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Climente-González et al. show that

alternative splicing (AS) changes in

tumors are linked to a significant loss of

functional domain families that are also

frequently mutated in cancer. These

domain losses happen independently of

somatic mutations and lead to the

remodeling of complexes and protein-

protein interactions in cancer.

https://core.ac.uk/display/87661328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eduardo.eyras@upf.edu
http://dx.doi.org/10.1016/j.celrep.2017.08.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2017.08.012&domain=pdf


Cell Reports

Resource
The Functional Impact of Alternative
Splicing in Cancer
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SUMMARY

Alternative splicing changes are frequently observed
in cancer and are starting to be recognized as
important signatures for tumor progression and
therapy. However, their functional impact and rele-
vance to tumorigenesis remain mostly unknown.
We carried out a systematic analysis to characterize
the potential functional consequences of alternative
splicing changes in thousands of tumor samples.
This analysis revealed that a subset of alternative
splicing changes affect protein domain families
that are frequently mutated in tumors and poten-
tially disrupt protein-protein interactions in cancer-
related pathways. Moreover, there was a negative
correlation between the number of these alternative
splicing changes in a sample and the number of
somatic mutations in drivers. We propose that a
subset of the alternative splicing changes observed
in tumors may represent independent oncogenic
processes that could be relevant to explain the func-
tional transformations in cancer, and some of them
could potentially be considered alternative splicing
drivers (AS drivers).

INTRODUCTION

Alternative splicing provides the potential to generate diversity

at RNA and protein levels from an apparently limited number of

loci in the genome (Yang et al., 2016). Besides being a critical

mechanism during development, cell differentiation, and regula-

tion of cell-type-specific functions (Norris and Calarco, 2012),

alternative splicing is also involved in multiple pathologies,

including cancer (Chabot and Shkreta, 2016). Many alternative

splicing changes recapitulate cancer-associated phenotypes

by promoting angiogenesis (Vorlová et al., 2011), inducing cell

proliferation (Yanagisawa et al., 2008), or avoiding apoptosis

(Karni et al., 2007). Alternative splicing changes may originate
Cell Re
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from somatic mutations that disrupt splicing regulatory motifs

in exons and introns (Jung et al., 2015; Supek et al., 2014), as

well as through mutations or expression changes in core and

auxiliary splicing factors, which impact the splicing of cancer-

related genes (Bechara et al., 2013; Darman et al., 2015; Madan

et al., 2015; Zong et al., 2014). Alterations in alternative splicing

are also emerging as relevant targets of therapy (Lee and Abdel-

Wahab, 2016). For instance, lung tumors with an exon skipping in

the proto-oncogene MET respond to MET-targeted therapies

despite not having any other activating alteration in this gene

(Frampton et al., 2015; Paik et al., 2015). Alternative splicing is

also important in drug resistance. For example, a proportion

of non-responders to BRAF-targeted therapy express a BRAF

isoform lacking exons 4–8, which encompass the RAS binding

domain (Poulikakos et al., 2011). Similarly, alternative splicing

of CD19 in relation to the aberrant activity of the splicing fac-

tor SRSF3 impairs immunotherapy in leukemia (Sotillo et al.,

2015). Thus, specific alterations in splicing induce functional

impacts that provide a selective advantage to tumor cells and

could represent targets of therapy.

Despite the prevalence of alternative splicing in tumors and its

relation to therapy, tumor progression, and metastasis (Lee and

Abdel-Wahab, 2016; Lu et al., 2015; Trincado et al., 2016), its

functional impacts have not been exhaustively described. Alter-

native splicing changes can confer radical functional changes

(Wang et al., 2005), remodel the network of protein-protein inter-

actions in a tissue-specific manner (Buljan et al., 2012; Ellis et al.,

2012), and expand the protein interaction capabilities of genes

(Yang et al., 2016). Here, we present a systematic evaluation of

the potential functional impacts of alternative splicing changes

in cancer samples. We described splicing changes in terms

of transcript isoforms switches per tumor sample and deter-

mined the protein features and protein-protein interactions they

affected. Our analysis revealed a set of isoform switches that

affectproteindomains fromfamilies frequentlymutated in tumors,

remodel the protein interaction network of cancer drivers, and

tend to occur in patients with low number of mutations in cancer

drivers. Furthermore, a subset of them has driver-like properties

and, hence, could play a role in the neoplastic process indepen-

dently of or in conjunction with mutations in cancer drivers.
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RESULTS

Patient-Specific Definition of Isoform Switches across
Multiple Cancer Types
To determine the potential functional impacts of alternative

splicing in cancer, we analyzed the expression of human tran-

script isoforms in 4,542 samples from 11 cancer types from

The Cancer Genome Atlas (TCGA) (Supplemental Experimental

Procedures). We described splicing changes using transcript

isoforms, as they represent the endpoint of transcription and

splicing, and ultimately determine the functional capacity of

cells. For each gene and each patient sample, we calculated

the differential transcript isoform usage between the tumor and

normal samples. An isoform switch was defined as a pair of

transcripts, the tumor and the normal isoforms, such that the

change in relative abundance in a single patient in both isoforms

was higher than the observed variability across normal samples.

