
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he recommends the LMDI I as the currently most reliable method based on its 

performance in comparison to other methods for a wide range of functional forms. 

Before coming to any conclusion, the statement of Diekmann et al. (1999) has to be 

reemphasised: there is clearly no superior decomposition method. If there were, the 

index number problem would no longer be one. Starting with the decomposition 

methods‟ theoretical soundness, Table 4.2 does not reveal one decomposition method as 

clearly the best. The preference of one decomposition method over another depends on 

the preference of certain tests or axioms. Based on the simplicity and comprehensibility 

of calculation, one should use either the Laspeyres, Paasche and Edgeworth-Marshall or 

one of the simple Divisia indices, the LMDI I or the AMDI. The Refined Laspeyres and 

the Adaptive Weighting Divisia Index are relatively complex to calculate. If a small 

residual is desired, one should use one of the perfect decomposition methods, such as 

the LMDI, the Refined Laspeyres or the MRCI. 

Based on the previous discussion and on the requirements in this thesis, the LMDI I 

decomposition seems to be preferable over the other decomposition methods, because of 

its ease of use, its relatively easy comprehensibility and its zero residual. Even though 

this last property comes at the expense of an arbitrariness in assigning the residual term 

to a variable‟s effect. 

4.5 Application of IDA in the context of carbon abatement curves 

In the previous sections, the focus was on the origin of decomposition analysis and 

theoretical aspects. This section gives insights into some practical aspects of applying 

decomposition analysis to the results of an energy system model. 

4.5.1 Zero and negative values 

One major problem discussed in the literature is the occurrence of zero or negative 

values in the analysed data. Negative values occur very rarely in energy system models, 

except in the context of biomass CCS and associated negative emission values. They 

occur much more frequently in structural decomposition analysis involving input-output 

tables. In contrast to negative numbers, zeroes occur frequently as an output of energy 
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system analysis, for example concerning the emissions from renewable sources or non-

existing demand for specific end-use technologies. Therefore, the pick-up of one 

electricity generation technology from zero will pose problems when the Divisia indices 

are used. The reason is that Divisia indices are based on logarithms, which are undefined 

for zero. 

The first researchers to note the problem of zero values in the energy decomposition 

context were Liu et al. (1992b, p. 692) in a study looking at fuel shares. As a solution 

they suggest to use a very small value of e.g. δ=10
-5 

instead of zero. Ang et al. (1997, p. 

366) suggest aggregating data in order to avoid zero values or alternatively not making 

full use of the available data. As a consequence, the analysts can only use a part of the 

data. Ang et al. (1997, p. 68) also use the small value approach and vary the value δ 

between 10
-8

 and 10
-20

. They show that the LMDI I is not sensitive to the level of δ, 

whereas the results of the Arithmetic Mean Divisia Index are highly dependent on the 

assumed level. Ang et al. (1998, p. 491f) also recommend using the small value 

approach and state that the decomposition results converge with a δ approaching zero. 

This is analytically demonstrated and the analytical limits of 8 different cases involving 

zeros are represented in a table. Wood et al. (2006, p. 1327) study the small value 

approach in more detail and come to the conclusion that it is an insufficient 

approximation for certain situations. They describe a situation where even a small value 

of δ=10
-323

 can lead to an error of almost 1%, particularly when data sets contain a 

sufficiently large number of zeroes and small values. The authors recommend using the 

analytical limits in the case of a zero in the underlying data set. A positive side-effect is 

the possible reduction of computation time, especially if the data sets contains a large 

number of zeroes. It was as a response to the non-robustness of existing methods to zero 

and negative values, that Chung et al. (2001) developed the MRCI. However, this index 

is also not robust to zero values if a variable is zero in the base as well as the observed 

situation (see Equation (4.27)).  

In order to overcome the problem of zero value robustness, it is recommended to follow 

the analytical limit strategy in order to avoid any ambiguities in approaching the limits 

by small values. 
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Another important aspect concerning the results of energy system models, which has to 

be accounted for, is that there can be multiple changes from/to zero to/from a positive 

value when going from a carbon scenario with a lower CO2 price to a higher price 

scenario. If, for example, diesel cars are no longer chosen by the model in a higher CO2 

price scenario, then its structural contribution, its fuel intensity, as well as its carbon 

intensity will drop to zero in parallel. The first to note this problem were Ang et al. 

(2007b, p. 243), who proposed that each of the m variables involved in a zero-change 

should account for 1/m of the sub-category change. The authors give an example 

including a fuel-mix variable and the CO2 emission factor, where this procedure makes 

sense. Yet, when a technology is first chosen in an energy system model along a rising 

carbon price, i.e. its activity increases from zero to a positive number, the structural 

contribution not only changes from zero to a positive number, but also the fuel intensity 

and possibly the carbon intensity. In this case, it is no longer reasonable to assume that 

each of the effects contributes the same share to the total change. Therefore, the analyst 

has to make sure to avoid multiple counting in this example by restricting the change in 

the aggregate indicator only to the activity effect. In general, special attention has to be 

paid to situations that involve more than one variable involved in a zero-change to 

obtain reasonable decomposition results. 

Although negative values occur only in the context of negative emissions from biomass 

CCS or coal CCS power plants with biomass co-firing, they pose a problem when the 

analysis relies on the LMDI I. Chung and Rhee (2001, p. 15) were the first to point out 

difficulties when using a Divisia index for a dataset containing zeros. Wu et al. (2006, p. 

3569) proposed a solution for a specific situation involving stock changes. Ang and Liu 

suggested (2007c, p. 740) a more general solution by distinguishing three different cases 

involving changes from a negative number to a negative number, to zero and to a 

positive number. If changes occur between negative values their respective additive 

inverse can be used to obtain a correct value. If a change involves zero values the 

strategy described above in combination with a replacement of the negative value by its 

additive inverse can be used. The most difficult case, however, are changes from/to a 

negative value to/from a positive value. Ang and Liu (2007c) analysed this situation by 

splitting the change from a positive number to a negative number into two intervals with 



145 

zero taking as the point of separation. The authors conclude that only the variables that 

include a negative value account for the change in the aggregate factor. This strategy is 

adopted for this thesis. 

4.5.2 Structural disaggregation 

Another aspect of practical concern is the detail of structural disaggregation. This means 

how far aggregated variables are disaggregated according to an attribute r, e.g. into 

different sectors. A typical example is industry, which can be divided into energy 

intensive and non-energy intensive or in more detail into industrial sectors like iron & 

steel and pulp & paper, etc. But this can also include vehicle types in the transport 

sector, different demand types in the service and residential sector or generation 

technologies in the electricity generation. In the context of energy system models, 

electricity generation for example can be disaggregated along renewable/non-renewable 

generation, fuel group, specific fuel or employed technology. Existing studies on energy 

decomposition show that the level of disaggregation can have a significant influence on 

the decomposition results, in particular structural and intensity effects (Ang 1995b). 

A possible consequence of an insufficient disaggregation level is that structural changes 

will be measured as changes in energy intensity. Different levels of aggregation can help 

to understand the robustness of the findings with regard to the disaggregation level. 

Boyd et al. (1987) for example studied sectoral shifts at three different levels. They 

found that a structural disaggregation of two-digit SIC (Standard Industrial 

Classification) code was enough to capture sectoral changes in the second half of the 

1970s. Ang (1993, p. 1036f) approached the problem using different sectoral 

disaggregation levels and illustrating the change in structural contribution from one 

level to another. Therefore, he connected the different levels of disaggregation in a so-

called decomposition tree in order to trace the source of variations between two levels of 

disaggregation. The results show that the sum of positive structural contributions minus 

the sum of negative structural contributions increases with the level of disaggregation, 

while one cannot make a statement on the overall structure effect since it is the 

remainder of both. 
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Furthermore, the total structure effect, composed of each individual structure effect r 

(according to the attribute r), can be misleading. It can be close to zero as a result of 

large positive structural contributions and large negative contributions, which cancel 

each other out. This can lead to the assumption that no structural change exists. Ang 

(1993, p. 1035f) developed an index to measure the level of cancellation, consisting of 

the positive structural contributions minus the negative contributions minus the absolute 

structural effect. If this index is large a significant part of structural change in the 

aggregate variable is not captured in the estimate of total structural change and thus 

provides additional information. 

The approach used in this thesis is to look at the finest disaggregation level in order not 

to confuse structural effect and intensity effect. In addition, structural contributions of 

each attribute are reported individually to separate positive and negative contributions 

and to provide additional insights into the source of structural change. 

4.5.3 Fixed base versus rolling decomposition 

A decomposition analysis is usually carried out between different years. This can be 

done by either using only the first year and the last year of a time period (fixed base) or 

using yearly decomposition with increasing base years and cumulating the results for 

each year in order to obtain the result for the whole period (rolling). In the context of 

price indices, the latter method is also called chained principle since the price index of 

one year is chained to the preceding one. Ang et al. (1994, p. 89ff) examine the 

respective results for a fixed base and a rolling decomposition. 

This concept can easily be transferred to carbon prices. A fixed base decomposition is 

carried out for the change between two significantly different carbon prices, whereas a 

rolling decomposition uses the additional information available by calculating the 

change between two adjacent carbon prices and then cumulating the results. 

A rolling decomposition is nothing else than incorporating additional information on the 

integral path compared to the fixed base case. Therefore, a rolling decomposition is less 

dependent on the decomposition method and results for non-exact decomposition 
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methods in a smaller residual. The reason is that the integral path, which is implied by 

all decomposition methods, is now applied between two adjacent data points. Minor data 

variations can also be better reflected using rolling decomposition. Diekmann et al. 

(1999, p. 101) come to the conclusion that a rolling decomposition is theoretically 

preferable in order to avoid a loss of information. 

Decomposition with a fixed base is more practical, however, as it requires only one 

calculation. Rolling decomposition in contrast depends on the availability of data in 

intermediate data points. Since data availability poses no problem in the context of 

MAC curves based on an energy system model, rolling decomposition is used 

throughout this thesis because of its theoretical advantage. 

4.5.4 Decomposition factors 

The choice of which factors to include in a decomposition is of particular importance 

not only concerning the analysis of energy system models‟ results. Usually, the analyst 

has to consider two different aspects in reference to the choice of decomposition factors: 

factors included in the decomposition and mutual dependence of factors. 

Referring to the IPAT equation mentioned previously in this chapter, this equation 

encompassed only two variables in an early version: population and a remainder. 

Results of a decomposition analysis built upon this equation will therefore always 

indicate that the driving force behind changes in environmental impact is population, 

because it is the only specified factor in the formula. Decomposition analysis can only 

distribute changes in an aggregate indicator to factors included in the equation. It should 

be noted that once a factor is included in decomposition, its contribution will remain the 

same independent of what other factors are included in the decomposition formula (Sun 

and Malaska 1998, p. 110f). The question therefore arises what factors are not included 

in the decomposition. A possible consequence of not including actual driving factors in 

the decomposition is that the effects are attributed to other factors that are specified in 

the formula. This highlights the importance of carefully choosing the factors to include 

in a decomposition.  
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Another aspect is the interdependence of factors in decomposition analysis. Again 

looking back on the IPAT identity, the identity was criticised because of its relationship 

between the variables, e.g. population and affluence. It was argued that both variables 

do not vary independently for the reason that the affluence level influences population 

growth. The consequence is that a contribution of a specific factor to the change of the 

aggregate variable is diluted if it interacts significantly. Nonetheless, it is difficult to 

completely exclude any interactions between decomposition factors. 

Before starting to carry out decomposition analysis, the analyst has to carefully choose 

the explaining factors in the decomposition formula and check their interdependency. 

Decompositions including different factors can help to gain additional insights and to 

clarify the importance of specific factors. 

Within this thesis, the resulting CO2 emissions in the different sectors of the energy 

system are decomposed into four effects: activity effect, structure effect, fuel intensity 

effect, and carbon intensity effect: 

                                                                   (4.67) 

 

The activity affect describes changes in CO2 emissions due to changes in the demand for 

energy services or for electricity in the case of the power sector. The structure effects 

represent emission changes caused by a technological switch, e.g. from petrol cars to 

electric cars. The fuel intensity effect explains emission changes caused by efficiency 

improvements and the carbon intensity effect those changes related to a changing carbon 

content of fuels, for example blending biodiesel with conventional diesel or mixing 

biogas with natural gas. These four effects were chosen as they represent the four 

categories to reduce emissions: demand reduction (activity effect), technology switches 

(structure effect), efficiency improvements (fuel intensity effect), and, in the supply 

sectors, carbon intensity reduction of secondary energy carriers (carbon intensity effect). 

Furthermore, existing studies decomposing historical CO2 emissions have a similar 

structure (Hammond and Norman 2011). 
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With this decomposition it is believed to capture all the underlying drivers of CO2 

emission changes, while the development of the underlying factors is mainly 

independent. While the activity variable and the structure of energy supply can vary 

independently, interactions can occur between the two effects. When coal-fired power 

plants increase their electricity output, for example, while the output from other 

generation types remains constant, not only the activity effect will change, but also the 

structure effect.  
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5 UNCERTAINTY ANALYSIS 

This chapter concludes the methodological part of the thesis. After chapters on energy 

modelling and decomposition analysis, chapter 5 explains why it is important to 

consider uncertainty in MAC curves and how it can be represented. 

Uncertainty analysis is a process that describes, either in quantitative or qualitative 

manner, the relative magnitude of uncertainty and the resultant implications for the 

problem assessment. The term uncertainty or the degree of certainty surrounding the 

value of a variable can imply anything from confidence just short of certainty to 

informed guesses or speculation (Schneider and Kuntz-Duriseti 2002, p. 55). 

The goal of uncertainty analysis is to evaluate to what extent particular uncertainties 

impact upon the conclusions (Rotmans and van Asselt 2001, p. 115). This does not only 

concern measuring the degree to which input factors contribute to uncertainty in the 

outputs but includes also the model structure and the uncertainty presentation. 

The consideration of uncertainty was not always regarded as helpful in policy analysis. 

In positivist epistemology, which assumes that authentic knowledge is only based on 

positive verification, for example, uncertainty is considered as something unscientific. 

In this context, Rotmans et al. (2001, p. 126) noted that 

“…integrated assessment models fail to make uncertainties explicit, and to 

illuminate and explain the nature of the various types and sources of these 

uncertainties, let alone to communicate these uncertainties in sound and 

transparent way to decision-makers.” 

It should be noted that some degree of uncertainty can prove to be irresolvable. Walker 

et al. (2003) describe this as uncertainty due to the inherent variability of the underlying 

phenomenon, while some level of uncertainty is due to the imperfection of our 

knowledge. 

This holds also true for MAC curves. The literature review chapter (section 2.2.2) 

discusses the insufficient level of uncertainty representation in all types of MAC curves. 

Recent attempts concerning expert-based approaches have considered the influence of 
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major inputs, such as fuel prices, to a limited extent. However, since they assess each 

abatement measure individually, expert-based curves cannot take into account 

interactions between uncertainties. While this is feasible to a limited extent in energy 

models, uncertainty has been rarely represented in model-based MAC curves and if it 

has, then it lacks the technological detail in the visualisation. In general, the typical 

technology-specific representation of abatement curves with the marginal cost on the 

ordinate and the abatement level on the abscissa does not allow for a simple way of 

incorporating uncertainty. This is because the order of abatement measures can change 

as a result of a change in input assumption so that error bars or similar techniques 

cannot be applied. In recent studies, several MAC curves with different assumptions are 

usually represented next to each other to visualise uncertainty. 

Decomposition analysis (chapter 4) visualises the contribution of different abatement 

measures to the overall abatement effort and the uncertainty related to the reduction 

level. In this way it helps to identify the largest uncertain abatement measures and their 

interactions. 

Efforts are spent on investigating uncertainty related to problems in the energy and 

climate change mitigation fields with the goal to incorporate a more accurate 

representation of uncertainties. Nevertheless, new knowledge on complex processes 

may reveal uncertainties that always existed but were previously unknown or were 

underestimated (van Asselt and Rotmans 2002). Thus, new knowledge does not 

necessarily reduce uncertainty, but can increase the awareness of uncertainty by 

improving the understanding of particular processes. 

The goal of this chapter is to present appropriate methods to see how robust the findings 

are and explain the uncertainties relating to MAC curves. Robustness is defined as the 

persistence of a characteristic, in this case abatement costs, under perturbations or 

conditions of uncertainty.  

The chapter starts with uncertainties in the field of energy modelling. This includes 

three parts: data uncertainty including all external variables, model uncertainty spanning 

model parameters, structure and equations and user uncertainty including uncertainty 

related to experts, analysts, uncertainty communication and understanding. The second 

part of the chapter focuses on methods to address uncertainty, which include sensitivity 

analysis, scenario analysis, uncertainty propagation and stochastic programming. 
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5.1 Uncertainties related to MAC curves 

This thesis combines two methods to derive MAC curves: energy system modelling and 

index decomposition analysis. On the one hand, uncertainty due to index decomposition 

concerns the choice of a specific decomposition method that can influence the final 

result due to divergent approximations of the mathematical integral. Energy system 

modelling, on the other hand, is the basis for the calculation of MAC curves and is 

subject to important uncertainties. Model construction implicitly involves the choice of 

a model scope and the embedding of assumptions at many levels, which are subject to a 

possible bias by the modeller. Those assumptions propagate through the model and 

finally affect the model output. In the following, uncertainty is firstly classified into 

different types and then areas of uncertainty referring to the generation of MAC curves 

are discussed. 

5.1.1 Types of uncertainty 

Although, consideration of uncertainty is by now an important element in energy system 

modelling, there is no common typology of uncertainty. Many different typologies 

exists that try to categorise the nature and characteristic of uncertainties, while some of 

them are similar. A list with different classifications of types of uncertainty can be 

found in Ascough II et al. (2008, p. 387). 

Possible distinctions can be made between parametric uncertainty and stochasticity. 

Where parametric uncertainty refers to uncertainty associated with model parameters, 

such as the own price demand elasticity, and stochasticity stands for natural variability, 

e.g. weather, in variables manifested in natural and human systems, such as the 

behavioural influence on energy service demand or wind speeds. It can be difficult to 

identify precisely what uncertainties are reducible, in particular related to human input 

(Ascough II et al. 2008, p. 389). 

A somehow different distinction, proposed by Hirst et al. (1990), is between internal 

and external uncertainties. Where internal uncertainties describe the uncertainties 

related to the modelling parameters and external uncertainties relate to the uncertainty 

connected to exogenous assumptions on variables, which are beyond the system being 

modelled. Moreover, a different existing distinction is between short-term and long-

term uncertainties. This typology is, however, of less use in the context of this thesis as 

it is focused on findings for the long-term.  
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Another possible perspective for the differentiation between different types of 

uncertainty is the impact of uncertainty over time (Gerking 1987, p. 193). Static 

uncertainties refer in this context to uncertainties that do not change or are not affected 

over time. Quasi-static uncertainties can be reduced in a negligible period of time 

compared to other decision alternatives. Finally, dynamic uncertainty describes 

uncertainties concerning the development of parameters that can be resolved over time. 

The International Energy Agency established in the 1980s a classification of uncertainty 

into quantifiable and non-quantifiable. Quantifiable uncertainties encompass to a certain 

extent technological developments, facility lifetime and performance and the 

development of alternative energy. Non-quantifiable uncertainties deal with 

environmental considerations, major accidents, political developments and regulatory 

changes. 

In the context of model-based decision support, Walker et al. (2003) distinguish 

uncertainty into the location, the level and nature of uncertainty. The context, model 

uncertainty, external inputs, parameter uncertainty and model outcome uncertainty are 

examples for the location uncertainty. The levels of uncertainty are defined into four 

categories ranging from determinism to total ignorance. The nature of uncertainty is 

divided into epistemic uncertainty, which may be reduced by more research and 

empirical efforts and variability uncertainty, which is due to inherent variability. 

A very common and broad uncertainty typology, which summarises other typologies, is 

the distinction of uncertainty into variability and limited knowledge (van Asselt and 

Rotmans 2002, p. 78) (see also Table 5.1). Variability means that a particular process 

can behave in different ways, while limited knowledge expresses that knowledge with 

regard to a deterministic process is incomplete or uncertain. The meaning of variability 

can be regarded to be similar to stochasticity and external uncertainty. Sources of 

variability include natural processes, human behaviour, social, economic and cultural 

dynamics and technological surprises. In the context of energy modelling, lack of 

knowledge, which is equivalent to internal uncertainty (see above), refers to lack of 

observation or data (e.g. concerning possible future technologies), conflicting evidence 

and reducible and irreducible ignorance. 
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Table 5.1: Uncertainty typologies according to two broad categories 

Variability Limited knowledge Other 

stochasticity parametric uncertainty  

objective uncertainty subjective uncertainty  

primary uncertainty secondary uncertainty  

external uncertainty internal uncertainty  

variability uncertainty epistemic uncertainty  

  static uncertainty, quasi-static 

uncertainty, dynamic uncertainty 

  quantifiable, non-quantifiable 

 

In the context of energy system modelling, an uncertainty typology is chosen that 

differentiates between data uncertainty, model uncertainty and user uncertainty similar 

to a categorisation proposed by Maier et al. (Maier et al. 2008, p. 74). As stated before, 

there are different existing typologies in other research areas, which include 

uncertainties that do not play a major role in energy modelling. 

Data uncertainty comprises all kinds of uncertainties linked to all the input data into a 

model. This includes absence of information, missing data, availability of recent data, 

error in data and uncertainty related to the initial state of specific values. New 

development or breakthroughs in technology or unexpected consequences of 

technologies make it difficult to quantify the uncertainty profile. There exist also 

processes, characterised by indeterminacy or irreducible ignorance, where uncertainty 

cannot be described through probability distributions. Poor quality data, which is biased 

due to random noise or changing definitions, and measurement uncertainty can be 

another reason for data uncertainty (Schneider and Kuntz-Duriseti 2002, p. 56). 

Measurement uncertainty can refer to human errors or to scientific inaccurate methods. 

Rotmans et al. (2001, p. 113) described this uncertainty type as technical uncertainty, 

which includes next to the quality of the data, also possible simplifications and 

aggregations. 

In natural sciences this category includes lack of measurements or measurement errors, 

which can be caused by the type of instrument, the quality of calibration of the 

instrument, errors in data reading, transmission and storage. 

The next type, model uncertainty, refers to uncertainties relating to the model structure 

and in the context of this thesis also to decomposition analysis. This includes unknown 
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functional relationships, choice of algorithm and known historical data where reasons 

exist to believe that the parameter structure will change. The choice of analytical tools, 

of the system boundaries, the level of detail and the appropriateness of the model are 

further aspects of this type. System boundaries concern for example the treatment of 

global interactions in the case of restricting the model to a specific country. Further, all 

the necessary relationships can be integrated in a model but only to an insufficient level 

of detail, so that important sources of uncertainty, such as changing wind velocities in 

the case of wind power, are inadequately represented. In addition, this includes the 

aspect of model completeness (van Asselt and Rotmans 2002, p. 82), i.e. does the model 

capture all the necessary relationships, does it reproduce actual behaviour, is the 

conceptualisation in line with established theories? 

Those aspects arise since models are necessarily a simplified representation of the real 

system being studied. One of the key tasks in modelling is to simplify reality in so far 

that it is as simple as possible, but still contains the necessary relationships. Thus, model 

structure uncertainty arises from the use of aggregated parameters, the exclusion of 

variables, simplified relationships and approximations of functional forms (Ascough II 

et al. 2008, p. 388f). 

The last type of uncertainty, which is often overlooked, is user uncertainty. This 

comprises all kind of human uncertainties involved in energy modelling: the expert 

providing inputs to the model, the analyst involved in using and developing the model, 

decision makers and the process of results communication. During the model 

development analysts have to make choices e.g. about data selection and model 

structure that are subject to biased opinion. The uncertainty of the modelling outcome, 

which in a next step is presented to the research community and decision makers, is 

dependent on the analyst’s knowledge, experience and expertise. Analysts can have 

preferences for particular technologies, model structures, for quantitative or qualitative 

uncertainties and can make diverging decisions on what results to present. The risk of 

modelling errors can be minimised by peer-reviewing modelling efforts. 

The process of communicating the results of any modelling exercise is subject to 

linguistic uncertainty. Aggregated uncertainty measures are usually difficult to 

understand for audiences unfamiliar with those concepts. Further uncertainty arises due 

to the fact that our natural language is vague, ambiguous and context dependent. In 

everyday conversation, people often refer to events or quantities with imprecise 
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language. The precise meaning of words can change from person to person and over 

time (Ascough II et al. 2008, p. 390). In addition, readers often assume for themselves a 

possible distribution of probabilities when the authors do not state it clearly (Schneider 

and Kuntz-Duriseti 2002, p. 66). 

The communication aspect could be improved via different forms of graphical 

representation. For this purpose, it is important to find a clear, uncluttered graphic style 

and easily understood format and make decisions about what information to display. It 

is important to present uncertainty in the best possible way since judgement under 

uncertainty is subject to common fallacies, as summarised e.g. in Tversky et al. (1974). 

Whereas many sources of uncertainty, including lack of data and model structure 

uncertainties, are often impossible or difficult to eliminate, uncertainty due to linguistic 

imprecision is comparably easy to remove (Morgan et al. 1990, p. 61f). 

5.1.2 Areas of uncertainty in respect to MAC curves 

While the previous section discussed the typology of uncertainty, this part gives 

examples for the different types of uncertainty in relation to MAC curves. Those curves 

are derived with decomposition analysis from an energy system model, which relies on 

different categories of uncertain parameters and variables and consequently introduces 

itself data and model uncertainty. Different assumptions for those values can potentially 

significantly alter the MAC curve. This section builds upon the discussion of 

influencing factors of MAC curves in section 2.2.3.  

Data uncertainty 

One category of data uncertainty in an energy system model is demand-related factors. 

This includes the demand for energy services, which is either a direct input into the 

model or is determined via socioeconomic drivers, such as economic activity, 

population or household size. Nordhaus (1994, p. 106), for example, found the 

development of demand drivers to be the most important uncertainty in his energy 

model. Demand development is uncertain as socioeconomic drivers cannot be predicted 

with confidence and demand for energy services is subject to behavioural changes, e.g. 

thermal comfort in residential buildings. Also the willingness to adopt new technologies 

or energy efficiency practices, which affect so called mitigation at negative cost, is not 
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well understood. Seasonal and daily patterns with respect to electricity or gas use are 

another uncertain element in this area.  

Next to the demand development, demand changes between specific energy services are 

equally uncertain. Examples for this issue are mode changes in passenger transport 

between rail, bus, car and cycling or changes in freight transport between rail and road 

transport. Demand elasticity, or the change in the level of energy service demand due to 

price changes, is another uncertain factor in this category. Behavioural factors, which 

are modelled via technology specific hurdle rates or uptake rates are equally difficult to 

determine and are thus a further source of uncertainty. 

A second category of uncertain data are technology parameters in an energy system 

model. Technologies are involved in the production, transformation and use of various 

energy forms, while their parameters can be distinguished into technical and financial 

parameters. Uncertain technical parameters include lead time, life time, the year of 

availability for future technologies, annual and seasonal availability, efficiency and 

emission factors. In this context, the emergence of entirely new technologies is highly 

uncertain. Economical factors are especially uncertain for evolving technologies and 

include investment costs, annual fixed operating and maintenance cost and variable 

costs. Technological innovation (or progress) and the reduction of technological costs 

over time due to learning are uncertain as well. 

Fuel reserves, resources and prices are a third category of data uncertainty. Oil, gas, coal 

and uranium reserves and the corresponding production costs are highly uncertain due 

to limited geological knowledge, geopolitical uncertainty and political acceptability 

amongst others. Also the temporal availability of fossil fuels is not completely known in 

advance and fossil fuel prices are highly volatile. This is also a result of the choice to 

limit the system to one country so that fuel prices are exogenous inputs. In addition, the 

resources for different kinds of biomass, wind speeds, solar radiation and river 

discharge volumes are uncertain. This all affects different parts of the energy system, 

such as electricity production. 

A further uncertainty category are system-wide parameters, such as the assumed 

discount rate, the division of the model horizon into model periods and time slices. The 

annual discount rate is the most important parameter in this category and significantly 

affects all financial parameters in the model for future years. Due to compound interest, 
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financial parameters in distant years are much more affected by changes in the discount 

rate than years close to the present. There has been much discussion about the correct 

level of the discount rate to be applied in optimisation models, taking into account time 

preference, income redistribution and the utility of consumption (Schelling 1995). Since 

the model includes behavioural changes to a certain extent different discount rates can 

apply to different agents. 

Discounting theories can be differentiated into a social and private perspective. The first 

one is an ethical approach and the second is the discount rate people actually apply in 

their daily decisions. Social discount rates are in general between 2-4% compared to 

private discount rates, which start at about 5% (AEA Energy & Environment et al. 

2008, p. 18). The social discount rate sums up the pure rate of social time preference 

and the growth rate of per capita consumption, while the private perspective takes into 

consideration the market rate of return to investments (see e.g. Nordhaus 1994, p. 154; 

Markandya et al. 2001, p. 466; Halsnaes et al. 2007, p. 136; Stern 2007, p. 43ff). 

Another uncertain factor is the emission path or CO2 tax path over time. Since a MAC 

curve is in most cases a static snapshot of one year, the mitigation costs depend on 

emission restrictions in previous periods and also in later periods when the model 

possesses perfect foresight. Thus, the model results are influenced by the implemented 

CO2 tax profile over time, i.e. if it is flat, growing linearly or growing exponentially, for 

example with the discount rate. 

Finally, energy transmission and distribution capacities can be uncertain. It is not certain 

that electricity transmission lines can be expanded as it is necessary for the integration 

of renewable energy sources into the electricity grid and for an envisaged electrification 

of end-use energy demand. 

It is not only important to consider different areas of uncertainty but as well their 

interactions. There exist several interactions between the different areas in the form that 

a change of one input datum is likely to affect another one. Examples are that discount 

rates tend to be higher in an environment of high economic growth or that different 

fossil fuel prices, such as crude oil and natural gas, are correlated. These interactions 

between uncertainties can be handled in a model environment if correlations among 

uncertainties are taken into account by the modeller when specifying uncertainty 

profiles for various variables. This approach requires, however, the specification of 
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dependent probability distributions or covariance matrices, which proves to be very 

difficult. 

Some uncertainties have not been considered as they are beyond the scope of MAC 

curves. This covers uncertainties about climate predictions, about impacts of climate 

change and uncertainties related to the effectiveness of policy instruments and possible 

revenue recycling. The modelling framework assumes that policy instruments are 100% 

effective, so that no implementation barriers are considered. 

Model uncertainty 

Not only uncertain input variables represent a source of uncertainty for the generation of 

MAC curves, but also the applied methodology. On the one hand, one has to mention 

the uncertainty introduced by relying on a specific model type, in the context of this 

thesis an energy system model. A linear optimisation approach is used with an objective 

function that maximises total producer and consumer surplus. The results from such an 

approach can be significantly different from other approaches, such as simulation 

models, non-linear approaches or different objective functions. Furthermore, the 

methods used to calibrate and validate the model equally fall in this category as a source 

of uncertainty. Additionally, relatively simple model structures, such as those used for 

expert-based curves, which do not possess the system character and assess each 

abatement measure individually have already been used. These models are not able to 

capture uncertainties related to interactions between abatement measures. In summary, 

there exist many different possible alternatives to model the relationships within the 

energy system, of which only one has been implemented in the model used for this 

thesis. 

On the other hand, the applied decomposition method is a further possible source of 

uncertainty. Differences in methods result from the fact that each decomposition is a 

different approximation of the underlying curvilinear integral, whose shape is not 

completely known. Section 4.3.3 presented nine methods, which can be used to 

decompose the results of the energy system model. Section 4.3.4 presented a 

decomposition example for a typical application in the context of abatement curves. The 

similarity of decomposition methods for this example was found to be striking. Except 

for the relatively crude methods, Laspeyres and Paasche index, the results were found to 

be within a range of two percent. Nevertheless, the choice of the decomposition method 
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is subject to the analyst’s view and there exists no clearly superior alternative. Thus, 

decomposition analysis is a further source of uncertainty, which is, nonetheless, limited 

in comparison to energy system model uncertainty or the uncertainty related to input 

variables. 

User uncertainty 

The uncertainty related to the user covers the uncertainty related to experts providing 

input assumptions for a model, uncertainty in relation to the analyst that uses the model 

and uncertainty in results communication. Both, expert-based and model-derived 

abatement curves are based on expert information as inputs to their assessment. 

Especially, expert-based curves rely on the direct information from experts concerning 

the abatement cost and abatement level of individual abatement measures. This 

information will be biased, can have limited value and will be influenced by subjective 

errors, such as those discussed in the previous section 5.1.1. But also energy models are 

subject to uncertainty concerning data selection, while the chosen data itself can be 

subjective and biased in the same way as expert information described above. 

The modeller is a possible additional source of uncertainty. He/she is involved in 

formulating relationships within the model, imposing user constraints and presenting the 

results. Depending on the experience and expertise of the modeller, the model can be 

incorrectly specified without being known to the wider audience. The last example of 

uncertainty in this category lies in the way results are presented. It can be influenced by 

imprecise language or by an unclear graphical display, as well as different values and 

attitudes of the analyst and the decision maker. 

5.2 Methods to address uncertainty in energy modelling 

The previous sections have explained different kinds of uncertainty and highlighted that 

the construction of a MAC curve is subject to deep uncertainties. Although there is a 

need to address uncertainty, many modelling efforts are still predominantly 

deterministic and the results are presented without a clear concept on the implications of 

uncertainties for practical policy making. Since one of the goals of this thesis is to 

assess the robustness of MAC curves, this section presents different methods to address 

uncertainty in energy modelling. 
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Uncertainties need to be addressed because a failure to do so invites potential 

unreliability of the results with a consequential loss of confidence and trust in the 

model’s usefulness. Consideration of uncertainty can reduce uncertainty by identifying 

limits in the variable of interest, but also help decision makers to become aware of 

arguments for the flexibility of policy options in the case where uncertainties are bigger 

than previously assumed. 

The different techniques, which are presented in this chapter, do not have to be regarded 

separately, but can be used in combination. Sensitivity analysis, for example, can serve 

as a starting point for probability-based analyses by finding the most sensitive input 

factors so that in a next step probability analysis can focus on those variables. 

Most of the presented methods concentrate on data uncertainties, while only a few 

address the structure of the model itself and there are no structured approaches toward 

user uncertainty. Some researchers have tried to classify existing methods that address 

uncertainty in energy modelling. Kann et al. (2000) base their classification around the 

concept of stochastic dynamic optimisation. Rotmans et al. (2001, p. 120f) give an 

overview of methods of uncertainty analysis in terms of types of uncertainty, including 

sensitivity analysis, probability-based methods, scenario analysis and hedging-oriented 

methods. Voß (2009, p. 164) distinguishes methods for the treatment of uncertainty into 

those that tackle uncertainties during data collection, model building and model 

application. For the latter category, methods are further separated into those that look at 

single input variable and those that look at the general conditions. 

5.2.1 Sensitivity analysis 

The goal of sensitivity analysis is to identify those variables and parameters that have 

the biggest influence on the behaviour of the considered system and to quantify their 

influence on model outcomes. Consequently, sensitivity analysis examines the 

sensitivity of relationships between variables and parameters of a model and their 

repercussions on the solution of a problem. Saltelli et al (2000, p.3) define sensitivity 

analysis as the study of how the variation in the output of a model can be apportioned to 

different sources of variations. Sensitivity analysis can also estimate the relative 

importance of uncertain variables. Mechanism reduction is another possible goal for this 

technique, which leads to the elimination of insignificant factors from the final model. 
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An example for sensitivity analysis would be to study the influence of a variation of the 

oil price on the CO2 emission level. 

In most cases, single-valued sensitivity analysis, also called one-at-a-time (OAT) 

variation, is performed, which involves setting a single variable at different values 

(usually to extreme points) while holding all other variables at their previous level. In 

more detail, the steps of sensitivity analysis comprise the determination of the input 

factor and the definition of variation ranges for each input factor. Many models contain 

a large number of uncertain input factors that makes it impossible to vary them all. 

Therefore, the analyst has to limit the number of variables included in the sensitivity 

analysis to the most interesting variables. In general, this is based on the analyst’s 

choice, which can be biased and therefore exclude potentially interesting factors. 

Further, the model is evaluated, i.e. an output range is created and lastly the influence of 

each input factor on the output variable assessed. Sensitivity analysis is widely used in 

energy modelling as an option to assess uncertainty. Examples can be found in Ha-

Duong et al. (1997), Bosetti et al. (2006) and van Vuuren et al. (2007). 

The simplicity of sensitivity analysis comes at the expense of several shortcomings. 

Like most of the other methods in this section, sensitivity analysis assumes that the 

model structure is correct and adequate to address the problem at hand. Specification 

errors are not measured. The extreme points chosen for the sensitivity analysis might 

not reveal the complete uncertainty involved, especially if maximum divergence in 

output variables lies in the interior of the range (Kann and Weyant 2000, p. 35). These 

values are dependent on a subjective bias of the modeller. Finally, OAT sensitivity 

analysis focuses on one variable, neglects mutual interactions between uncertainties in 

input variables and thus cannot cover the entire output spectrum (see Saltelli and 

Annoni 2010). 

If one wants to convert a deterministic model into a probability-based one, sensitivity 

analysis can be helpful to select key uncertain variables and understand the robustness 

of the model outcome to variations in input variables. The same can be applied to 

stochastic programming, i.e. finding the variables that are most interesting for stochastic 

analysis. In contrast to probability-based methods, stochastic programming allows for 

the determination of optimal policies at more than one point in time. 
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To conclude, sensitivity analysis does nothing more and nothing less, than providing 

insights into the role of uncertain variables and initial values in model runs. 

5.2.2 Scenario analysis 

A scenario is a particular situation that can be described as a vector of values for each 

input variable (Morgan et al. 1990, p. 174). These scenarios must be a harmonised, 

interesting and meaningful combination of different assumptions about possible future 

states of the world. Scenario analysis should improve the understanding of the complex 

interactions of the considered system and in some cases stretch the thinking of the 

audience by generating unexpected combinations of possible events. Hughes (2009, p.3) 

summarises that scenarios are intended to improve robust future decision making, 

identify opportunities for intervention and strengthen consensus building. 

The use of scenarios can be traced back to military planning and has been around for 

more than 30 years in strategic business planning (Bradfield et al. 2005). In the climate 

change mitigation context, the Intergovernmental Panel on Climate Change (IPCC) has 

used emissions scenarios as a central component of its work since 1990. In this year, the 

IPCC explored four emissions pathways, including a business as usual future and three 

policy scenarios. In 1992, the existing scenarios were updated and extended by two 

other scenarios to present 6 different scenarios, which considered uncertainties in 

economic growth, population and technology (Legget et al. 1992). These scenarios were 

used for the subsequent assessment reports by the IPCC. 

In 2000, new scenarios were developed through one of the best-known exercise, the 

Special Report on Emissions Scenarios (Nakicenovic and Intergovernmental Panel on 

Climate Change 2000), which defined four representative scenarios for the IPCC. It 

defines scenarios as alternative images of how the future might unfold and characterises 

them as an appropriate tool to analyse how driving forces may influence future 

emissions outcomes and to assess associated uncertainties (Nakicenovic and 

Intergovernmental Panel on Climate Change 2000, p. 3). In contrast to previous efforts, 

the scenarios were complemented by narrative storylines of the future that should 

facilitate scenario interpretation. In this context, six different modelling approaches 

were used, each relying on similar assumptions about driving forces. 

The most recent scenarios for climate change research have been developed in 2008 for 

the IPCC (Moss et al. 2008) and should be applied during IPCC’s fifth assessment 
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report. Four Representative Concentration Pathways will be developed in a parallel 

process that does not start with socioeconomic conditions but is based on radiative 

forcing targets (Moss et al. 2010). The four pathways can be achieved by a diverse 

range of socioeconomic and technological developments. An overview of international 

and UK low carbon scenarios can be found in Hughes et al. (2009). 

Scenario building generally includes several steps. In general, the process starts with the 

identification of the scenario user in order to adapt the scenarios to the specific 

audience. The acceptance with the scenario user is increased if a scenario is grounded in 

the present and is then clearly linked from the present to future situations, e.g. via 

storylines. The latest step is usually the communication of scenarios to potential users 

(Hughes 2009). 

A significant problem in scenario analysis is the coordination of the different input 

variables. The input assumptions have to be made mutually consistent so that they do 

not contradict themselves, e.g. assure consistency among the assumptions for different 

fossil fuels. In addition, they need to be as exhaustive as possible to include most 

uncertain states. There is a possibility that a subjective probability bias will be attached 

to scenarios in the absence of quantitative uncertainty analysis. Finally, a particular 

selection of scenarios can influence the understanding of decision makers in the way 

that they create a subjective likelihood of an outcome and explicitly bound the 

probability of the outcome. If, for example, the global population estimation in all 

scenarios varies between 8.7 and 11.3 billion people in 2050, this presumes that 

anything outside this range is very unlikely. 

Scenario analysis does not only play an important role as a method of uncertainty 

analysis. It is also one of the few ways in which model structure uncertainty can be 

investigated by comparing the outputs of several models. Usually in model comparison 

projects, the model analyst is relieved from the task to define the most important inputs. 

Instead, all models are provided with broadly identical input assumptions by the 

organisation that performs the model comparison. 

5.2.3 Probability-based methods 

Probability-based methods are an extension of sensitivity analysis approach in the sense 

that a predefined number of realities of how an input variable will evolve over time is 

no longer given, but a probability distribution describes the indeterminacy in its future 
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evolution. Based on the probability of an input factor, uncertainty propagation creates a 

distribution function of the output parameter. Thus, probability-based methods give an 

indication of the likelihood of outputs dependent on the likelihood attached to uncertain 

model inputs (Rotmans and van Asselt 2001, p. 117). 

The simplest form of implementation, called Monte Carlo method, involves specifying a 

distribution (discrete or continuous) and a range on an input variable, e.g. the 

development of the demand for residential heating, and then propagating this 

uncertainty through to the model output. For this purpose the model is run many times 

via sampling from the probability distribution. Sampling means that values are drawn at 

random from the specified distribution. The evaluation of the resulting output 

distribution is the last step. This distribution is, however, only an approximation of the 

exact distribution. An extension of this approach is the use of joint distributions for 

more than one input variable. 

The appeal of Monte Carlo sampling is that its computational complexity is linear in the 

number of uncertain input variables in contrast to discrete probability methods (Morgan 

et al. 1990, p. 199). Moreover, there is no need to discretise continuous distributions, 

since the values can be directly taken from a continuous distribution. 

Concerning the sampling process, i.e. how random numbers are chosen out of a given 

distribution, broadly two main methods can be compared: random sampling and 

stratified sampling. Random sampling is also called pseudo-random because of the fact 

that the random numbers are machine-generated by a deterministic process and are 

therefore not random in a strict sense. The advantage of this method is that it produces 

unbiased estimates of the mean and the variance. 

Of particular importance during the sampling process is not primarily the randomness of 

the sample but a resulting equidistribution property of data points in the distribution. 

This expresses the need for a better and more complete coverage of the sample space of 

the input factors than it is possible with random sampling. Stratified sampling can 

improve the coverage by dividing the input space into strata. Input values are then 

obtained by sampling separately from within each stratum instead of the whole 

distribution (Morgan et al. 1990, p. 204). A widely used method for stratified sampling 

is Latin Hypercube sampling (LHS). 
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For LHS each uncertain input variable is divided up into equiprobable intervals or strata 

and a single value is sampled at random from within each of these intervals according to 

the distribution function. This step is repeated as often as required. The division of the 

input space assures that the sampled data points are more evenly spread out, so that the 

sample from each input represents the mean and variance of the distribution more 

accurately. This is especially the case if the model is roughly linear and if output 

uncertainty is dominated by only a few input variables. Problems can occur for models 

that exhibit periodicity with respect to an input (Morgan et al. 1990, p. 205). 