Moreover, the involved gene must not show differential expres-

sion between tumor and normal. Additionally, we discarded

switches with a significant association with stromal or immune

cell content (Supplemental Experimental Procedures). The

final set of switches identified and that we kept for further anal-

ysis had a mean change in relative abundance of 54% and a

SD of 7%.

In all patients, we found a total of 8,122 different isoform

switches in 6,442 genes that described consistent changes in

the transcriptome of the tumor samples and that would not be

observable by simply measuring gene expression changes (Fig-

ure 1A; Table S1). These switches occurred in 4,443 patients:

each switch in 5 or more patients, with the majority (75%) occur-

ring in 10 or more patients (Table S1). Using SUPPA (Alamancos

et al., 2015), we calculated the relation with local alternative

splicing events (Supplemental Experimental Procedures). From

the 8,122 switches, 5,667 (69.7%) were mapped to one or

more local alternative splicing events. Compared with the ex-

pected proportion of event types, we observed an enrichment

of alternative 50ss, alternative first exon and retained intron,

and a depletion of alternative 30ss, alternative last exon, mutually

exclusive exons, and exon cassette (Figure S1A). Mapping the

tumor isoform to either form of the event, we observed that re-

tained intron events are predominantly retained, in agreement

with previous observations (Dvinge and Bradley, 2015), whereas

exon-cassette events were predominantly skipped (Figure S1B).

Interestingly, 30.3% of the switches were not mapped to any

event, indicating that transcripts provide a wider spectrum of

RNA variation compared to local alternative splicing events.

Isoform Switches in Cancer Are Frequently Associated
with Protein Feature Losses
We next studied the proteins encoded by the transcripts

involved in switches. Interestingly, annotated proteins in tumor

isoforms tended to be shorter than proteins in normal isoforms

(Figure S1C). Moreover, whereas for most switches—6,937

(85.41%)—both transcript isoforms coded for protein, the rest

had a significantly higher proportion of cases with only the

normal isoform as protein-coding, 732 (9.01%) versus 231

(2.8%; binomial test p value < 2.2e�16, using 0.5 as expected

frequency; Table S1), suggesting that isoform switches in tumors
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are associated with the loss of protein coding capacity. To deter-

mine the potential functional impact of the isoform switches, we

calculated the protein features they affected. Out of the 6,937

switches with both isoforms coding for protein, 5,047 (72.7%)

involved a change in at least one of the following features:

Pfam domains; Prosite patterns; general disordered regions;

and disordered regions with potential to mediate protein-protein

interactions (Figure S1D). Interestingly, there was a significant

enrichment in protein features losses when compared with a

set of 100 sets of simulated switches, controlling for isoform

expression (Figure 1B). This enrichment was observed despite

the fact that, for simulated switches, the normal protein isoform

also tended to be longer than the tumor protein isoform (Fig-

ure S1E). This indicates that isoform switches in cancer are

strongly associated with the loss of protein function capabilities.

We focused on the 6,004 (73.9%) isoform switches that had a

gain or loss in at least one protein feature, which we named

‘‘functional switches,’’ as they were likely to impact gene activity

(Table S1). These functional switches included 729 (8.9%) and

228 (2.8%) cases, for which only the normal or the tumor iso-

form, respectively, coded for a protein with one or more protein

features. Interestingly, cancer drivers were enriched in functional

switches (Fisher’s exact test p value = 2.0e�05; odds ratio

[OR] = 1.9; Figure S1F). Among the top switches in cancer

drivers, we identified one in RAC1, which was linked before to

tumor initiation and progression (Zhou et al., 2013) and which

we predicted to gain an extra Ras family domain, and one

in TP53, which we predicted to change to a non-coding isoform

(Figure 1C).

To characterize how functional switches affected protein func-

tion, we calculated the enrichment in gains or losses of specific

domain families with respect to their proportions in a reference

proteome. To ensure that this was attributed to a switch and

not to the co-occurrence of two domains, we requested a mini-

mum of two switches in different genes affecting the domain.

We detected 220 and 41 domain families exclusively lost or

gained, respectively, and 13 that were both gained and lost,

more frequently than expected by chance (Table S2). Domain

families that were significantly lost included those involved in

regulation of protein activity (Figure 1D), suggesting effects on

protein-protein interactions. To further characterize these

functional switches, we calculated the proportion of oncogenes

or tumor suppressors that contained domain families enriched

in gains or losses, compared with the reference proteome.

From the 69 cancer drivers with domains enriched in gains,

58 (84%) corresponded to oncogenes (Fisher’s exact test

p value = 0.0066; OR = 0.4). Although tumor suppressors were

not enriched in domain losses, domain families enriched in gains

occurred more frequently in oncogenes than in tumor suppres-

sors (Wilcoxon test p value = 9e�04). These results suggest a

similarity between our functional isoform switches and onco-

genic mechanisms in cancer.