Next to the two categories discussed above, there exist also quasi-random sampling, 

which is characterised by an enhanced convergence rate, and importance sampling. The 

latter technique generates more sample points to illuminate certain aspect of special 

interest and fewer in other parts in the case that the analyst is more interested in some 

parts of the output distribution. 

Although Monte Carlo analysis gives a distribution of an output variable and insights 

into the relative importance of different input variables, it possesses several drawbacks. 

Ultimately the accuracy of the outcome distribution depends on the accuracy of the 

probability density functions of the uncertain input variables. In most cases, neither 

mean nor range and probability distribution are known, which makes it very difficult to 

choose a meaningful distribution. Nordhaus (1994, p. 144) states that the definition of a 

distribution function of uncertain variables in this context sometimes resembles “fine 

arts more than high science”. In general, it can be said that the selected range has a 

bigger influence compared with the assigned distribution (Saltelli et al. 2000, p. 21). 

This is because high impact, low probability events can be important to consider. 

Another problem is the accuracy of the method. This can be addressed by increasing the 

sample size, which again leads to another problem. The number and dimensionality of 

uncertain variables can render Monte Carlo analysis impractical to use. Today’s energy 

models rely on many uncertain input variables, which possess a large dimensionality 

and show mutual interactions. The PAGE2002 model, for example, has 19 unrelated 

variables with independent distributions. To have, on average, at least one iteration from 

the most unlikely quintile (5%) for all 19 variables, it would be necessary to run the 

model 20 trillion times (Stanton et al. 2008, p. 7). This makes it basically impossible to 

illuminate worst case situations in most variables at the same time. 
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In addition, it is not always simple to identify policy relevant variables via uncertainty 

propagation. An outcome variable, such as CO2 emissions, can vary greatly with 

changes in an input variable. But this pattern can be exactly the same across policy 

alternatives, so that this method will not necessarily identify the policy relevant 

variables and parameters. An alternative is to vary certain policy-relevant parameters, 

such as a CO2 tax or a renewable share as an additional constraint in the model. 

A last problem is how to assess the correlation between different uncertain input 

variables and an according representation in the probability function. It is very difficult 

to specify joint distributions due to the unknown extent of correlations between 

variables. In the presence of significant interdependencies among variables, 

uncertainties can be grossly misrepresented if an independent distribution is specified 

for each variable. 

Examples for an application of Monte Carlo analysis in energy modelling are the 

ICAM, EPPA, MERGE and PAGE model (Dowlatabadi 1998; Webster et al. 2002; 

Kypreos 2008; Hope 2009). In addition, the Stern Review (Stern 2007, p. 229) has been 

underpinned by a probabilistic model developed by Dennis Anderson. Further studies 

that have employed uncertainty propagation as a tool of uncertainty analysis can be 

found in an overview compiled by Peterson (2006, p. 14). 

Another concept used in this context is rank transformation. This is a procedure where 

data points for all input factors are replaced with their corresponding ranks 1 (highest 

value) to N (lowest value). After generation, the observed outcomes are also replaced by 

their corresponding rank. In a next step, one is able to perform a regression analysis, 

where the outcome variable is the dependent variable and the input variables are the 

independent variables. Based on this regression a partial rank correlation coefficient can 

be calculated that measures the specific contribution of each uncertain input to the 

output uncertainty. The difference in the coefficient of determination (R
2
) between the 

transformed model and the one based on raw data indicates the nonlinearity of the 

model. Rank transformation can be particularly useful for regression analysis in a highly 

nonlinear model. One example where rank transformation has been employed, is the 

PAGE model (Hope et al. 1993, p. 336). This method can also serve to identify 

conceptual errors if the estimated sensitivities possess the wrong sign (see e.g. Kleijnen 

1994, p. 327). In principle, a ranking of uncertain inputs is also possible based on 
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sensitivity analysis, but this does not enable the analyst to perform a meaningful 

regression analysis due to the lack of sufficient data. 

A limitation to this approach is that an altered model is being studied, so that possible 

sensitivity measures give information about a different model. Through the rank 

transformation the importance of higher-order interactions are decreased at the benefit 

of first-order terms (Saltelli et al. 2000, p. 26). This opens up the possibility to overlook 

the influence of interactions in an analysis based on ranks. 

5.2.4 Sequential decision-making under uncertainty 

Sequential decision making under uncertainty differs from the previously discussed 

methods in the sense that optimal policies are determined at more than one point in time 

taking into account learning. Manne et al. (1991, p. 545) have described uncertainty 

propagation in optimisation models as “learn now then act” and sequential decision 

making in contrast as “act now then learn”. While all the input variables are known in 

advance for uncertainty propagation, not all information is available from the beginning 

of the model period during sequential decision-making so that the model has to “act” 

and later adapt to new information when uncertainty is resolved. It is assumed that there 

are one or more points in time in which policy makers make decisions to react to 

outcomes and that their knowledge increases with time. 

Sequential decision-making under uncertainty is implemented in energy models via 

stochastic optimisation. Two methods can be distinguished to convert problems into 

solvable stochastic optimisation problems: decision tree and mean-variance modelling. 

The latter one is based on Markowitz’ mean-variance method (Markowitz 1952), where 

parameters are substituted with a distribution function weighted by a mean and a 

variance in a linear optimisation approach (for an example see e.g. Yu 2003). 

The most common way of applying two-stage stochastic programming is via decision 

trees. The analyst has to define the uncertain variable(s) and define how many 

alternatives, i.e. branches, should be considered for the variable(s). Those alternatives 

are either states of the world or a new distribution with a different mean and/or with a 

reduced variance. In the next step, probabilities for each branch, and a period when 

uncertainty is resolved, have to be defined. In the case of multiple-stage stochastic 

programming, where uncertainty is not completely resolved at one point in time, 
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multiple uncertainty resolution times are determined. Finally, the model is solved to 

obtain results on optimal decision making under uncertainty. 

In this context, one can differentiate between two different sets of decisions. On the one 

hand, a number of decisions are taken before the resolution of uncertainty, where the 

period is called the first stage or hedging period. On the other hand, a number of 

decisions are taken after the resolution of uncertainty; the period associated with those 

decisions is called second stage or recourse period (Birge and Louveaux 1997, p. 52). 

The set of second stage decisions can be different depending on the outcome, while the 

set of first stage decisions cannot. During the first stage a strategy composed of 

contingent actions is followed that takes into account all probable outcomes and their 

probabilities. 

The main goal of stochastic programming is to identify hedging strategies, which 

balance the risks of waiting with premature action (Rotmans and van Asselt 2001, p. 

118). Hedging can be regarded as a strategy that builds a contingency plan and responds 

to opportunities and dangers as they are resolved (Kann and Weyant 2000, p. 38). This 

is in contrast to a strategy that only takes the average of different policies, which are 

optimal for different states of the world. Thus stochastic modelling can give insights 

additional to the comparison of several runs with a deterministic model. An illustrative 

example is the stochastic definition of a CO2 reduction target, where the model chooses 

an emission path in the first stage from where it is always possible to meet all specified 

final targets. Deliberations include the trade-off between waiting to learn more versus 

higher damage or waiting to learn more versus beneficial effects from induced 

technological learning. In addition, stochastic programming can yield interesting results 

on robust technologies, i.e. those that are chosen during the first stage of the 

optimisation problem. Furthermore, after the resolution of uncertainty the recourse 

strategy can reveal interesting insights on the flexibility of the energy system if an 

unlikely event occurs. It could be interesting, e.g., to see what are the consequences if 

an investment opportunity into a low-carbon technology opens up after uncertainty is 

resolved. 

Peterson (2006, p. 11) summarises several models, which have applied sequential 

decision-making under uncertainties, with Peck et al. (1993) and Manne et al. (1991) 

being one of the first to apply stochastic programming to an energy model. 
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The expected value of perfect information (EVPI) is a mathematical value and is often 

used in the context of stochastic programming to determine the value of having the 

information about the uncertain variables available from the start. More precisely the 

EVPI is the difference between the expected value obtained if the state of the world is 

known before a policy must be adopted and the expected value obtained if a single 

policy must be adopted and then applied across all possible states of the world. The 

EVPI measures the maximum amount a decision maker would be ready to pay in return 

for complete information about the development of the concerned uncertain variable(s) 

(Birge and Louveaux 1997, p. 137). Peck et al. (1993, p. 94) noted in this context that 

the value of information for two or more variables if treated together can be bigger than 

the sum of all variables at once. 

Drawbacks of this concept are that the value of information depends largely on the 

dispersion of the distribution that is assigned to a variable, which is a subjective 

estimation. Usher (2011) found the EVPI to be at a maximum when uncertainty is 

maximised in the way that all possible outcomes have the same probability. Although 

the EVPI gives a precise number for the availability of information, this is based on 

subjective assumptions. A value of information for an individual input variable is most 

likely not the information decision makers are looking for. They are more interested in 

joint values, which are difficult to obtain due to complex calculations and correlations 

among variables. 

The concept of sequential decision-making under uncertainty comes with several 

shortcomings. In general, energy modelling comprises a very large number of 

uncertainties, which cannot all be taken into account due to incomplete knowledge and 

computational limitations. As the number of branches increases exponentially with the 

number of uncertain inputs, the analyst needs to limit the number of uncertain variables 

that are considered. This makes an exhaustive representation of uncertainty impossible. 

In addition, stochastic modelling only assumes a few variables to be uncertain, whereas 

others are assumed to be fully known. Thus, results reflect the certainty associated with 

deterministic variables that can lead to a preference for a known technology 

independent of the uncertainty characterisation of stochastic variables. 

Concerning the assessment of variable uncertainties, stochastic programming suffers 

from the same problem as uncertainty propagation. While in some cases it is possible to 

determine for certain variables a range, information on the distributional shape is 
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generally not available. This makes the analyst’s choice of probability determination 

arbitrary. Further, the extent of possible correlations among uncertain variables is not 

known. A survey among experts, an expert elicitation, is a possibility to obtain a 

meaningful uncertainty profile. 

Stochastic programming using the decision tree formulation with states of the world 

suggests that there is one point in time in the future, where perfect information becomes 

available all at once. Yet, this is not the case, instead there is a continuing process of 

updating best estimates over time as information is developed (Peck and Teisberg 1993, 

p. 86). Reducing decision-making to every 20 years or so is an oversimplification of the 

process, since adjustments to policies are made continuously as information is updated. 

In addition, released information is obstructed by noise and imperfect understanding of 

social and technological dynamics, so that it cannot be considered to be perfect. 

5.2.5 Model-related uncertainty methods 

All of the methods presented so far deal with the treatment of data uncertainty, while 

none focuses on uncertainties relating to the model structure. Nevertheless, the model 

structure is of particular importance for the validity of the reported outcome. A model 

can be at best a good approximation of reality, but it can never be exact and so the 

treatment of data uncertainty can lead to a false confidence in the model. 

One of the most frequently applied methods to treat the uncertainty in model 

development and its structure is the peer review of models. Usually after having 

finished the early stages of model development, the model is handed over to other 

researchers in the same area for closer inspection. A problem with this approach is that 

model structures end up to be very similar and possibly not optimal due to an existing 

consensus among experts in one field. Regardless of peer review, each model 

development should start by examining previous models and their critiques and hence 

synthesise the most useful elements into the new model. 

Another approach is to compare the outcome of similar models when they are based on 

broadly the same input assumptions. Excluding uncertainty relating to input data, it is 

possible to attribute the remaining differences to the respective model structure and 

thereby characterise the uncertainty. A drawback of this approach is that the 

harmonisation of input assumptions is very often limited to only a few assumptions. The 

first model comparison study was undertaken by the Energy Modeling Forum in the 
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year 1977 (Energy Modeling Forum 1977). The latest one of the Energy Modeling 

Forum, EMF-22, which focused on climate change mitigation, included a total of 17 

models (Clarke and Weyant 2009). Other model comparison projects have been the 

Innovation Modeling Comparison Project (Edenhofer et al. 2006), a comparison project 

by the U.S. Climate Change Science Program (Clarke et al. 2007) and ADAM’s 

Modeling Comparison Project (Edenhofer et al. 2010). 

In order to address the uncertainty in relation to the choice of algorithm the modelling to 

generate alternatives (MGA) technique can be used. MGA uses the optimal model 

solution (cost minimisation for example) as a starting point and explores the 

surrounding feasible area via a different objective function. The purpose is to create 

maximally different alternatives that each lie in the vicinity of the previous optimal 

solution. The optimal value is relaxed by a specific margin and integrated as an upper 

bound into the model. The model is then run with a reformulated objective function to 

generate different alternatives (Brill et al. 1982, p. 222f). In this way, it is possible to 

account for some previously unmodelled objectives. Disadvantages are that the extent of 

relaxation is arbitrary and that no probabilities are attached to the alternatives as it is the 

case in scenario analysis. An application of this technique for the electricity sector was 

presented in DeCarolis (2010). 

Lastly, emulation is a further technique to investigate model uncertainty. Emulation 

means in this context the imitation of an energy model by another one. This can be of 

use if one wants to emulate a large and complex model with a smaller, faster and easier 

to use model. Thereby one can reduce efforts needed to accomplish diverse analyses, 

such as energy strategies and costs of climate change mitigation. Emulation involves 

generally several steps of model adaptation, like the revision of the regional structure 

and the harmonisation of exogenous drivers and model-specific parameters. An example 

can be found in Mensink (2000). 

5.2.6 Other approaches 

Less common methods to treat uncertainty are mentioned in this section. 

Decision analysis combines analytical techniques aimed at summarising available 

information from different sources to help policymakers assess the consequences of 

various decision options (Toth et al. 2001, p. 606). The goal is to extract optimal 

decisions starting from a set of given alternatives. An example of decision theory is the 
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report by Willows et al. (2003). The authors present guidelines to decision makers to 

take account of the risk and uncertainty associated with future climate change. The 

decision making process is characterised as a circular and iterative process, which is 

divided into eight key stages, comprising problem structuring, problem analysis, 

decision making and post-decision action. Decision analysis does not only consider the 

modelling outcome but weighs uncertainty depending on how much it could affect the 

decision (Morgan et al. 1990, p. 197). 

Another approach, which comes close to the hedging strategies approach of stochastic 

programming, are minimax regret strategies. In contrast to stochastic programming it 

does not maximise or minimise a certain criterion, but it minimises the maximum regret, 

where regret is defined as the difference between the cost of a strategy and the least cost 

achievable under perfect information. The results depend only on the possible states of 

the world and not on the likelihoods of the possible outcomes. It therefore avoids the 

problems associated with measuring uncertainties. An example of minimax regret 

strategies for emission reduction in Québec with MARKAL can be found in Loulou et 

al. (1999). 

The fuzzy system approach tries to capture the imprecision associated with decision-

making and represent human judgement as fuzzy rules. The boundaries between an 

acceptable and an unacceptable outcome are not considered as sharp, but as fuzzy. The 

comparison of a scenario with an objective is translated into the comparison of two 

fuzzy numbers. This enables the decision makers to see whether one is near or far from 

the criterion. An example where fuzzy decision making has been applied in the context 

of air pollution can be found in Fisher (2003). Problems with this approach consist in 

converting uncertainties into fuzzy sets (Ascough II et al. 2008, p. 391). 

Bayesian updating techniques have also been used in the context of energy modelling. 

Tschang et al. (1995), for example, used a Bayesian updating procedure, where input 

data distributions and corresponding output observations are used to improve the quality 

of the input distribution. This updating process within the framework of a Monte Carlo 

analysis improves the knowledge of the outcomes by ensuring that the input values, 

which are linked to the more likely outcomes in a predefined window, are made more 

influential. Thus, in contrast to sequential decision-making, this technique updates 

uncertainty (e.g. in the form of a distribution) with new information, resulting in a 

conditional probability, i.e. that a value for another variable is given. 
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The concept of option values has also been used to model future learning in the context 

of climate change. A real option represents the right, but not the obligation, to 

undertake a decision, for example to emit further CO2. The real value is associated with 

the preservation of the current climate regime. An application example for renewable 

power technologies can be found in Kumbaroglu et al. (2008). 

Stochastic differential equations (SDE) allow for the classification of the propagation 

of uncertainty associated with the model parameters in terms of their dynamics and the 

magnitude of the interactions. In contrast to Monte Carlo simulations, uncertainty is 

assessed by numerically solving explicit equations. Ito calculus is used for the 

interpretation of SDEs to reformulate the system into the stochastic dynamical system. 

An application to an integrated assessment model can be found in Zapert et al. (1998). 

5.3 Approach to uncertainty for MAC curves using an energy 

system model 

Since a key aspect of this thesis is to investigate the influence of uncertainty on MAC 

curves, a variety of methods to address uncertainties were presented in this chapter. This 

section discusses the usefulness of the different approaches in the context of energy 

system modelling and carbon abatement cost curves. 

Data uncertainty 

Of the four above-mentioned methods, which deal with data uncertainty, it is possible to 

use three to examine uncertainties related to MAC curves, while uncertainty 

propagation is difficult to apply. In order to consider a sufficient portion of the input 

range for uncertainty propagation, it is necessary to run the model at least several 

thousand times. Since the UK MARKAL model takes about two minutes to run on a 2.1 

GHz dual processor, this would require several days if not weeks to obtain useful 

results. An alternative would be to use a highly simplified model derived from the UK 

MARKAL model to run it in a probabilistic mode. This would, however, alter the model 

structure and therefore not only affect data uncertainty. Furthermore, one of the goals of 

this thesis is to incorporate technological detail into the graphical representation of a 

MAC curve, which would no longer be feasible with a highly simplified model. 

The advantage of using stochastic programming over simple sensitivity analysis is the 

possibility to consider hedging strategies and robust technologies. This is associated 
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with the difficulty of defining the number of outcomes and probabilities for different 

developments, such as technology costs or availability dates. Further, due to 

computational issues the number of parameters treated stochastically in parallel is 

limited and not all parameters can be treated in a stochastic way.  

The easiest method to examine uncertainty without the need to specify probabilities is 

sensitivity analysis. It is judged to be the most effective tool in this context as it can 

highlight the uncertainty for abatement cost curves associated with a specific 

technology, fuel price, behavioural aspects or time dynamic issues. Thus, it reveals how 

robust the MAC curve is to a change in a specific model input. Sensitivity analysis is 

considered to yield relevant insights for a manageable amount of work and time 

involved. This is carried out in chapter 6 to 9. In order to challenge the results from the 

sensitivity analysis, one scenario is run with the stochastic version of the UK MARKAL 

model in chapter 9. This relaxes the assumption of perfect foresight and is therefore 

potentially an appropriate tool to reveal additional insights. 

Uncertainty analysis should focus on those parameters and input variables that are 

important and least defensible. However, as many assumptions about the future 40 years 

are uncertain, but time for the analysis is limited, a judgement about the set of 

parameters has to be made. Table 5.2 presents the variables and parameters that will be 

considered within the scope of a sensitivity analysis based on the earlier discussion in 

section 5.1.2. 

Table 5.2: Set of uncertain variables and parameters 

Category Specific examples 

Time-dynamic aspects 

 

Discount rate 

Emission pathway / carbon tax pathway 

Demand Energy service demand development 

Own price elasticity 

Technologies Technological learning 

Technology costs 

Technology potential 

Energy prices / Resource potential Crude oil 

Natural Gas 

Coal 

Biomass 

 

Time-dynamic aspects should be examined since this has been largely neglected in 

previous studies and is of particular importance in a perfect foresight model. MAC 

curves generally only include the abatement effort during one year and consequently 
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depend on the abatement effort in earlier and later time periods. Demand uncertainty is 

a next category to be studied since previous studies have found that the baseline 

assumptions concerning the energy service demand development can be more 

influential for marginal abatement costs than a mitigation target (Akimoto et al. 2004). 

Technological learning, associated costs and technology potential will be included in the 

sensitivity analysis in order to quantify the influence of breakthroughs or failure on the 

MAC curve. Finally, energy prices are in the focus of much uncertainty considerations 

and their development as well as estimates about resource potential is particularly 

uncertain. 

Lastly, to capture the interactions or a set of variables and form a scenario to examine 

the variables’ combined effects on the MAC curve, it is important to treat the 

uncertainty originating from several input variables together. Scenarios will be 

considered for the parallel variation of all fossil fuel prices, of energy-service demand 

levels, of the cost of several energy technologies, and of various technology potentials.  

Model uncertainty 

In theory, model uncertainty can be illuminated by comparing two or more models with 

similar input assumptions. This thesis is based on the energy system model UK 

MARKAL, which is one model from the MARKAL/TIMES model family. One 

possibility to quantify model uncertainty is to use a different model from this model 

family or a completely different energy model. The model structure of other 

MARKAL/TIMES models is comparable to UK MARKAL as they are based on the 

same or a very similar model generator. The additional insights generated by using a 

different model from the same model family are therefore judged to be limited. The 

situation when using a completely different energy model is certainly different in the 

sense that the model structure would differ more. This would enable more insights into 

the influence of the model structure on the model output. Nevertheless, it is difficult to 

obtain such a model and it would take a significant amount of time to get familiar with 

the model in order to use it for the purpose of this thesis. 

A literature review of other studies using energy models to derive MAC curves can help 

in this context to identify model-specific influences. Own results can be compared along 

major sources of uncertainty and uncertainty ranges with existing studies. This 

comparison is complicated by the fact that MAC curves are presented for varying points 
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in time, for a specific sector and with partly very different exogenous inputs, which can 

account for the majority of the observed discrepancy. Differences in assumed input 

assumptions would dilute the influence of different model structures on the observed 

uncertainties. 

User uncertainty 

Of the three uncertainty types – data, model and user uncertainty – user uncertainty is 

certainly the most complicated to address in a structured manner. Concise language and 

more importantly adequate graphical illustration should help to reduce any uncertainty 

in communicating research results. It is important to present uncertainty in the best 

possible way since judgement under uncertainty is subject to common fallacies, such as 

anchoring to a given starting point or a subjective probability distribution. Within this 

thesis, model-derived MAC curves will be presented in the same way as expert-based 

curves. Decision makers are mostly familiar with this kind of representation, which 

should facilitate understanding. Representing abatement measures in this way, where 

the height stands for the abatement cost, the width for the abatement amount and the 

colour for the specific abatement measure, is intended to avoid any misunderstandings. 

Unfortunately, uncertainty cannot be represented in a simple manner, for example with 

error bars, since the ranking of abatement measures can change. Therefore each 

sensitivity case needs to be presented in a separate illustration. 
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6 ELECTRICITY SECTOR MAC CURVES 

This chapter is the first results chapter and discusses the economics of carbon emissions 

reduction in the UK electricity sector. Chapter 7 presents MAC curves for the transport 

sector and Chapter 8 discusses the economics of emissions reduction in the residential 

sector. Chapter 9 looks at CO2 emissions reduction from an energy system‟s perspective 

and uses the stochastic version of the UK MARKAL model to generate additional 

insights.  

The electricity sector is a key element in an economy-wide decarbonisation since 

electricity is used in all end-use sectors and low-carbon electricity has the potential to 

extend to electric vehicles in transport and electric heat in buildings. In addition, the 

power sector is currently a major source of emissions in the UK with 210 Mt CO2 in 

2008 or 32% of all energy-related CO2 emissions (DECC 2010). Major efforts will be 

necessary to bring down the average emissions from today‟s 540 g CO2/kWh. The next 

two results chapters discuss MAC curves for the transport and residential sector. The 

service sector is not considered as the abatement options are relatively similar to the 

residential sector. The industry sector is, despite its importance, not considered due to 

the diverse structure and the difficulty to represent the abatement structure in the 

necessary detail. 

This chapter exhibits MAC curves for the electricity sector with different input 

assumptions, which are derived with the UK MARKAL model and decomposition 

analysis. It helps to expose the technological structure behind emission mitigation and 

sheds light on the uncertainties related to an electricity sector MAC curve via various 

sensitivity cases. In this way it addresses issues related to data uncertainty (see chapter 

5.1.2) in a comprehensive way. The sensitivity analysis of the electricity sector is 

focused on the year 2030 as an important medium-term target for emissions reduction. 

The CCC (2010) recommends in its fourth carbon budget report that emissions should 

be reduced by 60% in 2030 compared to 1990. In total, 17 scenarios, which can be 

differentiated into eight categories, have been performed. Table 6.1 gives an overview 

over the different scenarios and explains each of them. Scenarios related to path 

dependency, discount rates, fossil fuel prices and the demand level consider issues that 

are not only of importance for the electricity sector, but also for other sectors. That is 
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why these scenarios are equally used for the discussion of the transport sector (chapter 

7) and the residential sector (chapter 8). The other scenarios are on technological 

learning (IEP and FIRST-OF-KIND) and technological availability (NO-NUC-CCS). 

Further scenarios (not shown in Table 6.1) were performed concerning the price of 

biofuels, demand elasticity, an extended lifetime of power plants, the peak contribution 

of wind and tidal power and technological learning. Due to the limited insights they 

provide, the scenarios are not discussed in this chapter. 

Table 6.1: Scenario overview 

 

These scenarios were chosen because discount rates, fossil fuel prices and technological 

learning have been identified in the literature as important influencing factors (see also 

chapter 2.2.3). The energy service demand level is judged to be influential as it 

influences the overall demand for electricity. Particular emphasis is put on the issue of 

Scenario Category Description

REF Reference case Carbon tax increases  by 5% p.a. from 2010

ZERO-BEFORE Path dependency Carbon tax i s  zero before 2030

CONST-AFTER Path dependency Carbon tax i s  constant after 2030

INCR-AFTER Path dependency Carbon tax increases  with 10% p.a. from 2030

ZERO-AFTER Path dependency Carbon tax i s  zero after 2030

HIGH-BEFORE Path dependency Carbon tax i s  kept constant on the 2030 level  from 

the REF scenario for the period 2015-2030

PDR10 Discount rate Hurdle rates  introduced for a l l  technologies  at 

10%, previous ly exis ting rates  were doubled

SDR Discount rate Discount rate lowered to 3.5%, a l l  hurdle rates , 

taxes  and subs idies  removed

FF+ Fossil fuel price Costs  for coal , coking coal , oi l , refined products  

and natura l  gas  increased by 100%

FF++ Fossil fuel price Costs  for coal , coking coal , oi l , refined products  

and natura l  gas  increased by 200%

GAS Fossil fuel price Costs  for natura l  gas  decreased by 50%

IEP Technological learning Investment costs  increased by 200% for a l l  CCS 

technologies , biomass , nuclear, tida l , wind, wave

FIRST-OF-KIND Technological learning Early investments  required in order to carry out 

investments  into CCS and nuclear from 2030

LIFE Lifetime Reduced l i fetime for coal  and nuclear power 

plants  by 10/15 years , for wind and CCGT by 5 years

NO-NUC-CCS Technological availabiltiy No investments  are a l lowed into nuclear power 

plants  and CCS technologies

DEM+ Demand level Al l  energy service demands  increased by 20%

DEM- Demand level Al l  energy service demands  decreased by 20%
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path dependency as this has only been addressed in two previous studies and is judged 

to be a shortcoming of the way current single-year MAC curves are represented. 

Each MAC curve consists of 46 different model runs with differently high system-wide 

CO2 tax levels (see Figure 6.1), ranging from £2010 0 to 294/ t CO2 in 2030. With respect 

to the year 2050 the CO2 tax is first increased from one model run to the other by £5/t 

CO2, from £30/t CO2 in steps of £10/t CO2 and from £200/t CO2 in £20/t CO2 steps. In 

the REF scenario the CO2 tax is assumed to increase after 2010 with the model inherent 

discount rate of 5% p.a. The CO2 tax level for the different years is calculated 

backwards from the target level in 2050. Up to the year 2010, the EU ETS CO2 price, 

the climate change levy and the renewables obligation are integrated into the model. 

From 2010 onwards, no climate-related policies are included in order not to dilute the 

marginal abatement costs. Equally, no climate taxes or technology-specific subsidies are 

incorporated into to the model. 

Figure 6.1: Carbon tax pathway in the different model runs 

 

While the majority of this chapter focuses on the year 2030, at the end of this chapter a 

cumulative MAC curve and MAC curves for the years 2020, 2040, and 2050 are 

discussed. All costs are given in £ of the year 2010. 

6.1 Description of the electricity sector in UK MARKAL 

The power sector in the UK MARKAL model encompasses all the relevant power plant 

types and combined heat and power (CHP) plant types, distinguished into centralised, 

distributed and micro generation. Centralised power generation is associated with 

distribution and transmission losses, while decentralised generation only incurs 
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distribution losses. In total there are 17 different CHP plants and 108 different power 

plants. This includes coal-fired power plants with and without biomass co-firing, coal 

CCS plants, oil-fired power plants, dual fuel (oil/gas) power plants, hydro plants, solid 

waste power plants, gas-fired power plants, gas CCS plants, nuclear power plants, 

biomass-fired power plants, biomass CCS plants, agricultural waste power plants, tidal 

technologies, wave technologies, onshore wind turbines and offshore wind turbines. The 

supply of electricity matches the demand for electricity from the residential, service, 

agriculture, industrial, upstream and transport sector accounting for international 

electricity trade with Ireland and France based on assumptions from the TIMES PanEU 

model (Blesl et al. 2010). It is assumed that a maximum of 82 PJ (23 TWh) can be 

imported from France and Ireland each year. The demand for electricity depends on 

technological and cost parameters of end-use technologies as well as on price-elastic 

energy service demands. The price elasticity varies for different energy service demand, 

so that it is e.g. higher for space heating than for electric appliances. Demand for 

electricity is divided into six timeslices: three characterising the season (intermediate, 

summer and winter) and two characterising the time of the day (day and night) for each 

season. Furthermore, the availability of electricity generation options during peak hours 

is taken into account via a peaking constraint and a reserve capacity factor is modelled 

to account for reserve capacity. 

A number of key data parameters that are required to characterise power technologies, 

such as technical efficiency, capital cost, fixed and variable operating costs, lifetime or 

annual availability, are defined in the model. Table 6.2 provides an overview of 

assumptions for the most important technologies in the power sector in 2030. The 

assumptions change over time as costs are assumed to come down and new technologies 

become available. Build rate limits are given for the year 2030, though they are in 

general lower in earlier periods. 

When interpreting the scenarios‟ results that are presented in the next sections it is 

important to take into account that they are all based on the UK MARKAL model with 

its particular strengths and weaknesses. Strengths of the electricity sector‟s 

representation in UK MARKAL are the technological detail and the capturing of 

interactions with end-use sectors. Weaknesses are the rough temporal resolution of the 

model, the lack of spatial distribution and demand-side management, and the negligence 

of endogenous technological change. The low temporal resolution does not allow for an 
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optimal representation of load management and the integration of renewable 

technologies. In particular the lack of spatial detail could explain the low uptake of 

decentralised power generation in the model. 

Table 6.2: Assumptions for key power technologies in UK MARKAL in 2030 

 

6.2 Reference scenario 

The reference scenario (REF) describes a development of carbon emissions reduction 

with the standard assumptions of the UK MARKAL model as they can be found in the 

model documentation (Kannan et al. 2007). It does not represent the most likely 

development of abatement costs and potentials, but rather serves as a reference for the 

sensitivity analysis. 

According to the model results, power sector emissions are 191 Mt CO2 in 2030 in the 

no tax run, which compares to 204 Mt CO2 in 1990 and 174 Mt CO2 in 2008. Thus, 

emissions are expected to increase by about 10% from current levels due to higher 

levels of coal in the electricity mix, but to be 6% lower compared with 1990 levels. 

Model results indicate that total electricity supply in the UK is roughly constant over the 

next 20 years with 356 TWh in 2030 compared with 367 TWh in 2008. 

Figure 6.2 shows an emission curve for the electricity sector. In general, one can 

observe that power sector emissions are reduced dramatically up to £25/t CO2, where 

the sector is decarbonised by 60% in the REF scenario. At a level of £176/t CO2, all 

power sector emissions are abated, while emissions turn negative at higher prices. This 

is possible when biomass is co-fired in coal CCS power stations. 

2030                       [£=1.4€=1.8$] Coal PF Gas CCGT Gas CHP Nuclear Coal CCS Gas CCS

Capital cost [£2010/kW] 1027 463 870 1363 1438 652

Availability [%] 83% 83% 69% 83% 83% 83%

Load factor [%] - - - - - -

Efficiency [%] 52% 57% 80% 36% 45% 50%

Life time [years] 50 35 20 50 50 35

Build rate limit [GW/5 years] 10 7.5

Wind 

onshore

Wind 

offshore

Tidal (Severn 

barrage) Hydro PV

Capital cost [£2010/kW] 682 1224-1944 1947 1038 2965

Availability [%] - - 23% 37% 10%

Load factor [%] 16-44% 36% - - -

Efficiency [%] - - - - -

Life time [years] 25 25 120 40 30

Build rate limit [GW/5 years] - - -

combined 12.5

combined 10

combined 7.5
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Figure 6.2: Emission curve for the electricity sector in United Kingdom in 2030 

 

The emission curve in Figure 6.2 only shows the overall emissions in the power sector, 

without giving any detail on the technologies and measures that are behind them. In 

order to judge the technological structure of the MAC curve, it is important to know the 

electricity mix in the REF case. As can be seen in Figure 6.3, the electricity system is 

dominated by coal in the case without any CO2 tax. The rest of the electricity mix is 

made up of natural gas in the form of pure power plants and CHP plants (17%), nuclear 

power plants (9%), import (6%), wind (6%), biomass (4%) and coal CHP plants (2%). 

Figure 6.3: Electricity generation mix for different marginal abatement costs in 2030 (REF 

scenario) 
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Including the results of the decomposition analysis shows which measures are 

responsible for the emissions reductions. Decomposition analysis is discussed in detail 

in chapter 4. Equation (6.1) details the decomposition employed to disaggregate changes 

in total electricity-related CO2 emissions in this chapter: 

          

            
         

        
            

 
     

         
 
           

     
  (6.1) 

activity is the demand for electricity in Petajoules, activityj is the electric output of one 

technology type j, fuelj describes the amount of fuel that is necessary to realise this 

output with technology j. CO2,Power,j represent the amount of CO2 released by the use of 

technology j. The first factor represents changes in the total demand for electricity, 

while the first ratio in the brackets stands for changes by power plant type in the 

electricity mix, for example a switch from coal to nuclear power plants or coal CCS 

power plants. The second ratio permits insights into fuel efficiency gains of a particular 

power technology and finally the third ratio describes the CO2 intensity of a fuel, which 

can be changed for example by co-firing biomass to a coal-fired power plant. 

Correspondingly, the decomposition distinguishes between demand-related influences, 

changes related to the structure of electricity generation, and the impact of fuel 

efficiency and carbon intensity. The logarithmic mean Divisia index (LMDI) is used to 

derive the contribution towards CO2 emission of specific measures (see chapter 4). 

Figure 6.4 shows that almost all abatement happens at MACs of below £100/t CO2. 

Only 4.4 Mt CO2 of emissions reduction is realised at higher CO2 tax levels. Moreover, 

one can see that the electricity sector is entirely decarbonised at a tax of £176/t CO2 and 

even becomes an emission sink of 1.4 Mt CO2 by capturing emissions from burning 

biomass at higher costs.  

For the interpretation of the MAC curves it should be taken into account that each bar 

represents the marginal mitigation measure, i.e. the measure responsible for the 

emissions reduction between two adjacent CO2 tax runs. Because of the dynamic model 

character, the bars cannot be added together to form a total abatement potential for a 

particular attribute as is the case in conventional expert-based MAC curves. The total 

mitigation potential and total cost still match, but abatement potentials for a specific 

technology are no longer additive. This is because a mitigation measure might be cost-



194 

effective at a certain tax level, but replaced at higher tax levels by another measure. An 

example can be a switch from coal power plants to gas power plants at low tax levels, 

while gas power plants are again replaced by nuclear at higher tax levels. Existing 

expert-based MAC curves assume that all measures are always additive and do not 

replace each other. However, the applied model-based approach overcomes this 

significant shortcoming by accounting for interactions between mitigation measures. 

Figure 6.4: MAC curve for the REF scenario in 2030 

 

The technological detail reveals that nuclear power is the main technology available to 

reduce carbon emissions cost-effectively. Electricity generation is shifted away from 

coal-fired power plants to nuclear power plants from as low as £1/t CO2 up to a tax level 

of £34/t CO2, while the weighted average abatement cost for nuclear power is £12/t 

CO2. Nuclear power does not have one single marginal abatement cost, because a 

system model with many input assumptions has been used to generate the MAC curve. 

Thus, the MAC of nuclear power is a range of costs because more than one type of 

nuclear power plant and a supply cost curve for uranium are implemented in UK 

MARKAL. In addition, nuclear power, as with all other power technologies is subject to 

a build rate limit. In the case of nuclear, this starts at 2.5 GW and is gradually increased 

in the first half of the 21
st
 century to 10 GW per five year period. This is one of the 

reasons for intertemporal interactions, i.e. that the conditions in one time period 

influence the result in a previous or later time period. Furthermore, nuclear power 

competes with other low-carbon technologies that are also subject to changing 

economics, particularly coal CCS. The abatement cost for nuclear power is comparably 
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low since levelised electricity generation cost of nuclear power plants are assumed to be 

3.74 p/kWh (pence per kilowatt hour) in comparison to 3 p/kWh for coal IGCC plants, 

the main baseload technology in the REF case. 

Coal CCS plays a significant role in the electricity mix from a higher tax level of £19/t 

CO2 upwards, which is due to the higher generation cost of 4.75 p/kWh in the REF case. 

The higher generation cost accounts for higher capital, operating and CO2 capture and 

storage costs. The abatement cost range for coal CCS is significantly larger than for 

nuclear from £19/t CO2 to £147/t CO2 with a weighted average of £63/t CO2. Reasons 

are that a variety of coal CCS alternatives, such as pre-combustion and post-combustion 

are implemented in the model, as well as conventional coal-fired power stations with 

retrofit. Moreover, another power station type can co-fire biomass. This co-firing option 

brings in further interactions with biomass that has different characteristics and supply 

costs and competes with other potential users, such as biofuels in transport or as a 

heating fuel in the building stock. 

Biomass co-firing in CCS plants is a further important mitigation option. On an energy-

equivalent basis particular types of coal CCS plants are assumed to be able to co-fire up 

to 20% of biomass. This can make co-firing coal CCS plants a CO2 emission sink, given 

the fact that they capture 85% of all emissions and biomass is almost carbon-free only 

accounting for emissions during cultivation, processing and transport. Biomass supply 

includes domestic sources, consisting of grassy, as well as woody energy crops and 

forest residues, mainly wood chips, and imports of woody biomass from overseas. The 

supply potential for domestic energy crops and imported biomass is assumed to be 450 

PJ for each in 2030. The supply of forest residues is much more limited with 45 PJ. 

Biomass co-firing is the third most important mitigation measure in the REF scenario 

mitigating 31 Mt CO2 between £25/t CO2 and £245/t CO2 with a weighted average of 

£67/t CO2. Biomass co-firing only becomes cost-effective once coal CCS power plants 

have been introduced. The wide abatement cost range is due to different cost steps for 

the different types of biomass and the competition with other end-use energy sectors for 

the same limited resource. A third option for the use of biomass is in solid waste 

combustion, where dry organic waste can be co-fired to produce electricity. Overall this 

abatement option is comparably limited as the potential of organic waste is limited to 

112 PJ in 2030 and waste combustion makes up a small amount of overall electricity 
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production. In total organic waste incineration accounts for 7 Mt CO2 of abatement at a 

marginal abatement cost of £34/t CO2. 

Next to nuclear and coal CCS power plants, wind power represents one of the important 

abatement technologies in the power sector. Marginal abatement costs for wind power 

range from £0/t CO2, as it is already included in the baseline, up to £117/t CO2, while 

the weighted average is £25/t CO2. This range includes onshore as well as offshore wind 

power, while the potential electricity production from offshore is far higher than from 

onshore wind. Onshore wind production facilities are divided into ten categories and 

offshore wind power into four categories with different load factors. This leads to a 

situation where wind categories with the highest load factors are able to compete with 

nuclear and coal power stations, while for some potential areas wind power has 

levelised generation costs of up to 5.92 p/kWh. 

The United Kingdom possesses an important share of the known worldwide tidal stream 

resources. Tidal power, which uses the water flow in and out of estuaries and through 

straits, is therefore a potentially important mitigation option for the UK electricity 

sector. The levelised electricity generation costs are assumed to between 4.8 p/kWh and 

5.6 p/kWh, while the biggest potential at the higher end of this cost range is attributed to 

the Severn estuary in southwest England. The abatement cost range is narrower than for 

other technologies between £39/t CO2 and £88/t CO2 with a weighted average of £57/t 

CO2 because there are no interactions concerning the fuel input and not a big cost range. 

Smaller abatement measures are country-wide efficiency gains in coal-fired power 

stations as older power stations are decommissioned earlier, which saves 1.5 Mt CO2. 

The import of 30 PJ/a of low-carbon electricity from France helps to mitigate emissions 

to a limited extent. Further mitigation options are hydro power, natural gas CHP, and 

biomass CHP plants. 

At lower carbon tax levels, changes in the price-elastic energy service demand and fuel 

switching contribute to emissions reduction as one of the first responses to an increasing 

electricity price is a demand reduction for electricity of up to 79 PJ (22 TWh). 

Electricity consumption is lowest at £34/t CO2, but increases at higher CO2 tax levels 

again as electricity-fuelled low-carbon technologies become cost-effective, despite a 

price-induced reduction in energy service demand. That is why the overall emissions 

reduction contribution of demand changes for electricity remains relatively small. The 
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results only regard the power sector and should not be confounded with wider energy 

demand savings in the end-use sector that are much more significant (see chapter 7 and 

8). 

An idea of the overall contribution of different technologies and effects to emissions 

reduction up to the highest CO2 tax of £294/t CO2 in 2030, is given in Figure 6.5. It can 

be seen that the reduction in the demand for electricity caused by higher carbon tax 

levels, has a very minor (2%) contribution. Once electricity is sufficiently decarbonised, 

there is no motivation from an emissions reduction perspective to reduce the demand for 

energy services that are provided by devices relying on electricity. 

Figure 6.5: Technology-specific contribution to overall emissions reduction 192 Mt CO2 (REF 

scenario) in 2030 

 

A reduction in fuel intensity (equivalent to efficiency improvement) has a minor 

contribution in the context of coal-fired power stations. More efficient power stations 

are already incorporated in the REF case as they are assumed to be cost-effective even 

without a CO2 tax. Since structural changes dominate the power sector and power plants 

have a lifetime of up to 50 years, investments into efficiency upgrades will not be 

realised given an anticipated switch to a different technology. 

The most important effects are structural changes in the electricity mix. Nuclear power 

is the most important mitigation measure with a share of 27% in emissions reduction 

followed by coal CCS with 19%. However, this share only includes the shift towards 

coal CCS power plants and not the additional emissions savings that are achieved by co-

firing biomass, which accounts for an additional 16%. The other significant mitigation 

measure in the UK power sector is wind power with a contribution of 15%. Nuclear 
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power, coal CCS (including biomass co-firing) and wind power are responsible in total 

for 77% of all emissions reduction. 

Taking the integral under the curve in Figure 6.4 gives information about the total cost 

associated with emissions reduction in 2030. This does not, however, consider costs 

associated with carbon abatement in earlier and later time periods. Figure 6.6 indicates 

that total costs increase exponentially with an increasing emissions reduction target. 