Isoform Switches and Somatic Mutations Affect Similar
Domain Families
We conducted various comparisons using our switches and

cis-occurring mutations from whole-exome sequencing (WES)

and whole-genome sequencing (WGS) data (Supplemental
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Figure 1. Patient-Specific Definition of Isoform Switches across Multiple Cancer Types

(A) Number of isoform switches (y axis) calculated in each tumor type, separated according to whether the switches affected an annotated protein feature

(functional) or not (non-functional) and whether they occurred in cancer gene drivers (driver) or not (non-driver).

(B) Number of different protein feature gains and losses in functional switches for each of the protein features considered, which showed significant enrichment

in losses compared to random switches: Pfam (Fisher’s exact test p value = 4.4e�23; odds ratio [OR] = 1.5); Prosite (p value = 1.4e�08; OR = 1.3); IUPRED

(p value = 1.1e�127; OR = 1.3); and ANCHOR (p value = 7.5e�139; OR = 1.5).

(C) Top 20 functional switches in cancer drivers (x axis) according to patient count (y axis). Tumor types are indicated by color: breast carcinoma (BRCA); colon

adenocarcinoma (COAD); head and neck squamous cell carcinoma (HNSC); kidney chromophobe (KICH); kidney renal clear-cell carcinoma (KIRC); kidney

papillary cell carcinoma (KIRP); liver hepatocellular carcinoma (LIHC); lung adenocarcinoma (LUAD); lung squamous cell carcinoma (LUSC); prostate adeno-

carcinoma (PRAD); and thyroid carcinoma (THCA).

(D) Cellular component (red) and molecular function (green) ontologies associated with protein domain families that are significantly lost in functional isoform

switches (binomial test; BH-adjusted p value < 0.05). For each functional category, we give the number of switches in which a domain family from this category is

lost, which is also indicated by the color shade.
Experimental Procedures). The frequencies of genes or samples

with functional switches were similar to those with protein-

affecting mutations (PAMs) but smaller than the frequencies for

all mutations from WGS data (Figures S2A and S2B), indicating

a similar prevalence of switches and PAMs, but not for switches

and WGS mutations. Because we calculated switches per pa-

tient, we were able to study how these distributed across

patients (Supplemental Experimental Procedures). The top

cases according to the co-occurrence of WGS somatic muta-
tions with switches across patients included a switch in the

cancer driver CUX1, although only in 7 patients (Figures S2C

and S2D), whereas the top cases according to the number of

patients with mutations and switches included TP53 as well as

FAM19A5, DST, and FBLN2, which we already described as

isoform switches before (Sebestyén et al., 2015; Figures S2E

and S2F). In agreement with the observed low association of mu-

tations and switches (Figure S2G), the number of genes with

PAMs and functional switches tended to be inversely correlated
Cell Reports 20, 2215–2226, August 29, 2017 2217
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Figure 2. Comparison of Isoform Switches and Somatic Mutations

(A) For each patient sample, color coded according to the tumor type, we indicate the proportion of all genes with protein-affecting mutations (PAMs) (y axis) and

the proportion of genes with multiple transcript isoforms that presented a functional isoform switch in the same sample (x axis).

(B) Domain families that were significantly lost or gained in functional isoform switches that are also significantly enriched in protein-affectingmutations in tumors.

For each domain class, we indicate the number of different switches in which they occurred. We include here the loss of the P53 DNA-binding and P53 tetra-

merization domains, which only occurred in TP53.

(C) Agreement between protein-affecting mutations and functional switches (y axis) measured in terms of the functional categories of the protein domains they

affected (x axis), using two gene ontologies (GOs) at three different GO Slim levels, from most specific (+++) to least specific (+). Random occurrences (plotted in

light color) were calculated by sampling 100 times the same number of GO terms from the reference proteome as those enriched in domain families affected by

functional switches and in domains families affected by PAMs. Agreement was calculated as the percentage of the union of functional categories from both sets

that were common to both. The error bars correspond to the SD calculated from the 100 random samples.

(D) Pairs formed by a cancer driver (in parentheses) and a functional switch from the same pathway and showed significant mutual exclusion (before multiple test

correction) between PAMs and switches across patients in at least one tumor type—color-coded by tumor type. The y axis indicates the percentage of samples

where the switch occurred, and x axis indicates the percentage of samples where the driver was mutated in the same tumor type.
(Figure 2A), suggesting a complementarity between PAMs and

switches affecting protein domains.

We explored this complementarity by checking whether

mutations and switches affected the same molecular mecha-

nisms. First, we calculated domain families enriched in PAMs

and found 76 domain families across 11 tumor types enriched

in mutations (Table S2), which were more frequent in cancer
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drivers compared to non-drivers (Wilcoxon test p value <

2.2e�16), in agreement with recent reports (Yang et al., 2015).

Then, we compared the domain families enriched in mutations

with those enriched in gains or losses through switches; we

found an overlap of 15 domain families, which was higher than

expected by chance given the domains affected by the 6,004

functional switches and the 5,307 domain families observed
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in the reference proteome (Fisher’s test p value = 5.6e�06; OR =

4.7). From the domain families enriched in mutations, 7 showed

enrichment in losses, 6 showed enrichment in gains, and

2 showed enrichment in both (Figure 2B; Table S2). The

gains included cadherin domains related to switches in CHD8,

CDH26, FAT1, FAT2, and FAT3, whereas the losses included

the calcium-binding epidermal growth factor (EGF) domain,

which is affected by various switches, including one inNOTCH4.

A notable case was the loss of the TP53 DNA-binding domain

and the tetramerization motif. Although it occurred in a single

switch, its recurrence in 123 patients highlights the relevance

of TP53 alternative splicing (Bourdon, 2007).

We questioned whether the similarity was beyond the coin-

cidence of single-domain families and could affectmore generally

the function associated to domains. Hence, we calculated the

enriched Gene Ontology (GO) terms associated to the domains

enriched in mutations and switches separately and then calcu-

lated the overlap between both sets. This overlap was compared

to the overlapobtainedby randomly samplinghundred times from

the reference proteome the same number of GO terms found for

domains inenrichedswitchesormutations.Notably, theobserved

overlap was higher than expected for each GO term and at

different GO slim levels (Figure 2C), and the shared functional cat-

egories included receptor activity and protein binding. A total of

754 (12.5%) functional switches in 634 genes (47 of them in 37

cancer drivers) affected domain families that were also enriched

inmutations, supporting the notion that isoformswitches andmu-

tations may impact similar functions in tumors.

If switches and mutations have similar functional impacts,

we would expect a tendency toward mutual exclusion of some

switches with mutations in cancer drivers. In fact, we identified

292 functional switches that were mutually exclusive with so-

matic PAMs in three or more cancer drivers (Fisher’s test

p value < 0.05; Supplemental Experimental Procedures), and

16 of them showed mutual exclusion with at least one cancer

genedriver from the samepathway (TableS3). These16 switches

included one in COL9A3, which had mutual exclusion with MET

mutations in kidney renal papillary cell carcinoma (KIRP), and

one in PRDM1, which showed mutual exclusion with mutations

in TP53 in lung adenocarcinoma (LUAD) (Figure 2D) as well as

in PTEN In lung squamous cell carcinoma (LUSC) (Figure S2H;

Table S3). Despite the observed mutual exclusion, none of the

cases was significant after multiple test correction, indicating
Figure 3. Potential Impact of Isoform Switches in Protein Interactions
(A) Functional switches were divided according to whether they occurred in tumor

PPIs (y axis) that were gained (green), lost (red), or remained unaffected (gray).

Experimental Procedures). Samples from KIRP and LIHC had no PPI-affecting s

(B) Functional switchesmapped to PPIs were divided according to whether they a

functional switches (y axis) that occurred in cancer drivers (black), in interactors o

PPIs affected by switches in driver interactors were significant except for KIRC,

(C) Network for module 11 (Table S6) with PPIs predicted to be lost (red). Canc

respectively. Other genes are indicated in dark blue or light blue if they had a fun

(D) OncoPrint for the samples that present protein-affecting mutations (PAMs) in d

switches are indicated in red (loss in this case). Other switches with no predicted e

each sample by color (same color code as in previous figures). The second top

(black) or not (gray) or whether no mutation data are available for that sample (w

(E) As in (C) for module 28 (Table S6).

(F) OncoPrint for the switches and drivers from (E). Colors are as in (D).
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that the described switches may not provide strong signatures

for pan-negative tumors (Saito et al., 2015).

Isoform Switches Affect Protein Interactions with
Cancer Drivers
Many of the frequently lost and gained domain families in

functional switches were involved in protein-binding activities,

indicating a potential impact on protein-protein interactions

(PPIs) in cancer. To study this, we used data from five different

sources to build a consensus PPI network with 8,142 nodes,

each node representing a gene (Figure S3). Then, to determine

the effect of switches on the PPI network, we mapped PPIs

from this network to domain-domain interactions (DDIs). Do-

mains involved in DDIs were mapped to the specific protein

isoforms using their encoded protein sequence. For genes with

switches, we then considered those PPIs that could be mapped

to DDIs involving domains mapped on either the normal or the

tumor isoforms (Figure S4). From the 8,142 genes in the PPI

network, 3,243 had at least one isoform switch, and for 1,688

isoform switches (in 1,355 genes), we were able to map at least

one PPI to a specific DDIwith domains on either the normal or the

tumor isoform. A total of 162 of these switches were located in

123 cancer drivers, with the remaining 1,526 in non-driver genes.

For each isoform switch, using the DDI information, we evalu-

ated whether the change between the normal and tumor iso-

forms would affect a PPI from the network by matching the

domains affected by the switch to the domains mediating the

interaction, controlling for the expression of the isoforms pre-

dicted to be interaction partners. We found that 477 switches

(28.3%) in 423 different genes affected domains that mediated

protein interactions and thus likely impacted such interactions.