This can be explained with the fact that the second derivative of the MAC curve is 

positive. Total costs in 2030 are £0.29 billion for an emissions reduction of 50 Mt of 

CO2 emissions in the power sector and £2.51 billion for a reduction of 150 Mt CO2, this 

corresponds to an average abatement cost of £6/ t CO2 and £17/t CO2 respectively. 

Figure 6.6: Total abatement costs (left) and average abatement costs (right) for the electricity 

sector in United Kingdom in 2030 

 

6.3 Path dependency 

MAC curves are generally merely a static snapshot of one year, in this case of the year 

2030. Nevertheless, the abatement cost and the corresponding abatement potential of all 

abatement measures depends on previous abatement efforts. As the model underlying 

these MAC curves is a perfect foresight model, the MAC curve is also influenced by 

expectations about future climate change policies. Path dependency originates from 

technologies‟ lifetimes that span several model periods and build rate limits. It should 

be noted that UK MARKAL does not consider endogenous learning, thus there is also 

no induced technological change (ITC), which possibly limits the effects of path 

dependency. Nonetheless, in order to quantify how sensitive the MAC curve reacts to 
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different CO2 tax trajectories the CO2 tax path of an annual 5% increase has been 

altered in five scenarios. Figure 6.7 presents the different CO2 tax pathways for one 

model run (£113/ t CO2 in 2030), where three consider different pathways after 2030, 

CONST-AFTER, ZERO-AFTER, INCR-AFTER, and two regard different pathways 

before 2030, ZERO-BEFORE, HIGH-BEFORE. 

Figure 6.7: CO2 tax trajectory for different path dependency scenarios for an exemplary model 

run with a CO2 tax of £113/ t CO2 in 2030 

 

Although all six scenarios have the same CO2 tax in 2030, they result in different MAC 

curves, especially for higher abatement costs (see Figure 6.8). Those scenarios with a 

higher CO2 tax compared with the REF scenario, i.e. INCR-AFTER and HIGH-

BEFORE show for the same carbon tax generally a slightly higher abatement level. This 

is on average 3 Mt CO2 for the INCR-AFTER scenario and 2 Mt CO2 for the HIGH-

BEFORE scenario. 

The CONST-AFTER scenario, which keeps the CO2 tax constant after 2030, is similar 

to the REF scenario except for a range from £50/t CO2 to £150/t CO2, where abatement 

is significantly less. While the abatement potential is significantly lower for a given CO2 

tax in the whole tax range, but in particular from £80/t CO2 in the ZERO-AFTER 

scenario, it is the inverse case for the ZERO-BEFORE scenario where the abatement 

potential is especially less up to £150/t CO2. Thus, a scenario where the CO2 tax is kept 

at zero after 2030 significantly increases the marginal abatement costs. The ZERO-

BEFORE and CONST-AFTER scenario increase the abatement costs moderately for a 

given abatement level, while the scenarios that have a higher tax level before or after 

2030 show slightly lower marginal abatement costs. 
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Figure 6.8: End-use emission curve for different path dependency scenarios 

 

6.3.1 Constant CO2 tax after 2030 

The CONST-AFTER scenario differs from the REF scenario in the way that the CO2 tax 

no longer increases with the model inherent global discount rate of 5% p.a. after 2030, 

but instead stays constant at the same level as it is in 2030. Consequently, the incentive 

for CO2 abatement is less than in the REF scenario. As expected emissions are higher in 

the CONST-AFTER scenario compared with the REF scenario for the same tax level. 

The abatement structure of the CONST-AFTER scenario is very similar to the REF 

scenario concerning overall emissions reduction and the contribution of each 

technology. However, one can notice that low-carbon technologies require higher tax 

levels for the same market penetration as the model anticipates that the carbon tax will 

be lower in the future compared with the REF scenario. This is illustrated in Figure 6.9. 

One can see that nuclear power plants reach the highest market share of 33% at £24/t 

CO2 in the CONST-AFTER scenario, while this is already the case at £15/t CO2 in the 

REF scenario, i.e. at £9/t CO2 less. For coal CCS power plants the difference in carbon 

tax levels for the same market share level is similar to nuclear power. 

For wind power and tidal power, this situation is slightly different at higher carbon tax 

levels of around £100/t CO2. Wind power reaches a market share of 17% only at £196/t 

CO2 in the CONST-AFTER scenario, which is £80/t CO2 higher than in the REF 

scenario. Similarly, tidal power reaches its highest market share of 7% at a £30/t CO2 
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higher carbon tax. The reason for the limited expansion of wind and tidal power is that 

natural gas CCS power plants become cost-effective to a very limited extent in a tax 

window from £108/t CO2 to £137/t CO2. Natural gas CCS power plants can reduce 

emissions substantially, but still have residual emissions, so that their introduction is 

only cost-optimal in the case where the tax level does not increase after 2030. 

Figure 6.9: Market share for different technologies in the CONST-AFTER scenario in 2030 

 

6.3.2 Zero CO2 tax after 2030 

This path dependency scenario assumes a CO2 tax that drops back to zero for all model 

runs after 2030. This means that the incentive to shift the energy system to low carbon 

technologies is smaller because there is no penalty for emitting CO2 after 2030. 

Correspondingly, one should expect less emissions reduction for the same CO2 tax 

level. A look at Figure 6.8 confirms this supposition. Figure 6.10 reveals more insights 

into the technological detail of the abatement in the ZERO-AFTER scenario. 

The MAC curve looks different to the extent that the bars are higher than in the REF 

scenario, i.e. the abatement costs are higher and the abatement structure is different. 

Nuclear power plants only reach their highest market share at £68/t CO2, which is £53/t 

CO2 more compared with the REF scenario. Moreover, this abatement technology 
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abates about 9 Mt CO2 more in the ZERO-AFTER scenario. Similarly, natural gas CHP 

plants are a viable mitigation option in the electricity sector for a wider tax range. This 

plant type is completely displaced from £186/t CO2 upwards, which is £40/t CO2 more 

than in the REF case. 

Figure 6.10: MAC curve for the ZERO-AFTER scenario in 2030 

 

In addition, demand reduction plays a much more important role in this scenario. At 

£117/t CO2 electricity demand is 145 PJ (40 TWh) less in the ZERO-AFTER scenario, 

which corresponds to 10% of total demand. This shows that demand reduction is an 

important abatement measure as demand is flexible and can be adapted to situations in 

future years where no carbon policies are pursued. Similar to the CONST-AFTER 

scenario, natural gas CCS becomes cost-effective for a specific tax window (£137/t CO2 

- £294/t CO2). 

In this tax window, coal CCS power plants that are not able to co-fire biomass are 

replaced by natural gas CCS power plants. Investments in gas CCS are only made when 

the model foresees CO2 tax levels staying constant or decreasing because otherwise it 

would not be competitive in later years with coal CCS plants that co-fire biomass. This 

shift saves about 43% CO2 as natural gas has a lower emission coefficient of 65 g/kWh 

compared with 115 g/kWh for coal CCS plants. The shift is illustrated in Figure 6.11. 

Renewable energy sources with comparably high electricity generation costs, such as 

wind and tidal power, are not introduced to the market to the same extent as in the REF 

scenario. The reason is that these technologies are no longer competitive once there is 
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no carbon tax after 2030. Lastly, one can see that biomass co-firing to CCS plants only 

plays a minor role. This can be explained with the fact that once CCS plants become 

cost-effective, they already co-fire biomass to the maximum extent so that the 

abatement potential is attributed to a structural shift towards coal CCS plants. 

Figure 6.11: Electricity generation mix for different marginal abatement costs in 2030 (ZERO-

AFTER scenario) 

 

In conclusion, one can summarise that in this scenario the model chooses measures, 

such as demand reduction, efficiency gains in coal power plants, natural gas CHP, 

natural gas CCS and nuclear power, that can cut carbon emissions and have levelised 

generation costs that are close to the technologies chosen without a carbon policy. 

6.3.3 Steep increase in CO2 tax after 2030 

In the INCR-AFTER scenario the CO2 tax increases after 2030 by 10% annually, thus it 

increases with a rate that is twice as high as in the REF scenario. The shape of the MAC 

curve looks very similar to the REF scenario as Figure 6.8 reveals. Since the CO2 tax is 

higher in the years after 2030, there should be an additional incentive for the model to 

choose low carbon technologies in 2030 in order to anticipate the additional future 

penalty for emitting CO2. 

Accordingly, coal CCS is introduced at a £13/t CO2 less compared with the REF 

scenario. Tidal power reaches its maximum share at £10/t CO2 less and nuclear at £5/t 
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CO2 less. Apart from these minimal deviations, however, the overall abatement 

technologies and their contribution towards emissions reduction looks very similar. The 

steep increase of the CO2 tax of 10% p.a. after 2030, therefore, does not present a big, 

additional incentive to invest in low carbon technologies already in 2030 compared to 

the REF scenario. 

6.3.4 Zero CO2 tax Before 2030 

In contrast to the REF scenario, there is no CO2 tax before 2030 in the ZERO-BEFORE 

scenario that means there exists no incentive to shift to any low-carbon technologies 

before 2030. As power plants have a lifetime of between 20 to 50 years, investments 

taken in 2010 or 2020 have consequence on the electricity mix throughout the whole 

first half of the 21
st
 century. 

The overall abatement potential of this scenario is the same as in the REF scenario, 

though an emissions target of 10 Mt CO2 is achieved at a tax level of £135/t CO2, while 

this is realised at a tax level of £90/t CO2 in the REF scenario. This deviation can be 

explained with investment decisions in the time prior to 2030 that are influenced by the 

absence of any climate policy. Therefore, low-carbon technologies are more gradually 

introduced into the market as Figure 6.12 shows. The market share of coal CCS power 

plants in the ZERO-BEFORE scenario stays, with a few exceptions, constantly below 

the one in the REF scenario; the same is true for tidal power. 

Wind power does not reach the same market share as in the REF scenario; they reach a 

maximum of 18% compared with 22% in the REF scenario. This is due to investments 

into less promising wind turbine sites not being realised in previous periods. This lack 

of investments cannot be overcome very rapidly due to yearly build constraints. As 

low–carbon technologies are introduced at higher tax levels, natural gas CHP plants 

have a bigger role as a transition technology towards a decarbonised electricity sector. 

In summary, the fact that there is no CO2 tax prior to 2030 represents a disincentive for 

the investment in low-carbon technologies so that the investment level is slightly lower 

in comparison to the REF scenario despite a high CO2 tax in 2030 and in the following 

years. 
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Figure 6.12: Market share for different technologies in the ZERO-BEFORE scenario in 2030 

 

6.3.5 High CO2 tax from 2015 

The HIGH-BEFORE scenario assumes that the CO2 tax stays on a constant level from 

2015 to 2030, which is the same as the CO2 tax in the REF scenario in 2030, i.e. it no 

longer increases with the discount rate during that period but jumps in 2015 directly to 

the level in 2030. This means that for the period from 2015 to 2025 the CO2 tax is 

higher than in the REF scenario and should present an additional incentive to 

decarbonise the energy system. 

The shape of the emission curve (see Figure 6.8) looks very similar to the REF scenario. 

Only in a tax range from £30/t CO2 to £100/t CO2 is the difference in emissions 

reduction is noteworthy, which is 8 Mt CO2 higher in the HIGH-BEFORE scenario. The 

overall abatement is also almost the same as in the REF scenario. A closer look at the 

individual abatement options reveals that this difference is mainly due to the more 

aggressive introduction of coal CCS power plants. The market share of coal CCS attains 

31% at a tax level of £78/t CO2, which is about £50/t CO2 less than in the REF scenario. 

The economics of the other low-carbon technologies remain mainly unaffected by the 

higher tax level prior to 2030. Consequently, a high CO2 tax from 2015 to 2030 does 
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not alter the overall MAC curve substantially, but does accelerate the introduction of 

coal CCS plants.  

6.4 Discount rate 

Discount rates play an important role in determining future marginal abatement costs as 

they determine how future cash flows are weighted with regard to present cash flows. 

The higher the discount rate, the more weight is put on costs and financial gains that 

occur early in the project phase, relative to those incurred later. Those technologies 

where a large proportion of investment costs occur at the start of a project, but the 

benefits accrue over time, will be more economic the lower the discount rate. 

In general, the research literature distinguishes between social and private discount 

rates. A social discount rate is used to determine whether an investment or policy is 

beneficial from society‟s perspective, i.e. whether it represents a good use of society‟s 

resources. All taxes and subsidies (except for the carbon tax necessary to generate the 

MAC curve) are excluded from this analysis as they are only transfers between groups 

in society. The discount rate is around the 3.5% rate the UK Government (HM 

Treasury, 2003) uses, which is based on a social time preference rate that is the sum of a 

rate at which future consumption is valued over present consumption and a factor 

accounting for changes in per capita consumption. The social discount rate is applied 

based on the assumption that governments can borrow at that rate if they want to 

incentivise capital-intensive abatement opportunities. The SDR scenario assumes such a 

social discount rate. 

The application of a social discount rate can help to answer the question: “what should 

happen from a society‟s perspective on a least cost path?”; however, to understand what 

is likely to happen in reality, a private cost-benefit analysis has to be applied. 

Cost calculations from a private perspective differ from society‟s view, not only in the 

discount rate applied, which must reflect the private cost of capital, but also in that taxes 

and subsidies are included. Moreover, project risks are specific to the investor, and will, 

from the investor‟s perspective, not be averaged out across the economy. Consequently, 

the investor will require a higher rate of return to justify proceeding, which is 

represented in the form of technology-specific hurdle rates in the UK MARKAL model. 

In general, individuals and companies additionally face several uncertainties. 
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Observed discount rates can be relatively high and differ from company to company. In 

their study on the costs of decarbonising electricity, the CCC (2008) gives an overview 

of four studies that use real discount rates for the power sector. All of the discount rates 

are in the range of 10-12%. The PDR10 scenario represents the perspective of a private 

investor, where all existing hurdle rates were doubled and a 10% hurdle rate was 

introduced for all technologies in the whole energy system in the case that no hurdle 

rate was defined. The general discount rate remains at 5%. 

Figure 6.13 indicates that the emission curves are similar for the SDR and the REF 

scenario, while the emissions in the PDR10 scenario are, as expected, higher. Emissions 

are more slowly decreased with higher CO2 taxes owing to the higher discount rate that 

makes low-carbon technologies less attractive. The SDR scenario shows slightly lower 

emissions in the case without a CO2 tax due to a higher share of renewables in the 

electricity mix. From around £170/t CO2 all three curves look very similar as the 

electricity system is widely decarbonised at that tax level. 

Figure 6.13: Emission curve along rising CO2 abatement costs for different discount rate 

scenarios in 2030 

 

Different electricity generation technologies are affected in different ways by the 

doubling of the discount rate (see Figure 6.14). The generation costs in the UK 

MARKAL model are formed of annualised investment costs, variable operating costs, 

fixed operating costs, fuel costs and in the case of CCS technologies the costs for the 

capture, transport and storage of CO2. Out of the different cost components only 
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annualised investment costs are affected by the discount rate change. Consequently, 

technologies, whose generating costs are dominated by investment costs, will see their 

generation costs increase substantially when the discount rates is doubled. As fuel costs 

are responsible for a big part of the electricity generation costs in gas-fired and biomass-

fired power plants, the generation costs increase only up to 15% in UK MARKAL with 

a change in the discount rate from 5% to 10%. Coal and nuclear plants are in a range 

from 18-23%, while renewable energy sources are most influenced by a higher discount 

rates. In summary, a higher discount rate substantially increases the generation costs of 

renewables, while gas- and biomass-based generation types are least affected by an 

increase. 

Figure 6.14: Increase in levelised electricity generation costs from the REF (5% discount rate) 

to the PDR 10 scenario (10% discount rate) in UK MARKAL in 2030 

 

The MAC curve for the PDR10 scenario (Figure 6.15), where the discount rate and the 

hurdle rates were increased by 100%, shows that emission abatement is more expensive 

than in the REF scenario. Demand reduction plays a more important role in the PDR10 

scenario, where emissions reduction due to less demand is three times bigger than in the 

REF scenario. This is due to a higher electricity price but higher discount rates also 

make low-carbon, electricity-consuming end-use technologies more expensive. 
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Figure 6.15: MAC curve for the PDR10 scenario in 2030 

 

A further difference is that gas-fired power plants profit from the low proportion of 

capital cost in the levelised costs. The share of natural gas CHP plants increases up to 

£58/t CO2. In a small tax window from £97/t CO2 to £156/t CO2 natural gas CCS power 

plants become cost-optimal by replacing a portion of conventional gas power plants and 

attain a market share of 5%. However, at higher tax levels they are again replaced by 

coal CCS power plants that can co-fire biomass. Finally, wind power requires slightly 

higher tax levels in order to achieve the same market share as in the REF scenario and 

emissions reduction from tidal power is significantly less as electricity generation costs 

increase by almost 90%. 

The MAC curve for the SDR scenario (Figure 6.16) shows a slightly higher abatement 

level for the same carbon tax, explained by the lower generation costs due to the lower 

discount rate. Similar to the PDR10 scenario, coal CCS does not abate the same amount 

of CO2 emissions as in the REF scenario because it is more gradually introduced so that 

the reference electricity generation mix is already less carbon-intensive. In contrast to 

that, tidal power abates almost twice as much CO2 in the SDR scenario compared with 

the REF scenario explaining much of the difference between the two scenarios. As the 

generation cost of tidal power depends very much on the applied discount rate, the 

reduced discount rate makes tidal power more cost-effective. Similarly wind power 

attains the same market share as in the REF scenario at about £20/t CO2 less. 
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Figure 6.16: MAC curve for the SDR scenario in 2030 

 

Concerning the overall contribution to emissions reduction, demand reduction plays a 

more important role in the PDR10 scenario with 11 Mt CO2 compared to 4 Mt CO2 in 

the REF scenario. Reasons are higher electricity prices and higher investment costs for 

low-carbon technologies, such as electric cars and electric heat pumps, in the end-use 

sectors. The share of nuclear power remains fairly constant, while the share of coal CCS 

in the discount rate scenarios between £20/t CO2 and £150/t CO2 remains below the 

REF scenario. This can be explained with an earlier introduction of wind and tidal 

power in the SDR scenario and the temporary introduction of natural gas CCS in the 

PDR10 scenario (see Figure 6.17). 

In conclusion, the impact of changes to the discount rate is rather moderate in the 

electricity sector due to the fact that annualised investment costs do not make up a 

significant share of generation costs for key low-carbon technologies in UK MARKAL, 

such as coal CCS and nuclear. Further, in the higher discount rate scenario (PDR10), 

natural gas is used as a transition fuel and helps to mitigate emissions in the lower third 

of the MAC curve. 
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Figure 6.17: Market share for different technologies in the discount rate scenarios in 2030 

 

6.5 Fossil fuel prices 

Previous studies came to the conclusion that fossil fuel prices have a large impact on the 

shape of a MAC curve (see 2.4). Therefore, this subsection addresses the effect of fossil 

fuel prices by analysing three different fossil fuel price scenarios. 

In the UK MARKAL model the fossil fuel price is mainly determined by the resource 

cost, which is an external input into the model. This input represents the production 

costs (including finding, development and direct lifting costs) and the transport costs. 

Other possible influencing factors on fossil fuel prices such as temporal availability, risk 

premium and speculation are not included in the model, but can be considered by 

varying the assumptions on the import price. 

In contrast to the standard version of UK MARKAL, which employs stepped supply 

curves, the version used for this thesis assumes a single resource cost for crude oil, 

natural gas, hard coal, and coking coal respectively. It is assumed that a possible low-

carbon strategy of the United Kingdom has no significant influence on global fossil fuel 

prices so that different cost steps are omitted. Normally, one would assume the UK to 

pursue a low-carbon strategy together with other countries, so that the demand for fossil 
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fuels will be reduced resulting in lower prices. This was not implemented in UK 

MARKAL due to two aspects. Firstly, a lower fuel price would trigger non-compliant 

countries to consume more fossil fuels, limiting the price effect. Secondly, a cost step 

representation together with import shares leads to distortionary modelling effects in 

UK MARKAL in the form of negative shadow prices.  

The development of fossil fuel prices can be found in Table 6.3, which is based on 

DECC‟s fossil fuel price assumption from 2008. To test the sensitivity of the MAC 

curve with respect to different fossil fuel prices, the prices were doubled in the FF+ 

scenario and tripled in the FF++ scenario, while the gas price was halved in the GAS 

scenario. 

Table 6.3: Fossil fuel prices in different scenarios 

 

The three fossil fuels are affected in a different way by rising CO2 tax levels as they do 

not emit the same amount of carbon dioxide for the same unit of energy used. Table 6.4 

shows how the prices for coal, oil and gas increase with a rising CO2 tax. 

Table 6.4: Increase in fossil fuel prices over price in 2010 for a given CO2 tax 

 

The emission curve for the different fossil fuel price scenarios are shown in Figure 6.18. 

The emission curves start at different baseline levels, while emissions in the REF 

scenario are 191 Mt CO2, they are 148 Mt CO2 in the FF+ scenario, 129 Mt CO2 in the 

Scenario Fuel Unit 2010 2015 2020 2030 2040 2050

Oil £2010/GJ 7.3 5.8 6.2 6.7 7.2 7.2

Gas £2010/GJ 4.5 4.9 4.6 5.1 5.5 5.4

Coal £2010/GJ 2.8 1.9 2.3 2.6 2.9 2.8

Oil £2010/GJ 7.3 5.8 6.2 6.7 7.2 7.2

Gas £2010/GJ 4.5 2.5 2.3 2.6 2.7 2.7

Coal £2010/GJ 2.8 1.9 2.3 2.6 2.9 2.8

Oil £2010/GJ 7.3 11.6 12.3 13.4 14.4 14.4

Gas £2010/GJ 4.5 9.9 9.3 10.3 10.9 10.9

Coal £2010/GJ 2.8 3.9 4.5 5.1 5.7 5.6

Oil £2010/GJ 7.3 17.5 18.5 20.1 21.6 21.6

Gas £2010/GJ 4.5 14.8 13.9 15.4 16.4 16.3

Coal £2010/GJ 2.8 5.8 6.8 7.7 8.6 8.4

REF

GAS

FF+

FF++

CO2 tax Hard Coal Crude Oil Natural Gas

[£/t CO2] [%] [%] [%]

£100 322% 105% 113%

£200 644% 210% 227%

£300 965% 315% 341%
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FF++ scenario and 199 Mt CO2 in the GAS scenario. Reasons are that more gas is used 

in the GAS scenario and that significantly less coal is used in the FF+ and FF++ 

scenarios. At a tax level of £25/t CO2 emissions levels are much more aligned with each 

other, while there still exist differences in particular up to £75/t CO2. At a tax rate of 

£70/t CO2, the official UK central carbon price projection for 2030, the power sector 

would be decarbonised by between 71% and 87% compared with the baseline in 2030.  

While the GAS scenario is very close to the REF scenario, the higher fossil fuel price 

scenarios show less abatement for an equivalent tax level. At higher CO2 taxes, the 

emission curves look very similar, which can be explained with the increasing 

contribution of the CO2 tax towards the total price of coal, oil and gas, which 

overshadows the original difference in fuel prices. 

Figure 6.18: Emission curve along rising CO2 abatement costs for fossil fuel price scenarios in 

2030 

 

6.5.1 Low gas prices 

This scenario assumes a gas price that will drop from current levels of £4.5/GJ to 

£2.5/GJ in 2015 and then stay roughly constant. In comparison to the REF scenario the 

price for natural gas is reduced by 50%. This is a situation observed since 2009 for 

Henry Hub natural gas in the United States where the gas price is below 40% of the oil 

price in energy equivalent terms. Such a low natural gas price could be explained by the 
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significant and unexpected increase in the supply of unconventional gas, in particular 

shale gas, leading to a decoupling of gas and oil prices in the long-run. 

Figure 6.18 revealed that the emissions in the power sector are about 8 Mt CO2 higher 

without any CO2 tax in the GAS scenario compared with the REF scenario. This can be 

explained with a higher share of gas at the expense of wind power and electricity 

import. The emission curves look very similar over all tax levels except for the range 

between £75/t CO2 and £150/t CO2, where emissions in the GAS scenario are a 

maximum 15 Mt CO2 higher for the same tax level. A reason is the higher share of 

natural gas in the power sector (see Figure 6.19), while emissions are lower in return in 

the residential sector and industry. Overall, the MAC curves in both cases look very 

similar and are thus robust to lower gas prices. 

Figure 6.19: Electricity generation mix for different marginal abatement costs in 2030 (GAS 

scenario)  

 

Before turning towards the MAC curve of the GAS scenario, it is interesting to examine 

the electricity mix at different tax levels. One can see that the baseline electricity mix is 

no longer dominated by coal as in the REF scenario. The share of gas-fired power plants 

in electricity production increases from 17% to 25%. Combined-cycle gas turbines 

remain an important part of the electricity mix up to £59/t CO2 and natural gas CHP 

plants up to £157/t CO2. Coal CCS plants only become cost-effective from £39/t CO2, 

i.e. £20/t CO2 more than in the REF scenario. 
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Gas-fired power stations with CCS enter the electricity mix at £29/t CO2, while this 

plant type does not become cost-effective in the REF scenario. Electricity production 

from gas CCS plants is highest at £107/t CO2 with 261 PJ (72 TWh). This carbon tax is 

far from the carbon tax of £70/t CO2 calculated by the Government (DECC 2009) to be 

necessary in order to achieve an overall 80% emission cut in 2050. The levelised 

generation cost of coal and gas CCS plants are very similar in the REF scenario with a 

difference of only 0.15 p/kWh. When the gas price is halved, levelised electricity costs 

are 1.5 p/kWh lower for gas CCS plants so that they become cost-effective in the GAS 

scenario. They are replaced by coal CCS plants at higher tax levels because coal CCS 

plants can achieve negative emissions via biomass co-firing. Biogas is not co-fired to 

gas CCS plants due to the initial lack of infrastructure, limited resource potential and 

higher processing costs than for biomass. 

Given lower gas prices, natural gas can play a significant role as a transition fuel in a 

decarbonisation strategy of the UK power sector in a specific tax and time window in 

the form of natural gas CHP plants and particularly natural gas CCS plants. At a CO2 

tax of £108/t CO2 a maximum of 18 GW of natural gas CCS power plants are built from 

2023 to 2032, while the first CCS plants are retrofitted in 2020. After this period gas 

CCS plants are no longer competitive with coal CCS plants and nuclear power. 

The MAC curve for the GAS scenario (Figure 6.20) shows a similar uptake of nuclear 

power as in the REF scenario. The contribution of coal CCS plants is significantly less 

as gas CCS plants become an important abatement measure and coal CCS power plants 

with biomass co-firing account at higher tax level only for the uncaptured emissions 

from gas CCS plants. In addition, the weighted average abatement costs for coal CCS 

plants are £42/t CO2 more than in the REF scenario. Biomass co-firing is not part of the 

MAC curve because this option is only shown when the share of biomass as an input 

fuel in coal CCS plants increases. When coal CCS plants become cost-effective in this 

scenario, they are already co-fired with the maximum amount of biomass and therefore 

the emissions mitigation is attributed to „Coal CCS‟. Wind power plays a smaller role in 

reducing CO2 emissions, while the average abatement cost remains constant. 
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Figure 6.20: MAC curve in the GAS scenario in 2030 

 

Natural gas CCS reduces CO2 emissions by 24 Mt CO2 or 12% at a cost range between 

£29/t CO2 and £137/t CO2 with a weighted average of £56/t CO2. Furthermore, a switch 

from coal-based to gas-based electricity production proves to be one of the most cost-

effective mitigation options up to £20/t CO2. A switch to natural gas saves in total 12 

Mt CO2 or 6%. 

In summary, one can say that the shape of the MAC curve in the GAS scenario is robust 

to lower gas prices from £20/t CO2 upwards with small deviations around a tax level of 

£100/t CO2 due to intersectoral interactions. Concerning the abatement structure, a 

lower gas price induces investments in natural gas CCS plants that make coal CCS 

plants more expensive. 

6.5.2 High fossil fuel prices 

The FF+ scenario differs from the REF scenario in the way that the price for hard coal, 

coking coal, natural gas, crude oil and refined products were increased by 100% from 

2015 onwards. This corresponds to a scenario where global fossil fuel prices increase, 

for example, due to a significant demand increase from Asian countries or due to the 

absence of sufficient investments that limit the supply of energy carriers. 

Emissions without a carbon tax are 148 Mt CO2 in the FF+ scenario, i.e. 43 Mt CO2 less 

than in the REF scenario. This is caused by a lower share of coal in the electricity mix 

and natural gas CHP plants that are completely replaced by nuclear power plants (28% 
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generation share), wind power (13% generation share), tidal power (3% generation 

share) and hydro power (2% generation share). As low-carbon alternatives have already 

been integrated in this scenario without a carbon tax, the electricity sector decarbonises 

slower with increasing tax levels compared with the REF scenario. Both curves intersect 

at £13/t CO2 from where on emission abatement in the FF+ scenario is associated with 

slightly higher costs. This is due to the fact that an important abatement option, coal 

CCS plants, becomes more expensive due to higher fuel costs. In addition, wind power, 

nuclear power and CCS plants are constrained by build rate limits. From a tax level of 

£50/t CO2, which is expected to be at the lower end of what is needed to achieve the 

legally required emission cuts, the emission curve for the REF and FF+ scenario diverge 

by a maximum of 11 Mt CO2. 

Figure 6.21 illustrates the MAC curve for the FF+ scenario. The curve looks very 

different from the REF scenario as it only covers 149 Mt of CO2 emissions reduction 

due to significant emissions savings already in the baseline development. Nuclear power 

does not play a significant role in the MAC curve with only 9% due to the fact that a 

significant share of electricity production comes from nuclear power plants at £0/t CO2. 

Figure 6.21: MAC curve in the FF+ scenario in 2030 

 

The relative contribution of coal CCS as a mitigation option is significantly higher with 

33%, but also the absolute emissions reduction is higher at 47 Mt CO2. Due to the 

higher coal prices the weighted average abatement cost of coal CCS plants increases to 

£71/t CO2 (£8/t CO2 higher than in the REF scenario). Co-firing of biomass into coal 
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CCS plants is substantially more expensive with a weighted average abatement cost of 

£160/t CO2. This can be explained with the higher costs for coal CCS, but also with the 

same limited amount of biomass being used at lower carbon tax rates in competing 

biomass power and CHP plants. The high fossil fuel prices decrease the marginal 

abatement cost of wind power, which makes up a significant share of the electricity mix 

in the baseline development, while abatement cost of tidal power come down to a 

weighted average of £11/t CO2. Lastly, a higher reduction in the demand for electricity 

caused by higher prices leads to a higher share of demand-related emissions savings of 

9% (14 Mt CO2). 

Summing up, higher fossil fuel prices shift the start point of the MAC curve and lead to 

a slower decarbonisation of the electricity sector due to higher cost for electricity from 

coal CCS plants. Marginal abatement costs of renewable energy sources, such as wind 

and tidal power, are significantly lower due to the higher fossil fuel prices. Overall, both 

MAC curves, once accounted for baseline differences, look very similar, which holds 

especially true for the range of likely carbon tax levels in 2030. 

6.5.3 Very high fossil fuel prices 

In the FF++ scenario all fossil fuel prices are increased by 200% compared to the REF 

scenario. Such a substantial price increase could be explained with supply shocks 

comparably to those in the 1970s. This scenario assumes extremely high fossil fuel 

prices with oil prices being above $2010 220 per barrel for decades. Hence it is all the 

more interesting to see how robust the MAC curve reacts to such extreme assumptions. 

Emissions without a carbon tax are 62 Mt CO2 lower compared with the REF scenario 

and 19 Mt CO2 lower than in the FF+ scenario. This can be explained with an even 

lower share of coal in the electricity mix of only 20%. The reduced electricity 

production from coal is made up by biomass power and CHP plants, tidal power and 

wind power with a market share of 12%, 6%, and 17% respectively. Since many 

abatement options are already implemented without a carbon tax, further 

decarbonisation of the power sector requires, similar to the FF+ scenario, higher 

marginal abatement costs than the REF scenario. For a given carbon tax, carbon 

abatement remains less in the FF++ scenario compared with the REF scenario from 

£24/t CO2 upwards with a maximum difference of 30 Mt CO2 for the same carbon tax. 

This difference is reduced to 16 Mt CO2 for a range of more likely carbon tax levels in 
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2030 of £50/t CO2 to £150/t CO2. Thus, even a substantial threefold increase of fossil 

fuel prices changes the emissions level for a given carbon tax by a maximum of 30 Mt 

CO2 or by 16% in relation to baseline emissions. 

As many low-carbon technologies are part of the baseline development, the MAC curve 

in the FF++ scenario (see Figure 6.22) covers only 129 Mt CO2 of emissions reduction 

and its structure looks very different. The abatement potential of nuclear power plants is 

more limited compared to the REF scenario. Nuclear power already makes up 29% of 

the electricity mix without a carbon tax. Caused by very high fuel prices, wind power is 

a substantial part of the baseline development, while the installation of further wind 

capacity contributes 20% or 26 Mt CO2 to emissions abatement. Tidal power does not 

show up in the MAC curve as it is already a part of the electricity mix at the start of the 

MAC curve. 

Figure 6.22: MAC curve in the FF++ scenario in 2030 

 

The most important abatement measure are coal CCS power plants with 31%. Owing to 

the significantly higher coal price, the abatement costs for coal CCS are in a range from 

£64/t CO2 to £176/t CO2 with a weighted average of £87/t CO2. This is significantly 

higher than in the REF scenario with the average being £24/t CO2 higher. Consequently, 

a 200% increase in fossil fuel prices means that a threefold increase in the carbon tax 

would be necessary to make a first application of the coal CCS technology cost-

effective. The co-firing of biomass is equally more expensive with a weighted average 

abatement cost of £234/t CO2, more than three times more than in the REF scenario. 
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This can be explained with a significantly higher amount of biomass being used in 

biomass CHP plants and for heating purposes in the residential and service sector that 

have repercussions on the use of biomass as a co-firing fuel. 

Lastly, it is interesting to note that wave power becomes cost-effective at £235/t CO2. 

But as it represents only 3% of overall electricity production, the abatement potential 

remains rather limited with 0.5 Mt CO2. With high fossil fuel prices, electricity prices 

are also higher compared with the REF scenario so that overall demand for electricity is 

lower and demand changes contribute 9% towards overall emissions reduction. 

To summarise, the increase of fossil fuel prices has a significant effect on technology-

specific MACs with tidal power and wind power having significantly lower marginal 

abatement costs. On the other hand, coal CCS with biomass co-firing becomes 

significantly more expensive as fuel prices triple. The shape of the MAC curve proves 

to be robust to an extreme increase in fuel prices, where the difference to the REF 

scenario in a range of likely carbon taxes for the year 2030 of £35/t CO2 to £105/t CO2 

is on average 21 Mt CO2, thus only 11% with respect to baseline emissions in the REF 

scenario. 

6.6 Technology learning 

As well as the influence of fuel prices, the influence of technology learning on 

mitigation costs has been studied several times in the past and is in the focus of this 

subsection. Table 6.2 presented the cost assumptions on key technologies in the 

electricity sector for the year 2030. These assumptions, in particular assumptions on 

investment costs, are subject to many uncertainties and therefore highly uncertain in 

itself. The first commercial application of the European Pressurised Reactor in Finland, 

was several years behind schedule and was 50% over the initially planned budget in 

2009 (Kanter 2009). The uncertainties are even bigger for technologies that do not have 

commercial applications. That is why the IEP (Increased Electricity Price) scenario 

studies the consequences of a variation in investment cost assumptions. In this scenario 

the specific investment costs for all CCS technologies, biomass, nuclear, wind, tidal and 

wave technologies are increased by 200%. A comparison of specific investment costs in 

both scenario is given in Table 6.5.  
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Table 6.5: Specific investment cost for power plants (REF, IEP= Increased Electricity Price) 

 

Technological learning in this scenario is merely interpreted as changing exogenously 

given investment costs over time. This is certainly a crude way of dealing with 

technological learning as it does not consider endogenous technological learning (ETL) 

via learning curves. However, learning curves are considered to be inappropriate to use 

here because in a global context the UK‟s cumulative investment would be a poor 

indicator for technological learning. 

The FIRST-OF-KIND scenario addresses ETL to a certain extent by requiring the 

model to invest in a more expensive 1
st
 of a kind technology in early years in order to 

access a cheaper n
th

 of a kind technology in later years. The reason behind this 

constraint is that specific technology costs can only be driven down if investment is 

carried out in a more expensive early version of that technology. This constraint has 

been implemented for all CCS and nuclear technologies: the model needs to invest in 

more expensive versions between 2013 and 2022 in order to be able to invest in cheaper 

versions from 2028 to 2050. For each unit of capacity in 2013-2022, the model can 

build four to six units in 2028-2050. A comparable ratio for the expansion of nuclear 

electrical capacity in the UK was below four in the second half of the 21
st
 century. 

The emissions curve for the IEP scenario (Figure 6.23) shows a higher baseline 

emission level, which is 19 Mt CO2 above the REF scenario. This is due to a lower 

share of nuclear power plants and wind power as they become less competitive due to 

their increased investment costs. Over the whole tax range, the IEP cost curve is above 

the REF curve with a difference of about £15/t CO2 for the same emission level at the 

beginning of the MAC curve, which increases up to £100/t CO2 for lower emission 

targets. The emission curve for the FIRST-OF-KIND scenario looks very similar to the 

REF scenario from tax levels of £10/t CO2, although the FIRST-OF-KIND curve 

indicates cheaper abatement despite an additional constraint on technology learning. 

Technology Specific investment cost [£2000/kW]

BASE IEP

Coal CCS 1,225                       3,676                       

Gas CCS 652                           1,955                       

Biomass CCS 2,940                       8,820                       

Biomass 1,038 - 2,364 3,115 - 7,091

Nuclear 1,363 - 2,318 4,089 - 6,955

Wind Onshore 681                           2,044                       

Wind Offshore 1,281 - 1,944 3,847 - 5,833

Tidal 1,887 - 1,947 5,662 - 5,841

Wave 2,553 - 3,933 7,659 - 11,799



222 

Figure 6.23: Emission curve along rising CO2 abatement costs for the IEP and FIRST-OF-

KIND scenario in 2030 

 

This surprising finding can be explained with the perfect foresight characteristic of the 

model, which anticipates the need to invest early in nuclear and CCS technology in 

order to be able to invest in cheaper versions in later years. The consequence is that, 

compared to the REF scenario, investments in CCS and nuclear are significantly higher 

prior to 2030, which leads to lower emission for a given CO2 tax level in the FIRST-

OF-KIND scenario. However, the emission curve for the year 2030 does not represent 

the dynamic issues introduced by this constraint that makes abatement more expensive 

in later years. In 2050, the emissions level is on average 12 Mt CO2 higher in the 

FIRST-OF-KIND scenario compared with the REF scenario for a given tax level. 

The MAC curve for the IEP scenario (Figure 6.24) shows that the main low-carbon 

technologies, such as coal CCS, nuclear, and wind power, are significantly more 

expensive. This is well illustrated in Figure 6.26, which depicts the market share of four 

technologies in the electricity sector. Weighted MACs for nuclear power are £39/t CO2, 

which is £27/t CO2 above the value in the REF scenario. Similarly, the weighted 

average abatement cost for coal CCS is at £158/t CO2 or £94/t CO2 higher than in the 

REF scenario, while the weighted average abatement cost is £138/t CO2 for wind power 

or £113/t CO2 higher than in the REF scenario. Thus, the average abatement cost for 

those three technologies increases by between 2.2 and 5.5 times. 
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Figure 6.24: MAC curve for the IEP scenario in 2030 

 

As an important share of wind power only becomes available at very high CO2 tax 

levels in the REF scenario, the 200% increase of the capital costs makes this even 

costlier, so that some wind power sites no longer become cost-effective up to the 

highest tax level of £294/t CO2 (see Figure 6.26). Tidal power is even more affected by 

the 200% increase in investment costs, i.e. it is no longer cost-optimal over the whole 

range of the applied carbon tax. 

As low carbon technologies are much more gradually introduced into the market other 

measures partially compensate for this. Overall electricity demand is lower due to the 

higher electricity prices so that the contribution of demand reduction in the IEP scenario 

is four times as high as in the REF scenario. Due to the higher carbon intensity of 

electricity, electricity production is on average 7% lower compared with the REF 

scenario. 

Natural gas power plants are a mitigation measure in the MAC curve, in particular from 

£40/t CO2 to £80/t CO2. In this tax range, natural gas increases its market share from 

around 5% to 20% and displaces the remaining coal-fired power plants. Thus, natural 

gas helps to mitigate 21 Mt CO2 up to £80/t CO2, but at higher carbon tax levels it is 

replaced by coal power plants with CCS. Finally, nuclear power mitigates about 50% 

more emissions in the IEP scenario due to the fact that it attains a higher market share, 

because other technologies need an even higher carbon tax to be introduced to the 

market. 



224 

The MAC curve for the FIRST-OF-KIND scenario (Figure 6.25) indicates that the 

abatement from nuclear is on average almost £7/t CO2 more expensive due to the 

required investment into early technology versions. In contrast to that, abatement costs 

for coal CCS are slightly cheaper as more investment is required prior to 2030 to reach 

the anticipated capacity targets at the end of the model horizon. A look at the total 

contribution towards emissions reduction in the FIRST-OF-KIND scenario reveals that 

nuclear power is more dominant than in the REF scenario, making up 44% of total 

emissions abatement. 

Figure 6.25: MAC curve for the FIRST-OF-KIND scenario in 2030 

 

The market shares (Figure 6.26) confirm that nuclear becomes more dominant, while 

the market share of coal CCS stays lower than in the REF scenario at high tax levels. 

Thus, the requirement to invest into early technologies is a larger disincentive for the 

CCS technologies than for nuclear over the whole model horizon. 

In summary, one can conclude that the 200% increase in investment costs for low-

carbon technologies has a significant effect on the MAC curve by shifting it 

significantly upwards. The higher costs of the IEP scenario can equally be expressed in 

terms of total cost associated with emissions mitigation. In order to achieve a 10 Mt 

CO2 emission target (200 Mt CO2 emissions reduction) for the UK electricity sector, the 

total costs in 2030 are £11.1 billion or 143% more compared with the REF scenario. 

The FIST-OF-KIND scenario shows lower abatement cost for a given tax level over 

most of the tax range owing to required early investments into nuclear and CCS. The 
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curve for the year 2030 does, however, not show that abatement becomes more 

expensive towards the end of the model horizon. 

Figure 6.26: Market share for different technologies in the IEP and FIRST-OF-KIND scenario in 2030 

 

6.7 Biomass availability 

As the previous scenarios have shown, biomass plays a considerable role in 

decarbonising the UK energy system and in particular the power sector, mainly in the 

form of biomass co-firing to coal power plants. The majority of the biomass is imported, 

while there are significant uncertainties as to whether the required quantity can be 

provided. In addition, domestic biomass availability is uncertain due to land-use 

competition with forest-based industries and the food industry. 

Consequently, the BIOMASS scenario investigates how sensitive the power sector 

MAC curve is to the assumptions on biomass availability. Therefore, domestic biomass 

resources have been reduced by 50% for all types of biomass. Moreover, no imports of 

biomass of any kind are allowed in this scenario. Figure 6.27 shows that the emission 

curve for the BIOMASS scenario is different to the REF to the extent that the mitigation 

potential remains behind the one in the REF scenario for a given carbon tax. The 

average difference between both curves is 10 Mt CO2.  
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Figure 6.27: Emission curve along rising CO2 abatement costs for the BIOMASS scenario in 

2030 

 

In the REF scenario biomass is used as a low-carbon fuel in biomass CHP and power 

plants and at higher carbon tax levels as a substitute for coal in unabated and CCS 

plants. In the BIOMASS scenario, significantly less biomass is available to be used in 

the power sector due to the imposed restrictions. The consequence is that 63% less 

biomass is used in the power sector compared with the REF scenario, so that less 

biomass is co-fired in coal CCS power plants. As a consequence the emission intensity 

produced from this generation type remains positive and does not act as an emission 

sink. Furthermore, electricity production from coal CCS power plants is less than in the 

REF scenario, which is compensated for by a lower electricity demand and higher 

production from gas-fired power plants up to £150/t CO2. 

Summarising, the use of biomass represents a key abatement measure for the UK power 

sector, especially at higher CO2 tax levels in combination with coal CCS. Reducing 

domestic biomass production and allowing no imports results in an emissions increase 

of roughly 10 Mt CO2. 

6.8 Availability of technologies 

Nuclear power and carbon capture and storage technologies, in particular in 

combination with coal-fired power plants, have been indentified from the previous 

analysis to be the key mitigation technologies in the power sector. Both technologies are 

responsible for 62% of all emissions reduction in the REF scenario. The NO-NUC-CCS 
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scenario tests the reliance of the power sector decarbonisation on both technologies and 

the influence on abatement costs. Accordingly, no new investments are allowed in this 

scenario into nuclear and any CCS technologies, including coal CCS, gas CCS and 

biomass CCS power plants. 

The emission curve (Figure 6.31) illustrates that carbon abatement is a lot more 

expensive without any new investments in nuclear and CCS technologies. Baseline CO2 

emissions are 9 Mt above the reference scenario due to less electricity production from 

nuclear reactors, which is compensated by a higher electricity production from natural 

gas and coal power plants. The difference between both curves is striking as an 

emission target of 100 Mt CO2 is achieved at £15/t CO2 in the REF scenario, but only at 

£45/t CO2 in the NO-NUC-CCS scenario. 

Figure 6.28: Emission curve along rising CO2 abatement costs for the NO-NUC-CCS scenario in 

2030 

 

Furthermore, CO2 emissions do not drop below 41 Mt CO2, but stay constantly around 

that level from a carbon tax of £120/t CO2 upwards. At £200/t CO2, emissions in the 

power sector increase again to 52 Mt CO2 despite a rising carbon tax. This is an 

immediate effect of a rising electricity production from gas-fired power plants. The 

additional electricity is used in the transport sector for battery cars and in the service 

and residential sector for space heating via heat pumps. The overall system-wide 

emission levels decrease with an increasing carbon tax but due to intersectoral 

interactions emissions increase in the electricity sector. 
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Since coal CCS and nuclear power are no longer available to reduce emissions, the 

technologically detailed MAC curve (Figure 6.29) looks markedly different from the 

reference case. Electricity demand is significantly lower with up to 320 PJ (89 TWh) 

less than in the reference scenario (see also Figure 6.30) so that demand reduction 

contributes 12% to overall emissions reduction. 

Figure 6.29: MAC curve for the NO-NUC-CCS scenario in 2030 

 

The most important technology that compensates for nuclear and coal CCS is wind 

power. This renewable energy source reduces emissions by 47 Mt CO2 with a weighted 

average of £41/t CO2, which is about £14/t CO2 higher compared with the REF 

scenario. This can be mainly explained with previously unprofitable sites for wind 

turbines being installed due to the absence of other mitigation technologies. Less 

profitable wind categories have a lower load factor and are assumed to contribute less to 

electricity production during peak times in UK MARKAL and therefore require more 

backup capacity. However, a system with a significant amount of intermittent renewable 

capacity cannot be modelled to the best possible extent in UK MARKAL due to the 

limited temporal detail. 

Tidal power is another low-carbon option that generates more electricity than in the 

REF scenario in order to make up for less electricity from nuclear and coal CCS plants. 

A further mitigation measure with an increased mitigation contribution is co-firing of 

biomass to coal power plants. This is one of the most cost-effective mitigation measures 

and starts from £5/t CO2. Nevertheless, at a tax of £78/t CO2 all coal-fired power plants 
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are phased out and replaced by other generation types. Moreover, wave power becomes 

cost-optimal to introduce at £215/t CO2. 

As these technologies cannot fully replace nuclear and coal CCS power plants, natural 

gas plays an important role since emissions from natural gas are roughly half compared 

to those from coal. From £50/t CO2 natural gas power plants replace coal power plants. 

Electricity production from natural gas remains in the electricity mix at a relatively 

constant level of around 25% for the whole range of the MAC curve due to high costs 

associated with zero carbon technologies and an already exhausted potential for wind 

and tidal power. 

Figure 6.30: Electricity generation mix for different marginal abatement costs in 2030 (NO-NUC-

CCS scenario)  

 

In summary, wind, tidal, wave and hydro power compensate partially for coal CCS and 

nuclear power. However, these technologies are not able to replace the whole electricity 

generation from the two key mitigation technologies. Consequently, natural gas makes 

up a significant portion of the electricity mix emitting a significant amount of CO2 even 

at tax levels up to £300/t CO2. 

6.9 Demand development 

Next to factors that are specific to the electricity sector, the mitigation structure is 

equally influenced by the demand development for energy services that influence the 

consumption of electricity. The most important demand services consuming electricity 
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are industrial demand for motor drive and high temperature, which consume about 30% 

of all electricity. Other important energy service demands in terms of electricity use are 

electric appliances, residential heating and finally lighting in the service and residential 

sector. Forecasting the demand for the different energy services, such as travel, space 

heating, industrial energy use, is far from being certain. For this reason two scenarios 

were created to test the robustness to varying levels of demand. Energy service demands 

were increased by 20% in the DEM+ scenario and decreased by 20% in the DEM- 

scenario. Figure 6.31 shows the emission curves of the different demand scenarios. 

Figure 6.31: Emission curve along rising CO2 abatement costs for different demand scenarios in 

2030 

 

It is reasonable that the emission curve is shifted to the right with an increased demand 

level and to the left with a decreased demand level. More interesting to investigate is 

whether this demand level change brings about changes in the technological structure or 

affects abatement costs. Without any carbon policy in place the emissions level in the 

DEM+ scenario is about 6% higher than in the REF scenario, while it is 15% less in the 

DEM- scenario despite the fact that electricity consumption is almost exactly 20% less 

in the DEM- scenario and 20% more in the DEM+ scenario. The lower increase in the 

DEM+ is due to the fact that mainly wind, nuclear power and natural gas CHP plants 

serve the increased electricity demand. In the DEM- scenario the electricity generation 

from coal power plants only decreases by 11% compared to an overall decrease in 

electricity production of 20% so that the carbon intensity of electricity increases. 

0 

50 

100 

150 

200 

250 

300 

-25 0 25 50 75 100 125 150 175 200 

M
ar

gi
n

al
 A

b
at

em
en

t 
C

o
st

 [
£

2
0

1
0
/t

 C
O

2
] 

CO2 Emissions [Mt CO2] 

REF 
DEM+ 
DEM- 



231 

The biggest difference between both DEM emission curves is around a tax level of £50/t 

CO2 where 11 Mt CO2 remain in the DEM- scenario and 54 Mt CO2 in the DEM+ 

scenario. While the electricity sector is almost completely decarbonised from £100/t 

CO2 in the DEM- scenario, emissions in the DEM+ do not fall below 4 Mt CO2 due to 

the limited availability of biomass that can be co-fired to coal CCS plants. A look at 

both technologically detailed MAC curves (Figure 6.32 and Figure 6.33) reveals some 

insights into the technologies affected by the changes in energy-service demand. 

Figure 6.32: MAC curve for the DEM+ scenario in 2030 

 

 
Figure 6.33: MAC curve for the DEM- scenario in 2030 
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One can observe in the DEM+ scenario that the contribution from nuclear power and 

wind power is reduced compared to the REF scenario due to an increased production 

from nuclear and wind in the baseline. The role of coal CCS is more important than in 

the REF scenario as the reference carbon intensity is higher when coal CCS is 

introduced. Coal CCS is introduced to the market at a lower carbon tax with the average 

abatement cost being slightly lower at £55/t CO2 compared with £63/t CO2. The same 

holds true for the co-firing of biomass to coal CCS power plant, where average 

abatement cost is equally slightly lower with £58/t CO2. 

Total electricity generation from coal CCS power plants at the end of the MAC curve is 

24% higher in the DEM+ scenario than in the REF scenario, which leads to the 

emission factor from all coal CCS power plants being higher due to a limited 

availability of woody biomass to be co-fired. The emission factor from coal CCS power 

plants is -3 g CO2/kWh in the DEM+ scenario, while it is -17 g CO2/kWh in the REF 

scenario. As a consequence it becomes cost-optimal from £176/t CO2 to replace coal 

CCS plants, which only use coal as an input fuel, by gas CCS power plants because this 

generation type emits about 50% less CO2 (see Figure 6.34). 

In contrast to the DEM+ scenario, the DEM- scenario requires less total electricity 

production. While electricity production from nuclear power plants is the same in all 

three scenarios from a tax level of £25/t CO2 upwards, the share is significantly higher 

in the DEM- scenario as a result of the lower total electricity demand. 

As the electricity generated from coal-fired power plants can be almost completely 

replaced by nuclear power plants at a tax of £40/t CO2 in the DEM- scenario, there is 

less of an incentive to introduce coal CCS plants at those tax levels. Coal CCS is more 

gradually introduced with increasing carbon tax levels as it can act as an emission sink. 

Consequently, the abatement costs for coal CCS increase to a weighted average of £89/t 

CO2, which is 40% higher than in the REF scenario. The contribution from other 

mitigation measures looks very similar with the exception of the contribution from 

electricity demand reduction, which is higher. 

Concluding, one can say that coal CCS is most affected by the change in the demand 

level, while it becomes cost-effective to invest in natural gas CCS plants in the DEM+ 

scenario at very high carbon tax levels. 
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Figure 6.34: Market share for different technologies in the demand scenarios in 2030 

 

6.10 Summary 

17 carbon cost curves of the UK electricity sector were presented in this chapter to 

illustrate the uncertainties involved in assessing marginal abatement costs and 

corresponding abatement potentials. The scenarios as a whole answer the initial 

questions asked in chapter 1 referring to the contribution of abatement measures to 

emissions reduction, the influencing factors of the MAC curve, and the interaction of 

measures. Furthermore, they address the sensitivity to changes in input parameters 

raised in chapter 5. 

The discussion in this chapter has identified coal CCS and nuclear as the key 

technologies for a decarbonisation of the UK electricity sector in the 21
st
 century. Under 

the assumptions of the UK MARKAL model in the REF scenario nuclear power is one 

of the cheapest abatement options with average abatement costs of £12/t CO2. Coal CCS 

is more expensive compared to nuclear power becoming cost-effective from £19/t CO2. 

Nevertheless, coal CCS power plants have proved to be robust throughout the different 

scenarios in particular due to the possibility of co-firing biomass. This mechanism 

allows coal CCS plants to act as carbon sinks when enough biomass is co-fired. Co-

firing biomass has an average abatement cost of £67/t CO2.  
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While nuclear power is responsible for 27% of emissions reduction in the REF scenario, 

coal CCS including biomass co-firing represents 35% of all emissions reduction. The 

importance of both technologies is emphasised by the significant limitation of 

abatement once investments in CCS and nuclear technologies are not allowed. A further 

mitigation option that proves to be robust throughout the different scenarios is wind 

power, which contributes about 15% to the overall emissions reduction. Other smaller 

mitigation measures are tidal power, low-carbon electricity imports, hydro power, 

natural gas CHP plants and organic waste incineration. 

The uncertainties related to a decarbonisation of the electricity sectors have also been 

quantified. Table 6.6 summarises the influence of the seven different categories on the 

shape of the MAC and its technological structure, i.e. the ordering and contribution of 

mitigation options, into strong, medium, and weak. This difference is made because 

there exist scenarios where the emission curves do not indicate major differences but are 

made up of different abatement measures. The classification into strong (+), medium 

(o), and weak (-) cannot be completely objective. However, concerning the influence on 

the shape, the classification indicates how strongly the scenario deviates from the 

reference scenario, in particular in a likely tax range in 2030 of £35/t CO2 to £105/t 

CO2, with weak indicating a deviation in emissions of up to 5%, medium between 5% 

and 20%, and strong more than 20% in terms of baseline emissions. 

Table 6.6: Influence of the change in different model assumptions on MAC curve: strong (+), medium 

(o), weak (-) 

 

The scenario analysis has pointed out that the uncertainty around the availability of 

nuclear power and CCS has a significant influence on the shape and structure of the 

power sector MAC curve. The choice of the discount rate has a very limited influence 

but affects the ordering of mitigation measures. A variation of fossil fuel prices also has 

a limited influence on the MAC curve, in particular in the range of the expected carbon 

tax level in 2030, but alters the ranking and importance of mitigation technologies. 

Category

Shape Structure

Path dependency o o

Technological learning o o

Discount rate - o

Life time - -

Technological availability + +

Fossil fuel price - +

Demand level o o

Influence
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Uncertainty related to path dependency, technological learning and the demand level 

has a medium influence on the MAC curve‟s shape and the ordering of abatement 

measures. 

Finally, interactions between mitigation measures is one of the points of interest of this 

thesis. The electricity sector has a pivotal role to play in the decarbonisation of the 

whole energy system because it is already used in all energy demand sectors and has the 

potential to contribute to the reduction of CO2 emissions by switching to battery 

vehicles in the transport sector or to heat pumps for space heating in the built 

environment. A change in fossil fuel prices does not affect the overall shape of the 

MAC curve, but has an influence on the mix of mitigation measures with renewables 

becoming relatively cheaper compared to fossil fuel-based alternatives. On a technology 

level, one can notice interactions between gas and coal CCS power plants as well as the 

use of biomass in the electricity sector and the generating capacity of coal CCS. This 

can be explained with the fact that the majority of biomass is co-fired in coal CCS 

power plants. In scenarios with a lower gas price, a higher discount rate or a high level 

of energy demand, natural gas becomes an important transition fuel used in CHP plants 

and in combination with CCS. 

6.11 MAC curves for the year 2020, 2040 and 2050 

The previous scenarios have focused on the year 2030, as an important milestone for 

medium-term emissions reduction goals. In order to get a broader picture of emissions 

reduction during the first half of this century, this section presents MAC curves for the 

year 2020, 2040, 2050 and finally a cumulative emissions reduction curve. 

In order to compare the different MAC curves, Figure 6.35 compares the emissions 

associated with different CO2 tax levels in each of the four representative years. This 

representation accounts for different baseline emissions. In order to ensure a clearer 

representation of the emission curves, the illustration shows only carbon tax levels up to 

£200/t CO2, although the carbon tax goes up to almost £800/t CO2 in 2050. The baseline 

CO2 emissions increase with time from 191 Mt CO2 in 2020 to 261 Mt CO2 in 2040 and 

276 Mt CO2 in 2050. This can be explained with an increasing electricity generation, 

which is dominated by coal-fired power plants. 
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Figure 6.35: Emission curve along rising CO2 abatement costs for the REF scenarios in different 

years 

 

All emission curves assume that the CO2 tax increases from 2010 with the model-

inherent discount rate of 5% p.a. This explains why the emission curve stops at a tax 

level of £180/t CO2 in 2020 and at £779/t CO2 in 2050. A CO2 tax higher than £180/t 

CO2 in the UK in 2020 is deemed unrealistic, given the current carbon policies for the 

electricity sector being equivalent to a carbon tax of less than £20/t CO2. Different 

carbon tax pathways over time would affect the MAC curve, whereby a MAC curve in 

2020 would be less affected than a MAC curve in the year 2050 (see also section 6.2) 

The emission curve for the year 2020 reaches a plateau from £96/t CO2 at 66 Mt CO2, 

below which emissions do not fall. Many coal-fired and gas-fired power plants have not 

reached the end of their life time at this point meaning it would entail high sunk costs to 

replace them with low-carbon alternatives. Furthermore, new power plants cannot be 

built so quickly due to lead times involved and the limited time period of less than ten 

years up to 2020. At a tax level of £40/t CO2 the electricity sector is more than 90% 

decarbonised in the year 2040 and 2050 indicating the low-cost abatement potential. 

The difference with respect to the emission curves is limited for the years 2040 and 

2050, while it is comparably large for the years 2020 and 2030. It is also apparent that 

emissions turn negative at £151/t CO2 in 2040 and at £195/t CO2 in 2050 due to 

biomass-co-firing to coal power plants and biomass CCS plants. 
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The electricity mix in the year 2020 without a carbon tax is dominated by natural gas 

(37%), coal (33%), nuclear (11%) and natural gas CHP plants (8%). Figure 6.36 shows 

that nuclear, wind power and a reduction in the demand for electricity are low-cost 

options to reduce CO2 emissions in the power sector in 2020. Electricity demand is up 

to 6% lower in the presence of a carbon tax compared to the case without one and thus 

an important abatement measure. Nuclear power has an average abatement cost of £10/t 

CO2, while it is £23/t CO2 for wind power. 

Figure 6.36: MAC curve for REF scenario in 2020 

 

The most important abatement measure is coal CCS, which is responsible for 27% of all 

emissions abatement in 2020. Though, this abatement option is significantly more 

expensive with abatement costs ranging from £24/t CO2 to £96/t CO2 and an average 

abatement cost of £58/t CO2. The mentioned abatement options are complemented by 

biomass power plants, tidal power, biomass co-firing and organic waste incineration. 

The MAC curve for the year 2040 (Figure 6.37) looks very different from the one in the 

year 2020 due to the different mix in the baseline case and the higher flexibility 

concerning the abatement measures. The power sector is dominated by coal power 

plants (75%) with nuclear, biomass, wind and natural gas making up the rest of the 

electricity generation. A look at the MAC curve for the year 2040 reveals that nuclear 

power is the dominant mitigation measure where more than half of all emissions 

reduction can be attributed to nuclear power. This electricity generation type increases 
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its share in the electricity mix up to a carbon tax of £48/t CO2. In a similar range as 

nuclear power, wind power becomes cost-effective to contribute to emissions reduction. 

Figure 6.37: MAC curve for REF scenario in 2040 

 

A further important mitigation technology is coal CCS in particular in combination with 

biomass co-firing. Coal CCS power plants require a significantly higher carbon tax of at 

least £32/t CO2 to become cost-effective, while co-firing to coal CCS plants starts from 

£40/t CO2. Coal CCS power plants contribute towards emission mitigation also at much 

higher tax levels owing to interactions with other mitigation measures, with other 

sectors, and due to intertemporal interactions. 

Turning to 2050, the electricity sector without a CO2 tax is still dominated by coal-fired 

power plants as in previous time periods. Coal-fired power plants make up 76% of the 

electricity mix, while nuclear power plants account for 5%, tidal for 4%, natural gas 

CHP plants for 3%, and wind for 3%. 

Similar to the MAC curve in 2040 up to £39/t CO2, the MAC curve in 2050 is 

dominated by a switch to nuclear power (see Figure 6.38). This option abates 59% of all 

emission in the power sector. In the same way, wind power and coal CCS are two 

further important abatement technologies in 2050. In contrast to earlier years, biomass 

CCS power plants are an option that plays a significant role in the MAC curve for the 

year 2050. This abatement option reduces emissions by 30 Mt CO2 storing emissions of 

biomass underground and thereby acting as a CO2 sink. Nevertheless, this option is 
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relatively expensive and becomes cost-effective only at a tax level of £467/t CO2, with 

an average abatement cost of £596/t CO2. 

Figure 6.38: MAC curve for REF scenario in 2050 

 

All of the MAC curves that have been presented so far in this chapter are designed for 

the cumulative emissions of one single year, e.g. 2030. This is the standard way of 

displaying MAC curves. In order to address the static character of a usual MAC curve 

and take into account intertemporal interactions, Figure 6.39 presents a cumulative 

power sector MAC curve for the period from 2010-2050. The y-axis represents the CO2 

tax level in 2030, which is however not constant through time but increases with the 

discount rate of 5%, so that the tax level is lower prior to 2030 and higher thereafter. 

Within the 40 years, emissions in the REF scenario are 8.5 Gt CO2, which corresponds 

to 216 Mt CO2 per year for the UK power sector. The MAC curve indicates that 

emissions reduction is comparably inexpensive in the power sector, where half of all 

cumulative emissions can be abated with a CO2 tax of £15/t CO2 in 2030 (assuming a 

tax that increases with 5% per year). Similar to the MAC curve in 2030, nuclear power 

plays the most important role in decarbonising the power sector with a share of 39% in 

all emissions reduction. The share of nuclear is higher than in 2030 because nuclear can 

be deployed earlier than coal CCS power plants and nuclear power plants are assumed 

to be less expensive. From 2040 onwards, the role of coal CCS power stations is 

diminished owing to the introduction of biomass CCS plants that can act as important 

carbon sinks. Accordingly the share of coal CCS power plants in overall emissions 
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reduction is 16% (including biomass co-firing) and 2% for biomass CCS plants. Wind 

proves to be an equally important mitigation option with 11% of emissions reduction. 

Figure 6.39: Cumulative emission curve along rising CO2 abatement costs for the REF scenario 

 

This overview of abatement costs and potentials at different points in time has shown 

that emissions reduction is more flexible in later periods compared with earlier ones. In 

2020, demand reduction is one of the important measures reducing CO2 emissions, 

whereas technology options, such as nuclear and biomass CCS, dominate abatement in 

2040 and 2050. 
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7 TRANSPORT SECTOR MAC CURVES 

This chapter is the second results chapter and discusses the economics of carbon 

emissions reduction in the UK transport sector. It exhibits MAC curves with different 

input assumptions, which are derived with the UK MARKAL model and decomposition 

analysis. This chapter helps to expose the technological structure behind emissions 

mitigation and sheds light on the uncertainties related to a transport MAC curve via 

various sensitivity cases. The sensitivity analysis of the transport sector is focused on 

the year 2030 as an important medium-term target for emissions reduction. In total, 20 

scenarios, which can be differentiated into ten categories, have been performed. 13 

scenarios are the same as those used in the previous chapter on electricity sector MAC 

curves. These include the categories path dependency (only one scenario is added), 

discount rate, electricity cost, fossil fuel price, and demand level. In addition, 

technology learning in the transport sector is studied in two scenarios. Moreover, two 

scenarios cover transport-specific aspects: the role of battery vehicles and the potential 

of biofuels. Lastly, the demand elasticity for transport-related energy services is varied 

to quantify uncertainty around this input factor. Table 7.1 gives an overview of the 

different scenarios and explains each one in turn. Each MAC curve consists of 46 

different model runs with  system-wide CO2 taxes, ranging from £2010 0 to 294/ t CO2 in 

2030. In the reference scenario (REF) the CO2 tax is assumed to increase from 2010 

with the model inherent discount rate of 5% p.a. 

At the end of this chapter a cumulative MAC curve and MAC curves for the years 2020, 

2040, and 2050 are discussed. All costs are given in £ of the year 2010. 
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Table 7.1: Scenario overview 

Scenario Category Description

REF Reference Carbon tax increases  by 5% p.a. from 2010

ZERO-BEFORE Path dependency Carbon tax i s  zero before 2030

CONST-AFTER Path dependency Carbon tax i s  constant after 2030

INCR-AFTER Path dependency Carbon tax increases  with 10% p.a. from 2030

ZERO-AFTER Path dependency Carbon tax i s  zero after 2030

HIGH-BEFORE Path dependency Carbon tax i s  kept constant on the 2030 level  from 

the REF scenario for the period 2015-2030

2030 Path dependency Model  horizon is  l imited to 2030 instead of 2050

ITL Technological learning Annual  technologica l  learning rates  increased by 

30%-50%

DTL Technological learning Annual  technologica l  learning rates  decreased by 

25%-30%

PDR10 Discount rate Hurdle rates  introduced for a l l  technologies  at 10%, 

previous ly exis ting rates  were doubled

SDR Discount rate Discount rate lowered to 3.5%, a l l  hurdle rates , 

taxes  and subs idies  removed

BATTERY Battery potential Limited market share of electric vehicles  to 15% for 

cars  and buses

IEP Electricity cost Investment costs  increased by 200% for a l l  CCS 

technologies , biomass , nuclear, tida l , wind, wave

FF+ Fossil fuel price Costs  for coal , coking coal , oi l , refined products  and 

natura l  gas  increased by 100%

FF++ Fossil fuel price Costs  for coal , coking coal , oi l , refined products  and 

natura l  gas  increased by 200%

BIOFUEL Biofuel potential Biomass  costs  ha lved, biomass  space & water 

heating in bui ldings  l imited to 4% of tota l  market

ELAST+ Demand elasticity Al l  demand elastici ties  increased by 50%

ELAST- Demand elasticity Al l  demand elastici ties  decreased by 50%

DEM+ Demand level Al l  energy service demands  increased by 20%

DEM- Demand level Al l  energy service demands  decreased by 20%
 

7.1 Description of the transport sector in UK MARKAL 

In the transport sector of the UK MARKAL model, energy service demands, measured 

in billion vehicle kilometres, are included for various modes of transport: air travel, car 

travel, bus travel, heavy goods vehicles (HGV), light goods vehicle (LGV), rail 

transport and two-wheeler. In line with current CO2 accounting, international shipping 

and aviation are not considered in the model for this thesis. Energy service demand 

levels up to 2050 are estimated based on projections from the Department for Transport. 

More detail can be found in the model documentation (Kannan et al. 2007). 
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In addition, the model has a number of fuel distribution networks to track fuel use by 

mode of transport: petrol, diesel, biofuels, hydrogen and electricity. To meet the 

different transport energy service demands, a number of vehicle technologies are 

integrated in the model. These include internal combustion engine (ICE) vehicles, 

hybrid vehicles, plug-in vehicles, battery vehicles, E85 vehicles (flexible-fuel vehicles 

that can run on up to 85% ethanol in the fuel mix), methanol vehicles and hydrogen 

vehicles. Hydrogen vehicles are distinguished into vehicles with an internal combustion 

engine and those with a fuel cell.  

A number of key parameters that are required to characterise the transport vehicle 

technologies, such as technical efficiency of a vehicle, capital cost, operating cost, 

vehicle lifetime or annual kilometrages, are defined in the model. Transport 

technologies are exogenously assumed to become more efficient over time (see also 

7.4). Hurdle rates are implemented for new technologies to account for technology-

specific risks. They are 10% for hydrogen vehicles, 7.5% for battery, methanol, hybrid, 

as well as plug-in hybrid vehicles, and 12.5% for battery and hydrogen two-wheelers. 

Concerning railway travel, the model takes account of track electrification where 

capacity exceeds existing electrification. Current fuel duties for the use of petrol and 

diesel are included in the UK MARKAL model and are assumed to stay the same over 

the first half of the 21
st
 century in constant prices. 

The strengths of the UK MARKAL’s representation of the transport sector include the 

technological detail and taking account of intersectoral interactions, in particular related 

to the use of electricity and biomass. Limits of the model are that it does not allow for 

variations in load factors (i.e. how many passengers use a vehicle), it does not allow for 

speed reduction and does not capture efficiency options explicitly, such as downsizing, 

start-stop-control or low-resistance tyres. This has consequences on the contribution of 

efficiency gains for emissions reduction. 

Furthermore, the model does not include walking or cycling as transport modes and 

does not allow for modal changes. Induced technological change is not included in the 

model, so that effects of path dependency may be underestimated. The model does not 

possess any spatial detail, which together with the lack of modal changes can affect the 

contribution of demand changes in decarbonising the transport sector. Lastly, the crude 
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temporal resolution simplifies interactions with the electricity sector, e.g. when charging 

a battery vehicle. 

7.2 Reference scenario 

The REF scenario describes a development of carbon emissions reduction with the 

standard assumptions of the UK MARKAL model. 

In the following analysis of the transport sector, emissions have been attributed from an 

end-user perspective, i.e. emissions resulting from the generation of electricity that is 

consumed in the transport sector are assigned to the transport sector. According to the 

model results, transport emissions (excluding international shipping and aviation) from 

an end-use perspective are 130 Mt CO2 in 2030 in the REF scenario, which compares to 

134 Mt CO2 in 1990. Figure 7.1 shows an emission curve for the transport sector from 

an end-use perspective. 

Figure 7.1: End-use emission curve for the transport sector in United Kingdom in 2030 

 

At a price of £100/t CO2 emissions are reduced by 50 Mt CO2 to a level of 80 Mt CO2 

and from then on more gradually to 65 Mt CO2. This representation does not only allow 

insights into the emissions reduction from a baseline, but also to put the absolute 

emissions into perspective. At some points of the curve, emissions increase despite 

increasing CO2 tax levels due to interactions with other sectors and intertemporal 

interactions, i.e. it is more cost-effective to reduce emissions in other sectors or other 

time periods. 
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130 Mt CO2 emissions in the reference case at no CO2 tax originate from different 

transport modes (Figure 7.2). As the majority of all travel is done via cars, this transport 

mode is responsible for 62% of all end-use transport emissions in 2030. The second 

most important source of CO2 emissions are heavy goods vehicles (HGVs) with 18%, 

followed by light goods vehicles (LGVs) with 8% and rail travel with 6% of all 

transport emissions. Minor contributions come from domestic aviation (3%), domestic 

shipping (2%), bus (1%) and two-wheelers (<1%). Correspondingly, one can expect to 

see predominantly emissions reduction measures associated with those transport modes 

that emit the most CO2, i.e. cars, HGVs and LGVs. The numbers for aviation and 

shipping would change significantly with international emissions included, since in 

2008 emissions from international aviation were 14 times greater than those from 

domestic aviation, while the corresponding ratio is 1.25 for shipping. 

Figure 7.2: CO2 emissions from different transport modes in United Kingdom in 2030 

 

In order to judge the technological structure of the MAC curve it is important to know 

what propulsion systems are used for the different transport modes in the reference case. 

Without any CO2 price in the REF case, the transport sector is characterised by cars that 

rely on petrol/diesel ICE vehicles and petrol hybrids (46%) and the vast majority of 

buses with diesel hybrid engines. A small proportion of buses (12%) are vehicles 

equipped with a battery. The large majority of LGV as well as HGV are also propelled 

by diesel hybrid engines. 7% of all rail travel does not use electricity, but relies on 

diesel as a fuel. 

Including the results of the decomposition analysis shows which measures are 

responsible for the emissions reductions (see chapter 4). Equation (7.1) details the 

decomposition employed to disaggregate changes in total transport CO2 emissions in 

this chapter: 
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(7.1

) 

activityi stands for the demand level of transport mode i in billion vehicle kilometres. 

activityi,j represents the demand level satisfied by technology j for transport mode i, 

while fueli,j indicates the amount of fuel in PJ used for technology j to satisfy demand of 

transport mode i. Lastly, CO2 i,j is the amount of CO2 in kt emitted by technology j 

while satisfying demand of transport mode i. Correspondingly, the decomposition 

distinguishes between demand-related influences, structural changes, and the impact of 

fuel efficiency and carbon intensity.  

Demand-related factors describe a change in the demand for energy services and 

structural changes mean a change from one technology to another, e.g. a switch from 

petrol ICE cars to hydrogen fuel cell cars. Fuel efficiency influences relate to 

improvements in the fuel that is used for a specific distance and carbon intensity effects 

describes a change in the carbon content of a fuel, e.g. by blending biodiesel into diesel 

or by reducing the carbon intensity of electricity. The logarithmic mean Divisia index 

(LMDI) is used to derive the contribution towards CO2 emission of specific measures 

(see also chapter 4). 

Figure 7.3 shows that structural shifts and the decarbonisation of fuels are responsible 

for the majority of emissions reductions in the central scenario. Energy-service demand 

reduction due to higher costs for energy service demands represents a constant but 

minor contribution. The demand contribution is limited due to structural changes that 

keep the price for energy service demand relatively constant, especially for cars. 

Nevertheless, alternative technologies are limited for aviation, shipping and HGV, so 

that these transport modes show a disproportionately high demand reduction. In 

addition, one can distinguish two major trends in the MAC curve. 
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Figure 7.3: Transport MAC curve for the REF scenario in 2030 

 

Firstly, the predominant trend in the transport sector is the electrification of most of the 

transport modes. The cheapest option to reduce transport emissions is the switch from 

conventional petrol cars towards petrol-electric hybrid cars as they are more efficient 

and consume less fuel. Mainly in a range from £40/t CO2 and £80/t CO2, battery cars 

become cost-effective and make up 43% of all cars. This trend is accompanied by a 

decarbonisation of electricity. It is an important condition since electricity is used as an 

energy input for almost all trains, for slightly more than 10% of all buses and from £40/t 

CO2 a significant proportion of cars. Up to £40/t CO2 electricity is decarbonised by 80% 

compared to £0/t CO2 in 2030. At a higher tax of around £225/t CO2, LGVs partly shift 

to petrol plug-in vehicles and thereby reduce CO2 emissions via a higher consumption 

of electricity rather than petrol. 

A second trend concerns cars and LGV consuming diesel. Diesel begins to be slightly 

decarbonised (by 5%) around £125/t CO2 due to a higher share of imported first 

generation biodiesel in the diesel mix. The decarbonisation of this secondary energy 

carrier via the increase of the share of biodiesel reduces CO2 emissions from transport 

modes relying on diesel, i.e. bus, car, LGV and HGV. At the upper end of the MAC 

curve, conventional diesel cars are displaced by diesel hybrid cars in a range from £100 

to £250. Diesel hybrid cars are at a higher cost level in the MAC curve compared with 

petrol hybrids because the additional investment cost of diesel hybrids compared with 
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diesel ICE cars is higher than the additional cost of petrol hybrids compared with petrol 

ICE cars. This is based on the reasoning that at present most hybrid vehicles are petrol 

vehicles, so it is assumed that technology costs can be more rapidly reduced for petrol 

hybrids than for diesel hybrids. Even a small difference in investment cost premiums is 

important, since the level of the CO2 tax determines the fuel price that is crucial in 

determining how long it takes to compensate for the premium through reduced fuel 

costs. Currently about 70% of the diesel and petrol price consists of fuel taxes, and the 

crude oil price makes up only a relatively small part. Consequently, the mitigation costs 

of hybrid vehicles are very sensitive to the underlying assumptions, not only to 

investment costs, but also to hurdle rates and efficiency advantages. 

An idea of the overall contribution of different technologies and effects up to the highest 

CO2 tax of £294/t CO2 in 2030, is given in Figure 7.4, which summarises the results for 

CO2 emissions reduction due to demand changes, structural shifts, efficiency 

improvements, and carbon intensity reductions. 

Figure 7.4: Total decomposition of transport MAC (REF) for the UK in 2030 

 

The reduction in the demand for energy services, caused by higher prices, has a minor 

(10%) but constant contribution. However, this finding is dependent on the specified 

price elasticity of energy service demands, as will become clear in the sensitivity cases. 

A reduction in fuel intensity [PJ/billion v.km] (equivalent to efficiency improvement) 

does not contribute to emissions reductions in the transport sector. This means that a 

carbon tax does not present an incentive for efficiency gains in addition to those present 

in the baseline without any carbon tax. Significant efficiency improvements are already 

incorporated in the reference case as they are assumed to be cost-effective without a 

CO2 tax; in consequence, cost-effective, additional efficiency gains are relatively small 
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and affect only a limited portion of the entire vehicle fleet. More importantly, since 

structural changes dominate the transport sector and since road vehicles have an average 

life time of 7 to 15 years, investments into more efficient vehicles are not realised over 

time because of an anticipated switch to a different technology. Another reason for the 

small role of efficiency improvements is the poor treatment of efficiency options in the 

model so that the fuel intensity effect could change under an alternate model type (see 

7.1). 

Within UK MARKAL, the most important effects for carbon reduction are structural 

changes and the decarbonisation of electricity and diesel. 70% of total carbon reduction 

originates from structural changes in the central case. This is shared between battery 

vehicles (38%), petrol hybrid vehicles (25%), diesel hybrid vehicles (5%), and petrol 

hybrid vehicles (2%). The decarbonisation of fuels contributes 20% towards CO2 

emissions reduction. Only a small proportion (2%) comes from a higher share of 

biodiesel due to the fact that it is more cost-effective to use the available biomass 

resources in the power sector and in buildings for space and water heating. 

This stresses the importance of the supply sectors and the corresponding 

decarbonisation of secondary energy carriers in order to achieve mitigation targets for 

the transport sector. Structural changes and a reduction of carbon intensive electricity 

are pivotal to a decarbonisation of the transport sector, where structural changes are in 

general preceded by a decarbonisation of the concerned energy carrier. 

Taking the integral under the curve in Figure 7.3 gives information about the total cost 

associated with emissions reduction in the UK transport sector in 2030. This does not, 

however, consider the costs associated with carbon abatement in earlier and later time 

periods. Figure 7.5 indicates that total costs increase exponentially with an increasing 

emissions reduction target. Total abatement costs in 2030 are £1.96 billion for an 

emissions reduction of 50 Mt of transport-related CO2 emissions and £5.17 billion for a 

reduction of 70 Mt CO2, this corresponds to an average abatement cost of £39/ t CO2 

and £74/t CO2 respectively. 
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Figure 7.5: Total abatement cost for the transport sector in United Kingdom in 2030 

 

7.3 Path dependency 

Five scenarios presented in this section correspond exactly to those presented in chapter 

6 for the electricity sector. In addition, the 2030 scenario is presented, where the model 

is run until 2030 instead of 2050. Three scenarios consider different pathways after 

2030, CONST-AFTER, ZERO-AFTER, INCR-AFTER, and two regard different 

pathways before 2030, ZERO-BEFORE, HIGH-BEFORE (see also Figure 6.7). 

Although all seven scenarios have the same CO2 tax in 2030, they result in different 

MAC curves, especially for higher abatement costs (see Figure 7.6). Those scenarios 

with a higher CO2 tax compared with the REF scenario, i.e. INCR-AFTER and HIGH-

BEFORE show for the same carbon price generally a slightly higher abatement level. 

The CONST-AFTER scenario, which keeps the CO2 tax constant after 2030, shows 

only a very limited divergence from the REF scenario. 

The emission curves for all three scenarios look very similar to the REF emission curve, 

where, for a given CO2 tax, the biggest difference in the abatement potential is 9%. The 

picture looks different for the scenarios where the CO2 tax is kept at zero before or after 

2030, which significantly increases the marginal abatement costs. While the abatement 

potential is significantly lower for a given CO2 tax up to £150/t CO2 in the ZERO-

AFTER scenario, it is the inverse case for the ZERO-BEFORE scenario where the 

abatement potential is less from around £100/t CO2 onwards. In the 2030 scenario, the 

emission level is on average 22 Mt CO2 above the REF scenario up to £127/t CO2 and at 

higher tax levels very similar to the reference case. 
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Figure 7.6: End-use emission curve for different path dependency scenarios 

 

7.3.1 Constant CO2 tax after 2030 

In the CONST-AFTER scenario the CO2 tax stays constant after 2030 at the same level 

as it is in 2030. Thus, the incentive for CO2 abatement is less than in the REF scenario 

as the CO2 tax no longer increases after 2030. Consequently the MAC curve can be 

expected to be steeper compared with the reference case. 

It turns out that the results look very similar and that the constant CO2 tax after 2030 has 

only a small cost-increasing effect. Figure 7.7 reveals that the abatement cost is slightly 

higher for certain technologies in the CONST-AFTER scenario, i.e. £5-25/t CO2 more 

for battery cars, £15/t CO2 more for diesel hybrid cars and £29/t CO2 more for LGVs. 

The share of battery cars does not increase significantly above a market share of 43% 

because battery cars are only cost-effective a few years before 2030, but replacing all 

cars would take at least twelve years. 

Petrol plug-in LGVs become cost-effective in the CONST-AFTER scenario at a higher 

cost level of £254/t CO2 because petrol plug-in LGVs are used during the whole model 

horizon after 2030 and only partially replaced by diesel plug-in LGVs in 2050. In 

contrast to this, hydrogen becomes an important fuel for LGVs in the REF scenario 

from around £250/t CO2 on in later model periods, so that petrol plug-in LGVs are 

introduced earlier, but to a smaller extent compared to the CONST-AFTER scenario as 

the technology replacement is anticipated. The market share of petrol plug-in LGVs in 
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the CONST-AFTER scenario is not reduced with rising marginal abatement cost as no 

hydrogen vehicles become cost-effective in later periods. 

Figure 7.7: Market share for different technologies in the CONST-AFTER scenario in 2030 

 

Petrol hybrid cars are the cheapest abatement option and up to £34/t CO2 their market 

share increases to 76% in compensation for petrol ICE cars (see Figure 7.7). From this 

CO2 tax level on, the market share declines steadily up to £98/t CO2 as battery cars take 

over the market share. This decline is slower in the CONST-AFTER scenario due to the 

fact that the introduction of battery cars happens at higher cost levels. A last increase in 

market share can be observed at £108/t CO2, where all remaining petrol ICE cars are 

replaced by petrol hybrid cars. A reason for the later introduction of battery cars is that 

the CO2 tax does not increase as rapidly as in the REF scenario after 2030, which leads 

to a situation where electricity is not decarbonised to the same extent. 

7.3.2 Zero CO2 tax after 2030 

This path dependency scenario assumes a CO2 tax that drops back to zero for all model 

runs after 2030. This means that there is no penalty for emitting CO2 after 2030. 

Correspondingly, one should expect less emissions reductions for the same CO2 tax 

level. A look at Figure 7.6 and Figure 7.8 reveals that the ZERO-AFTER scenario is up 
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to £50/t CO2 more expensive compared with the REF scenario and in total results in 2.5 

Mt CO2 less abatement. 

Figure 7.8: MAC curve for the ZERO-AFTER scenario in 2030 

 

The MAC curve in the ZERO-AFTER scenario (Figure 7.8) indicates that mitigation 

technologies, such as petrol and diesel hybrid cars, and battery cars are introduced to the 

market at higher marginal abatement costs. It is also interesting to note that the whole 

MAC curve only includes technological mitigation measures relating to cars and buses, 

i.e. there are no structural changes within LGVs. Petrol plug-in LGVs do not become 

cost-effective up to £294/t CO2, while petrol hybrid LGVs need a carbon tax that is 

£54/t CO2 higher than in the REF scenario to enter the market. In anticipation of the 

CO2 tax disappearing after 2030, the model does not choose petrol plug-in LGVs. The 

abatement potential from diesel hybrid cars is less compared with the REF scenario 

because diesel plug-in cars become cost-effective at £225/t CO2 (see Figure 7.8). This 

additional abatement technology is introduced in 2030 as since no other low-carbon 

technologies are needed after 2030 and plug-in vehicles can consume electricity and 

refined products. 

From Figure 7.9 it can be seen that abatement options need an even higher CO2 tax to 

become cost-effective than in the CONST-AFTER scenario. Battery cars, for example, 

reach their full potential at £157/ t CO2, which is £78/ t CO2 more than in the REF 
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scenario. As battery cars are later introduced into the market, the decrease of the share 

of petrol hybrid cars is less accentuated in the CONST-AFTER scenario. 

Figure 7.9: Market share for different technologies in the ZERO-AFTER scenario in 2030 

 

7.3.3 Steep increase in CO2 tax after 2030 

In the INCR-AFTER scenario the CO2 tax increases after 2030 by 10% annually, thus 

the CO2 tax increases with a rate that is twice as high as in the REF scenario. The shape 

of the MAC curve looks very similar to the REF scenario as Figure 7.6 reveals. Since 

the CO2 tax is higher following 2030, there is an additional incentive for the model to 

choose low carbon technologies in 2030 in order to anticipate the future additional 

penalty for emitting CO2. Therefore, a few mitigation technologies figure at lower cost 

levels on the MAC curve, e.g. battery cars reach their highest market share of 43% at 

£10/t CO2 less, battery buses significantly increase their market penetration at £29/t CO2 

less and plug-in LGVs enter the market as well at £29/t CO2 less. 