Most of these interaction-altering switches (n = 414; 86.8%)

caused the loss of the domain that mediated the interaction,

whereas a minority (n = 64; 13.2%) led to a gain of the interacting

domain. Only a switch in TAF9 led to gains and losses of interac-

tions with different partners, mediated by the loss of a TIFIID

domain and a gain of an AAA domain (Table S4).

Notably, switches in driver genes tended to lose PPIs more

frequently than those in non-drivers (Figure 3A). From the 162

switches in drivers, 41 (25.3%) of them altered at least one inter-

action, either causing loss (33 switches) or gain (8 switches).

Moreover, switches that affected domains from families en-

riched in mutations or that showed frequent mutual exclusion
with Cancer Drivers
-specific drivers (yes) or not (no). For each tumor type, we plot the proportion of

All comparisons except for KIRC and LUAD were significant (Supplemental

witches in drivers.

ffected a PPI (yes) or not (no). For each tumor type, we plotted the proportion of

f drivers (dark gray), or in other genes (light gray). All tests for the enrichment of

LUAD, and LUSC (Supplemental Experimental Procedures).

er drivers are indicated in black or gray if they had a functional switch or not,

ctional switch or not, respectively. We do not show unaffected interactions.

rivers or switches from (C). Mutations are indicated in black, and PPI-affecting

ffect on the PPI are depicted in gray. The top panel indicates the tumor type of

panel indicates whether the sample harbors a PAM in a tumor-specific driver

hite).



with mutational drivers also affected PPIs significantly more

frequently than other functional switches (Chi-square test

p value < 2.2e�16 and p value = 6.8e�08, respectively; Fig-

ure S5). Looking at genes annotated as direct interactors of

drivers, they tended to affect PPIs more frequently than the

rest of functional switches mapped to PPIs (Figure 3B). Addition-

ally, all functional pathways found enriched in PPI-affecting

switches were related to cancer (adjusted Fisher’s exact test

p value < 0.05 and odds ratio > 2; Table S5), reinforcing the func-

tional relevance of these 477 PPI-affecting isoform switches in

cancer.

Isoform Switches Remodel Protein Interaction
Networks in Cancer
To further characterize the role of switches, we calculated mod-

ules in the PPI network (Blondel et al., 2008) using only interac-

tion edges affected by switches (Supplemental Experimental

Procedures). This produced 179 modules involving 1,405 genes

(Table S6). From these, 52modules included a cancer driver, and

47 of them included also switches that involved two protein-cod-

ing isoforms. We tested for the enrichment of genes belonging to

specific protein complexes (Ruepp et al., 2010), complexes

related to RNA processing and splicing (Akerman et al., 2015),

and cancer-related pathways (Liberzon et al., 2015; Table S6;

Supplemental Experimental Procedures). From the 47 mod-

ules described above, 8 showed enrichment in pathways and

complexes: apoptosis-related pathways (module 109 in Table

S6); ubiquitin-mediated proteolysis pathway (module 26); and

ERBB-signaling pathway (module 169), as well as spliceosomal

(module 11); ribosomal (module 170); SMN (module 28); PA700

(module 58); and TFIID (module 66) complexes (Table S6).

In particular, module 11 was enriched in splicing factors and

RNA-binding proteins and included the cancer drivers SF3B1,

FUS, SYNCRIP, EEF1A1, and YBX1 (Figure 3C; Table S6). The

module contained a switch in RBMX involving the skipping

of two exons and the elimination of an RNA recognition motif

(RRM) that would impact interactions with SF3B1, EEF1A1,

and multiple RNA binding protein (RBP) genes (Figure 3C) and

a switch in TRA2B that yielded a non-coding transcript previ-

ously described (Stoilov et al., 2004) and would eliminate an

interaction with SF3B1 and other splicing factors. We also

found a switch in HNRNPC, TRA2A, NXF1, and RBMS2 that

lost interactions with various serine/arginine-rich (SR)-protein-

coding genes. Consistent with a potential functional impact,

the PPI-affecting switches showed mutual exclusion with the

mutational cancer drivers (Figure 3D). Interestingly, this mod-

ule also contained switches in the Importin genes IPO11 and

IPO13, which affected interactions with ubiquitin-conjugating

enzymes UBE2E1, UBE2E3, and UBE2I and which showed

mutual exclusion across different tumor types (Figure 3D). These

results indicate that the activity of RNA-processing factors may

be altered in cancer through the disruption of their PPIs by alter-

native splicing.

Another interesting case was module 28 (Table S6), with

switches in the regulators of translation, EIF4B, EIF3B, and

EIF4E, which affected interactions with the drivers EIF4G1,

EIF4A2, and PABPC1 (Figure 3E). The switch in EIF4B caused

the skipping of one exon, which we predicted to eliminate an
RRM domain and lose interactions with drivers EIF4G1 and

PABPC1. The switch in EIF3B yielded a non-coding transcript

that would losemultiple interactions. Although we did not predict

any PPI change for EIF4E, this switch lost eight predicted

ANCHOR regions (Table S4), suggesting a possible effect on

yet to be described interactions. Besides frequent PAMs,

PABPC1 also presented a functional switch that affected 2

disordered regions but did not affect any of the RRMs. In this

case, we did not predict any change in PPI, and the possible

functional impact remains to be discovered. Moreover, the iden-

tified PPI-affecting switches showed mutual exclusion with

PAMs in EIF4G1 and PABPC1 (Figure 3F). These results sug-

gest that isoform switches may impact translational regulation

in tumors through the alteration of PPIs of the corresponding

regulators.