The steep increase of the CO2 tax of 10% p.a. after 2030 presents an additional 

incentive to invest in a few low carbon technologies in 2030 compared to the REF 

scenario. Overall, the influence of this additional increase of the later CO2 tax is limited. 
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7.3.4 Zero CO2 tax before 2030 

In contrast to the REF scenario, there is no CO2 tax before 2030 in the ZERO-BEFORE 

scenario. There is no incentive to shift to any low-carbon technologies before 2030. 

This is important since road vehicles have a lifetime of 7 to 15 years, while aircrafts, 

ships and trains have a lifetime of up to 40 years. Even if investments are taken into 

low-carbon technologies in 2030, there will be still conventional technologies present in 

2030 due to earlier long-lasting investments. 

Figure 7.6 and Figure 7.10 show that the overall MAC curve for the transport sector 

looks very similar to the REF scenario up to £70/t CO2, but then starts to diverge in the 

sense that less CO2 is reduced so that at £294/t CO2 10 Mt CO2 are unabated compared 

to the REF scenario. The contribution of electricity decarbonisation is higher with a 

share of 26% compared to 18% in the REF scenario, since the switch to battery cars 

happens at approximately the same cost level, but electricity gets decarbonised at 

slightly higher cost levels (see Figure 7.11). 

Figure 7.10: MAC curve for the ZERO-BEFORE scenario in 2030 

 

The abatement potential is lower in the ZERO-BEFORE scenario compared with the 

REF scenario because several low-carbon technologies remain significantly behind their 

market penetration in the REF scenario. This is particularly the case for petrol hybrid 

cars, diesel hybrid cars and battery buses (see Figure 7.11). A reason for the lower 
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market share of diesel hybrid vehicles is that in the model no investments are realised 

for this vehicle type before 2030 so that diesel ICE cars retain a significant market 

share. Similarly, the model does not invest in petrol hybrid cars until 2025, while this is 

already the case in 2020 for the REF scenario. 

In summary, the fact that there is no CO2 tax prior to 2030 represents a significant 

disincentive for the investment in low-carbon technologies. The investment level is 

therefore lower in comparison to the REF scenario despite a high CO2 tax in 2030 and 

in subsequent years. 

Figure 7.11: Market share for different technologies and carbon intensity of electricity (bottom right) 

in the ZERO-BEFORE scenario in 2030 

 

7.3.5 High CO2 tax from 2015 

The HIGH-BEFORE scenario assumes that the CO2 tax stays at a constant level from 

2015 to 2030, which is the same as the CO2 tax in the REF scenario in 2030. The shape 

of the emission curve (see Figure 7.6), as well as the MAC curve, looks very similar to 

the REF scenario. The overall abatement is also almost the same as in the scenario with 

a constantly rising CO2 tax. Looking specifically at the mitigation measures reveals that 

petrol ICE cars are completely replaced by petrol hybrid and battery cars at a cost level 

of £78/t CO2, thus at £30/t CO2 less. Similarly, electric buses become cost-effective at 
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£50/t CO2 less compared with the REF scenario. For other mitigation options the 

abatement potential and the marginal abatement cost level is comparable. 

A high CO2 tax that is higher for two periods can lead in specific cases to a reduction of 

marginal abatement costs, but does not alter the overall MAC curve substantially. Thus, 

the MAC curve is more affected by lower carbon tax pathways than by higher carbon 

taxes owing to the already high tax level in the reference case. 

7.3.6 Model horizon limited to 2030 

In the 2030 scenario, the model is only run until 2030 so that expectations about the 

development of the energy system beyond 2030 do not play a role. The results in the 

2030 scenario diverge significantly from the other path dependency scenarios in the 

transport sector. In the other sectors that have been studied, there exists almost no 

difference between the 2030 scenario and the REF scenario so that results are only 

presented for the transport sector. 

Figure 7.6 showed that emissions are substantially higher up to £127/t CO2 owing to a 

change in the model horizon to 2030. At £0/t CO2 petrol hybrid cars are not cost-

effective so that the emissions level is 16 Mt CO2 higher. Petrol hybrid cars become 

cost-effective at £30/t CO2, while they are already part of the vehicle mix without a CO2 

policy in the REF scenario. Similarly, the abatement costs associated with battery cars 

are £30/t CO2 higher than in the REF scenario, i.e. battery cars are introduced to the 

market from £70/t CO2. 

The model no longer expects fuel prices to moderately increase in the years after 2030 

as it is assumed in the REF scenario because the model is only run until 2030. Since 

abatement costs of petrol hybrid cars are very sensitive to the underlying assumptions, 

abatement costs increase by more than £30/t CO2 compared with the REF scenario. The 

situation is similar for battery cars. In summary, an optimisation up to 2030 leads to 

substantially higher abatement costs up to a CO2 tax of £127/t CO2 compared to all 

other path dependency scenarios. 

7.4 Technology learning 

Technology learning rates are a static, exogenous input to the UK MARKAL model. 

Since learning rates are uncertain and become more uncertain the further one projects 
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trends into the future, a sensitivity analysis is performed around the assumptions 

concerning learning in the transport sector. Learning rates concerning capital costs have 

been increased in one scenario, Increased Technology learning (ITL) and decreased in a 

second scenario, Decreased Technology learning (DTL). The investment costs are 

detailed in Table 7.2. 

Table 7.2: Investment cost in different scenarios for constant 2010 efficiency levels (ITL= Increased 

Technology learning, DTL= Decreased Technology learning) [£2000 per vehicle] 

BUS Battery Diesel ICE Hydrogen ICE Hydrogen FC Methanol FC Hybrid diesel

2010 Base 190,806             137,388             157,117             229,901             238,943             155,501             

2030 Base 147,548             121,972             89,733                101,779             109,567             95,555                

2030 ITL 129,536             114,894             67,388                72,343                79,087                74,561                

2030 DTL 159,451             126,415             106,337             130,689             139,147             110,726             

CAR Battery Diesel ICE E85 Hydrogen ICE Methanol ICE Gasoline ICE Hydrogen FC

2010 Base 30,160                12,283                11,346                17,705                14,124                11,234                114,481             

2030 Base 16,452                11,425                10,508                9,285                  11,449                10,410                30,759                

2030 ITL 13,385                10,881                10,008                7,016                  10,471                9,916                  19,162                

2030 DTL 18,587                11,764                10,819                10,950                12,077                10,718                40,526                

Methanol FC Hybrid diesel Hybrid E85 Hybrid gasoline Plug-in diesel Plug-in gasoline

2010 Base 42,603                15,871                14,338                14,104                20,983                19,429                

2030 Base 15,044                10,658                9,629                  9,478                  14,028                12,402                

2030 ITL 10,733                8,706                  7,866                  7,744                  11,409                9,850                  

2030 DTL 19,742                12,021                10,860                10,688                15,852                14,213                

HGV Diesel ICE Hydrogen ICE Hydrogen FC Hybrid diesel

2010 Base 54,656                83,270                237,333             58,376                

2030 Base 47,799                50,431                74,406                45,430                

2030 ITL 44,681                39,027                51,508                40,024                

2030 DTL 49,766                58,709                100,350             48,997                

LGV Battery Diesel ICE E85 Hydrogen ICE Methanol ICE Gasoline ICE

2010 Base 48,255                13,593                14,607                20,254                15,629                12,469                

2030 Base 29,926                12,336                13,259                10,760                12,372                11,369                

2030 ITL 23,425                11,750                12,631                7,775                  10,994                10,855                

2030 DTL 34,595                12,701                13,651                13,039                13,275                11,689                

Hydrogen FC Methanol FC Hybrid diesel Hybrid gasoline plug-in diesel plug-in gasoline

2010 Base 44,132                43,667                16,391                16,316                20,945                19,992                

2030 Base 12,511                16,821                11,009                10,922                15,522                14,156                

2030 ITL 11,002                14,926                8,994                  8,906                  13,334                11,879                

2030 DTL 17,400                22,652                12,417                12,331                16,993                15,713                 

The investment costs in Table 7.2 do not account for efficiency gains that occur over 

time, i.e. efficiency levels are kept constant at the 2010 level in order to make the 

investment costs comparable. Standard ICE vehicles are 7% to 12% cheaper in 2030 

than in 2010 in the REF scenario, up to 18% cheaper in the ITL scenario and only 4% to 

9% cheaper in the DTL scenario. The learning rates for less mature technologies are 

significantly higher. Investment costs for hybrid cars are about 33% lower in 2030 

compared to 2010 in the REF scenario, 46% lower in the ITL scenario and 24% lower 

in the DTL. The corresponding figures for battery cars are 45% in the REF scenario, 

56% in the ITL scenario and 38% in the DTL scenario. Low carbon technologies are on 
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average 39% cheaper in 2030 compared with 2010 in the REF scenario; this increases to 

50% in the ITL scenario and decreases to 31% in the DTL scenario. 

The emission curves in Figure 7.12 show that both scenario curves look very different 

from the REF scenario. The DTL scenario shows emission of 153 Mt CO2 without any 

CO2 tax, which corresponds to an additional 24 Mt CO2 in comparison with the REF 

scenario. This can be mainly explained by the fact that no petrol hybrid cars and no 

diesel hybrid LGVs are part of the market in the £0/t CO2 run, but the market is 

dominated by petrol ICE LGVs. The difference is biggest at £108/t CO2 with 55 Mt 

CO2, but is reduced once battery cars become cost-effective to 4 Mt at £294/t CO2. 

Figure 7.12: Emission curve along rising CO2 abatement costs for different technology learning 

scenarios in 2030 

 

For the ITL scenario the situation is reversed, where emissions reduction is 22 Mt 

higher without any CO2 tax. The reasons are a 45% market share of battery cars 

compared to 0% in the REF scenario and diesel hybrid vehicles are at 10% market 

share, while they were not cost-effective in the REF scenario. 

The MAC curve for the DTL scenario (Figure 7.13) looks very different from the REF 

scenario to the extent that up to £50/t CO2 only 7 Mt of emissions abatement are 

realised. A lower carbon intensity of electricity used for railway transport and energy-

service demand reduction save emissions. Demand reduction contributes 30% towards 

CO2 emissions reduction up to an abatement cost of £40/t CO2. The cheapest 

technological abatement options are diesel hybrid LGVs at £50/t CO2. Battery cars are 

responsible for the major share of the emissions reduction, although they reach the full 
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abatement potential at £176/t CO2 due to increased investment costs, i.e. around £100/t 

CO2 more than in the REF scenario. While diesel hybrid cars do not become cost-

effective below £294/t CO2 in the DTL scenario, petrol hybrid cars enter the market at 

almost £200/t CO2 (see also Figure 7.15) 

Figure 7.13: MAC curve for the DTL scenario in 2030 

 
 

Figure 7.14: MAC curve for the ITL scenario in 2030 
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The MAC curve for the ITL scenario (Figure 7.14) does not contain any petrol hybrid, 

diesel hybrid vehicles and virtually no abatement from battery cars, which are assumed 

to be cost-effective without any CO2 tax as a result of the higher technology learning. 

Since a significant portion of cars rely on electricity as an energy carrier, the cheapest 

abatement option on the MAC curve up to £100/t CO2 is to reduce the carbon intensity 

of electricity, so that the contribution of an electricity decarbonisation towards overall 

reduction in transport-related CO2 emissions in the ITL scenario is substantial with 59% 

(see also Figure 7.16). 

Hydrogen is 90% decarbonised at £30/t CO2 via the use of CCS plants using coal as a 

fuel, so that hydrogen fuel cell HGVs become cost-effective from £104/t CO2 and 75% 

of all HGVs are powered by hydrogen at £296/t CO2. Two-wheelers also partially 

switch to hydrogen as a fuel, but the effect on emissions remains very limited due to the 

limited amount of emission in the £0/t CO2 case. Taking a deeper look at specific 

technologies reveals that the share of battery cars decreases in the ITL scenario from 

£225/t CO2 in anticipation of a higher share of hydrogen cars in the future (Figure 7.15).  

Figure 7.15: Market share for different technologies in the DTL and ITL scenarios in 2030 
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Petrol hybrid cars have a steady market share of 45% since they are more cost-effective 

than petrol ICE cars and are not influenced by a fluctuating battery car market share as 

battery vehicles are already cost-effective without any CO2 tax. Finally, the share of 

diesel hybrid LGVs is very different between the learning scenarios because the cost 

difference in comparison with petrol hybrid LGVs is minimal so that small changes in 

the fuel cost can result in large swings of market shares. 

The total composition of CO2 emissions reduction looks very different from one 

learning scenario to the other. Due to a large share of battery cars, the ITL scenario is 

dominated by electricity decarbonisation and structural shifts towards hydrogen HGVs, 

which reduce emissions by 15 Mt CO2. The emissions reduction in the DTL scenario is 

far greater because emissions are higher without a CO2 tax. The composition is 

dominated by battery vehicles and petrol hybrid cars and less by electricity 

decarbonisation since a higher use of battery cars is preceded by a decarbonisation of 

electricity. Finally, the contribution of demand reduction is double in the DTL scenario 

compared to the ITL scenario due to more expensive low-carbon technologies. 

Figure 7.16: Total decomposition of transport MAC (ITL & DTL scenario) for the UK in 2030 

 

Figure 7.17 illustrates the total costs, in contrast to the marginal costs, in 2030 

associated with an emission target of 70 Mt CO2, which corresponds to an emissions 

reduction of 60 Mt CO2 (REF), 38 Mt CO2 (ITL), and 83 Mt CO2 (DTL). According to 

the MAC curves based on the model runs, such an emission target can be achieved at a 

CO2 tax of £205/t CO2 in the REF scenario, £117/t CO2 for the ITL scenario, and £294/t 

CO2 for the DTL scenario. The total cost to reduce transport-related emissions to 70 Mt 

CO2 is about £3 billion in the REF scenario, while it is £1.6 billion in the ITL scenario 

and £14.6 billion in the DTL scenario. This means that achieving the same target is 

480% more expensive in the DTL scenario compared with the REF scenario and 45% 
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less expensive in the ITL scenario. This illustrates the large uncertainties related to 

assumptions concerning technology learning. 

Figure 7.17: Total cost in 2030 to achieve an emission target of 70 Mt CO2 

 

7.5 Discount rate 

The two scenarios presented in this section, PDR10 and SDR, correspond exactly to 

those presented in chapter 6 for the electricity sector. In a MAC curve study for the 

CCC (AEA Energy & Environment et al. 2008, p. 18), discount rates were assumed to 

be 7% for passenger cars. The PDR10 scenario represents the perspective of a private 

investor, where the discount rate and the technological hurdle rates were doubled with 

respect to the REF scenario, although both are separate and do not have to increase 

accordingly. The PDR10 scenario assumes comparably high technological hurdle rates 

of 10% in general and of 20% for hydrogen vehicles and 15% for hybrid, plug-in and 

battery cars, which account for technology-specific uncertainties. In the SDR scenario a 

social discount rate of 3.5% is employed and all fuel duties and hurdle rates removed. 

Figure 7.18 indicates that the emission curves are similar for the SDR and the REF 

scenario, while the emissions in the PDR10 scenario are a lot higher. They are 23 Mt 

CO2 higher without a CO2 tax since no petrol hybrid cars and electric buses are 

introduced to the market. Emissions are only very slowly decreased with higher CO2 tax 

levels owing to the higher discount rate and hurdle rates that penalise low-carbon 

technologies. The SDR scenario shows slightly lower emissions in the case without a 

CO2 tax because the market share of petrol hybrid cars is 30 percentage points higher. In 

other respects the emission curves of the REF scenario and the SDR scenario look 
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relatively similar, though the SDR scenario shows more abatement potential at very 

high CO2 taxes, where hydrogen vehicles become cost-effective. 

Figure 7.18: Emission curve along rising CO2 abatement costs for different discount rate 

scenarios in 2030 

 

The MAC curve for the PDR scenario (Figure 7.19) shows that technological 

alternatives are very expensive. Hence, demand reduction plays an important role 

especially up to £250/t CO2 with 13 Mt CO2 emission reduction. The same holds true 

for the decarbonisation of diesel, though at a much smaller scale. 

Figure 7.19: MAC curve for the PDR10 scenario in 2030 
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Taking a look at technological shifts reveals that increasing the hurdle rate for electric 

cars from 7.5% to 15% raises the marginal abatement cost of battery cars by almost 

£200/t CO2. While petrol hybrid cars are cost-effective at £0/t CO2 in the REF scenario, 

they are only cost-effective at a tax of £284/t CO2. Diesel hybrid HGVs are cost-optimal 

at £0/t CO2 in the REF scenario but not in the PDR10 scenario. The marginal abatement 

cost for this technology is increased to £85/t CO2 to £166/t CO2. This highlights the 

sensitivity of hybrid vehicles to the underlying assumptions concerning the discount 

rate, investment cost mark-up and efficiency gain. 

The MAC curve for the scenario with a social discount rate looks very different from 

the PDR10 MAC curve (see Figure 7.20). There are two effects that counteract each 

other: on the one hand, low-carbon technologies save less fuel costs in the SDR scenario 

due to lower prices for petrol and diesel (taxes are removed). On the other hand, the 

investment cost premium for abatement technologies is less as there are no 

technological hurdle rates and the overall discount rate is lower at 3.5%. Differences in 

operating and maintenance costs, which include insurance, are comparably small and do 

not influence the overall result. 

Figure 7.20: MAC curve for the SDR scenario in 2030 

 

The MAC curve for the SDR scenario shows a lower abatement cost level for diesel 

hybrid cars of around £70/t CO2 because there is no longer a 7.5% hurdle rate on the 

hybrid technology. Thus, the investment cost disadvantage is roughly halved, while the 
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fuel cost advantage is reduced, although not to the same extent. Consequently, and 

similarly to petrol hybrid cars, the reduction in the investment annuity outweighs the 

reduced fuel saving. Furthermore, it is interesting to note that battery cars need a £44/t 

CO2 higher tax in order to become cost-effective, because the investment cost 

disadvantage is not sufficiently reduced to offset the loss in fuel savings. Lastly, 

hydrogen fuel cell vehicles show up on the MAC curve at a very high CO2 tax of £274/t 

CO2 because they no longer have a technological hurdle rate of 10% and thus account 

for 6 Mt of CO2 abatement (see Figure 7.21). While the emissions curves for the SDR 

and the REF scenario look relatively similar, the technologically detailed MAC curves 

are different. 

Concerning the overall contribution to emissions reductions (Figure 7.21), demand 

reduction plays a much more important role in the PDR10 scenario, with 33% compared 

to 12% in the SDR scenario, due to a lack of low-priced technological alternatives. This 

is expressed in the overall contribution of structural shifts within the transport sector, 

which represents an emissions reduction of 17 Mt CO2 in the PDR10 scenario and 

almost three times that amount in the SDR scenario. 

The difference in the emission curve between the SDR and the PDR10 scenario is 

reflected in the total cost needed to achieve an emission target of 110 Mt CO2 in 2030, 

which is £0.3 billion in the REF scenario, £0.4 billion in the SDR scenario and £7 

billion in the PDR10 scenario. In summary, from a risk-averse private investor’s 

perspective (PDR10), the same target for transport-related emissions of 110 Mt CO2 is 

17 times more expensive to achieve compared with a situation where the hurdle rates 

are half in the REF scenario. 

Figure 7.21: Total decomposition of transport MAC (PDR10 & SDR scenario) for the UK in 2030 
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7.6 Market potential of battery vehicles 

Battery vehicles play an important role in decarbonising the whole transport sector. 

Structural shifts towards electric vehicles represent 38% of all transport-related 

emissions reduction and the decarbonisation of electricity represents 18%. 

Consequently, more than half of the abatement in the transport sector is related to the 

electrification of transport. The BATTERY scenario tests how sensitive abatement 

potentials and related marginal abatement costs in the transport sector are to a limited 

market share of battery cars and buses. In the REF scenario battery cars and electric 

buses reach a maximum market share of 45% and 100% respectively at a high CO2 tax 

levels. In both cases the market share is limited to 15% in the BATTERY scenario to 

see which other technologies compensate for this limited abatement potential. 

The emission curve (Figure 7.22) looks exactly the same as the REF scenario, up to 

£34/t CO2. Subsequently, emissions abatement remains lower than in the REF scenario 

owing to the limited potential for battery vehicles and emissions grow from £245/t CO2 

to £264/t CO2 despite a rising CO2 tax. This is due to both intertemporal adjustments 

between model periods, but principally due to interactions with other end-use sectors. In 

this case, emissions increase by 3.4 Mt CO2 in the transport sector due to a declining 

share of plug-in cars, but emissions are reduced to a bigger extent in the residential 

sector where electricity is used for space heating and displaces fossil fuel based heating. 

Figure 7.22: Emission curve along rising CO2 abatement costs for the BATTERY scenarios in 

2030 

 

The MAC curve for the BATTERY scenario (Figure 7.23) looks different in that the 

abatement potential for battery cars is limited and other technologies in the form of 
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petrol plug-in, petrol hybrid and diesel plug-in vehicles compensate for the limited 

abatement potential of battery vehicles. Petrol plug-in cars become cost-effective at 

£176/t CO2 and diesel plug-in vehicles at £93/t CO2, while they are not a part of the 

MAC curve in the REF scenario. 

Figure 7.23: MAC curve for the BATTERY scenario in 2030 

 

Furthermore, the abatement potential of diesel hybrid cars is limited as they are partially 

replaced by diesel plug-in cars. The abatement potential is also higher for petrol hybrid 

cars because they are not replaced as quickly by battery cars as in the REF scenario; 

their market share remains at 64% at the end of the MAC curve in contrast to 43% in the 

REF scenario (see Figure 7.24). Interestingly, plug-in cars, which can rely on refined oil 

products and electricity, enter the vehicle pool, but their market share declines at higher 

CO2 taxes again owing to a more efficient use of electricity in the residential sector. 
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Figure 7.24: Market share for different technologies in the BATTERY scenario in 2030 

  

  

Figure 7.25 indicates that in the BATTERY scenario the overall contribution to 

emissions reductions of battery vehicles falls to only 8 Mt CO2 or 16% of the total 

emissions reduction. Diesel plug-in vehicles can fill this gap by reducing emissions by 3 

Mt CO2, and petrol plug-in vehicles by 4 Mt CO2. Since the market share of petrol 

hybrid cars remains higher in the BATTERY scenario, total abatement due to petrol 

hybrid vehicles is a little higher at 18 Mt CO2. 

Figure 7.25: Total decomposition of transport MAC (BATTERY scenario) for the UK in 2030 
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In summary, the limited abatement potential of battery buses and cars is in part 

compensated by plug-in vehicles and a higher share of petrol hybrid cars, but this is 

associated with significantly higher marginal abatement costs compared to the REF 

scenario. To reduce transport-related emissions to 80 Mt CO2 in 2030 requires a CO2 

tax of £200/t CO2, which is double the level in the REF scenario. 

7.7 Cost of electricity 

The electrification of the transport sector does not only depend on the availability and 

cost level of electric vehicles, but also on the cost of electricity. Electricity is 

decarbonised through structural shifts mainly to nuclear power plants, coal CCS and 

wind power. The IEP (Increased Electricity Price) scenario examines the sensitivity of 

the MAC curve to more expensive electricity. It is equivalent to the one used in chapter 

6, where specific investment costs are increased by 200% (Table 6.5). 

The emissions curve for the IEP scenario (Figure 7.26) looks similar to the REF 

scenario up to a tax level of £34/t CO2. From then on the emissions reduction curve is 

shifted to the right due to more expensive electricity. The difference is greatest at £93/t 

CO2; in the REF case 25 Mt CO2 have already been abated via battery cars, while this 

technology is still not cost-effective in the IEP scenario. The difference is reduced to 2 

Mt CO2 at a price of £294/t CO2 once battery vehicles have entered the market. 

Figure 7.26: Emission curve along rising CO2 abatement costs for the IEP scenario in 2030 

 

The MAC curve for the IEP scenario (Figure 7.27) looks not particularly different from 

the REF scenario in the sense that battery cars dominate the abatement curve, though at 
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higher carbon tax levels. Petrol hybrids, diesel hybrids, electricity decarbonisation and 

demand reduction play a comparable role. Only petrol plug-in LGVs do not show the 

same abatement potential, as a result of higher electricity prices, so that the full 

abatement potential is achieved at marginal costs above £300/t CO2. 

Figure 7.27: MAC curve for the IEP scenario in 2030 

 

A look at the carbon intensity of electricity at different points on the MAC curve reveals 

that the carbon intensity at £0/t CO2 is higher in the IEP scenario with 607g CO2/kWh 

(52g CO2/kWh more than in the REF scenario). This is an immediate result of the 

increased investment costs for low-carbon technologies. To reach the same carbon 

intensity of electricity, the IEP scenario first requires an additional £24/t CO2 compared 

with the REF scenario to achieve 500 g CO2/kWh and then increases to £79/t CO2 at 

100g CO2/kWh. 
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Figure 7.28: Emission intensity of electricity along rising CO2 abatement costs for the IEP 

scenario in 2030 

 

Figure 7.29 illustrates the market share of several low-carbon technologies in the 

transport sector when electricity is more expensively decarbonised. Consequently, 

technologies that rely on electricity enter the market later than in the REF scenario; 

battery cars need a £59/t CO2 higher CO2 tax to become cost-effective and petrol plug-

in LGVs a mark-up of £68/t CO2. 

Figure 7.29: Market share for different technologies in the IEP scenario in 2030 

  

  

In contrast to the REF scenario, the market share of petrol hybrid cars remains at around 

75% up to £117/t CO2 and only decreases with the introduction of battery cars. Battery 

buses do not penetrate the market to the same extent as in the REF scenario with a rising 

CO2 tax due to more carbon-intensive electricity. 
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7.8 Fossil fuel prices 

The scenarios presented in this section, FF+ and FF++, are the same as in chapter 6, i.e. 

fossil fuel prices are increased by 100% in the FF+ scenario and by 200% in the FF++ 

scenario. The fossil fuel price assumptions can be found in Table 6.3. The GAS scenario 

is not presented in this context since natural gas is barely used in the transport sector. 

The emissions curve for the different fossil fuel price scenarios (Figure 7.30) reveals 

that emissions are very different in the case without a CO2 tax in the fossil fuel 

scenarios, but look very similar from £100/t CO2. From £235/t CO2 the emission 

pathway of the FF++ scenario diverge from the two others; here, more emissions are 

abated as hydrogen fuel cell HGVs become cost-effective. The similarity of the curves 

at higher CO2 taxes can be explained by the increasing contribution of the CO2 tax 

towards the total price of diesel and petrol, which overshadows the original difference in 

fuel prices. 

Figure 7.30: Emission curve along rising CO2 abatement costs for fossil fuel price scenarios in 

2030 

 

The emissions are significantly less in the scenario with higher fuel prices than in the 

REF scenario (29 Mt CO2 in the FF+ scenario and 35 Mt in the FF++ scenario) due to a 

higher market share of battery cars of 43% in both fossil fuel price scenarios and a 

higher share of battery buses. The emissions in the FF++ scenario are even lower than 

in the FF+ scenario as the model chooses a higher share of diesel hybrid cars. 

Figure 7.31 and Figure 7.32 depict the MAC curves for both fossil fuel price scenarios. 

Compared with the REF scenario the decarbonisation of diesel by around 5% is 
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significantly cheaper in the FF+ scenario at £10/t CO2 and is already realised at a £0/t 

CO2 tax in the FF++ scenario. The MAC curve of the FF+ scenario involves greater 

electricity decarbonisation compared to the REF scenario because low-carbon 

technologies, which use electricity, are already introduced to the market and consume 

more electricity. 

Figure 7.31: MAC curve for the FF+ scenario in 2030 

 
 

Figure 7.32: MAC curve for the FF++ scenario in 2030 
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Furthermore, there are no petrol hybrids and only a very limited amount of battery cars 

in the FF+ MAC curve as they are already part of the technology mix in the no carbon 

tax run. Diesel hybrid cars are more cost-effective in the FF+ scenario and achieve the 

full abatement potential at £78/t CO2, while it is £254/t CO2 in the REF scenario. Plug-

in LGVs are roughly £29/t CO2 cheaper in the FF+ scenario. 

Up to £100/t CO2, the MAC curve of the FF++ scenario (Figure 7.32) is characterised 

by electricity decarbonisation and demand reduction. One reason is most technologies 

that show up in the REF scenario MAC curve are cost-effective in the FF++ scenario. 

The important difference in the FF++ scenario is that hydrogen fuel cell HGVs play an 

important role in the further decarbonisation of the transport sector. While it is not cost-

effective to use hydrogen HGVs in the REF scenario and the FF+ scenario, the 

additional fossil fuel price increase causes this vehicle type to enter the market between 

£215/t CO2 and £245/t CO2 in the FF++ scenario (see also Figure 7.33). 

Figure 7.33: Market share for different technologies in the battery scenario in 2030 

  

  

A closer look at the technologies’ market share shows that the market share of battery 

cars is relatively constant over the whole MAC curve in the fossil fuel scenarios. The 

market share of petrol hybrid cars (not depicted in Figure 7.33) is stable at 45% during 
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the whole CO2 tax range. Petrol plug-in LGVs achieve a higher market share in the FF+ 

scenario of up to 50% replacing petrol hybrid LGVs. 

The FF++ scenario shows a different pattern; here, petrol plug-in LGVs reach their 

highest market share at £215/t CO2 and then decline to 0% at £215/t CO2. This can be 

explained firstly by the model anticipating that hydrogen vehicles become cost-effective 

in later periods and secondly by diesel becoming slightly cheaper, despite a higher CO2 

tax, due to relatively fixed refinery output ratios. 

The market share for battery buses in the fossil fuel price scenario starts between 56% 

and 69% and drops back to 12% for a specific range of CO2 tax levels. This is a result of 

diesel hybrid buses becoming cheaper than battery buses in this range as electricity 

prices increase more than the price for diesel up to £80-90/t CO2. 

7.9 Availability and price of biofuels 

Biofuels are potentially an important abatement option through the displacement of 

conventional carbon emitting fossil fuels. As all climate policies are excluded from the 

model, EU legislation including the Renewable Energy Directive, setting out a 

mandatory biofuel share, is not considered in the model. Biofuels contribute only 2% in 

the REF scenario to emissions abatement in the transport sector. Different types of 

biomass are instead used in the power sector and are used in the residential sector for 

space and water heating. In contrast to previous UK MARKAL model versions, the 

version used in this thesis maps indirect emissions that occur during domestic biomass 

cultivation, processing and transport. However, those indirect emissions are relatively 

small and are only a small fraction of emissions from fossil fuels (maximum 5%). In the 

BIOFUEL scenario the upper limit of biomass for direct space and water heating in the 

residential and service sector (excluding district heating) was lowered from 25% to 4%. 

Consequently, more biomass is available to be transformed into biodiesel, methanol or 

ethanol for the transport sector. In addition, the import costs and domestic cultivation 

costs were halved for all biomass types used to produce biofuel. The BIOFUEL scenario 

was created to test the sensitivity of the MAC curve to cheaper and more available 

biofuels. 

Figure 7.34 shows that the emission curve for the BIOFUEL scenario is very similar to 

the REF scenario. On average the emissions differ by 1.2% between the BIOFUEL and 
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the REF scenario for a given CO2 tax. The emissions are slightly lower due to a lower 

carbon intensity of electricity, which can be explained by lower costs for biomass. The 

technologically detailed MAC curve reveals that the abatement from biofuels in the 

BIOFUEL scenario is 0.3 Mt CO2 higher owing to a higher share of imported biodiesel. 

In addition, the blending of biodiesel already happens at between £10-29/t CO2, which 

is significantly less than in the REF scenario. Other changes are very limited: the MACs 

of battery cars and petrol plug-in LGVs are increased by £10/t CO2. 

Figure 7.34: Emission curve along rising CO2 abatement costs for the BIOFUEL scenarios in 

2030 

 

The very limited consequences of a higher availability and reduced price of biomass on 

transport-related CO2 emissions are observed because biofuels are simply too expensive 

to compete with other decarbonisation pathways, in particular the electrification of the 

transport sector, although there is almost no competition from other sectors (residential, 

service) for the same biomass resources. This situation would change dramatically once 

current subsidies and policy mandates are taken into account. 

7.10 Price elasticity of demand 

The price elasticity of demand indicates the responsiveness of the quantity demanded of 

a service or a good to a change in its price. Price elasticities are in general negative as it 

is assumed that the demand for a service will decrease if its price increases and vice 

versa. All energy service demands in UK MARKAL are assumed to be price elastic, to 

have a different elasticity depending on the direction of the price change and to have an 

upper and a lower limit for the maximum change of demand. 
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While there have been studies to analyse the price elasticity of final energy carriers, 

such as diesel or petrol, it is difficult to identify the correct level of demand elasticity of 

an energy service demand (see e.g. Anandarajah and Kesicki 2010). Therefore, the price 

elasticity of all energy service demands was varied by +50% in the ELAST+ scenario 

and by -50% in the ELAST- scenario to illustrate the sensitivity of the MAC curve to 

different levels of demand elasticity. Table 7.3 gives an overview of the demand 

elasticities for increasing prices. 

Table 7.3: Price elasticity of demand for increasing prices of transport modes 

Scenario Air Bus Car Rail HGV LGV 2-wheel

BASE -0.19 -0.19 -0.27 -0.12 -0.31 -0.31 -0.21

ELAST+ -0.28 -0.28 -0.41 -0.18 -0.46 -0.46 -0.31

ELAST- -0.09 -0.09 -0.14 -0.06 -0.15 -0.15 -0.10  

The only input parameter that was changed was the price elasticity of demand, which 

should have an influence on the demand contribution towards overall CO2 emissions 

reductions. It is assumed in UK MARKAL that energy-service demands can only be 

reduced by a maximum of 25% meaning that it is deemed unrealistic that energy 

services would be more flexible than this. The overall contribution of energy service 

demand reduction to CO2 emissions reductions in the REF case is limited with 6.6 Mt 

CO2 (10%). Accordingly, neither the emissions curves (see Figure 7.35), nor the 

technology structure, nor the technology-specific marginal abatement costs differ 

significantly in the elasticity scenarios. As can be expected, the emissions reduction is 

higher in the ELAST+ and lower in the ELAST- scenario. 

Figure 7.35: Emission curve along rising CO2 abatement costs for different demand elasticity 

scenarios in 2030 
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Figure 7.36 illustrates how the demand contribution changes with an increasing CO2 tax 

in terms of CO2 emissions reductions. The contribution is sensitive to the applied 

demand elasticity; the contribution is reduced to 3 Mt CO2 (5%) in the ELAST- scenario 

and increased to 8 Mt CO2 (11%) in the ELAST+ scenario. The level of emissions 

reduction does not increase proportionally in the ELAST+ scenario since, for some 

energy services, at high CO2 taxes the demand reduction approaches the lower limit of 

energy service demand, where the model allows no more demand reduction. Although 

demand reduction is sensitive to the assumed elasticity, the overall contribution is 

limited to only a few Mt CO2 owing to the low contribution in the REF scenario. 

Figure 7.36: Emissions reduction due to demand reduction for different demand elasticity 

scenarios in 2030 

 

From Figure 7.37 one can see that the biggest contribution towards CO2 reduction from 

demand reduction comes from HGVs (57%), followed by cars (15%), air travel (11%) 

and shipping (10%). This is  surprising since cars emit by far the most CO2 emissions, 

while domestic air and shipping are responsible for 7% (together) and HGVs are 

responsible for 22% of all emissions. 

This can be explained with more expensive decarbonisation options for HGVs, which 

include hydrogen and biodiesel. Therefore, demand reduction remains the last option in 

UK MARKAL as the price for HGV travel increases significantly. The same holds true 

for aviation and shipping where the technology options are limited. In contrast, low-

carbon technologies are available for cars, buses and LGVs that keep the transport costs 

comparably low. 
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Figure 7.37: Contribution of different transport modes’ demand reduction towards CO2 

emissions reduction scenarios in 2030 

 

7.11 Demand development 

Not only the price elasticity of demand is uncertain, but also the overall demand 

development. The energy service demand of the eight transport modes is assumed to 

increase from 2010 to 2030 on average by 29% in the REF scenario, with domestic air 

travel increases by 68%, bus by 31%, car by 34%, HGV by 30%, LGV by 48%, two-

wheelers by 19%, rail by 31%, and domestic shipping by 10% (Kannan et al. 2007). As 

the demand development is uncertain, all energy service demands were increased by 

20% in the DEM+ scenario and decreased by 20% in the DEM- scenario- equivalent to 

the demand scenarios in chapter 6. Figure 7.38 shows the emission curves of the 

different demand scenarios. 
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Figure 7.38: Emission curve along rising CO2 abatement costs for different demand scenarios in 

2030 

 

The emission curves are shifted to the right with an increased demand level and to the 

left with a decrease in demand. Without a CO2 tax the emission level is approximately 

20% less in the DEM- scenario, but is only 10% higher in the DEM+ scenario, despite 

an increase in all energy service demands by 20%. The reason for this is a higher share 

of petrol hybrid cars in the DEM+ scenario and a lower carbon intensity of electricity. 

The share of petrol hybrid cars is higher because this technology is very sensitive to 

changes in the framing conditions. In this case, the petrol price increases slightly in the 

DEM+ scenario (by 2.5%), which triggers the model to increase the market share of 

petrol hybrid cars from 46% to 72%. 

The decarbonisation of electricity does not follow the same pathway in all three 

scenarios, but differs to the extent that the carbon intensity of electricity is first higher in 

the DEM-, but then, at a tax level of £20/t CO2, drops below the one for the REF and 

DEM+ scenario (see Figure 7.39 and chapter 6.9). This development leads to battery 

cars entering the market already at £10/t CO2 in the DEM+ scenario, while this happens 

at £39/t CO2 in the REF scenario and £44/t CO2 in the DEM- scenario. Similarly electric 

buses have a lower market share in the DEM- scenario at £0/t CO2 compared with the 

REF scenario, but a higher share at £186/t CO2. This pattern does equally reflect the 

different decarbonisation pathways of electricity in both scenarios. 
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Figure 7.39: Market share for different technologies in the demand scenarios in 2030 and emission intensity 

of electricity (bottom) 

 

 

7.12 Summary 

This chapter has presented 20 scenarios for possible MAC curves of the UK transport 

sector to illustrate the uncertainties involved in assessing marginal abatement costs and 

corresponding abatement potentials. This sections summarises the results in the light of 

the initial questions asked in chapter 1, concerning the contribution of abatement 

measures to emissions reduction, the influencing factors, and the interaction of 

measures. 

There are several abatement measures that are robust to different assumptions and show 

a significant abatement potential in the majority of the performed scenarios. This 

includes price-related reduction of energy service demand, which abates between 3 and 

8 Mt CO2 in the transport sector. Since the transport sector consumes a significant 

amount of electricity (particularly trains, but in some scenarios also electric vehicles), 

transport-related emissions can be reduced if the carbon intensity of electricity is 

reduced. The decarbonisation of the power sector proves to be one of the most 

important conditions for the decarbonisation of the transport sector and contributes 18% 

to overall abatement of transport-related emissions in the REF scenario. From a 
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technological perspective, petrol hybrid, diesel hybrid, petrol plug-in and battery 

vehicles prove to be essential to reduce carbon emissions in the transport sector. As car 

travel is responsible for the biggest share of transport emissions, petrol hybrid cars, 

diesel hybrid cars and especially battery cars possess the largest abatement potential. In 

particular, hybrid technologies and battery technologies are key technologies in the 

transport sector. 

The REF scenario was compared with 19 scenarios, grouped into nine categories, under 

different assumptions in order to quantify the uncertainties related to emissions 

reduction in the transport sector. Table 7.4 summarises the influence of the different 

categories on the overall shape of the MAC curve and its technological structure. The 

analysis of the scenarios has highlighted the parameters that have a significant influence 

on abatement costs and potential. This includes uncertainty around technology learning, 

the choice of the discount rate, and the deployment of battery vehicles. It has also 

highlighted that uncertainty related to demand elasticity has a significant effect on the 

share of demand reduction in overall emissions reduction but, as the overall contribution 

of demand reduction to emissions mitigation is low, the effect on total emissions is 

limited. Changes to biomass availability and costs have, as well as changes to fossil fuel 

prices, only a limited effect. For very high fossil fuel prices, the MAC curve changes 

due to the introduction of HGV vehicles. While the influence of fossil fuel prices on the 

emission curve is limited, the contribution of specific measures is very different. 

Changing the tax path and increasing the cost of electricity has a medium influence on 

the MAC curve in general, while the effect on specific abatement measures can be 

relatively strong. 

Table 7.4: Influence of the change in different model assumptions on MAC curve: strong (+), medium 

(o), weak (-) 

Category

Shape Structure

Path dependency o o

Technological learning + +

Discount rate + +

Battery potential + +

Electricity cost o o

Fossil fuel price -/o +

Biofuel potential - -

Demand elasticity - -

Demand level o -

Influence

 

The last point to address is the interactions between abatement measures. Within the 

transport sector, this chapter has highlighted the sensitivity of hybrid technologies to 
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assumptions on discount rates, investment costs, fuel costs and efficiencies. Minor 

changes in the price for diesel or petrol can cause significant changes in the cost-

effectiveness of hybrid technologies. Although biofuels play only a minor role in the 

decarbonisation of the transport sector, the marginal abatement costs of biofuel are 

sensitive to assumptions on fossil fuel prices. Furthermore, interactions occur between 

the use of biomass in the transport sector, the power sector and for heating in the 

residential and service sectors. The most visible interactions occur with the electricity 

sector, since electricity has a key role in reducing carbon emissions in the transport 

sector. The scenarios in the categories electricity cost, fossil fuel price, and demand 

level show clearly that the carbon intensity of electricity has a strong influence on the 

cost-efficiency of transport abatement technologies.  

All the conclusions are subject to the choice of model employed, so that the interactions 

could be different if another model were employed, particularly one that addresses the 

shortcomings of the UK MARKAL model (see 7.1). 

7.13 MAC curves for 2020, 2040 and 2050 

In order to get a broader picture of emissions reduction during the first half of this 

century, this section does not focus on 2030 but presents MAC curves for the year 2020, 

2040, and 2050 as well as a cumulative MAC curve. 

Figure 7.40 presents the emissions associated with different CO2 tax levels in each of 

the four representative years. The emissions level at a CO2 tax of £0/t CO2 is relatively 

similar, ranging from 120Mt CO2 to 137 Mt CO2 per year. Two trends counteract each 

other: firstly, emissions increase over time due to an increasing demand for transport 

services and secondly, emissions decrease as, over time, low-carbon technologies are 

introduced to the market as they become comparably cheaper. Emissions are higher in 

2020 because no petrol hybrid cars are cost-effective at £0/t CO2. In 2040, emissions are 

lower than in 2030, since battery vehicles gain a significant market share, while they are 

at 132 Mt CO2 in 2050, i.e. similar to the emissions level in 2030. A high share of 

battery cars and plug-in LGVs explains the stable emissions level despite a rise in 

demand for transport services. 
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Figure 7.40: Emission curve along rising CO2 abatement costs for the REF scenarios in different 

years 

 

An underlying assumption for all emissions reduction curves is that the CO2 tax 

increases from 2010 with the model-inherent discount rate of 5% p.a. This explains why 

the emissions reduction curve ends at tax levels of £180/t CO2 in 2020 and at £779/t 

CO2 in 2050. 

The emission curves indicate that higher reductions can be achieved in later years 

compared with earlier years since technology learning reduces the costs of low-carbon 

technologies, so that they become cheaper compared with conventional technologies. As 

a result the difference in emissions curves for the year 2020 and 2030 is comparatively 

large, while it is relatively small for the years 2040 and 2050. 