Isoform Switches as Potential Drivers of Cancer
Our results provide evidence that a subset of the alternative

splicing switches (1) induced a gain or loss of a protein domain

from a family frequently mutated in cancer, (2) affected one or

more PPIs, (3) displayed some mutual exclusion with drivers, or

(4) displayed recurrence across patients. One or more of these

properties were fulfilled by 1,662 functional switches, which we

hypothesized could define potential alternative splicing drivers

(potential AS drivers; Figure 4A; Table S1), with the majority of

them (1,080; 65%) affecting mutated domain families and/or

PPIs (Figure 4B). To test possible driver-like properties in these

switches, we calculated their centrality and distance to muta-

tional drivers in thePPI network,whichare considered asdefining

properties for cancer-relevant genes (Jonsson and Bates, 2006).

Potential AS drivers showed greater centrality (Mann-Whitney

test p value < 2.2e�16; Figure S6A) and closer distances to tu-

mor-specific drivers (Fisher’s exact test p value < 2.2e�16;

OR = 1.5; Figure S6B) compared to the rest of switches.

The prevalence of these potential AS drivers varied across

samples and tumor types. Considering tumor-specific muta-

tional drivers (Mut drivers) and our set of potential AS drivers,

we labeled each patient as AS driver enriched or Mut driver en-

riched according to whether the proportion of switched potential

AS drivers or mutated Mut drivers was higher, respectively. This

partition of the samples indicated that, although Mut drivers

were predominant in patients for most tumor types, potential

AS drivers were predominant for a considerable number of

patients across several tumor types and particularly for kidney

and prostate tumors (Figure 4C). Additionally, regardless of the

tumor type, patients with many mutations in Mut drivers tended

to show a low number of switched potential AS drivers and vice

versa (Figure 4D). The occurrence of copy number alteration

(CNA) drivers also showed a pattern of anti-correlation with

our potential AS drivers similar to the one we found between

Mut drivers and potential AS drivers (Figure S6C). The patient

distribution patterns of candidate AS drivers compared with

mutational or CNA drivers bear resemblance with the proposed

cancer genome hyperbola between mutations and CNAs (Fig-

ure S6D; Ciriello et al., 2013), which supports the notion that

a subset of isoform changes represents alternative, yet-unex-

plored relevant mechanisms that could provide a complemen-

tary route to induce similar effects as genetic mutations.
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Figure 4. Isoform Switches as Potential Drivers of Cancer

(A) Number of functional isoform switches and potential AS drivers detected in each tumor type.

(B) Candidate potential AS drivers grouped according to their properties: disruption of PPIs; significant recurrence across patients (recurrence); gain or loss of a

protein feature that was frequently mutated in tumors (affects M_feature); mutual exclusion; and sharing pathway with cancer drivers (pannegative). Horizontal

bars indicate the number of switches for each property. The vertical bars show those in each of the intersections indicated by connected bullet points (Conway

et al., 2017).

(C) Classification of samples according to the relevance of potential AS drivers or Mut drivers in each tumor type. For each tumor type (x axis), the positive y axis

shows the percentage of samples that had a proportion of switched potential AS drivers higher than the proportion of mutated Mut drivers. The negative y axis

shows the percentage of samples in which the proportion of mutated Mut drivers was higher than the proportion of switched potential AS drivers. Only patients

with mutation and transcriptome data are shown.

(D) Each of the patients from (C) is represented according to the percentage of mutated Mut drivers (y axis) and the percentage of switched potential AS drivers

(x axis).
DISCUSSION

We have identified consistent and recurrent transcript isoform

switches that impact the function of affected proteins by adding

or removing protein domains that were frequently mutated in

cancer or by disrupting or gaining PPIs—possibly also altering

the formation of protein complexes—with cancer drivers or in

cancer-related pathways. Moreover, we observed that patients

with some of these isoform switches tended not to harbor muta-
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tions in cancer drivers and the other way around. Recently, an

alternative splicing change in NFE2L2 has been described to

lead to the loss of a protein domain and the interaction with

its negative regulator KEAP1, thereby providing an alternative

mechanism for the activation of an oncogenic pathway (Gold-

stein et al., 2016). Similarly, an isoform change in the gene

ATF2 has been shown to drive melanomagenesis (Claps et al.,

2016). These examples, together with the analyses presented

here, support a model by which functions and pathways often



altered in cancer through somatic mutationsmay be affected in a

similar way by isoform changes in some patients and therefore

contribute to the tumor phenotype. Importantly, these isoform

changes could occur without gene expression changes in the

host gene and thus provide an independent catalog of functional

alterations in cancer.