In 2020, all buses are equipped with a diesel hybrid engine, while cars rely almost 

exclusively on ICEs. Diesel hybrid vehicles make up the entire HGV pool, while half of 

the LGVs are hybrid vehicles and the other half ICEs. Figure 7.41 shows which 

abatement measures are responsible for emissions reductions in 2020. The switch to 

petrol hybrid cars, mainly at £66/t CO2 represents the most important abatement 

measure in 2020 and is responsible for 51% of all emissions abatement up to £180/t 

CO2. A technological abatement measure that contributes less at a lower cost level is the 

switch from diesel ICE to hybrid vehicles at £30/t CO2. Moreover, the introduction of 

battery buses helps to reduce emissions only slightly by 0.35 Mt CO2. 
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Figure 7.41: MAC curve for REF scenario in 2020 

 

Compared to 2030, demand reduction plays a significantly bigger role in CO2 emissions 

reductions with an overall share of 23% compared with 10% in 2030. This is due to a 

lower availability of cost-effective low-carbon technologies. The blend-in of biodiesel 

into conventional diesel helps to reduce emissions by 2 Mt CO2, which is 7% higher 

than in 2030. 

The MAC curve for the year 2040 already looks very different from the one in 2020 and 

2030 (see Figure 7.42), owing to the different technological structure in 2040 at the start 

of the MAC curve. All buses and 43% of cars are electric vehicles, while 54% of the 

cars are petrol hybrid vehicles and the rest diesel ICE vehicles. HGVs rely entirely on 

diesel hybrid engines, whereas half the LGVs have a diesel hybrid engine and the other 

half a petrol hybrid engine. 

The technologically detailed MAC curve reveals that up to £50/t CO2, the 

decarbonisation of electricity is almost exclusively responsible for abatement in 

transport-related emissions. In total, the abatement share of a reduction in the carbon 

intensity of electricity is 50% over the total MAC curve. As cars, buses and trains 

consume a significant amount of electricity, reducing the carbon intensity of electricity 

from 640 g CO2/kWh represents a significant abatement lever. 
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Figure 7.42: MAC curve for REF scenario in 2040 

 

The other half of the abatement potential comes principally from technology shifts, 

since demand reduction contributes only 7% towards emissions reductions, although in 

total this is more than in 2030. The most important technology is hydrogen vehicles, 

since they are able to reduce emissions by 26 Mt CO2 up to a tax level of £478/t CO2. 

Different transport modes use hydrogen vehicles at different tax levels. While fuel cell 

hydrogen HGVs become cost-effective at £190/t CO2, aircrafts shift to hydrogen as a 

fuel from £220/t CO2, hydrogen ICE cars are introduced at a tax of £367/t CO2 and 

hydrogen fuel cell LGVs at a CO2 tax of almost £400/t CO2. The different abatement 

cost levels can be explained with different technology costs, but also with different 

infrastructure costs that are related to hydrogen distribution for the different transport 

modes. The decarbonisation of hydrogen, a separate mitigation measure, is not part of 

the MAC curve because when hydrogen is first consumed in the transport sector it is 

produced from CCS plants, i.e. it is low-carbon. Further abatement technologies are 

battery cars, which increase their market share at £56/t CO2, and petrol plug-in LGVs. 

The MAC curve for the year 2050 is presented as the last MAC curve for one year in 

Figure 7.43. The technological structure without a CO2 tax is similar to 2040. Electric 

vehicles make up the entire bus market, while the share of electric cars is 63%. A 

quarter of all cars are petrol hybrid cars and 12% are still petrol ICE cars. HGVs rely 

entirely on diesel hybrid vehicles, while the LGV market is shared almost equally 
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between petrol hybrid and petrol plug-in vehicles and only a small portion of LGVs are 

diesel hybrids. 

Figure 7.43: MAC curve for REF scenario in 2050 

 

The technology structure of emissions abatement looks similar in 2050 compared with 

2040; 63 Mt CO2 are abated up to £52/t CO2 by decarbonising the electricity used for 

buses, cars, LGVs and trains. The reduction in the carbon intensity of electricity is even 

more important in 2050 than in 2040 with 58% of overall emissions reductions. The 

most important abatement technology is again hydrogen vehicles. A switch towards 

hydrogen as an input fuel starts at £78/t CO2 for HGVs, at £260/t CO2 for aircrafts, at 

£363/t CO2 for LGVs and at £415/t CO2 for cars. Petrol hybrid cars and petrol plug-in 

LGVs play a smaller role in decarbonising the transport sector in 2050. Due to the 

higher availability of low-carbon technologies at lower costs, the share of demand 

reduction is 4%, i.e. less than in previous years. 

All the MAC curves that have been presented so far in this chapter are designed for the 

cumulative emissions of one single year, e.g. 2030. This is the standard way of 

displaying MAC curves. Nonetheless, emissions abatement and the respective marginal 

abatement costs are dependent on earlier abatement action and expectation about future 

carbon policies, i.e. they are path-dependent.  
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To address this issue Figure 7.44 shows a cumulative MAC curve for 36 years from 

2015 to 2050. The y-axis displays the CO2 tax level in 2030, but as the tax increases 

with 5% p.a. this is not the tax level in previous years. A CO2 tax of £116/t CO2 in 

2020, for example, translates into a tax of £188/t CO2 in 2030, £407/t CO2 in 2040, and 

£500/t CO2 in 2050. A cumulative MAC curve can address questions related to 

intertemporal interactions by bringing information of the single MAC curves together 

into one. The cumulative emissions are 4.6 Mt CO2 for transport-related emissions from 

2015 to 2050.  

Figure 7.44: Cumulative MAC curve for REF scenario (2015-2050) 

 

Emissions can be reduced up to a carbon tax of £78/t CO2 in 2050 by 1 Gt or 22% 

mainly by decarbonising electricity used in the transport sector and by switching to low-

carbon vehicle types, such as petrol hybrid and battery vehicles in early model periods 

up to 2030. At higher tax levels the emissions reduction is more gradual so that 

cumulative emissions can be halved to 2.3 Gt at a tax level of £571/t CO2 in 2050. This 

is predominantly achieved by shifting towards hydrogen vehicles from 2040 onwards, 

but also by switching to petrol hybrid vehicles in 2020 and by using petrol plug-in 

vehicles in particular from 2030 to 2040. 

In summary, the abatement potential in 2020 is relatively low compared to later years 

and demand reduction as well as petrol hybrid cars are the dominant abatement 

measures. In 2040 and 2050 the decarbonisation of electricity plays a key role as many 
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more vehicles rely on electricity than in 2030. In addition, hydrogen becomes cost-

effective at higher carbon tax levels in 2040 and 2050 for use in HGV, LGV, cars and 

aircrafts. 
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8 RESIDENTIAL SECTOR MAC CURVES 

This chapter is the third results chapter and discusses the economics of carbon 

emissions reduction in the UK residential sector. Similar to the two previous chapters on 

the power and transport sectors, this chapter presents a sensitivity analysis for MAC 

curves based on the UK MARKAL model and decomposition analysis. By changing 

different input assumptions of the model, the goal of this chapter is to lay open the key 

drivers for uncertainty of a residential MAC curve. 

As in the previous results chapter, the analysis focuses on the year 2030 as an important 

medium-target for a transition to a low-carbon society. At the end of this chapter a 

cumulative MAC curve and MAC curves for the years 2020, 2040, and 2050 are 

discussed. The sensitivity analysis encompasses 19 scenarios that can be divided into 

eight categories. 16 scenarios are presented in this chapter that where already used in 

the previous chapters. In addition to this, a scenario (CONSERV) with high hurdle rates 

for conservation measures reflects uncertainties around implicit discount rates for those 

investments, while a another scenario (HEAT PUMP) investigates the consequences of 

a higher potential for the deployment of heat pumps. ELAST++ tests the sensitivity of a 

residential sector MAC curve concerning the extent of possible price-induced demand 

changes. The supply cost for space and water heating, by far the biggest demand 

categories in the domestic sector, are dominated by fuel costs so that capital costs have a 

very minor influence. That is why it is deemed uninteresting to present a scenario on 

varying degrees of technology learning. Table 8.1 gives an overview of the different 

scenarios and gives a short description of each one. Each MAC curve consists of 46 

different model runs with  system-wide CO2 taxes, ranging from £2010 0 to 294/ t CO2 in 

2030. All costs are given in £ of the year 2010. 
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Table 8.1: Scenario overview 

 

8.1 Description of the residential sector in UK MARKAL 

In the residential sector of the UK MARKAL model, energy service demands include 

space heating, hot water, lighting, space cooling, other electrical appliances, cooking 

and refrigeration. Cooking is again subdivided into hob and oven, while refrigeration is 

divided into refrigerators, fridge freezer, chest freezer and upright freezer. The demand 

for cooking and refrigeration is defined in million units, which is translated into a final 

energy demand given an efficiency and user pattern, whereas it is in Petajoules for all 

other residential energy demand services. To account for seasonal differences in the 

demand for energy services, a seasonal profile is implemented along the six timeslices 

Scenario Category Description

REF Reference case Carbon tax increases  by 5% p.a. from 2010

ZERO-BEFORE Path dependency Carbon tax i s  zero before 2030

CONST-AFTER Path dependency Carbon tax i s  constant after 2030

INCR-AFTER Path dependency Carbon tax increases  with 10% p.a. from 2030

ZERO-AFTER Path dependency Carbon tax i s  zero after 2030

HIGH-BEFORE Path dependency Carbon tax i s  kept constant on the 2030 level  from 

the REF scenario for the period 2015-2030

PDR10 Discount rate Hurdle rates  introduced for a l l  technologies  at 

10%, previous ly exis ting rates  were doubled

SDR Discount rate Discount rate lowered to 3.5%, a l l  hurdle rates , 

taxes  and subs idies  removed

CONSERV Discount rate Hurdle rates  for conservation measures  increased 

to 50%

FF+ Fossil fuel price Costs  for coal , coking coal , oi l , refined products  

and natura l  gas  increased by 100%

FF++ Fossil fuel price Costs  for coal , coking coal , oi l , refined products  

and natura l  gas  increased by 200%

GAS Fossil fuel price Costs  for natura l  gas  decreased by 50%

IEP Electricity Cost Investment costs  increased by 200% for a l l  CCS 

technologies , biomass , nuclear, tida l , wind, wave

HEAT PUMP Technological availabiltiy Upper bound for heat pumps  increased from 39 

PJ/year to 117 PJ/year

ELAST+ Demand elasticity Al l  demand elastici ties  increased by 50%

ELAST++ Demand elasticity Al l  demand elastici ties  increased by 50% and 

maximum demand change increased to 50%

ELAST- Demand elasticity Al l  demand elastici ties  decreased by 50%

DEM+ Demand level Al l  energy service demands  increased by 20%

DEM- Demand level Al l  energy service demands  decreased by 20%
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in UK MARKAL (see chapter 3.3.2) for cooking, cooling, electrical appliances, space 

heating, hot water and lighting. 

Energy service demand levels for future periods are based on assumptions for the total 

number of houses from the Department of Trade and Industry (DTI), which is expected 

to be 35.6 million in 2050. In order to calculate the number of new houses an average 

annual house demolition rate of 0.08 % is assumed. All energy service demands are 

specified separately for two dwelling types: new and existing houses (see also Kannan 

et al. 2007). 

Next to end-use efficiency options, such as condensing boilers, UK MARKAL 

considers various conservation measures to reduce residential energy consumption. This 

covers a total of 15 conservation measures, including loft insulation, hot water cylinder 

insulation, double glazing and efficient lighting. In order to account for non-financial 

costs related to the investment in conservation measures, these measures have a hurdle 

rate of 8.75%. A precise number is hard to justify given the wide range of empirical 

estimates. This is a reason why the influence of an increased hurdle rate is studied in the 

CONSERV scenario. 

Technological alternatives for end-use devices are wide-ranging for space heating and 

hot water. They consist of oil-fired, coal-fired, gas-fired, coke-fired, wood-fired boilers, 

biomass pellet boilers, electric heat pumps, district heating and solar water heaters. 

These technologies are specified via parameters for capital costs, operating costs, 

lifetime and efficiency. Wood-fired boilers are limited to 25% of all households to 

account for fuel storage restrictions and prohibitive transport costs over long distances. 

The strengths of UK MARKAL’s representation of the residential sector include the 

technological detail and taking account of system-wide interactions with the heat, 

electricity and upstream, including biomass, sectors. A systems perspectives avoids 

relying on exogenously given CO2 intensities for heat and electricity as is the case in 

most current housing stock models. The latter models usually represent the housing 

stock in much more detail than UK MARKAL, differentiating according to dwelling 

type and age. However, the use of two dwelling types is justified on the grounds that the 

impact of the dwelling type on CO2 emissions is small (see Johnston et al. 2005). For a 

detailed comparison of UK MARKAL and UK housing stock models, see Kannan and 

Strachan (2009), and for a review of building stock models, see Kavgic et al (2010). 
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Shortcomings of the residential sector in UK MARKAL include a lack of temporal and 

spatial detail. UK MARKAL differentiates between seasons and day and night, but is 

not able to represent peak hours in detail, which again limits the representation of 

demand side management (DSM) and neglects its contribution to emission mitigation. 

Taking account of DSM could limit the need for peak electric capacity. Moreover, due 

to the lack of spatial detail, the district heating network cannot be adequately 

represented nor can the spatial availability of biomass be described. This can 

underestimate the true marginal abatement costs of these technologies. 

In addition, internal heat gain from lighting or other devices is not considered so that 

consequences of more efficient appliances on the need for space heat are neglected. As 

more and more energy-efficient appliances are installed over time, the disregard of 

internal heat gain can lead to an underestimation of the need for space heat and 

therefore, to a limited extent, underestimate the costs associated with emissions 

reduction. The BREHOMES model (Shorrock and Dunster 1997), a housing stock 

model, addresses this problem by quantifying the effects of lighting and appliances on 

space heating. 

Another weakness of the model concerns the representation of household size, human 

behaviour and choice of preferences. Although market rigidities and non-financial 

factors are partly captured via technology specific hurdle rates and user constraints, it is 

not possible to characterise the adoption of energy-saving measures accurately. 

Occupant behaviour is hard to describe in economic terms and can differ widely 

between households so that the magnitude and the direction of the influence on MAC 

curves, when addressing this issue, is not quantifiable. In the past, bottom-up statistical 

approaches, mainly relying on regression analysis, have been used to include occupant 

behaviour into domestic energy models (see Swan and Ugursal 2009). 

8.2 Reference scenario 

The reference (REF) scenario describes a development of carbon emissions reduction 

with the standard assumptions of the UK MARKAL model (see sections 6.1, 7.1, and 

8.1). 

Emissions in the residential sector have been attributed from an end-user perspective, 

i.e. emissions resulting from electricity and heat generation are assigned to the 
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residential sector according to the amounts consumed. The model results indicate that 

end-use emissions from the residential sector are 114 Mt CO2 in 2030 in the REF 

scenario, which compares to 156 Mt CO2 in 1990. This large drop in emissions is the 

result of basically all solid-fuel heating being phased out and the use of oil-fired boilers 

reduced by about 50% from current levels. Furthermore considerable efficiency gains, 

the implementation of conservation measures and a shift from gas as a heating fuel 

towards biomass and district heat explain the drop in emissions. Figure 8.1 shows an 

emission curve for the residential sector in 2030. 

Figure 8.1: End-use emission curve for the residential sector in United Kingdom in 2030 

 

At a price of £50/t CO2 emissions are reduced by 68 Mt CO2 to a level of 46 Mt CO2 

and from then on more gradually to 31 Mt CO2. So even at considerable CO2 tax levels, 

there remain residual emissions in the residential sector. In some places the curve 

reverts despite increasing CO2 tax levels due to interactions with other sectors, mainly 

electricity and heat, and intertemporal interactions, i.e. it is more cost-effective to 

reduce emissions in other time periods. 

The emissions in the REF scenario without any carbon policy originate from different 

demand types. This is mainly influenced by the energy consumed for the specific 

service. In terms of energy consumption space heating and hot water are responsible for 

81% of all useful energy consumed in the residential sector in 2030 according to model 

results. Eight percent of residential energy service demand originates from electrical 

appliances, four percent from lighting, four percent from cooking, and two percent from 

refrigeration. Accordingly, the majority of CO2 emissions (59%) can be attributed to 
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space heating and hot water. All the energy services that exclusively use electricity have 

a larger share in CO2 emissions than in energy use because electricity generation in 

2030 under no carbon policy is coal-dominated and a part of space heating and hot 

water is provided by burning biomass. 

Correspondingly, one can expect to see emissions reduction predominantly from fuel 

switching related to space and water heating and a decarbonisation of heat and 

electricity. Emissions related to electric appliances, refrigeration, space cooling, lighting 

and, to some extent, cooking can mainly be reduced by decarbonising electricity. At 

higher carbon intensity levels of electricity, energy efficiency measures and demand 

changes represent additional means to reduce emissions in these demand categories. 

Figure 8.2: CO2 emissions from different residential energy service demands in the United 

Kingdom in 2030 (REF scenario) 

 

As the flexibility for fuel switching is mainly given with respect to devices for space 

heating and hot water, Figure 8.3 represents how much various technologies contribute 

to meeting the demand for space heating and hot water. Actual demand for space and 

water heating is reduced through the implementation of conservation measures, which 

reduce energy service demand by roughly 10% or 144 PJ. Heating demand is dominated 

by gas-fired boilers with 42%, followed by district heating (28%) and wood-fired 

boilers (20%). The majority of the biomass used in the residential sector is imported, but 

a significant share is provided by domestic sources, such as industrial wood by-

products, domestic woody energy crops, and forest residues. The costs for biomass 

resources, their processing and transport are based on Jablonski et al. (2009). Figure 8.3 

equally shows that the main trade-off is between gas and district heat for heating 

purposes. 
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Figure 8.3: Technology mix for space & water heating in the REF scenario 

 

Including the results of the decomposition analysis shows which measures are 

responsible for the emissions reductions (see chapter 4). Equation (8.1) details the 

decomposition employed to disaggregate changes in total residential CO2 emissions in 

this chapter: 

               

             
           

         
            

 
       

           
 
       

       
 

          

 (8.1) 

activityi stands for the energy service demand level of demand type i in PJ or million 

units depending on the demand. activityi,j represents the demand level satisfied by 

technology j for demand type i, while fueli,j indicates the amount of fuel in PJ used for 

technology j to satisfy demand of demand type i. Lastly, CO2 i,j is the amount of CO2 in 

kt emitted by technology j while satisfying demand i. Correspondingly, the 

decomposition distinguishes between demand-related influences, structural changes, 

and the impact of fuel efficiency and carbon intensity.  

Demand-related factors describe changes in the overall demand for energy services, 

such as lighting or space heating, while structural changes describe a change from one 

end-use technology to another, for example from a gas-fired boiler to district heating. In 

the decomposition analysis, conservation measures are classified as a structural change, 

because they are an alternative way to meet the demand for domestic heating. Fuel 
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efficiency changes relate to less fuel being used in the same boiler type, e.g. by 

switching to a condensing boiler. Carbon intensity effects describe changes in the 

carbon content of one unit of fuel, i.e. the decarbonisation of electricity or heat. The 

logarithmic mean Divisia index (LMDI) is used to derive the contribution towards CO2 

emissions reduction of specific measures (see also chapter 4). 

Figure 8.4 shows that the MAC curve in the REF scenario is dominated by the 

decarbonisation of secondary energy carriers, heat and electricity. As the carbon tax 

level increases electricity and heat are the most cost-effective options to decrease 

emissions in the residential sector, especially up to £40/t CO2. Structural changes, 

including switches between different end-use technologies and conservation measures, 

occur only with respect to the demand for space heating and hot water and remain very 

limited. Demand reduction due to higher prices has a constant contribution along rising 

CO2 tax levels. Efficiency improvements are already incorporated into the baseline 

development. Increasing carbon tax levels do not cause further efficiency improvements 

in the residential sector. One reason is that the energy carriers have already a low carbon 

intensity, so that the impact of efficiency improvements is limited. Another reason can 

also be the less detailed representation of efficiency options. 

Figure 8.4: Residential MAC curve for the REF scenario in 2030 

 

In the base case without any carbon policies the contribution of electricity 

decarbonisation is dominant up to £110/t CO2. Except for water and space heating, the 

other energy service demands rely almost entirely on electricity. Electricity makes up 
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24% of all energy consumed in the residential sector. Since electricity can be 

decarbonised at lower cost than most end-use energy sectors (see chapter 6), it is an 

obvious way to reduce end-use emissions in the residential sector. Furthermore, at £0/t 

CO2, a significant share of hot water and space heating is provided via district heat. Up 

to £80/t CO2, a reduction in the CO2 intensity of heat equally contributes to emissions 

mitigation. This mainly happens through the phasing out of CHP plants based on solid 

fossil fuels, which are replaced by solid biomass. This emphasises the importance of 

decarbonising energy carriers for emissions reduction in the residential sector. 

Apart from the decarbonisation of heat and electricity, price-induced demand reduction 

plays a smaller, but important contribution to emissions reduction (see Figure 8.5). At a 

carbon tax of £200/t CO2 in 2030, demand for space & water heating is reduced by 24% 

in UK MARKAL. Electricity prices increase significantly by 50% from £0/t CO2 to 

£294/t CO2 in the residential sector, though this is still significantly less than other fuels 

such as natural gas, where the price more than trebles. 

It is interesting to see that structural change in the residential sector, e.g. from gas-fired 

boilers to electric heating or wood-fired boilers, play a minor role contributing only 4% 

to overall emissions reduction (see Figure 8.5). This is in contrast to the findings for the 

transport sector, which, however, relies heavily on carbon intensive oil products.  

Figure 8.5: Total decomposition of residential MAC (REF) for the UK in 2030 

 

At £137/t CO2, electric heat pumps for space heating become cost-effective and replace 

part of the gas-fired boilers. At carbon tax levels up to £50/t CO2, the share of biomass 

heating increases and is responsible for some emissions reduction. From around £180/t 
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CO2, a shift towards district heating contributes to emissions reduction as heat 

production at this tax level comes from landfill and biomass CHP plants. 

There are mainly two reasons for the lack of fuel switching in the residential sector: 

first, the fuel mix for space heating and hot water is expected to already change 

substantially from today to 2030 without any climate policy, secondly, there is no 

further economic incentive to change from gas-dominated heating to low-carbon 

alternatives. 

In 2008, natural gas made up 82% of all fuels used for space and water heating in the 

UK, with electricity (8%), oil (8%) and solid fuels (2%) making up the rest. This is 

expected to change dramatically in a cost-optimal, perfect foresight setting without any 

climate policy intervention. Figure 8.3 shows that wood-fired boilers gain 20% of the 

market share, and district heating increases massively to 28% of all residential heating. 

Heat is mainly generated from natural gas CHP plants. Summarising, in the absence of 

any climate policy, emissions for residential heating are expected to fall substantially 

via a shift towards wood-fired boilers and district heating. 

With significant change in the structural composition of heat provision already 

occurring at £0/t CO2, replacing natural gas remains the only major possibility to reduce 

emissions further concerning domestic heating. Thus, the benchmark is a gas-fired 

boiler and only options that can provide cheaper space heat will be chosen by the model. 

One would expect to see alternatives to a gas boiler becoming cost-effective with an 

increasing financial penalty for burning gas, but this is not the case (see Figure 8.6). 

Although the cost for providing space heat with a gas-fired boiler increases from £10/GJ 

to £29/GJ from one end of the MAC curve to the other, only heat pumps are 

significantly cheaper at the highest carbon tax. In the model it is assumed that the 

potential for heat pumps is limited due to physical constraints (see 8.7), so that their 

contribution towards emission mitigation is also limited. Only wood and pellet boilers 

are slightly cheaper compared to gas boilers by 2% and 5% respectively. The reason for 

the similar cost level is that not only the gas price increases significantly but also the 

price for other fuels and since fuel costs dominate overall costs this is reflected in the 

supply cost. While the cost for natural gas increases by 233% from £0/t CO2 to £294/t 

CO2, electricity cost increases by 62%, light fuel oil (LFO) by 229%, pellets by 186%, 

district heat by 230% and wood by 203%. The price jump for wood and pellets can be 
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explained with a constrained supply that meets soaring demand from the power, heat, 

residential, service and to some extent the transport sector. 

Figure 8.6: Costs of providing space heat for various technologies in 2030 

 

Lastly, when one takes the integral under the curve in Figure 8.4, information can be 

obtained on the total cost to reduce emissions in the residential sector in 2030 (Figure 

8.7). This only refers to direct costs in the year 2030 and does not consider any earlier 

costs nor welfare implications. Total costs increase exponentially with an increasing 

emissions reduction target and are £1.9 billion for an emissions reduction of 70 Mt, 

which corresponds to an average abatement cost of £27/t CO2. 

Figure 8.7: Total abatement cost for the residential sector in the United Kingdom in 2030 
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8.3 Path dependency 

The five scenarios presented in this section correspond exactly to those presented in 

chapter 6. Three scenarios consider different pathways after 2030, CONST-AFTER, 

ZERO-AFTER, INCR-AFTER, and two regard different pathways before 2030, ZERO-

BEFORE, HIGH-BEFORE (see also Figure 6.7). 

Although all six scenarios have the same CO2 tax in 2030, they result in different MAC 

curves, especially for higher abatement costs (see Figure 8.8). Those scenarios with a 

higher CO2 tax compared with the REF scenario, i.e. INCR-AFTER and HIGH-

BEFORE show for the same carbon price a slightly higher abatement level. The 

CONST-AFTER scenario, which keeps the CO2 tax constant after 2030, shows only a 

very limited divergence from the REF scenario. The emission curves for all three 

mentioned scenarios look very similar to the REF emission curve, where, for a given 

CO2 tax, the biggest difference in the abatement potential is 10%. The scenarios where 

the CO2 tax is kept at zero before or after 2030 significantly increase the marginal 

abatement costs. While the abatement potential is significantly lower for a given CO2 

tax up to £80/t CO2 in the ZERO-AFTER scenario, it is the inverse case for the ZERO-

BEFORE scenario where the abatement potential is less from around £200/t CO2 on. 

Figure 8.8: End-use emission curve for different path dependency scenarios 

 

When interpreting the path dependency scenarios, it should be considered that UK 

MARKAL is a perfect foresight model and does not include endogenous technology 
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learning (ETL). The latter characteristic can limit the influence of a variation in the 

carbon tax pathway. 

8.3.1 Constant CO2 tax after 2030 

In contrast to the REF scenario, the CONST-AFTER scenario assumes a carbon tax that 

stays constant after 2030 and does not increase anymore. Therefore, the incentive to 

reduce emissions is less than in the REF scenario as the CO2 tax in future periods will 

be lower. Consequently, one can expect the MAC curve to be at least to some extent 

steeper. 

It turns out that the resulting MAC curve looks very similar to the MAC curve in the 

REF scenario. The cost-increasing effect is very small with on average 1 Mt CO2. The 

biggest difference is in a range from £80/t CO2 to £120/t CO2 as heat and electricity are 

decarbonised more gradually. Furthermore, biomass-fired boilers contribute slightly less 

towards overall emissions reduction. Summarising, the influence of a constant carbon 

tax is very limited. 

8.3.2 Zero CO2 tax after 2030 

This path dependency scenario assumes a CO2 tax that drops back to zero for all model 

runs past 2030. After 2030 there is no incentive to shift the energy system to low carbon 

technologies because there is no emission tax anymore. Correspondingly, all 

investments into low-carbon technologies in 2030 and before will be stranded assets in 

an environment without a climate policy after 2030. Therefore, one can expect to see 

less abatement for the same carbon tax level, which is confirmed by Figure 8.8 and 

Figure 8.9. Especially up to £40/t CO2, the MAC curve of the ZERO-AFTER scenario 

differs significantly from the REF scenario by 12 Mt/ CO2 on average. At increasing tax 

levels, both MAC curves converge again. 
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Figure 8.9: MAC curve for the ZERO-AFTER scenario in 2030 

 

A look at Figure 8.9 reveals that abatement is significantly less at £50/t CO2. While 

almost 60 Mt CO2 are abated in the REF scenario, it is less than 40 Mt CO2 in the 

ZERO-AFTER scenario. Electricity is decarbonised more gradually, which has 

consequences for emissions abatement in the residential sector. The same holds true for 

heat decarbonisation, which occurs from £80/t CO2 to £150/t CO2, thus at tax levels that 

are more than £50/t CO2 above the REF scenario. 

The contribution from demand reduction towards emissions reduction is increased by 

14% to make up for the lesser contribution from structural changes and the 

decarbonisation of electricity. Demand is assumed to react relatively flexibly to price 

changes so that demand reduction is preferred in this scenario over structural changes. 

When the carbon tax drops to zero, demand can adapt quickly, while earlier low carbon 

technologies would be stranded assets after 2030. 

As the overall contribution of technological changes is already limited in the REF 

scenario, the differences are as well limited on an absolute scale. The most significant 

change is that heat pumps become cost efficient at £166/t CO2, which is £30/t CO2 

higher than in the REF scenario. 



307 

8.3.3 Steep increase in CO2 tax after 2030 

In the INCR-AFTER scenario the CO2 tax increases after 2030 by 10% annually, thus 

the CO2 tax increases at a rate that is twice as high as in the REF scenario. The shape of 

the MAC curve looks very similar to the REF scenario as Figure 8.8 reveals. The higher 

CO2 tax after 2030 should represent an additional incentive in 2030 to choose low 

carbon technologies in order to anticipate the future stricter climate policy. 

A comparison of the INCR-AFTER and REF emission curves reveals that the emissions 

in the INCR-AFTER scenario are marginally lower than the REF scenario with an 

exception from £70/t CO2 to £140/t CO2. From £70/t CO2 to around £100/t CO2, the 

emissions in the residential sector increase despite a rising carbon tax due to biomass 

and district heat being substituted by gas as a heating fuel. Despite increasing emissions 

from the residential sector, system-wide emissions decrease due to the decarbonisation 

of the electricity sector, which uses more biomass. This shift happens amongst other 

reasons because the higher carbon price in the future makes an electrification of 

residential heating more economical in later years. The consequence for residential 

emissions is that biomass is diverted from residential heating to electricity generation. 

Although the steep increase of the CO2 tax after 2030 does not generally have a big 

influence on the MAC curve, around £100/t CO2 the emissions increase despite a rising 

CO2 tax as a result of intersectoral interactions. 

8.3.4 Zero CO2 tax before 2030 

In contrast to the REF scenario, there is no CO2 tax before 2030 in the ZERO-BEFORE 

scenario. Consequently, there is no incentive to shift to any low-carbon technology 

before 2030 unless it is economic to do so without a carbon policy. This lack of 

incentive has consequences for the year 2030 as the devices used in the residential 

sector, such as boilers, fridges or ovens have an average lifetime ranging from 14 to 20 

years. Thus, investments would need to be taken in the absence of any climate policy 

prior to 2030 in order to address a substantial carbon tax in 2030. 

Figure 8.8 indicates that the overall MAC curve in the REF and the ZERO-BEFORE 

scenario are similar. The biggest divergence can be identified up to £50/t CO2 and 

above £260/t CO2. This divergence in curves is found to be smaller in comparison with 
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the corresponding curves for the transport sector, which can be explained by the lesser 

importance of technological change in the residential sector. 

Instead of a MAC curve, Figure 8.10 displays the technology mix for space and water 

heating in order to explain the differences between both curves. The reasons for the 

difference at low carbon tax levels can be found in the electricity sector where the 

carbon intensity of electricity is higher for a given tax level in the ZERO-BEFORE 

scenario compared with the REF scenario. The investment in biomass CHP for heat 

provision is less in the ZERO-BEFORE as it is not cost-optimal in the absence of a 

carbon tax. Comparable to the ZERO-AFTER scenario, electric heat pumps become 

cost efficient at a tax level that is £20/t CO2 higher than in the REF scenario. Between 

£140/t CO2 and £190/t CO2, the emission curve in the ZERO-BEFORE scenario is even 

to the left of the REF scenario due to a higher share of district heating. This option is 

not as quickly replaced by gas-fired boilers as is the case in the reference scenario. 

Figure 8.10: Technology mix for space & water heating in the ZERO-BEFORE scenario 

 

In summary, the fact that there is no CO2 tax prior to 2030 represents a disincentive for 

the investment in low-carbon technologies resulting in slightly less abatement for a 

given carbon tax. The influence is less compared with the transport sector because 

emissions reduction is dominated by electricity and heat decarbonisation and demand-

related factors, but less by fuel switching. 
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8.3.5 High CO2 tax from 2015 

The HIGH-BEFORE scenario assumes that the CO2 tax stays on a high, constant level 

from 2015 to 2030, which is the same as the CO2 tax in the REF scenario in 2030. This 

means that for the period from 2015 to 2025 the CO2 tax is higher than in the REF 

scenario and should present an additional incentive to decarbonise the energy system. 

However, this additional incentive proves to be weak when one compares both emission 

curves in Figure 8.8. The emission curve in the HIGH-BEFORE scenario indicates more 

abatement at around £40/t CO2 due to an earlier shift to gas boilers away from district 

heat from fossil fuels. The next difference is around £117/t CO2 where heat pumps 

become cost-effective and biomass-based district heating is introduced at slightly lower 

tax levels compared with the reference scenario. 

Consequently, a CO2 tax that is higher for two periods can lead in specific cases to a 

reduction of marginal abatement costs, but does not alter the overall MAC curve 

substantially. Similarly to the transport sector, the MAC curve seems to be more 

affected by lower carbon tax pathways than by higher carbon taxes owing to the already 

high tax level in the reference case. 

8.4 Discount rate 

The two scenarios presented in this section, PDR10 and SDR, correspond exactly to 

those presented in chapter 6 and 7 for the electricity sector. In addition, a new scenario 

CONSERV tests the influence of a 50% hurdle rate for conservation measures in the 

residential sector. This should reflect the high implicit discount rate reflecting market 

barriers, uncertainties and technology-specific risks (see also DeCanio 1993; Jaffe and 

Stavins 1994). In a study for the Department of Environment, Food and Rural Affairs 

(Enviros Consulting Ltd 2006), a discount rate of 7% was used for the domestic sector. 

The CCC commissioned a study (Pye et al. 2008) that applied a discount rate of 7.5%, 

8.5% and a social discount rate. The most recent study from the CCC (Weiner 2009) 

varied discount rates between 3.5% and 100% to study the effect on the emissions 

reduction potential. The PDR10 scenario represents the perspective of a private 

investor, where the technological hurdle rates for conservation measures and electric 

heat pumps were doubled with respect to the REF scenario to 17.5% and a 10% hurdle 

rate was introduced for all other technologies. The PDR10 scenario assumes a general 

discount rate of 5%. In the SDR scenario a social discount rate of 3.5% is employed and 



310 

all taxes (except for the carbon tax needed to generate the MAC curve) and hurdle rates 

removed. 

Similar to the power sector and in contrast to the transport sector, Figure 8.11 indicates 

that the emission curves for the different discount rate scenarios are similar. The biggest 

difference to the REF scenario is found in the emission curve for the PDR10 scenario in 

the middle part of the emission curve. Nevertheless, the maximum difference is only 8 

Mt CO2 for a given tax level. The emissions in the CONSERV scenario are 3 Mt CO2 

above the level in the REF scenario in the absence of any carbon tax. This difference 

decreases with an increasing CO2 tax as gradually more and more conservation 

measures become cost-effective. The SDR scenario indicates emission mitigation to be 

higher from a social perspective up to £70/t CO2. 

Figure 8.11: Emission curve along rising CO2 abatement costs for different discount rate 

scenarios in 2030 

 

As fuel switching plays a minor role in the REF MAC curve, a change in the discount 

rate, which affects annualised investment costs, has a limited impact. However, 

structural changes contribute significantly less to emissions reduction in the PDR10 

scenario relative to the REF scenario, while the contribution from price-induced demand 

change is higher by 6%. One can see an upward shift in marginal abatement costs for 

the decarbonisation of heat and electricity owing to the increase in discount rates. At 

higher tax levels, a decarbonisation of district heat and a limited shift to biomass-fired 

boilers are responsible for most of the emissions reduction from £100/t CO2 upwards 
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Heat pumps become cost-effective at £176/t CO2, representing a mark-up of £40/t CO2 

compared with the REF scenario. The higher discount and hurdle rates also affect the 

cost-efficiency of conservation measures. These measures reduce energy service 

demand by only 112 PJ in the PDR10 scenario in the base case, which is 31 PJ less than 

in the REF scenario. However, at £40/t CO2 loft insulation and at £107/t CO2 solid wall 

insulation become cost-effective, reducing overall demand for space heating and CO2 

emissions by almost 2 Mt CO2. 

Figure 8.12: MAC curve for the PDR10 scenario in 2030 

 

The MAC curve for the SDR scenario (Figure 8.13) looks in general rather similar to 

the REF scenario despite a few differences. Taxes and subsidies do not play an 

important role in the domestic sector in the UK, so they do not substantially affect the 

mitigation cost. A change of the discount rate influences the annualised investment cost, 

which make up only a very small part of the cost to provide an energy service, such as 

space heat. The cost is much more determined by the fuel cost. Nevertheless, 

conservation measures and heat pumps are an exception to this where the capital cost 

has a strong influence on the final cost for space heating. That is why heat pumps 

become cost efficient at £44/t CO2, which is almost £100/t CO2 less compared with the 

REF scenario. 

However, the lower discount rate has an influence on the heat and power sector where it 

reduces the cost of low-carbon alternatives compared to fossil-fuel based generation. 

Consequently, almost all of the emissions reduction associated with the decarbonisation 



312 

of heat and electricity is already realised at £80/t CO2. A partial shift towards district 

heating and wood-boilers for space and water heating characterises the MAC curve 

above £160/t CO2. 

Figure 8.13: MAC curve for the SDR scenario in 2030 

 

The last scenario in this category is the CONSERV scenario, which looks especially at 

conservation measures. As mentioned above the uptake of conservation measures in the 

domestic sector has been slower than predicted by economic conditions in the past. 

Market barriers and market failures in the form of information failures, costs associated 

with the installation of energy efficiency measures, financing hurdles, inertia and 

agency issues explain the gradual implementation of such measures (Sutherland 1991; 

Jaffe and Stavins 1994). Approximating market barriers and market failures via 

increased hurdle rates is sub-optimal but it is one of the few options in an optimisation 

model. 

As the change in the discount rate concerns merely conservation measures, which 

contribute around 2% towards emissions reduction in the REF scenario, the CONSERV 

MAC curve looks very similar to the REF scenario. Nevertheless, the contribution from 

conservation measures looks different due to the high specific discount rate. In the case 

without any carbon policy, conservation measures reduce the demand for residential 

energy services by 67 PJ in the CONSERV scenario compared with 144 PJ in the REF 

scenario. Thus, less than 50% of the amount of conservation measures is realised with a 

50% hurdle rate instead of 8.75%. Figure 8.14 displays the uptake of conservation 
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measures along increasing carbon tax levels and shows that the saved energy related to 

cavity wall insulation is significantly influenced by the higher discount rates. 

Figure 8.14: Uptake of conservation measures in the domestic sector in the CONSERV scenario in 2030 

 

The saved energy due to cavity wall insulation more than triples over the whole range of 

carbon tax levels from 19 PJ to 60 PJ. While the contribution from loft insulation 

increases as well, the conservation potential for efficient lighting, hot water cylinder 

insulation, double glazing and heating control is already completely exhausted at £0/t 

CO2. One can also note the total reduction in energy service demand amounts to 116 PJ, 

which is 20% less compared with the contribution in the REF scenario at no carbon tax. 

Overall, the increase in the hurdle rate for conservation measures to 50% reduces the 

amount of saved energy significantly. However, as the contribution from conservation 

measures towards emissions reduction is rather limited in the REF scenario over the 

carbon tax range, the change undertaken in the CONSERV scenario does not alter the 

shape of the MAC curve. 

8.5 Fossil fuel prices 

The scenarios presented in this section, GAS, FF+ and FF++, are the same as in chapter 

6, i.e. fossil fuel prices are increased by 100% in the FF+ scenario and by 200% in the 

FF++ scenario, while natural gas prices are reduced by 50% in the GAS scenario. The 

fossil fuel price assumptions can be found in Table 6.3. 

0 

20 

40 

60 

80 

100 

120 

140 

0 20 39 59 78 98 117 137 157 176 196 215 235 254 274 294 

C
o

n
se

rv
ed

 E
n

er
gy

 S
er

vi
ce

 D
em

an
d

 [
PJ

] 

Marginal Abatement Cost [£/t CO2] 

Cavity Wall Insulation 

Loft Insulation 

Efficient Lighting 

Hot Water Cylinder Insulation 

Double Glazing 

Heating Control 



314 

The emission curve for the different fossil fuel price scenarios (Figure 8.15) reveals that 

the difference between the scenarios is rather limited with an exception in the range 

from £60/t CO2 to £130/t CO2, where the abatement potential varies a little more. At 

very high CO2 tax levels all four emission curves converge as the fuel price differences 

are overshadowed by the carbon tax. The baseline emissions are different to the extent 

that they increase by 11% in the GAS scenario, they are 10% lower in the FF+ scenario 

and 11% lower in the FF++ scenario. These results for the residential sector confirm the 

results from the power sector, namely that the MAC curve is relatively robust to fossil 

fuel price changes. 

Figure 8.15: Emission curve along rising CO2 abatement costs for the fossil fuel price scenarios in 

2030 

 

The emissions are 11 Mt CO2 less in the FF+ scenario without any carbon tax compared 

with the REF scenario. The reasons are that the carbon intensity of electricity is 21% 

less than in the REF scenario and 23% more biomass is used for space and water 

heating. 

In contrast to this, the carbon intensity of heat is significantly higher in the FF+ scenario 

without any carbon tax. The reason is a shift from natural gas CHP plants towards CHP 

plants fired by solid fossil fuels. It is economic to do so despite a price increase in all 

fossil fuels by 100%. Accordingly, there is a big potential to save CO2 emissions by 

shifting towards less CO2 intensive heat production technology (see Figure 8.16). With 

increasing CO2 tax levels heat production is more and more shifted towards natural gas 
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and above all solid biomass as a fuel input. As a consequence the contribution from heat 

decarbonisation in terms of CO2 emissions reduction increases to 19 Mt CO2. 

Since biomass boilers contribute 23% more towards space heating and hot water at the 

start of the MAC curve in the FF+ scenario compared with the REF scenario, the further 

contribution in the MAC curve is minimal. Interesting to note, however, is that heat 

pumps are cost-effective without any carbon policy in the case where fossil fuel prices 

have been increased by 100%. Overall, the shape of the MAC curve looks very similar 

to the REF scenario, though heat decarbonisation plays a much more important role due 

to large role of solid fossil fuels at £0/t CO2. 

Figure 8.16 and Figure 8.17 depict the MAC curves for both fossil fuel price scenarios. 

Both curves look very similar with heat decarbonisation being much more important in 

the FF+ and FF++ scenario than in the REF scenario. 

Figure 8.16: MAC curve for the FF+ scenario in 2030 

 

The contribution of electricity decarbonisation in the FF++ scenario is even less 

compared to the FF+ scenario due to the fact that electricity generation is less carbon 

intensive at £0/t CO2 with 274 g CO2/kWh compared to 510 g CO2/kWh in the REF 

scenario. On the other hand, similarly to the FF+ scenario, heat is much more carbon-

intensive without any carbon constraints and only from £20/t CO2 solid biomass takes 

over as the dominant fuel in heat production. 
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Figure 8.17: MAC curve for the FF++ scenario in 2030 

 

In this way, heat decarbonisation contributes almost as much towards CO2 emissions 

reduction as electricity with 26 Mt CO2 in the domestic sector. In the baseline of the 

FF++ scenario, district heat supplies 28% more space heat than in the REF scenario. 

Together with an increased reliance on biomass, the share of gas-fired boilers in space 

heating and hot water is reduced to 26%. Up to around £100/t CO2, the share of gas-

fired boilers increases at the expense of district heat. Figure 8.17 displays that a shift 

from carbon-intensive heat towards gas saves CO2 emissions up to £20/t CO2. Similar to 

the FF+ scenario, electric heat pumps are cost-effective even in the absence of any 

carbon policies. 

In the FF+ and FF++ scenario, natural gas is the dominant fuel within the whole carbon 

tax range despite drastically increased fossil fuel prices. Possible low-carbon 

alternatives, such as pellets and biomass, become more expensive as the demand from 

the electricity sector and heat sector increases (driven by a growing demand in the 

industry and service sector), while supply is constrained. While the potential for electric 

heat pumps is limited, electric heating and boilers, as well as solar water heaters are 

expensive compared to gas-fired boilers in the REF scenario and cannot close this cost 

gap in the FF+ and FF++ scenarios. 

Instead of rising fossil fuel prices, the GAS scenario looks at a decoupling of the oil and 

gas price, where gas prices fall over the next 20 years. This scenario assumes gas prices 

that are 50% below the values in the REF scenario from 2015 on. The MAC curve for 
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the GAS scenario does not reveal that the fuel mix for space and water heating looks 

different compared to the REF scenario. Unsurprisingly, gas-fired boilers increase their 

share in providing space heating and hot water to 55%, but also district heating supplies 

more heat in the GAS scenario. The reason for this is cheaper heat generation from 

natural gas CHP plants. 

The MAC curve for the GAS scenario (Figure 8.18) indicates a bigger contribution from 

a shift towards biomass-fired boilers as it is less dominant compared with the REF 

scenario at £0/t CO2. An increasing space heat supply from biomass-fired boilers 

reduces carbon emissions by 7 Mt CO2 over the whole MAC curve. With increasing 

carbon tax levels, the demand for space and water heating is more and more satisfied by 

biomass-fired boilers instead of district heating, while the share of gas-fired boilers 

remains almost constant. 

Figure 8.18: MAC curve for the GAS scenario in 2030 

  

Due to the lower gas price, energy conservation does not contribute to the same extent 

to a reduction in the demand for domestic energy services. However, energy 

conservation requires higher carbon tax levels to become cost-optimal. Furthermore, it 

is economically optimal to introduce heat pumps into the market at £205/t CO2, i.e. at 

£69/t CO2 more than in the REF scenario. Finally, due to cheaper energy services in the 

baseline without a carbon policy, the contribution from demand reduction is higher, 

since prices increase relatively more, and reaches a total of 16 Mt CO2. 
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8.6 Cost of electricity 

The previous scenarios have shown that the decarbonisation of electricity plays a very 

important role for the reduction of emissions related to the residential sector. In total 

71% of all emissions reduction in the REF scenario is attributable to a reduction of the 

carbon intensity of electricity. The IEP (Increased Electricity Price) scenario tests the 

sensitivity of the MAC curve to a significantly higher electricity price. This scenario is 

exactly the same as the IEP scenario presented in chapter 7.7, i.e. investment costs for 

key abatement technologies in the electricity sector are assumed to be 200% higher (see 

Table 6.5). 

Figure 8.19 contrasts the emission curve for the IEP scenario with the one from the REF 

scenario. The emissions in the IEP scenario are 5 Mt CO2 higher at £0/t CO2 because 

electricity is 9% more carbon intensive. Up to £70/t CO2, the emissions in the IEP 

scenario are significantly above the REF scenario with on average 16 Mt CO2 for a 

given carbon tax mainly due to the higher CO2 intensity of electricity. 

Figure 8.19: Emission curve along rising CO2 abatement costs for the IEP scenario in 2030 

 

The emissions gap between both scenarios is closed at £176/t CO2, while emissions are 

even below the REF scenario from £200/t CO2 to £260/t CO2. This is despite the fact 

that the carbon intensity of electricity is still higher in the IEP scenario compared with 

the REF scenario. The reason is rather that district heat contributes 25% towards space 

and water heating in the IEP scenario, while it is 8% in the REF scenario at that tax 

level. District heating is less carbon intensive than heating with natural gas because it is 
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based on natural gas and biomass CHP plants. However, at higher carbon tax levels it is 

no longer cost-optimal to have natural gas CHP plants as the electricity sector shifts to 

low-carbon alternatives. This has consequences for heat generation, which is reduced at 

higher carbon tax levels and replaced by natural gas for space heating and hot water. 

The MAC curve for the IEP scenario (Figure 8.20) reveals that the abatement potential 

is very limited up to £15/t CO2 due to the increased cost to produce electricity. 

Nevertheless, the contribution of decarbonising electricity is relatively similar to the 

REF scenario albeit at higher abatement cost. The emissions reduction attributable to a 

lower carbon intensity of heat is higher compared with the REF scenario because 

district heating based on natural gas and biomass CHPs is not replaced by natural gas 

for space and water heating as is the case in the REF scenario. 

The consequence of higher electricity prices is that price-induced demand reduction is 

more important for the reduction of carbon emissions. In total, demand reduction 

contributes 23% more towards emissions reduction. Finally, due to the higher price of 

electricity, the introduction of heat pumps becomes cost-optimal at £176/t CO2, i.e. at 

£40/t CO2 more compared with the REF scenario. 

Figure 8.20: MAC curve for the IEP scenario in 2030 
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8.7 Market potential of electric heat pumps 

In the REF scenario it is conservatively assumed that the potential of heat pumps in the 

domestic sector is limited to 39 PJ per year or 4% of all dwellings. This upper bound on 

the use of heat pumps reflects the limited potential for the installation of air source and 

ground source heat pumps in the UK domestic building stock. Instead of a gas-fired 

boiler, heat pumps need to be installed outside a house and require plenty of space to get 

the necessary air flow. The potential for ground source heat pumps is limited as it 

requires suitable conditions for a ground loop. Furthermore, heat pumps work more 

efficiently when underfloor heating systems are installed and when the house is well 

insulated because of lower water temperatures needed. The HEAT PUMP scenario 

assumes a bigger potential for heat pumps in the residential sector and studies the 

impact on the MAC curve of raising the limit by 200% from 39 PJ to 117 PJ, which is 

similar to the values assumed in a report for the CCC (Radov et al. 2010). 

The emission curve (Figure 8.21) looks exactly the same up to £137/t CO2 as in the REF 

scenario, but once heat pumps become cost-effective the market share of heat pumps 

increases more in the HEAT PUMP scenario than in the REF scenario. Subsequently, 

emissions are lower in the HEAT PUMP scenario by roughly 4 Mt CO2 at carbon tax 

levels above £137/t CO2.  

Figure 8.21: Emission curve along rising CO2 abatement costs for the HEAT PUMP scenario in 

2030 
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The MAC curve for the HEAT PUMP scenario only shows limited differences to the 

REF scenario from £137/t CO2. However, technology mix for space heating and hot 

water (Figure 8.22) reveals that heat pumps make up a bigger share of the overall 

demand for space heat and hot water once they are cost-effective compared with the 

REF scenario. The bigger contribution from heat pumps replaces gas-fired boilers, but 

also a small part of wood-fired boilers. This type of biomass is used in the power sector 

to generate electricity. 

Overall the higher potential for heat pumps has a minor influence on the shape and 

structure of the residential MAC curve. In the power sector, the additional electricity is 

mainly provided by coal CCS power plants. 

Figure 8.22: Technology mix for space & water heating in the HEAT PUMP scenario 

 

8.8 Demand elasticity 

End-use demand reacts to changes in underlying prices. However, the extent of those 

changes, or the price elasticity of demand, is hard to observe empirically and remains 

therefore an uncertain value. This section presents three scenarios, which test the 

influence of changes in the demand elasticity on a MAC curve for the domestic sector. 

ELAST- and ELAST+ are exactly the same as in the transport chapter, where demand 

elasticities were increased by 50% and decreased by 50% respectively. To test the 

influence of the maximum change in the demand level of 25%, this limit was increased 
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from 25% to 50% for all energy service demand types in the ELAST++ scenario, while 

demand elasticity was kept the same as in the ELAST+ scenario. Consequently, the 

ELAST++ scenario studies the maximum contribution of demand reduction towards 

emissions reduction. 

The emission curves in Figure 8.23 show that varying the demand elasticity influences 

the cost of emissions abatement. While emissions reduction is more expensive in the 

ELAST- scenario, it is slightly less expensive in the ELAST+ and significantly less 

expensive in the ELAST++ scenario at high tax levels. Differences between emission 

curves start to appear from £20/t CO2 and widen with higher carbon tax levels in the 

ELAST++ and ELAST- scenario. The difference between the ELAST+ and the REF 

scenario narrows down from £130/t CO2 because at this tax level the energy service 

demands for space heating and hot water are decreased by 25% and are not allowed to 

decrease further. This is different in the ELAST++ scenario where the energy service 

demand for space heating and hot water are decreased by up to 40% from the reference 

level at £0/t CO2. 

Figure 8.23: Emission curve along rising CO2 abatement costs for different demand elasticity 

scenarios in 2030 

 

Overall, the contribution from demand reduction varies from 8 Mt CO2 emissions 

saving in the ELAST- scenario to 20 Mt CO2 in the ELAST++ scenario, with 13 Mt 

CO2 in the REF scenario and 14 Mt CO2 in the ELAST+ scenario. While the 
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contribution from demand reduction is very different for the four scenarios, the 

contribution from other mitigation measures remains almost unchanged. 

A closer look at the source of the emissions reduction in the ELAST++ scenario (Figure 

8.24) reveals that those energy services that rely mainly on electricity, such as lighting, 

electric appliances, cooling, refrigeration and cooking, are not reduced significantly. 

Demand reduction in space heating contributes 13 Mt CO2 towards emissions reduction, 

while a reduced demand for hot water results in 5 Mt CO2 of emissions abatement. This 

breakup corresponds to the energy service demand level in PJ at £0/t CO2 of both 

services. 

Figure 8.24: Contribution of different energy service’s demand reduction towards CO2 

emissions reduction scenarios in 2030 in the ELAST++ scenario 

 

Summing up, differences in demand elasticities are reflected in the MAC curve from 

£20/t CO2 on, while the contribution from demand changes is in the range from 8 to 20 

Mt CO2. In addition, the limit on the maximum change in energy service demand 

imposed in UK MARKAL plays an important role in the residential sector. Relaxing 

this constraint can increases the contribution from demand reduction. 

8.9 Demand development 

The overall demand development for energy services in the whole energy system and 

the domestic sector depends on many uncertain factors such as population growth, 

economic growth, and behavioural patterns. The energy service demand in the UK is 

assumed to increase from 2010 to 2030 by the following rates in the REF scenario: 18% 

for cooking, electrical appliances, refrigeration, and lighting, 200% for cooling, and 
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11% for space heating and hot water. Since the demand for those energy services is 

uncertain, all energy service demands were increased by 20% in the DEM+ scenario 

and decreased by 20% in the DEM- scenario, in the same way as in chapter 6 and 7. 

Figure 8.25 shows the emission curve for both demand scenarios in comparison to the 

REF scenario. One can see that the DEM+ curve is shifted to the right and the DEM- 

curve to the left according to the increased/decreased demand level. In the baseline, the 

emissions increase roughly by 20% in the DEM+ scenario reflecting the demand 

increase, while emissions in the DEM- scenario decrease by 17%. The reason is that the 

share of gas boilers and the carbon intensity of electricity is higher in the DEM- 

scenario. 

Figure 8.25: Emission curve along rising CO2 abatement costs for different demand scenarios in 

2030 

 

The initial difference of both demand scenario emission curves with  respect to the 

reference case are overcome at tax levels that are higher than £30/t CO2, after which the 

difference narrows down. This is due to more biomass being used for space heating and 

hot water in the DEM+ scenario and more district heating in the DEM- scenario. In the 

DEM+ scenario emissions increase from £78/t CO2 to £93/t CO2 as a consequence of a 

shift from biomass to natural gas as a fuel for heating. This is due to intersectoral 

interactions as imported biomass is no longer used for residential heating but converted 

into pyrolysis oil to be used in industry. 
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While the technological structure of the DEM+ MAC curve looks relatively similar to 

the REF scenario, there are some differences in the DEM- scenario, which can be seen 

in Figure 8.26. In contrast to the REF scenario, the share of district heating is not 

declining with rising carbon tax levels, but stays rather constant at 20% market share for 

space heating and hot water. As district heat gets decarbonised with increasing CO2 tax 

levels by shifting gradually to biomass CHP plants, the contribution from heat 

decarbonisation is higher in the DEM- scenario than in the REF scenario.  

Not only the carbon intensity of electricity is lower in the DEM- scenario but the price 

for electricity as well. At a carbon tax of £250/t CO2, the electricity price in the DEM- 

scenario is 20% below the level in the REF scenario due to less electricity production 

being based on fossil fuels. Electric boilers are not significantly more expensive in the 

REF scenario at high carbon tax levels (see Figure 8.6), so that a significant drop in the 

electricity price makes them cost-effective. Consequently, the market share of electric 

boilers increases from £250/t CO2 and thus saves roughly 3 Mt CO2. Lastly, electric 

heat pumps also profit from a lower electricity price and become cost-effective at £30/t 

CO2 less compared with the REF scenario. 

Figure 8.26: MAC curve for the DEM- scenario in 2030 

 

In general, the change in demand levels has some limited effects on the composition of 

emissions reduction in the DEM- scenario, while the effects are virtually non-existent in 

the DEM+ scenario. Although not directly comparable, it is interesting to note that a 
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change in energy service demand by ±20% in 2030 has the biggest effect on the 

emission curve among all scenarios presented in this chapter. 

8.10  Summary 

19 scenarios for the UK domestic sector were presented in this chapter to illustrate the 

uncertainties involved in assessing marginal abatement costs and corresponding 

abatement potentials. Based on the discussion of the different, the results can be 

summarised in the light of the initial questions asked in chapter 1 concerning the 

contribution of abatement measures to emissions reduction, the influencing factors, and 

the interaction of measures: 

In contrast to other sectors, it is apparent that structural changes, i.e. changes concerning 

the pool of end-use devices in the residential sector, do not contribute significantly 

towards emissions reduction. The only exceptions are heat pumps that become cost 

effective from £137/t CO2 in the REF scenario and to a very limited extent wood-fired 

boilers. When fossil fuel prices are increased, heat pumps are cost-effective without any 

carbon policy. Once conservative assumptions on the deployment potential for heat 

pumps are relaxed, heat pumps can be an important mitigation measure in the domestic 

sector.  

The limited structural change is due to the fact that there are only a few alternatives in 

the domestic sector for many energy service demands, such as refrigeration, lighting, 

cooling or electrical appliances, which all rely on electricity. Nevertheless, substantial 

structural change is expected without any carbon policies with respect to space heating 

and hot water. Under the assumptions and structure of the UK MARKAL model cost-

effective energy conservation measures are taken up in the absence of any carbon 

policy. Moreover, wood-fired boilers and district heating are expected to supply almost 

half of all the energy needed for space heating and hot water, i.e. increasing 

substantially from current levels. Biomass plays an important role in all scenarios over 

the whole range of carbon tax levels, while the contribution of district heating depends 

much more on the scenario definition. Issues that could affect the described scenario are 

the significant air pollution caused by biomass combustion and the long lead time of 

district heat systems. 
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In all scenarios the decarbonisation of electricity plays a pivotal role to reduce 

emissions in the residential sector. The share of electricity decarbonisation in overall 

emissions reduction reaches 70% in the reference scenario, while the contribution from 

decarbonising heat is more limited at 10%. Finally, energy conservation, especially with 

respect to space heating, reduces energy consumption by around 10% in the baseline 

and thereby contributes towards emissions reduction. Price-induced demand reduction 

for energy services is relatively robust across the scenarios and contributes around 16% 

towards total emissions reduction. The results indicate the demand reduction is a 

flexible option under path dependency, which can be implemented in the near term. Due 

to the decarbonisation of heat and electricity at low carbon tax levels, the incentive for 

demand reduction or efficiency improvements at higher tax levels is significantly 

reduced. 

A second purpose of the presented sensitivity analysis is to single out the most 

important influencing factors related to emissions reduction in the residential sector. 

Table 8.2 summarises the influence of the different categories on the overall shape of 

the MAC curve and its composition. In general, one can say that the influence of 

changes to the assumptions in the different scenarios is much less compared with the 

transport sector due to the predominant influence of decarbonising electricity and heat. 

The MAC curve for the domestic sector is barely influenced by changes to the carbon 

tax pathway because structural changes are negligible and heat and electricity 

production is fairly flexible. Structural changes are limited because natural gas boilers 

are cost-effective even at high carbon tax levels (see section 8.2). Nevertheless, the 

abatement costs of individual abatement technologies, such as heat pumps, can vary 

depending on the path dependency scenario. Similarly, the discount rate scenarios do 

not have a significant influence. 

More interestingly, the fossil fuel price scenarios show, despite the dominance of 

natural gas as a heating fuel, a very limited influence concerning the shape of the MAC 

curve. The composition of abatement differs as heat decarbonisation is more important 

in the FF+ and FF++ scenario and biomass replaces natural gas in the GAS scenario. 

Since the majority of emissions abatement depends on electricity, higher electricity 

prices (IEP scenario) have a noticeable effect and favour district heat from CHP plants. 

Heat pumps can play an important role as an abatement measure, yet their potential is 

assumed to be limited in 2030. Changing the demand elasticity and the limits on the 
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maximum change in demand reduction alters the shape of the MAC curve, while the 

structure remains very similar. The most important influence of all scenarios can be 

attributed to changes in the demand for energy services that equally have an influence 

on the composition of MAC curves, particularly when demand levels are reduced. 

Table 8.2: Influence of the change in different model assumptions on MAC curve: strong (+), medium 

(o), weak (-) 

 

 

The last point to address are the interactions of abatement measures. In the domestic 

sector, the analysis has pointed out that the fuel mix used for space heating and hot 

water is fairly robust to changes in assumptions with the exception of district heat, heat 

pumps and to some extent biomass. Particularly, the marginal abatement costs of heat 

pumps are very sensitive to a change in discount rates, fossil fuel prices or carbon tax 

pathways. 

On a system-wide level there are major interactions with the upstream, heat and 

electricity sector. Particularly, the cost-efficiency of combined heat and power plants 

influences the abatement structure in the residential sector. In most cases district heat is 

provided either by natural gas CHP plants or biomass CHP plants that are only cost-

optimal if there is a demand for district heat and if they are competitive with other low-

carbon options in the electricity sector. Furthermore, the residential sector is dependent 

on the carbon intensity of electricity, which became obvious in the IEP scenario. 

Finally, the previous discussion showed that biomass can be diverted from wood-fired 

boilers in the residential sector to the electricity sector for co-firing or to the industrial 

sector for heating purposes. 

While the applied method and model focus are novel, all conclusions are subject to the 

input data and model structure of the employed model, so that interactions could be 

different if another model had been employed that addresses the shortcomings of the 

UK MARKAL model (see 8.1). 

Category

Shape Structure

Path dependency - -

Discount rate - -

Fossil fuel price - o

Electricity Cost o o

Technological availability - -

Demand elasticity o -

Demand level + o/-

Influence
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8.11 MAC curves for 2020, 2040 and 2050 

The previous scenarios have all focused on the year 2030, an important year for 

medium-term emissions reduction goals. In order to obtain a broader picture of emission 

mitigation during the first half of this century, this section presents MAC curves for the 

years 2020, 2040, 2050 and finally a cumulative emissions reduction curve covering the 

time period 2015-2050. 

In order to compare the different MAC curves, Figure 8.27 compares the emissions 

associated with different CO2 tax levels in each of the four representative years. The 

emissions level at a CO2 tax of £0/t CO2 are relatively similar in a range from 112 Mt 

CO2 to 123 Mt CO2 per year. Similar to the transport sector, two trends counteract each 

other: on the one hand, emissions increase over time due to an increasing demand for 

residential energy services and an increasing carbon intensity of electricity. On the other 

hand, emissions decrease over time due to the fact that end-use devices become more 

efficient and significantly more biomass is used for heating purposes. Emissions are 

higher in 2020 because a lot more natural gas is used for space heating and hot water at 

£0/t CO2. In 2040 and 2050, emissions are close to the level in 2030 due to the 

counteracting trends described above. 

Figure 8.27: Emission curve along rising CO2 abatement costs for the REF scenarios in different 

years 
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The emission curves indicate that a higher reduction amount can be achieved in later 

years compared with earlier years since the system has more flexibility especially in 

terms of low-carbon electricity, which represents a key factor for the domestic sector. 

Furthermore, while the year 2020 is influenced by current heating equipment and other 

installations, this is less the case for later years, such as 2040 and 2050. The potential 

for the decarbonisation of electricity is a lot higher towards the middle of the 21
st
 

century due to the availability and cost reduction in biomass CCS and coal CCS power 

plants. The emission curve for the year 2050 becomes negative above £440/t CO2 

because electricity becomes the predominant energy carrier for the domestic sector 

(crowding out remaining natural gas) and negative carbon intensity of electricity is 

reflected in the end-use emission curve. 

For the year 2020, according to the UK MARKAL model results, it is cost-effective to 

change the fuel mix for heating substantially. The share of natural gas would go down 

from 82% in 2008 to 60% in 2020 with wood-fired boilers and district heat making up 

most of the rest. Figure 8.28 displays the MAC curve for the year 2020 and shows what 

measures are responsible for emissions reduction. As with the MAC curve for the year 

2030, the importance of decarbonising electricity is visible. It is especially important at 

low carbon tax levels and contributes 58% towards emissions reduction. The 

decarbonisation of heat via a switch towards biomass CHP plants reduces emissions 

only to a limited extent, whereas the overall use of district heating decreases with 

increasing tax levels. 

Next to electricity and heat, a structural change from gas-fired boilers towards wood-

fired boilers contributes to end-use emissions in the residential sector at £24/t CO2. 

However, due to intersectoral interactions with the electricity sector and industry, the 

share of biomass decreases within a medium tax range. Heat pumps become cost-

effective at a tax level of £176/t CO2, while the emissions reduction associated with this 

technology remains limited due to the restrained deployment potential. Comparable to 

the transport sector, price-induced demand reduction plays a bigger role in 2020 than in 

later periods. Demand reduction is responsible for 28% of all emissions reduction due to 

the limited availability of cost-effective low-carbon technologies and particularly due to 

the fact that decarbonisation of electricity is more limited and more costly compared 

with 2030. 
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Figure 8.28: MAC curve for REF scenario in 2020 

 

 

The composition of the MAC curve for the year 2040 (see Figure 8.29) looks very 

different from the one in 2020 and 2030. Residential heating at £0/t CO2 is mainly 

characterised by biomass (40%) and natural gas (35%) heating. The MAC curve shows 

that more than 60 Mt CO2 can be saved in all residential end-use emissions in the 

domestic sector up to £40/t CO2 by decarbonising electricity. 

With the greater flexibility in the electricity sector and a lower carbon intensity, the role 

of structural changes in the residential sector increases. In particular a switch towards 

electricity for space heating and hot water gains in importance from £120/t CO2 up to 

£380/t CO2 and saves about 15 Mt CO2. Heat pumps are cost-effective at £80/t CO2, but 

do not have a big impact on CO2 emissions due to the assumption that their deployment 

will be limited. In a case where this constraint was relaxed, one would see a 

substantially higher contribution from heat pumps, which would replace electric boilers. 

This would also require a lower carbon tax level and thereby reduce the overall 

mitigation costs. Biomass-fired boilers also contribute to emissions reduction but to a 

much lesser extent than electric boilers. 

Lastly, the overall importance of price-induced demand reduction is significantly less 

than it is in 2030 and 2020. It is responsible for less than 10 Mt CO2 or 8%. The reason 
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is that the incentive for demand reduction is non-existent if the energy services are met 

by zero- or low-carbon fuels. 

Figure 8.29: MAC curve for REF scenario in 2040 

 

 

Another ten years on, the MAC curve for the year 2050 (Figure 8.30) is dominated by 

the same trend as the one in 2040, namely an electrification of the domestic sector. The 

decarbonisation of electricity is dominant up £60/t CO2 and saves around 70 Mt CO2. 

The following part of the MAC curve, £80/t CO2 to £220/t CO2 is characterised by a 

shift away from natural gas as a heating fuel towards electric boilers and biomass in 

particular for space heating. Similar to the MAC curve for the year 2040, electricity 

becomes completely decarbonised, which leads to a situation where all fossil fuel based 

heating is replaced by electric boilers. 

In the next section of the MAC curve, from £415/t CO2 upwards the carbon intensity of 

electricity becomes negative. This leads to indirect emissions reduction in the residential 

sector but also to biomass shifted completely from the residential sector towards 

electricity generation. Thus, biomass is no longer used as a heating fuel, but rather as an 

input for electricity generation, which is then again used in electric boilers to provide 

space heat and hot water. Structural changes are more important than in 2030 with 22% 

of overall emissions reduction, while the contribution from demand reduction is less on 



333 

an absolute level compared to all other years and contributes only 6% to emissions 

reduction. 

Figure 8.30: MAC curve for REF scenario in 2050 

 

 

All the MAC curves presented so far in this chapter are designed for one single year, 

e.g. 2030. To address the issue that emissions abatement depends on earlier actions and 

expectations about future carbon policies, Figure 8.31 shows a cumulative MAC curve 

for 36 years from 2015 to 2050. This cumulative MAC curve does not include earlier 

years as it is not expected that a significant carbon tax will be introduced prior to 2015 

and thus the emissions are stable in any model run. The y-axis displays the CO2 tax 

level in 2030, but as the tax increases with 5% p.a. this is not the tax level in previous or 

later years. 

A cumulative MAC curve can address questions related to intertemporal interactions by 

bringing information of the single MAC curves together into one. Single-year MAC 

curves are subject to intertemporal interactions, e.g. that abatement is shifted to later 

time periods, but a cumulative MAC curve captures those effects as it covers 36 years. 

The cumulative emissions are 4.2 Gt CO2 for end use emissions from the domestic 

sector for the period 2015 to 2050. 
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Figure 8.31 reveals that low-cost emissions reduction originates mainly in the electricity 

sector. Overall the decarbonisation of electricity is the most important measure with 

64% to reduce end-use emissions in the domestic sector. From £50/t CO2 in 2030, 

biomass heating and electric boilers become more important. Nevertheless, even at high 

carbon tax levels the decarbonisation of heat and electricity play a significant role. 

Overall structural changes in the domestic sector are more important for emissions 

mitigation than price induced demand reduction, which is responsible for 13% of all 

emissions reduction. 

Figure 8.31: Cumulative MAC curve for REF scenario (2015-2050) 

 

Summarising, in all periods the abatement potential in end-use residential sector 

emissions is dominated by electricity decarbonisation. While natural gas has an 

important market share even at high CO2 tax levels up to 2030, in later years electric 

heating via electric boilers and heat pumps becomes cost-effective and replaces natural 

gas heating. 
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9 SYSTEM-WIDE MAC CURVES AND STOCHASTICITY 

The previous results chapters looked at abatement costs and potentials at the sectoral 

level of the energy system. Chapter 6 dealt with the power sector, chapter 7 provided 

insights into abatement costs for the transport sector and chapter 8 looked into more 

detail at the residential sector. This chapter takes a broader look and presents MAC 

curves on a system-wide level, i.e. it considers all energy-related CO2 emissions in the 

United Kingdom. This helps to put the results of the individual sectors into perspective 

with the whole system and can single out the most important influencing factors on a 

system-wide MAC curve. 

In addition, this chapter presents results of the stochastic model version of the UK 

MARKAL model for one particular scenario. This model version removes the perfect 

foresight characteristic of the deterministic version. Since the stochastic version is 

implemented as a two-stage stochastic model, diverse developments of one or several 

model parameters can be introduced after one certain point in time by defining different 

likelihoods to more than one possible outcome. The hedging and recourse strategies in a 

stochastic model offer additional insights that cannot be captured by a sensitivity 

analysis. 

9.1 System-wide MAC curves 

As in the previous results chapter, the analysis focuses on the year 2030 as an important 

medium-target for a transition to a low-carbon society. Similar to the previous three 

results chapters, the sensitivity analysis encompasses 18 scenarios that can be divided 

into seven categories. The choice of the different scenarios is based on existing research 

on the influencing factors of MAC curves (see section 2.4) and the identification of gaps 

in existing research. All scenarios were presented in previous chapters. For each 

scenario, the sectoral MAC curves are compared with system-wide results to see if there 

are any differences.  

Table 9.1 gives an overview of the different scenarios and describes each one briefly. 

Each MAC curve consists of 46 different model runs with system-wide CO2 taxes, 

ranging from £2010 0 to 294/ t CO2 in 2030. In the REF scenario the CO2 tax is assumed 
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to increase from 2010 with the model inherent discount rate of 5% p.a. All costs are 

given in £ of the year 2010. 

Table 9.1: Scenario overview 

 

9.1.1 Reference scenario 

The reference (REF) scenario describes a development of carbon emissions reduction 

with the standard assumptions of the UK MARKAL model (Kannan et al. 2007). The 

assumptions in this reference scenario are exactly the same as in the previous three 

chapters. 

Figure 9.1 depicts a MAC curve for the whole energy system and singles out the 

contribution of each sector towards emissions reduction in 2030. The height of each bar 

Scenario Category Description

REF Reference case Carbon tax increases  by 5% p.a. from 2010

ZERO-BEFORE Path dependency Carbon tax i s  zero before 2030

CONST-AFTER Path dependency Carbon tax i s  constant after 2030

INCR-AFTER Path dependency Carbon tax increases  with 10% p.a. from 2030

ZERO-AFTER Path dependency Carbon tax i s  zero after 2030

HIGH-BEFORE Path dependency Carbon tax i s  kept constant on the 2030 level  from 

the REF scenario for the period 2015-2030

PDR10 Discount rate Hurdle rates  introduced for a l l  technologies  at 

10%, previous ly exis ting rates  were doubled

SDR Discount rate Discount rate lowered to 3.5%, a l l  hurdle rates , 

taxes  and subs idies  removed

FF+ Fossil fuel price Costs  for coal , coking coal , oi l , refined products  

and natura l  gas  increased by 100%

FF++ Fossil fuel price Costs  for coal , coking coal , oi l , refined products  

and natura l  gas  increased by 200%

GAS Fossil fuel price Costs  for natura l  gas  decreased by 50%

NO-NUC-CCS Technological issues No investments  are a l lowed into nuclear power 

plants  and CCS technologies

NO-BIOMASS Technological issues No biomass/biofuel  imports  a l lowed, domestic 

biomass  production reduced by 50%

IEP Technological issues Investment costs  increased by 200% for a l l  CCS 

technologies , biomass , nuclear, tida l , wind, wave

ELAST+ Demand elasticity Al l  demand elastici ties  increased by 50%

ELAST- Demand elasticity Al l  demand elastici ties  decreased by 50%

DEM+ Demand level Al l  energy service demands  increased by 20%

DEM- Demand level Al l  energy service demands  decreased by 20%
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represents the marginal abatement cost, while the width represents the emissions 

abatement. All emissions associated with the use of electricity are summarised in the 

electricity sector, i.e. in this representation electricity savings in an end-use sector are 

accounted for in the electricity sector. Model results indicate that total energy-related 

CO2 emissions are 502 Mt CO2 without any CO2 policy. In the model run with the 

highest implemented CO2 tax of £294/t CO2 emissions are reduced to 187 Mt CO2. In 

order to achieve a 60% emission cut with respect to 1990, as recommended by the CCC 

(2010), the central carbon projection of the UK Government is £70/t CO2 in 2030. At 

this tax level emissions reduction would be 226 Mt CO2, which corresponds to an 

emission level of 276 Mt CO2. 

Figure 9.1 : MAC curve for the United Kingdom in 2030 

 

In 2030, most of the low-cost abatement potential can be found in the electricity sector, 

which accounts for almost 44% of all CO2 emissions, followed by the transport sector 

with 24%, industry with 9% and the residential sector with 7%. It is apparent that there 

are some low-cost abatement options in industry, transport and the residential sector, but 

the contribution of these end-use sectors is only dominant from around £100/t CO2 

upwards. Abatement measures that are cost-effective in 2030, e.g. building insulation, 

are integrated in the £0/t CO2 model run, so that they do not show up in Figure 9.1.  

9.1.2 Path dependency 

MAC curves are in most cases merely a static snapshot of one year, in this case the year 

2030. Nevertheless, the abatement cost and the corresponding abatement potential of all 
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abatement measures depends on previous abatement efforts and on uncertain 

expectations of future developments due to technology vintaging and technologies’ long 

economic lifetimes. As the model underlying these MAC curves is a perfect foresight 

model, the MAC curve is, in addition, influenced by future climate change policies. It 

should be noted that UK MARKAL does not consider endogenous learning and 

consequently also no induced technological change (ITC), which possibly limits the 

effects of path dependency. Had ITC been incorporated in UK MARKAL, the model 

would probably focus on fewer key abatement technologies, whose investment costs 

would be driven down quicker than assumed without ITC. Comparably there would also 

be technologies whose costs would be higher than without ITC as they would not be 

developed to the same extent. Therefore, one could expect to see lower abatement costs 

for some technologies and higher for others with corresponding changes in the 

abatement potential. 

In order to quantify the sensitivity of the MAC curve response to different CO2 tax 

trajectories, the CO2 tax path of an annual 5% increase has been altered in five scenarios 

(see Figure 6.7). Although all six scenarios have the same CO2 tax in 2030, they result 

in different MAC curves, especially for higher abatement costs (see Figure 9.2).  

Figure 9.2: Emission curve for different path dependency scenarios 

 

The scenarios with a higher CO2 tax compared with the REF scenario, i.e. INCR-

AFTER and HIGH-BEFORE show a slightly higher abatement level for the same 

carbon tax. This is on average 3 Mt CO2 for the INCR-AFTER scenario and 4 Mt CO2 
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for the HIGH-BEFORE scenario (both less than a percent in terms of baseline 

emissions). The only exception is around £10/t CO2 for the INCR-AFTER scenario, 

where the difference to the REF scenario is up to 28 Mt CO2. 

The CONST-AFTER scenario, which keeps the CO2 tax constant after 2030, is similar 

to the REF scenario except for a range from £10/t CO2 to £100/t CO2, where abatement 

is less. This can be explained by the model no longer expecting the CO2 tax level to rise, 

so that incentives to invest in low-carbon technologies are smaller. The abatement 

potential is significantly lower for a given CO2 tax in the whole tax range in the ZERO-

AFTER scenario, in particular up to £70/t CO2. It is the inverse case for the ZERO-

BEFORE scenario where the abatement potential is particularly lower between £10/t 

CO2 and £50/t CO2. In the ZERO-AFTER scenario the model has a smaller incentive to 

switch to low-carbon technologies because these will become stranded assets when the 

carbon tax drops back to zero. In the ZERO-BEFORE scenario the model has no 

incentive to invest in low-carbon technologies prior to 2030, which increases marginal 

costs especially at low emission targets. In this case the model needs to invest into low-

carbon technologies before 2030 due the technology lifetimes of up to several decades. 

Thus, the MAC curve looks particularly different for the scenario where the CO2 tax is 

kept at zero after 2030, which increases the marginal abatement costs. This is mainly 

driven by the electricity sector, where coal CCS power plants contribute less to 

electricity generation. The ZERO-BEFORE and CONST-AFTER scenarios slightly  

increase the abatement costs for a given abatement level, while the scenarios that have a 

higher tax level before or after 2030 show marginally lower abatement costs. In general, 

one can say that a change in the carbon tax pathway has a bigger influence in the 

transport sector than in the residential sector. The reason being that abatement in the 

residential sector is dominated by electricity decarbonisation and in the transport sector 

by structural changes to electric vehicles. This becomes clear in the ZERO-BEFORE 

scenario, where the lack of a carbon tax prior to 2030 represents a substantial 

disincentive for investments in electric vehicles at tax levels higher than £100/t CO2. 

9.1.3 Discount rate 

In the same way as in the previous chapter, two different discount rate scenarios are 

presented based on the concept of social discount rates, a SDR scenario, and private 

discount rates, PDR10 scenario. The SDR scenario assumes a social discount rate of 
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3.5%, where additionally all technology-specific hurdle rates are removed. The PDR10 

scenario represents the perspective of a private investor, where a technological hurdle 

rate of 10% was introduced for all technologies and existing technological hurdle rates 

were doubled with respect to the REF scenario. The PDR10 scenario assumes a general 

discount rate of 5% as is the case in the REF scenario. Observed technology-specific 

discount rates can be relatively high and are assumed to be up to 17.5% in the transport 

sector, 17.5% in the residential sector and 12% in industry in the PRIMES energy 

system model (Hendriks et al. 2001, p. A2), which is widely used by EU institutions. 

These increased hurdle rates should not be seen as a change in pure time preference, but 

rather as a measure of uncertainty involved when investing in low-carbon technologies. 

Figure 9.3 indicates that the MAC curve in the SDR scenario is very similar to the REF 

scenario, while the PDR10 MAC curve is significantly different in that substantially 

fewer emissions are abated for the same given CO2 tax. 

Figure 9.3: Emission curve for different discount rate scenarios 

 

The SDR is only marginally shifted to the left from the REF scenario because two 

effects counteract each other. On the one hand, low-carbon technologies save less fuel 

costs in the SDR scenario. This is due to lower fuel prices as taxes and fuel duties were 

removed. On the other hand, the investment cost premium for abatement technologies 

over conventional technologies is less as there are no technological hurdle rates and the 
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overall discount rate is lower at 3.5%. Differences in operating and maintenance costs, 

which include insurance, are comparably small and do not influence the overall result. 

The picture looks very different for the PDR10 scenario. The increased hurdle rates put 

more weight on the investment costs that are in general significantly higher for low-

carbon technologies particularly in the transport sector, such as battery cars or energy-

efficiency measures in the residential sector. A hurdle rate of 10% is not particularly 

high given the fact that empirical research (see e.g. Hausman 1979) showed that 

discount rates in the residential can be a multiple of that rate, in particular for low-

income households. Comparing the influence of a change in the hurdle rates for 

different sectors, one can notice that a hurdle rate change has a major influence on the 

transport MAC curve, while the abatement costs do not change to the same extent in the 

power sector and transport sector. While levelised electricity generation costs increase 

up to 40% for major abatement technologies for an increase in the discount rate from 

5% to 10%, they barely influence technologies in the residential sector as fuel costs are 

predominant. In contrast, initial investment costs are decisive in determining the price 

for transport services. 

9.1.4 Fossil fuel price 

Fossil fuel prices are an exogenous input to the UK MARKAL model because it is 

assumed that the UK is a price taker for coal, natural gas and crude oil. This reason is 

that the UK’s share of global GDP is 2.5% and declining in the future. Three scenarios 

with different assumptions on the level of fossil fuel prices test the sensitivity of 

abatement costs to this input factor. 

In the GAS scenario, the gas price alone is reduced by 50%. While the gas price is about 

75% of the oil price on an energy-equivalent basis in the REF scenario, it is only 38% in 

the GAS scenario. The FF+ scenario corresponds to a situation where all fossil fuel 

prices are increased by 100%. In the last scenario, FF++, the fossil fuel prices are 

increased by 200% over the whole first half of the 21
st
 century equivalent to long-lasting 

supply shocks seen in the 1970s. The assumptions concerning the fossil fuel prices are 

detailed in Table 6.3. 

Intuitively, one should expect to see the MAC curves of the high fossil fuel price 

scenarios to be shifted to the left as renewable energy sources should become cheaper 

compared with their fossil fuel alternatives. Yet, Figure 9.4 reveals a very different 
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picture. As expected the baseline emission levels without any carbon policy are lower 

for higher fossil fuel prices, while emissions levels at higher carbon tax levels are more 

similar. 

Figure 9.4: Emission curve for different fossil fuel price scenarios 

 

At £0/t CO2, emissions are 3% higher in the GAS scenario as natural gas crowds out 

some renewables in the power sector. Emissions in the FF+ scenario and the FF++ 

scenario are 15% and 17% less respectively, owing to a higher renewable share in 

electricity production and less consumption of fossil fuel in the end-use sectors. Those 

initial differences are more or less overcome at a carbon tax level of £30/t CO2 and do 

not diverge significantly afterwards. One can observe that the emission curve for the 

FF++ scenario indicates less abatement for a given carbon tax in a range from £70/t CO2 

to £230/t CO2. The maximum deviation is 15 Mt CO2 or 5% at a carbon tax level of 

£70/t CO2 in 2030, the official carbon price assumed to be necessary to drive down 

UK’s carbon emissions by 80% in 2050. Those findings indicate that the shape of the 

MAC curve is robust even to extreme fossil fuel price changes. 

There is not one but rather a set of reasons that explain the robustness. One reason is 

that at high carbon tax levels, differences in fuel prices are overshadowed by the price 

increase due to the carbon tax (see Table 9.2). Fuel costs for a coal-fired power station 

double at a CO2 tax of £28/t CO2, while this is the case at £100/t CO2 for a gas-fired 

power plant. Consequently, with an increasing CO2 tax the differences in fossil fuel 
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production costs are outweighed by the tax level. Furthermore, the UK transport sector 

is currently characterised by fuel duties that make up approximately 75% of the price 

that the consumer faces at the petrol station. This means that any relative change in 

fossil fuel prices will be lower once final consumer prices are considered. 

Table 9.2: Increase in fossil fuel prices over price in 2010 for a given CO2 tax 

 

On the one hand, higher fossil fuel prices induce investment into renewable energy 

sources at lower carbon tax levels as they become cheaper compared to fossil fuel based 

alternatives. On the other hand, higher prices increase the fuel cost of coal CCS power 

plants, which, next to nuclear power, is one of the key abatement technologies in the 

power sector. Thus, an increase in fossil fuel costs, renders a low-carbon technology, 

namely coal CCS, significantly more expensive. Lastly, the energy system, including 

power sector and end-use sectors, is not reliant on one abatement option, but has several 

zero-carbon technologies with moderate abatement costs that can compensate for other 

abatement technologies. A look at the sectoral MAC curves reveals that the influence of 

changing fossil fuel prices is stronger in the transport sector than in other sectors as it is 

very much dependent on refined products. The residential sector is less affected by 

increased fossil fuel prices as alternatives to natural gas become also more expensive 

due to a higher demand, mainly from the power sector. 

9.1.5 Technological issues 

A technologically-detailed energy system model represents a good tool to study 

influences of changes to key abatement technologies or fuels. Therefore, three scenarios 

are presented in this section. In the BIOMASS scenario, no biomass imports are allowed 

and domestic biomass potential is reduced by half. This should test the reliance of the 

decarbonisation of the UK energy system on biomass imports and domestic biomass 

production. The IEP (Increased Electricity Price) scenario is the same as in the previous 

chapters, where investment costs of all main low-carbon power plants were increased by 

200% (see Table 6.5). This scenario therefore assumes a very pessimistic development 

of investment costs associated with low-carbon technologies. 

CO2 tax Hard Coal Crude Oil Natural Gas

[£/t CO2] [%] [%] [%]

£100 322% 105% 113%

£200 644% 210% 227%

£300 965% 315% 341%
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The last scenario called NO-NUC-CCS does not allow any new investments into 

nuclear power plants or carbon capture and storage (CCS) technologies. Nuclear power 

plants and CCS mainly in combination with coal-fired power plants are responsible for 

the vast majority of emissions reduction in the power sector. Given the rising hostility to 

nuclear power after the events in Japan and questions about the security of CO2 storage, 

this scenario quantifies the influence of eliminating both technologies as mitigation 

options. 