Functional domains and interactions might not always be

entirely lost through a switch, as normal isoforms generally retain

some expression in tumors. This could be partly due to the

uncertainty in the estimate of transcript abundance from RNA

sequencing or to the heterogeneity in the transcriptomes of

tumor cells. Still, a relatively small change in transcript abun-

dance has been shown to be sufficient to trigger an oncogenic

effect in cells (Anczuków et al., 2015; Bechara et al., 2013;

Sebestyén et al., 2016). Additionally, we observed that a number

of isoform changes defined a switch from a protein-coding

transcript to a non-coding one, possibly undergoing non-

sense-mediated decay, which is a widespread mechanism of

alternative-splicing-mediated gene expression regulation (Han-

sen et al., 2009), and could potentially alter function in a way

similar to other isoform changes between protein-coding iso-

forms. The predicted impact on domains and interactions could

therefore be indicative of alterations on regulatory networks with

variable functional effects.

Our description in terms of transcript isoform switches allowed

us to describe more variations in the transcriptome than using

local alternative splicing events and to determine the protein

features potentially gained or lost through splicing changes.

However, this approach has some potential limitations. Accurate

determination of differential transcript usage in genes with many

isoforms requires high coverage and sufficient samples per con-

dition (Sebestyén et al., 2015), which we expect was mitigated

by our use of the variability across normal samples to determine

significance. Additionally, because we used annotated transcript

isoforms, we may have missed tumor-specific transcripts not

present in the annotation. We also only recovered a small frac-

tion of the entire set of PPIs taking place in the cell. For instance,

we did not characterize those interactions mediated through

low-complexity regions (Buljan et al., 2012; Ellis et al., 2012);

hence, many more interactions and protein complexes may be

affected in tumors.

The origin of the observed splicing changes remains to be

elucidated. We did not find a general association with somatic

mutations in cis. It is possible that small copy number alter-

ations or indels are responsible for these switches but are still

hard to detect with WES and WGS data, and more targeted

searches or deeper sequencing are necessary. An alternative

explanation is that the majority of the switches described occur

through trans-acting alterations, such as the expression change

in splicing factors (Sebestyén et al., 2016). For instance, muta-

tions in RBM10 or downregulation of QKI lead to the same

splicing change in NUMB that promotes cell proliferation (Be-

chara et al., 2013; Zong et al., 2014), and the oncogenic switch

in RAC1 (Zhou et al., 2013) is regulated by expression changes

in various splicing factors (Gonçalves et al., 2009; Pelisch

et al., 2012), which are controlled by pathways often altered in

tumors (Fu and Ares, 2014). Another possibility is that these

switches describe signatures of non-genetic variability (Brock
et al., 2009). The intra-tumor heterogeneity could allow recapitu-

lating similar transcriptome phenotypes, which would determine

the fitness of cells and the progression of tumors independently

of somatic mutations. Because natural selection acts on the

phenotype rather than on the genotype, an interesting hypothe-

sis is that specific transcript isoform expression patterns could

define particular tumor phenotypes that would be closely related

to those determined by somatic mutations in drivers, thereby

defining an advantageous phenotype such that the selective

pressure to develop equivalent adaptations is relaxed. Accord-

ingly, our identified isoform switches could play an important

role in the neoplastic process independently of or in conjunction

with the already characterized genetic alterations.
EXPERIMENTAL PROCEDURES

Further details and an outline of resources used in this work can be found in

Supplemental Experimental Procedures.

Calculation of Significant Isoform Switches per Patient

We modeled splicing alterations in a gene as a switch between two transcript

isoforms: one normal and one tumoral. For each transcript, the relative abun-

dance per sample, which we called proportion spliced-in (PSI), was calculated

by normalizing its abundance in transcripts per million (TPM) units by the sum

of abundances of all transcripts in the same gene. Then, for each transcript and

sample, we calculated the change in relative abundance as DPSI = PSItumor �
PSIref, where PSItumor is the relative abundance in the tumor sample and PSIref
is the normal reference value, which is the value of the paired normal sample,

when available, or the median of PSIs in the normal samples for the same tis-

sue type otherwise. We considered significant those changes with jDPSIj >
0.05 andwith empirical p < 0.01 in the comparison of the observed jDPSIj value
with the distribution of jDPSIj values obtained by comparing the normal sam-

ples pairwise without repetition. We only kept those cases for which the tumor

isoform PSI was higher than the normal isoform in the tumor sample and

the normal isoform PSI in the normal sample was higher than the value for

the tumor isoform. Moreover, we discarded genes that either had an outlier

expression in the tumor sample compared to normal tissues—had expression

below the bottom 2.5% or above the 97.5% of the values of normal expres-

sion—or showed differential expression between the tumor and the normal

samples (Wilcoxon test p value < 0.01 using the gene TPM values).