A look at Figure 9.5 shows that all three scenarios are different from the REF scenario 

and that the technology changes show a much bigger impact than the fossil fuel price 

changes. At a CO2 tax of £70/t CO2, the difference in emissions is 19% for the IEP 

scenario, 18% for the NO-NUC-CCS scenario and 11% for the BIOMASS scenario. 

Figure 9.5: Emission curve for different technology scenarios 

 

The difference in emissions between the BIOMASS and the REF scenario is on average 

32 Mt CO2 for a given tax level, while this difference increases slightly with rising 

carbon prices. Biomass is a mitigation option in the transport sector in the form of 

biofuels, in the residential sector as wood for space heating and in the power sector in 

biomass CHP plants. However the primary biomass use is as a co-firing option to 

conventional coal power plants or coal CCS power plants. Removing this option 

significantly increases the abatement costs, especially at higher tax levels, as co-firing 

biomass to coal CCS plants only becomes economically viable at high carbon prices. As 
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the contribution of biofuels towards emissions reduction is limited in the transport 

sector in the REF scenario, a limited availability of biomass does not alter the transport 

MAC curve. 

The IEP scenario is also characterised by higher MACs compared with the REF 

scenario. The electricity sector is a key element in an economy-wide decarbonisation 

due to the fact that electricity is used in all end-use sectors and low-carbon electricity 

has the potential to extend to further energy services. Trebling the investment costs 

leads to significantly higher electricity prices because annualised investment costs are 

responsible for a significant share of the generation costs of low-carbon technologies. 

Nevertheless, the difference in abated emissions decreases with rising carbon tax levels, 

in particular from £150/t CO2. This can be explained by natural gas playing a major role 

up to this tax level in the IEP scenario as other technologies are not yet cost competitive 

owing to the increased investment costs. At higher carbon tax levels, wind power and 

coal CCS in combination with biomass co-firing is introduced to the market, which then 

narrows the difference. The influence of higher electricity prices is similar in all the 

studied sectors as electricity is a key decarbonisation option in the transport sector and 

the residential sector. 

Lastly, the NO-NUC-CCS shows how important nuclear power and CCS technologies 

are for a cost-effective decarbonisation of the UK energy system. This becomes 

apparent from £15/t CO2 and shows the highest deviation from the REF scenario of all 

technology scenarios presented in this section. In the REF scenario, the two mitigation 

options, nuclear power and coal CCS with biomass co-firing, are responsible for 

reducing more than 60% of all emissions from the power sector. Natural gas power and 

CHP plants as well as more generation from wind, tidal and wave compensate partially 

for the lack of nuclear and CCS. However, this cannot entirely compensate for the 

shortfall so that marginal abatement costs substantially increase in this scenario. 

The significance of the non-availability of one or two key abatement technologies 

becomes clear when one considers total abatement costs. The total abatement costs in 

2030 to attain the CCC goal of reducing emissions by 60% in 2030 with respect to 1990 

are £6 billion in the REF scenario, £8 billion in the BIOMASS scenario, £11 billion in 

the IEP scenario and £10 billion in the NO-NUC-CCS scenario. 
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9.1.6 Demand related factors 

This section looks at the influence of demand-related factors. Not only technological 

issues and fossil fuel price developments are far from certain, but the demand level and 

demand responses to rising energy service prices can neither be predicted for the year 

2030. This is due to the uncertain development of drivers of energy demand, such as 

population or GDP. Therefore, all energy service demands in the UK MARKAL model 

were increased by 20% in the DEM+ scenario and decreased by 20% in the DEM- 

scenario. 

Two further scenarios study the impact of the price elasticity of demand, which 

indicates the responsiveness of the quantity demanded of a service or a good to a change 

in its price. Price elasticities are in general negative as it is assumed that the demand for 

a service will decrease if its price increases and vice versa. All energy service demands 

in UK MARKAL are assumed to be price elastic, to have a different elasticity 

depending on the direction of the price change and have an upper and a lower limit for 

the maximum change of demand (generally +/- 25%). While it is comparably easy to 

study the past price elasticity of final energy carriers, such as diesel or petrol, it is 

difficult to identify the correct level of the demand elasticity of an energy service 

demand, such as driving or heating. Estimating energy service demand levels in the 

transport sector is complicated as demand for each mode needs to be assessed 

individually given that no modal shifts are allowed. Therefore, the price elasticity of all 

energy service demands was varied by +50% in the ELAST+ scenario and by -50% in 

the ELAST- scenario to illustrate the sensitivity of the MAC curve to different levels of 

demand elasticity. Figure 9.6 shows the MAC curves for the different scenarios. 

One can see that emissions are higher in the DEM+ scenario, while they are lower in the 

DEM- scenario in accordance with increased/decreased levels of demand. However, the 

full change in demand is not entirely reflected in the emissions level due to structural 

changes in the power sector at the lower end of the MAC curve. This is no longer true at 

the upper end of the curve. Since there are build constraints and limited resources 

implemented in the energy model, the carbon intensity of electricity increases in the 

DEM+ scenario compared with the REF scenario, while cheap coal-fired power plants 

play a bigger role in the DEM- scenario. Varying the energy service demand by 20% in 

2030 has the biggest impact on the presented MAC curves, except for the PDR10 
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scenario. The impact of demand level changes on sectoral MAC curves are fairly similar 

across the studied sectors. 

Figure 9.6: Emission curve for different technology scenarios 

 

The influence due to changes in the price elasticity of demand are a lot more limited but 

not negligible. Overall the deviation of the ELAST- MAC curve is larger than the one 

from the ELAST+ scenario. This is due to price responses of demand already playing an 

important role in the REF scenario and when the elasticity increases, several energy 

service demands hit the lower floor as defined in the model, where demand levels are 

assumed not to fall anymore. 

9.1.7 Summary 

Against existing literature, the sensitivity analysis has provided insights that are 

summarised in Table 9.3. Earlier findings concerning the influence of intertemporal 

interactions, i.e. the carbon pathway, can be confirmed. High carbon tax levels from 

2015 onwards reduce marginal abatement costs noticeably as well as expectations about 

future high carbon taxes. The effect due to path dependency is not as significant as 

indicated in previous studies, which can be explained with the absence of endogenous 

technology learning in UK MARKAL. In regard to discount rates, a shift from the 

reference case to a social discount rate was not found to have a significant impact. This 
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is in contrast to earlier research for the UK transport sector. Increasing the discount rate 

from 5% to 10% was found to have a major impact, the largest of all sensitivity cases. 

In contrast to earlier research on the influence of changes in fossil fuel prices, the results 

of this chapter show that higher fuel prices, as well as lower prices, have a very limited 

influence on the shape of the MAC curve, particularly in comparison to other analysed 

factors. MAC curves are thus judged to be relatively robust to changing fossil fuel 

prices. Changes to key abatement technologies show that nuclear power and CCS power 

plants are essential for a cost-effective abatement of carbon emissions in the UK energy 

system, although this does not consider political uncertainty in regard to these 

technologies. The same holds true for the import and the domestic production of 

biomass, which can significantly raise the abatement costs. The influence of a very 

significant increase in power plants’ capital costs was found to be moderate. Lastly, 

while demand elasticity scenarios were found to have only a limited influence, the 

impact of demand changes is important and should not be underestimated especially as 

energy demand developments cannot be forecasted reliably.  

Table 9.3: Influence of the change in different factors on MAC curve: strong (+), medium (o), weak (-) 

 

In summary, the results indicate the strong influence of discount rates and technology-

specific factors, which seems to be underestimated in current research. On the other 

hand, the MAC curve was found to be robust to changing fossil fuel prices. 

9.2 Stochasticity 

Uncertainty involved in MAC curves has so far been studied by varying specific 

parameters in the UK MARKAL model via a sensitivity analysis. This section adds to 

the previous sensitivity analysis by considering another means of studying uncertainty: 

stochastic programming. 

Category Influence

Path dependency o

Discount rate +

Fossil fuel price -

Technological issues o/+

Demand elasticity -

Demand level +
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9.2.1 Stochastic UK MARKAL 

Stochastic programming is implemented as a two-stage problem; it provides information 

prior to the resolution of uncertainty and for the period after uncertainty has been 

resolved. In comparison to sensitivity analysis, stochastic modelling can provide 

answers about hedging strategies. This means that the model takes into account all 

possible outcomes of the second stage together with their attached probability and 

optimises the energy system. This reveals more insights compared to a sensitivity 

analysis involving several deterministic model runs because the model hedges against 

different outcomes at the same time. Furthermore, in the second stage, recourse 

strategies can reveal information on how flexible the energy system reacts to changing 

information. This can also quantify the influence on abatement costs when cost or 

technological parameters turn out to be different to what was expected. For a more 

thorough discussion on stochastic modelling as a mean of studying uncertainty, please 

refer to chapter 5.2.4. More information on the mathematical background of the 

stochastic variant of MARKAL can be found in chapter 3.3.4. 

In the following stochastic scenario, the resolution time, i.e. the period when all 

uncertainties are resolved, is set to 2025. As the focus is still on the year 2030, this 

means that the following discussion is centred on the recourse strategy of the stochastic 

problem and gives answers to the question of how flexibly the energy system reacts to a 

change in information. Nevertheless, MAC curves will also be presented for other years 

in order to discuss the dynamic issues involved when using stochastic programming. 

While up to 2025 there is only one hedging strategy, the model has five years 

(corresponding to one model period) to react to the resolved uncertainty up to the year 

2030. The results of the stochastic model runs are in each case compared to the 

deterministic equivalents.  

Stochastic runs were performed for multiple scenarios, but results are only presented for 

one scenario, where the availability of biomass is limited. This scenario was judged 

most interesting as variable resource availability was found to have more influence on a 

MAC curve than a change in commodity prices or technology costs. 
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9.2.2 Biomass availability 

This scenario studies the influence of a reduced level of biomass availability on MAC 

curves. It corresponds to the BIOMASS scenario presented in chapter 6, i.e. no biomass 

imports are allowed and domestic biomass production is reduced by 50% after 2025. 

Such a scenario can be explained with resistance to land-use change, i.e. diverting land 

from its original use in the food and wood-based industries to an energy use. Due to 

restrictions in implementing the scenario constraints in the stochastic version of UK 

MARKAL, the constraints were reformulated to apply for each biomass type 

individually so that there can be slight deviation from the scenario presented in chapter 

6. 

Figure 9.7 compares the emission curves for the deterministic REF and BIOMASS 

scenario with the stochastic scenario paths in 2030. One stochastic scenario gives both 

outcomes the same probability, while in the second stochastic scenario it is more likely 

(90%) that biomass will be available as defined in the REF scenario and unlikely that 

biomass availability will be limited (10%). 

The comparison of the emission curves reveals that the limited availability of biomass 

(BIOMASS scenario) makes emissions reduction more expensive, which is equal to an 

emission curve that is shifted to the right. This is particularly the case at tax levels 

higher than £75/t CO2 due to the fact that biomass is not available in the power sector as 

a co-firing fuel for coal CCS plants. Concerning the stochastic runs, they are very close 

to the respective deterministic scenario, although they indicate slightly more abatement 

for a given carbon tax level. On average abatement in the stochastic run REF (50%) is 3 

Mt CO2 higher for a given carbon tax compared to the deterministic run, while the 

equivalent number is 2 Mt CO2 in the BIOMASS (50%) case. The uncertainty over 

biomass availability prompts the model to hedge against the case that biomass is not 

available. This has consequences for the year 2030 where emission levels are a little 

lower over the studied tax range in the stochastic runs as the model makes up for 

suboptimal choices in the hedging period. 



352 

Figure 9.7 : Emission curves for the deterministic and stochastic (dashed) BIOMASS scenario 

in 2030 

 

A more detailed look at the sectoral level reveals what causes the difference in the 

deterministic and stochastic runs. Only the 50%/50% stochastic scenario is discussed in 

more detail as the findings for the 90%/10% scenario are very similar. In the REF (50%) 

stochastic run, coal-fired power stations are completely replaced at a carbon tax of £63/t 

CO2 (£10/t CO2 more than in the REF scenario) (see Figure 9.8). However, they are 

replaced by nuclear power stations instead of coal CCS as is the case in the 

deterministic run. The reason for this is the uncertainty concerning the availability of 

biomass for co-firing in coal CCS plants up to 2025, which makes investments in 

nuclear power plants more attractive. It is also interesting that a shift from coal to 

natural gas saves some emissions at around £70/t CO2, while coal CCS replaces 

conventional coal at this tax level in the REF scenario. Overall, this leads to slightly 

lower emissions. 
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Figure 9.8 : Electricity generation mix for different marginal abatement costs in 2030 (REF 

(50%) scenario) 

 

The differences in the other sectors are more limited. While there are no significant 

differences between the stochastic REF (50%) scenario and the REF scenario in the 

residential sector, the main difference in the transport sector is that the market share of 

battery buses is significantly higher. Battery buses make up half of all buses as 

electricity is about 9% cheaper in the REF (50%) scenario compared with the REF 

scenario. 

Turning towards the other stochastic BIOMASS (50%) scenario, it differs from the REF 

(50%) scenario to the extent that the market share of coal CCS power plants is less due 

to the very limited availability of biomass for co-firing. All in all, the electricity mix 

looks very similar to the BIOMASS scenario presented in chapter 6. The only major 

difference is that total electricity production is about 9% less when compared with the 

deterministic scenario, explained by the uncertainty over the potential for low-carbon 

electricity. However, the situation in the transport sector and the residential sector looks 

very different. The important difference between both stochastic scenarios in 2030 is 

that no biomass is used for domestic space and water heating in the BIOMASS (50%) 

scenario as a result of the fact that no biomass imports are allowed and domestic 

production is restricted.  

With emissions reduction significantly less in the residential sector, the transport sector 

takes up a higher share of emissions reduction in the BIOMASS (50%) scenario 

compared with the REF (50%) scenario. Without biofuels as a mitigation measure and 
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electricity being slightly cheaper due to a lower share of coal CCS (with biomass co-

firing), all buses run on electric engines in the BIOMASS (50%) scenario in the absence 

of any climate policy (see Figure 9.9). 

Figure 9.9: Market share for different technologies in the biomass scenarios in 2030 

 

Petrol plug-in cars have a dominant role with a market share of 20% and above up to 

£127/t CO2 when they are replaced by battery cars. Plug-in cars can be powered by 

electricity as well as by liquid fuels so that they represent a hedging option when petrol 

and electricity prices are uncertain. Petrol plug-in cars only attain such an important 

market share in the stochastic runs, while the market share is significantly lower in the 

deterministic model runs. Lastly, hydrogen-fuelled HGVs reach a market share of up to 

40% in the BIOMASS (50%) scenario as this vehicle type is introduced several years 

earlier compared to the REF (50%) scenario. 

Moving beyond the year 2030 can give more insights on the dynamic issues affecting 

MAC curves. Instead of looking at the recourse strategy, a MAC curve for the year 

2020, i.e. 5 years (or one model period) prior to uncertainty resolution, reveals insights 

on the abatement costs in the hedging period (see Figure 9.10). 
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Figure 9.10 : Emission curves for the deterministic and stochastic (dashed) BIOMASS scenario 

in 2020 

 

Looking only at Figure 9.10 without considering the broader context of the stochastic 

scenario, one could come to the conclusion that uncertainty about biomass availability 

in the future reduces present abatement costs. This is indicated by the stochastic MAC 

curves being shifted to the left of the MAC curve in the REF scenario over most of the 

tax range. However, this neglects the difference between the scenarios in terms of 

abatement in later periods. The reason for this apparently counterintuitive result is that 

the model anticipates the possibility of limited biomass in the future and hedges against 

this event by abating more CO2 emissions for a given tax level in the short term in the 

stochastic scenarios compared to the REF scenario. 

MAC curves for years after 2030 indicate, similarly to the curve in 2030, that abatement 

is slightly cheaper in the stochastic scenarios when compared to the deterministic 

equivalent. This is because in the stochastic scenarios the model makes up for the CO2 

that was emitted in excess of the deterministic scenarios during the hedging period. 

A cumulative emission curve (Figure 9.11) over the whole model horizon shows that the 

stochastic MAC curves are very similar to the deterministic equivalents. The difference 

between the stochastic and deterministic emissions level is never more than 1.7%, 

which indicates that differences even out over the model horizon. 
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Figure 9.11 : Cumulative emission curves for the deterministic and stochastic (dashed) 

BIOMASS scenario (2000-2050) 

 

9.2.3 Summary 

One stochastic scenario was presented in this section that dealt with the future 

availability of biomass. In 2030, five years after uncertainty has been resolved, results in 

both stochastic cases indicate that the costs for emissions reduction are very similar to 

the deterministic equivalent but generally slightly cheaper. The reason is that the model 

hedges against the uncertainty in the time prior to the resolution of uncertainty. 

However, in terms of overall system costs the deterministic scenarios are always 

cheaper than the stochastic ones. In the hedging period, the marginal abatement costs 

associated with an emissions reduction amount are either higher than both scenarios or 

in between them. 

On a technology level, it can be concluded that coal CCS power plants are strongly 

affected by the stochastic characterisation due to the uncertain biomass availability. A 

lower production of electricity from coal CCS again affects nuclear and wind power. 

Abatement in the transport sector is the most affected due to the reliance on cheap 

electricity for transport electrification in the REF scenario. 

Varying the probabilities for the two states of the world does not change the shape of 

the MAC curve in the recourse period. In the hedging period, where the stochastic MAC 
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curves are between the two deterministic curves, different probabilities matter more. 

Higher probabilities for the REF scenario shift the MAC curve towards the curve for the 

deterministic REF scenario. Delaying the point in time when uncertainty is resolved 

leads to more expensive abatement in the hedging period as biomass will be available 

for longer and therefore there exists a lower incentive to abate in early periods. 

However, there is almost no difference concerning MAC curves in the recourse strategy 

when changing the resolution time. 

Finally, the differences in the stochastic variants (varying probabilities and the 

uncertainty resolution period) as well as differences in comparison to the deterministic 

runs are limited. Reasons are that the uncertain parameter must be very influential in 

order for the stochastic model version to reveal insights. Biomass availability is one of 

the most important factors and affects the MAC curve significantly, but it does not 

change the circumstances completely. Furthermore, the model can adapt relatively 

quickly to the changing availability of biomass as it does not need big infrastructure 

investments. Thirdly, in contrast to strict emissions targets, varying carbon tax levels are 

used to calculate the MAC curve, which leaves the model much more freedom to react 

to changing input assumptions. Lastly, with a discount rate of 5% and assuming 

constant costs the recourse period accounts for less than 25% of the energy system costs 

over the whole model horizon if uncertainty is resolved in 2025. This explains why 

decisions in the recourse strategy are less important compared to the hedging period. 
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10 CONCLUSIONS 

This thesis presented results that were generated from a new methodological approach 

towards MAC curves. While energy system modelling and decomposition were applied 

separately in the past, it is the first time that a technology-rich bottom-up energy system 

model, and decomposition analysis are combined to attribute abatement potentials to 

abatement measures in a MAC curve. In addition, uncertainty analysis in the form of 

sensitivity and stochastic analysis was used to test the robustness of the findings. The 

benefits of this approach are that it incorporates the advantages of a system-wide model 

approach, while bringing in the technological detail into MAC curves usually attained 

through expert judgments. In contrast to model-based mitigation wedges, the 

methodology presented in this thesis allows insights on marginal abatement costs and is 

theoretically sound as well as transparent (see 2.2.2.3). 

With the new approach it is possible to avoid inconsistencies in the base case 

assumptions and to reflect intertemporal, as well as intersectoral interactions in the 

energy system. Intertemporal interactions refer to an optimal abatement over time, while 

intersectoral interactions capture trade-offs between different sectors, for example 

between the residential and the electricity sector. A model framework is not only a good 

tool to establish a consistent reference development as a baseline for emissions 

reduction and avoid double counting, but it also allows to consider uncertainty by 

changing input factors to the model. 

The remainder of this final chapter provides an overview of the main findings of the 

thesis, and thus answers the three research questions posed in the introductory chapter. 

The limits of this thesis are also addressed and interesting ways of future research are 

highlighted. 

10.1  Main findings 

10.1.1  Abatement measures 

The sensitivity analysis, which was carried out on a sectoral level for the power sector, 

transport sector and residential sector, identified the most important measures for a 
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transition to a low-carbon society in the UK. The decomposition analysis distinguishes 

between four broad categories: demand-related changes, efficiency improvements, 

structural switches from one technology to another, and decarbonisation of energy 

carriers. 

From today to the year 2030, the focus of this study, many measures are expected to 

become cost-effective without any carbon policies in place and therefore do not figure 

on the MAC curve. This includes electric hybrid technologies for several transport 

modes, such as cars, buses and HGVs. Moreover, in the optimisation framework of the 

UK MARKAL model, it is assumed that conservation measures will be carried out in a 

major share of existing dwellings and biomass as well as district heating will gain in 

importance as heating fuels. These results reflect the optimal setting in the employed 

model under perfect foresight and do not mirror what can be expected to happen in 

reality. In order to overcome market barriers and realise the abatement potential related 

to efficiency improvements, policy makers would need to set in place dedicated 

policies. 

The MAC curve results for the end-use sectors, households and transport, showed that 

price-induced demand reduction is a flexible abatement measure that can reduce CO2 

emissions relatively early at comparably low cost. Demand reduction accounts for about 

10% of all emissions reduction in the transport sector, whereas the respective share is 

16% in the residential sector in the reference scenario. While the emissions reductions 

caused by reduced demand do not attain the same level as structural changes, they are 

still important in a cost-effective, system-wide emissions reduction. Demand reduction 

happens over the whole range of CO2 tax levels, though the contribution at high tax 

levels, in particular above £200/t CO2, is low. At these higher tax levels, most energy 

demand services are met by energy carriers that are (almost) completely decarbonised, 

such as electricity, heat or biomass. Consequently, demand reduction does not reduce 

CO2 emissions any further if the energy service is met by CO2-free energy carriers. 

Since uncertainty surrounding demand elasticity is particularly large, results can only be 

an approximation, but they point out the important role that price-induced demand 

reduction can play. 

The analysis of the end-use sectors has shown that the decarbonisation of electricity 

plays a pivotal role in reducing emissions in the whole energy system. While this holds 

true to a limited extent for heat and the blending of biodiesel, electricity plays by far the 
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most important role. In the transport sector, the use of battery and plug-in vehicles 

depends on low-carbon electricity, whereas in the residential sector heat pumps only 

become cost-effective once electricity is sufficiently decarbonised. 

In order to achieve this major decarbonisation of electricity, the analysis in chapter 6 

has shown that a few technologies are responsible for the lion’s share of abatement in 

the power sector: coal CCS with biomass co-firing, nuclear power, and wind power. 

Nuclear power is the single most important abatement technology in the power sector as 

it is responsible for 27% of emissions abatement in the reference scenario. The other 

important abatement measure in the power sector is coal-fired power plants in 

combination with CCS. While coal CCS power plants become cost-effective from £19/t 

CO2 in 2030 in the reference scenario, the option to co-fire biomass and thereby achieve 

negative net emissions is cost-optimal from £25/t CO2. If both abatement measures, coal 

CCS power plants and biomass co-firing, are taken together, they are responsible for 

35% of overall emissions reduction in the power sector. The third most important 

mitigation measure is wind power, being responsible for 15% of overall emissions 

reduction in the power sector in the reference scenario. In contrast to some mitigation 

measures in the end-use sectors, the average abatement costs for the three technologies 

are relatively low, ranging from £12/t CO2 to £67/t CO2 in the reference scenario, 

although this depends strongly on the underlying assumptions. Minor abatement 

measures are tidal energy, electricity imports, hydro power, and biomass power plants. 

For policy making the results indicate that measures needs to be put in place to reduce 

the carbon intensity of electricity because this is a precondition for further abatement in 

other sectors. With the dominant role of nuclear and CCS technologies, implementation 

hurdles, public attitudes and spatial issues concerning carbon storage need to be 

carefully considered by policy makers. 

The abatement structure in the transport sector is characterised by the increasing 

importance of electricity as an energy carrier. The decarbonisation of electricity and the 

shift towards electric cars and busses are responsible for almost 60% of all emissions 

reductions in the transport sector. Up to £35/t CO2, petrol hybrid vehicles are important 

as a means to reduce emissions, but at higher tax levels they are replaced by battery 

vehicles. The only transport mode where electricity is not the most cost-effective 

solution is HGVs where hydrogen is the main alternative to fossil fuels. Nevertheless, 

HGVs fuelled by hydrogen only become cost-optimal at very high abatement costs in 
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2030 of above £300/t CO2 in the reference scenario. Since an electrification of the 

transport sector is a robust finding across all scenarios, policy makers need to address 

infrastructure issues, and put in place support policies to transform the model results 

into reality. 

As many energy services in the domestic household rely on electricity, such as lighting, 

appliances, cooling, refrigeration, and cooking, decarbonising electricity is by far the 

most important measure to reduce residential emissions with a share of 70%. In the 

absence of any carbon policy, the residential sector is subject to significant change 

because it is cost-optimal: an important share of households implement conservation 

measures, while biomass boilers and district heating become important options for space 

and water heating with a market share of 20% and 28% respectively. Overall structural 

change over the tax range from £0/t CO2 to £294/t CO2 is fairly limited in the residential 

sector compared to the transport sector, but heat pumps can play an important role to 

reduce emissions depending on their assumed penetration potential. The above findings 

once again demonstrate the importance of decarbonising electricity not only for the 

transport sector but also for domestic buildings. 

These results can be helpful indications for policy-makers in many different ways. On 

the one hand the most important technologies for a cost-effective emissions abatement 

were identified so that the development of these technologies can be supported by 

policy instruments. On the other hand, the MAC curve can be a first point of reference 

for the emissions reduction that can result from a carbon tax or what the resulting 

carbon price would be if a cap-and-trade scheme is established. 

10.1.2  Influencing factors 

It is not only interesting to note what the most important mitigation measures are, but 

also how important their contribution towards emissions reduction is and what the 

biggest influencing factors are. As the sensitivity cases are not directly comparable to 

each other, it is not always straightforward to compare the impact of one factor to 

another. 

The results of the sensitivity analysis indicate that the non-availability of specific 

technologies can make emissions abatement significantly more expensive and has 

therefore a significant influence on the MAC curve. If no investments into nuclear 

power or CCS technologies are allowed, e.g. due to public opposition, marginal 
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abatement costs are greatly increased. This is because both technologies are essential for 

a cost-effective decarbonisation of electricity and low-carbon electricity is essential for 

system-wide emissions reduction. If only one of the technologies is not available as a 

mitigation option then the other can compensate to some extent for this, so that changes 

to the MAC curve remain limited. Battery vehicles in the transport sector play a similar 

role in so far as no other technology can compensate for this technology without 

significantly increasing marginal abatement costs. While hybrid and plug-in vehicles 

achieve some emissions mitigation, they are not able to reach the same emissions 

reduction levels at comparable costs. Technological learning was found to have a 

substantial influence on the MAC curve in sectors where capital cost determine a big 

part of the final supply cost of an energy service. This is the case in the transport sector, 

while the results in the power sector are more mixed as investment costs have a greater 

influence on generation costs for some technologies, e.g. wind, tidal, hydro, and less for 

others, e.g. gas-fired power stations. The residential sector is almost unaffected by 

varying levels of technological learning as fuel prices make up most of the price of 

energy services. 

Demand for energy services was identified to be one of the major influencing factors on 

a MAC curve. Compared to the other sensitivity cases, a demand change by +/- 20% 

was found to have the biggest influence on the shape of the MAC curve. This is 

plausible because more demand for energy services is roughly equivalent to more 

emissions that need to be reduced. Yet, uncertainty related to demand development is 

often overlooked despite its important impact.  

Another factor with a big influence on a system-wide level, but particularly in the 

transport sector, is the choice of the discount rate. While most existing MAC curves are 

derived based on a social discount rate, actual decisions are taken by companies and 

individuals that face higher discount rates. The level of the discount rate affects the 

annualised investment costs that play a particularly important role in the transport 

sector. As this cost element is rather small in the residential sector, the impacts are more 

limited. 

It is not only interesting to see what are the factors that have the biggest impact on a 

MAC curve, but also to see where the shape of the MAC curve proves to be rather 

robust despite important changes in underlying assumptions. One of the important 

findings of this thesis is that the variation of fuel prices (not only fossil fuels, but also 
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biofuels) has an important influence on specific abatement measures, but a very minor 

impact on the overall shape of a MAC curve. This holds true on a system-wide level, 

but also for each individual sector. Different fossil fuel price levels affect the abatement 

potential, but also the reference emission level. This means that higher fossil fuel prices 

reduce reference level emissions, but at the same time they also reduce the abatement 

potential and vice versa. While the shape of a MAC curve is usually not much affected, 

the mix of abatement measure can be strongly affected by different fossil fuel prices 

with many abatement measures becoming cost-effective in the absence of any carbon 

policy or becoming significantly cheaper. Nevertheless, mitigation measures that rely on 

fossil fuels, such as coal CCS or natural gas CCS, become more expensive with rising 

fossil fuel prices. 

Path dependency was found to have a limited influence on a MAC curve. While specific 

technologies are affected by different carbon tax pathways, the more general influence 

on the MAC curve proved to be relatively limited. A factor that keeps the influence of 

path dependency small is that the UK MARKAL model does not incorporate 

endogenous technological learning as this is very difficult to implement in a national 

model for technologies that are subject to global developments. Lastly, varying the 

assumptions on the demand elasticity can significantly affect the contribution from 

demand reduction. In addition, the constraint that limits the maximum demand change 

from a reference level was found to be important in the residential sector. However, 

since the contribution from demand reduction in the reference scenario is limited, 

changing this amount does not result in a major shift of the MAC curve. 

Carrying out a sensitivity analysis helps to see how robust findings are and what 

uncertain drivers decision-makers must be aware of when relying on such tools. When 

assessing the resulting price of a cap-and-trade scheme, for example, the sensitivity 

analysis can give a range of values for the resulting permit price instead of relying on an 

uncertain central value. Among the tested sensitivities, the results indicate which ones 

had a bigger impact than others so that more research can be stimulated in those areas in 

order to obtain a better understanding. 
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10.1.3 Interactions 

An energy model that covers the whole energy system was used for this thesis. 

Therefore it allows one to draw conclusions about interactions both between mitigation 

measures and between sectors. 

Electricity is at the centre of most interactions. Electricity is a critical element for a path 

towards a low-carbon energy system since the residential sector, service sector and 

industry already rely significantly on electricity as a secondary energy carrier. 

Furthermore, it has the potential to reduce emissions in the transport sector by switching 

from internal combustion engines to electric engines. In addition, heating via electric 

boilers or heat pumps represents an opportunity to reduce the dominance of gas heating 

in the domestic sector and reduce emissions. The sensitivity analysis has shown that 

higher electricity generation costs of low-carbon technologies or constraints on 

transmission lines have consequences in the whole energy system meaning that 

emissions abatement becomes more expensive in almost all end-use sectors. While 

some technologies, such as hybrid cars in the transport sector or wood boilers in the 

residential sector, can compensate to a limited extent for the non-availability of low-

carbon electricity, this significantly increases marginal abatement costs and limits the 

overall reduction potential. 

The analysis of the results revealed that changes to underlying assumptions of the UK 

MARKAL model result in interaction of abatement measures that rely on biomass. This 

energy carrier is used in various sectors to reduce emissions: in the residential and 

service sector for space heating and hot water, in the power sector mainly for co-firing 

into coal CCS power plants and, to a limited extent, as biofuels in the transport sector. If 

biomass resources turn out to be significantly less than assumed in the reference 

scenario, this increases abatement costs significantly not only in the residential sector, 

but also in the power sector. In the residential sector, biomass can either be used directly 

via wood boilers to provide space heat or indirectly to generate electricity and then 

provide heat via heat pumps or electric boilers. Interactions between both options 

become in particular apparent in later model periods. 

The implications of this study for decision-makers are that electricity decarbonisation is 

a pre-condition for a decarbonisation of the whole energy system. Therefore, the power 

sector must be a focus of climate policy as it is not only comparably cost-effective to 
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carry out abatement, but also essential. Concerning biomass, it is very important to 

continue and strengthen research with regards to the potential and costs as the analysis 

has shown that it is an important and versatile mitigation option.  

10.2  Limitations of the study 

While the chosen approach for this thesis has many advantages since it considers 

abatement from a systems perspective, integrates uncertainty and presents technological 

detail, it also has a few limitations. These weaknesses, the ways in which they affect the 

final results and how they have been mitigated is discussed in the following section. 

The advantage of taking into account interactions between mitigation measures comes 

at the expense of a clear and easy interpretation of the MAC curve. While the abatement 

potential of abatement measures can be added up in conventional expert-based MAC 

curves as the individual reduction potential is assessed in isolation, this is no longer the 

case with the MAC curves presented in this thesis. This MAC curve only presents the 

‘marginal’ mitigation measure while technologies can be replaced along rising tax 

levels. Consequently, there is a trade-off to be made between accuracy in terms of 

methodology and ease of communication. In order to alleviate this problem, other 

illustrations can be used to present additional information. This can take the form of 

graphs showing the market share of technologies over the CO2 tax range or cumulated 

abatement potentials up to a specified tax level. 

In addition, all cost-effective mitigation measure are taken up in the baseline owing to 

the optimisation character of the model so that they do no longer figure in the MAC 

curve. Conventional expert-based MAC curves, however, can display such measures 

with negative abatement costs. On the one hand, displaying negative abatement cost 

options shows clearly what measures are no-regret measures in financial terms and they 

are not hidden in the baseline. On the other hand, displaying negative abatement cost 

potential can be misleading as the potential is limited in reality by market barriers, 

market failures and technological constraints. 

Given these shortcomings associated with all MAC curves in terms of methodology and 

ease of interpretation, questions arise concerning the usefulness of MAC curves. One 

could for example present information directly from the underlying model. However, 

the still existing simplicity of a MAC curve, pulling together essential information to 
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present the economics of emissions mitigation in one illustration, outweighs the 

difficulties associated with this concept. Extracting and interpreting important 

information from model scenarios can be harder for decision makers compared with 

technologically detailed MAC curves. Other model-specific shortcomings are discussed 

in the following. 

The UK MARKAL model does not represent short-term dynamics of the electricity 

sector or the household sectors. This lack of temporal detail concerns mostly the use and 

trade of electricity, where peak demand is only approximated and the daily load curve is 

not implemented in detail. This has consequences in the way that fluctuating electricity 

generation from wind cannot be optimally accounted for. Furthermore, demand-side 

management in the residential sector or in industry is not a mitigation option due to the 

lack of temporal detail. Since the model covers the whole energy system, only six 

timeslices are implemented, which differentiate between different seasons and day and 

night. In addition, the model allows only a limited contribution of intermittent 

renewable energy sources to peak electricity supply. Since demand-side management is 

not available as a mitigation measure, this could lead to a slight overestimation of 

abatement costs. 

Similar to the lack of temporal detail, UK MARKAL does not possess any explicit 

spatial detail. This means that transmission and distribution networks for electricity, 

hydrogen or heat are not represented in any geographical detail. This lack of spatial 

detail is addressed by including average transmission losses and infrastructure costs, as 

well as distribution costs for the different energy carriers. In addition, the UK 

MARKAL model is limited to the United Kingdom, i.e. the influence of international 

energy trade on carbon abatement can only be approximated. It is hard to assess what 

consequences the lack of spatial detail has for a MAC curve as costs can be 

underestimated in some cases and overestimated in others.  

Another difficult aspect to represent in an optimisation model is human behaviour or the 

representation of non-market costs. While the model maximises consumer and producer 

surplus in economic terms, behaviour is influenced by more than just economics. 

Market barriers and market failures have been extensively studied in the context of the 

slow uptake of conservation measures in the residential sector. Information failure, split 

incentives, difficult access to capital, and a low priority for energy matters are examples 

of non-financial aspects influencing energy-related investments. The influence of 
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behaviour is not only apparent in the residential sector, but also in the transport sector. 

Occupancy rates, i.e. how many persons are transported in a car, are hard to estimate, as 

well as the speed level and consequently fuel consumption. As speed is not represented 

in the model, the effects related to a reduction of speed limits, for example, cannot be 

quantified. Moreover, an individual’s decision to buy a car is mainly influenced by 

characteristics that are unrelated to fuel consumption. Consequently trends towards 

bigger cars are not compatible with the optimisation objective of the model. 

Technological hurdle rates are implemented in the transport and residential sector to 

capture some of those market barriers. Although it is acknowledged that this is 

imperfect, it is one of only a very few approaches to capture behaviour in an 

optimisation model. However, the lack of behavioural detail can lead to marginal 

abatement costs being underestimated and abatement potentials being overestimated. 

Ancillary benefits and costs of carbon reduction are not included in the calculation of 

abatement costs as the focus of the thesis is on CO2 emissions reduction. Beneficial 

side-effects of carbon emissions reduction, such as a reduction of other greenhouse 

gases or in air pollution, an increase in energy security or a reduction of fuel poverty, 

are not accounted for when optimising the energy system. Including ancillary benefits in 

the cost calculation would lead to lower abatement costs. Ancillary costs, such as an 

increase in air pollution through a higher use of biomass can lead to higher abatement 

costs. 

Since the focus of UK MARKAL is to capture the interactions in the whole energy 

system, detailed issues, such as the lack of storage restricting the use of biomass boilers, 

the limited range of battery cars or internal heat gains in buildings, are not represented. 

As it is not possible to implement such issues in detail, they are approximated e.g. via 

constraints on the market share of technologies to account for their limited market 

potential. Omitting some of the detailed aspects in relation to the implementation of 

low-carbon technologies can possibly overestimate their contribution towards emissions 

abatement. 

The decomposition of the MAC curve showed that the contribution from energy 

efficiency improvements is very limited. One reason for this is that many improvements 

to energy efficiency are implemented in the absence of any carbon policy so that they 

do not show up on the MAC curve. The other reason is that energy efficiency, in 

particular in the transport sector, is not well modelled. Start-stop systems, downsizing or 
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low resistance tyres, are all possible abatement measures, which could lower overall 

abatement costs if considered in UK MARKAL. 

While the model accounts for the own-price elasticity of demand, it does not account for 

cross-price elasticities and therefore does not account for modal changes in the transport 

sector. These can take the form of changes from road travel to rail travel or to walking 

or cycling. Excluding modal changes in the transport sector excludes other mitigation 

options, since people can be induced by high fuel prices to cover short distance travel by 

foot or bicycle and change for longer distances from car to train. This can lead to an 

overestimation of the costs of abating CO2 emissions in the transport sector. 

The UK MARKAL model includes fuel duties in the transport sector, but all carbon-

related taxes, such as the Renewable Obligations, EU ETS or feed-in-tariffs are 

excluded from the model. Carbon taxes, direct and indirect subsidies were excluded 

from the model in order to obtain undiluted estimates for the marginal abatement costs. 

In the same way it does not track any subsidies for coal mining or indirect subsidies for 

nuclear power, e.g. for waste handling or an implicit insurance for nuclear risks. It is 

very hard to quantify the effects of including direct and indirect subsidies on a MAC 

curve since they affect various technologies in different ways. 

The employed optimisation possesses perfect foresight for the whole model horizon. 

This means that the model knows in early model periods what mitigation measures will 

be available in later model periods and what the carbon tax level will be. The perfect 

foresight character was addressed by presenting a few results with the stochastic variant 

of UK MARKAL. This model version offsets perfect foresight to some extent by 

introducing uncertainty about a certain set of input parameters or model constraints, 

which is resolved at a later stage during the model horizon. The perfect foresight 

characteristic can lead to an underestimation of marginal abatement costs. 

Finally, the model relies on external assumptions for technological learning. Thus, 

technological learning happens through time and it is not dependent on previous 

investments. This is very difficult to implement as most of the energy technologies are 

influenced by international trends and not exclusively by investments taken in the UK. 

This issue of learning was addressed to some extent by implementing a 1
st
 of kind vs. n

th
 

of a kind constraint (see chapter 6.6), which requires early investment into a technology 

in order to be able to invest in later cheaper versions of that technology. Again, it is hard 
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to assess the influence on a MAC curve of not having endogenous technological change 

in the model. Most likely, the costs for some technologies will be overestimated and for 

some underestimated because in the case of endogenous technology learning the model 

would focus on a handful of technologies and reduce costs further along the learning 

curve than for others. This would have corresponding consequences for the abatement 

potential. 

10.3  Future Research 

The results have shown that the research method used in this thesis has many 

advantages over existing research based on the individual assessment of mitigation 

measures. It is therefore recommended that future research on MAC curves, aimed at 

helping decision-makers, should focus on MAC curves derived from systems models. 

This approach can much better quantify marginal abatement costs or emissions 

potentials when market-based instruments are considered. Nevertheless, given the 

limitations of this thesis described above, there are opportunities to extend the existing 

research and to address some open questions, which still remain unanswered. 

One future research avenue would be simply to improve the way that UK MARKAL 

addresses the weaknesses identified. This can involve a better representation of non-

market costs and temporal/spatial detail, an improved modelling of efficiency options or 

enabling modal shifts in the transport sector. Future research can also integrate other 

greenhouse gases, such as methane or nitrous oxide, in an energy system model to 

obtain a more complete picture of emissions mitigation. In the same way, one could also 

enlarge the scope beyond the energy system and include agricultural or industrial 

greenhouse gas emissions. 

Furthermore, one can use another technology detailed energy model in combination 

with decomposition analysis. The results presented here depend on the model structure 

of UK MARKAL. Therefore, it would be interesting to see to what extent the results 

would differ if another model was used to derive MAC curves. Other models would also 

offer the possibility to implement endogenous technological learning, which means that 

one would no longer have to rely on exogenous assumptions for technology learning. 

On the other hand, the analyst would be confronted with the problem to adequately 

determine a cluster of technologies, a start value for the technology cost and a learning 
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rate. In order to avoid the problem of investing only in one technology, the analyst also 

would have to define realistic growth constraints.  

To overcome perfect foresight, a myopic model version can be used that only allows 

foresight of a few model periods. This would be a more realistic way of representing 

decision making that gives more emphasis to the near term. Moreover, as this study is 

focused on the UK, the proposed methodology could be applied to other countries or on 

a global scale. 

It would also be interesting to use a different decomposition technique or decomposition 

formula to test how the results would vary. On the one hand, the uncertainty resulting 

from using different decomposition techniques was shown to be minimal in chapter 4. 

This has been emphasised by undertaking many model runs for each MAC curve to 

keep the differences in emissions levels and therefore a potential residual as small as 

possible. On the other hand, the decomposition formula was chosen according to the 

standard in existing decomposition research and according to the four broad categories 

of emissions reduction: demand reduction, technology switches, efficiency 

improvements, and carbon intensity improvements. Nevertheless, a different 

decomposition formula with differently determined structural and intensity effects can 

give a different perspective on the results, though the main message would not change. 

Finally, sensitivity analysis and stochastic analysis, which were applied in this thesis, 

are only two forms to quantify the impact of uncertainty on MAC curves. In order to 

attach probabilities to different outcomes, one could theoretically use a probabilistic 

assessment via Monte Carlo analysis to draw conclusions about the probability density 

of abatement potentials and related costs. To carry out a probabilistic assessment, one 

would have to use a smaller, less data-intensive model. The complexity of the UK 

MARKAL model does not allow probabilistic analyses as it would take weeks to run 

the model in order to obtain meaningful insights. Another possibility would be to use 

more sophisticated stochastic modelling, .e.g. in the way that more than two states of the 

world are considered or that multi-stage stochastic modelling is used. This could 

represent decision-making more realistically as uncertainty is not completely resolved at 

one moment. 