Candidate switches were defined per patient and per gene, and in some

samples, the same gene could have different switches. We discarded those

switches that contradicted a more frequent switch in the same gene and the

same tumor type. Moreover, we discarded any switch that affected a number

of patients below the top 99% of the distribution of patient frequency of these

contradictory switches in each tumor type. Lastly, we filtered out switches

that were significantly lowly recurrent, i.e., they occurred in fewer patients

than expected by chance (binomial test; adjusted p value < 0.05, using all tu-

mor types). As a consequence, none of the reported switches occurred in less

than 5 samples. Thus, a switch in a patient sample was defined as a pair of

transcripts in a gene with no expression change and with significant changes

in opposite directions that showed consistency across a minimum number of

patients. We aggregated the switches from the different tumor types to get the

final list (Table S1).

Simulated Switches

To simulate switches between normal and tumor tissues, we used genes

withmore than one expressed isoform. For each gene, we selected the isoform

with the highest median expression across the normal samples as the normal

isoform and an arbitrary different transcript expressed in the tumor samples

as the tumor isoform. For each gene, we generated a maximum of five such

simulated switches.

Functional Switches

A switch was defined as functional if both isoforms overlapped in genomic

extent and there was a change in the encoded protein, including cases where
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only one of the isoforms was coding and, moreover, there was a gain or loss of

a protein feature: Pfam domains (Finn et al., 2016) mapped with InterProScan

(Jones et al., 2014); ProSite patterns (Gattiker et al., 2002); disordered regions

from IUPred (Dosztányi et al., 2005); and disordered regions potentially

involved in PPIs from ANCHOR (Dosztányi et al., 2009). For IUPred and

ANCHOR, we only considered changes involving at least 5 amino acids.

Switches without any mapped protein features were not considered.

Significance on the enrichment of protein features losses versus gains

was calculated by comparing the number of gains and losses in switches

with the same numbers in simulated switches (Supplemental Experimental

Procedures).

Enrichment of Domain Families in Switches and Mutations

To find protein domain families significantly affected by switches, we first calcu-

lated a reference proteome for each tumor type. Using geneswith multiple tran-

scripts, we selected those that had at least one isoformwith TPM> 0.1 and only

kept the isoformwith the highestmedian expression across the normal samples

in the same tissue type. Proteins encoded by these isoforms were considered

the reference proteome in each tumor type. We aggregated the reference pro-

teomes from all tumor types to form a pan-cancer reference proteome. The ex-

pected frequency of a protein feature was then measured as the proportion of

this feature in the reference proteome. This expected frequency was then

used to calculate the probability of a feature to be affected by a switch using

a binomial test with the number of times the feature was gained or lost in

switches and the total number of feature gains or losses due to switches (Sup-

plemental Experimental Procedures). We selected cases with Benjamini-Hoch-

berg (BH)-adjusted p value < 0.05. Additionally, to ensure the specificity of the

enrichment for each domain class, we considered only domain families affected

in at least two switches. To calculate domain families enriched in mutations, we

considered again the reference proteome in each tumor type. The expectedmu-

tation rate of a domain family was considered to be the proportion of the length

of domains in the proteome covered by this domain family. We aggregated all

observed mutations falling within each family and calculated the probability of

the observed mutations using a binomial test using the mutation count for a

domain family and the total mutations in all domain families (Supplemental

Experimental Procedures). After correcting for multiple testing, we kept those

cases with a BH-adjusted p value < 0.05. GO analysis was performed using

DcGO (Fang and Gough, 2013). For the enrichment test, we considered signif-

icant those cases with FDR < 0.01 (hypergeometric test).

Protein Interaction Analysis

We created a consensus PPI network using data from PSICQUIC (del-Toro

et al., 2013), BIOGRID (Chatr-Aryamontri et al., 2015), HumNet (Lee et al.,

2011), STRING (Szklarczyk et al., 2011), and from Rolland et al. (2014). The

consensus network was built with interactions appearing in at least four of

these five sources, yielding a total of 8,142 nodes with 29,991 interactions.

To find PPIs likely altered by isoform switches, we first mapped each PPI in

a gene to a specific DDI, using information on DDIs from iPfam (Finn et al.,

2014), DOMINE (Raghavachari et al., 2008), and 3did (Mosca et al., 2014). Do-

mains involved in DDIs were then mapped to specific protein isoforms. For the

genes with switches, we then considered those PPIs that could be mapped to

DDIs involving domains mapped to either the normal or the tumor isoforms. In

total, 3,242 genes with 4,219 switches mapped to one or more interactions in

the consensus network and 1,688 isoform switches (in 1,355 genes) were

mapped to at least one specific DDI. We defined a PPI as lost if it was mapped

to one ormore DDIs in the isoform expressed in the normal tissue, but not in the

isoform expressed in the tumor sample. If multiple domains mediated the

same interaction, it was considered lost if at least one of these domains was

lost in the switch. We defined a PPI as gained if it was mapped to a DDI only

in the tumor isoform, but not in the normal isoform.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and six tables and can be found with this article online at http://

dx.doi.org/10.1016/j.celrep.2017.08.012.
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