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Abstract

The main objective of this master’s degree thesis is to build a R package for the goodness-
of-fit techniques for right-censored data. In this work, we’ll cover a survey of the sur-
vival analysis, especially the right-censoring and the graphical techniques of goodness-
of-fit, the state of the art of the survival analysis in R, a description of our package, with
its two functions, related to the graphical techniques of goodness of fit, prob.plot and
cum.haz.plot, and its two datasets, and a testing of the functions of our package.

Keywords: R package, goodness of fit, survival analysis, programming, right-censored
data
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Chapter 1

INTRODUCTION

1.1 State of the Art

1.1.1 Survival Analysis: an introduction

Survival analysis is a branch of statistics with the purpose of analyzing the duration until
the happening of a certain event (or events), under an interval of time, with two main
periods, t0, the time origin, and tn, the end time of our event or failure time, also symbol-
ized as ε. Now, for precision, we need to state three requirements for the failure event ε: 1)
unambiguosly defined time origin; 2) scale for measuring elapsed time; 3) well specified
meaning for ε.

This interval of time symbolizes a random non-negative variable, the survival time,
with a continuous probability distribution, although under some cases can be discrete.
Usually, it’s called survival analysis, but we have other names as event history analysis
(Broström, 2012), event analysis or life time data analysis.

We have some examples of the survival analysis:

• measuring the survival probabilities under different cancer treatments.

• knowing the failure rate of a certain line of machines in tn

• following up the patients for a certain disease and comparing the survival times of
two groups, treatment and control.

1.1.2 Survival, distribution and density functions

As a collection of statistical procedures, survival analysis has its functions. We define the
first of our two main functions, the survival function:

S(t) = P(T > t), t ≥ 0 (1.1)

6



7 1.1. State of the Art

In other words, is the probability of an individual to survive longer than a time t.
The distribution function is F(t) = P(T ≤ t), with a predefined time t1, so the survival
function can be expressed, for a discrete time variable T with t1 < t2 < · · · < tn, as:

S(t) = 1− F(t) = ∑
tj>t

P[T = tj] (1.2)

For the continuous case and f (t) as density function:

S(t) = 1− F(t) = 1−
∫ t

0
f (u)du =

∫ ∞

t
f (u)du (1.3)

The survival curves can take many different forms with the same properties, mono-
tone and decreasing functions with these two conditions satisfied, S(0) = 1 and limt→∞ S(t) =
0. The rate of decline is dependent of the risk of experiencing the event at time t.

In last place, we have the density functions, for continuous variables, denoted as f ,
with the following limit:

f (t) = lim
∆t→0

1
δt

P[t ≤ T < t + ∆t] (1.4)

Thiss limit measures the intensity of the probability. We can interpret f (t)∆t as the
probability of happening in (t, t + ∆t) for the event ε.

1.1.3 Hazard functions

The second main function is the hazard function, important for knowing the pattern of
the failures in our survival analysis and denoted as λ(t), depending of the distribution.
We can divide that for discrete, λ(t), and continuous cases, λ(t)∆t:

Type of time variable (T) Values Hazard Function Range

Discrete t1 < t2 < · · · < tn
λ(tj) = P[T = tj|T ≥ tj] =

P[T = tj|T > tj−1]
λ(t) ∈ [0, 1]

Continuous Continuous
λ(t) =

lim
∆t→0

P[t≤T<t+∆t|T≥t]
∆t

λ(t) ∈ [0, ∞)

Table 1.1: Hazard functions by type of time variable

Both functions, λ(t) and λ(t)∆t, can be seen as the probability of an individual that
has not failed by t. With that, we can determine the failure distribution, under many
shapes: hump, constant, decreasing, bathtub or any other characteristic, depending on
the hazard rate of ocurrence for any event.

1The probability of an individual to survive less than time t
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1.1.3.1 Cumulative hazard function

It’ is a measure of risk, in where we measure the risk of the failure by time t depending on
the value of Λ(t), with a positive relationship between both variables2. For the discrete
time T with values t1 < t2 < · · · < tn, we have:

Λ(t) = ∑
tj≤t

λ(tj) (1.5)

And for the continuous time T, we have:

Λ(t) =
∫ t

0
λ(u)du (1.6)

The cumulative hazard function (CHF) is a non-negative function and monotically
increasing. Also, the CHF have a relationship with the hazard and survival functions.
For the hazard functions, the relationship for continuous cases are Λ(t) = − ln S(t) or
S(t) = e−Λ(t).

For the survival functions, under the continuous case, S(t) = e−
∫ t

0 λ(u)du and f (t) =
λ(t)S(t). For the discrete case, we have the following relationship, taking t0 = 0: S(tj) =
S(tj−1)(1− λ(tj)), j = 1, 2, . . . , n

1.1.4 Censoring

The sequential nature of the response times can lead us to censoring, because we have a
probability 1− p to have incomplete information about any of our individuals Xi

Esentially, we have two types of censoring, left and right. In this chapter, we’ll talk in
detail about the latter.

1.1.4.1 Right censoring

Any individual Xi with a survival time Ti is followed until the ocurrence of event ε. If we
observe ε when it happens, then the time until ε is known. If ε doesn’t happens during
the study, then our individual Xi have right-censoring, because of the following causes:

1. When we finish the study at a predefined tn. In this case, we have some individuals
survived.

2. Lost to follow-up from some individuals (we observe them in any moment less than
tn): t < tn

2If we increase a unit of Λ(t), we increase the risk of failure too
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3. Dropout. We interrupt the treatment for some individuals.

In this case, the censored observation must be recorded, because can be seen as an
event (for example, the time 35+ for an individual in a treatment, a censored observation
modelled as a non-negative random variable C). There, we observe a minimum between
the failure time and the censoring time. We must know if the minimum corresponds to
the failure or the censoring time. If we don’t have censoring time, any individual have a
failure time Ti, distributed as a unknown distribution function F. A period of observation
is needed too: it’s stopped at Ci if failure has not ocurred by then. The observation is Yi =
min(Ti, Ci). Then, we model here an indicator variable, δ, with two possible outcomes,
censorship, equal to 0, or failure, equal to 1, and represented by the pairs (Yi, δi), denoted
as:

δi =

{
1 if Ti ≤ Ci,
0 if Ti > Ci

(1.7)

We have different types of right-censoring, depending on the pattern of the censoring
times:

• Type I: Fixed, Progressive, Generalized

• Type II: Random

1.1.4.1.1 Type I of censoring Fixed: We have a fixed censoring time, from a preas-
signed observation time for all the individuals which enter at the study at the same time,
CR. Our variant of (Yi, δi) is:

Yi = min(Ti, CR) and δi =

{
1 if Ti ≤ CR,
0 if Ti > CR

(1.8)

Progressive: It happens when the censoring time is different for each individual (or
groups). We establish a finite number of censoring times C1, . . . , Cn, usually inferior to n.
The variables Y and δ are equal.

Generalized: What happens when we consider the different times of entry for each
individual in our study. We establish the end of the study in CR and the timeOi is different
for each individual. If ε ocurrs before CR, we observe the potential time to failure Fi. We
model the entry time for each individual as 0 for purposes of data analysis. Then, we
rescale the variables. If we define Ti = Fi −Oi and Ci = CR −Oi, we have a censoring
time Ci for each individual, albeit a fixed period of observation CR. We observe (Yi, δi) for
i in 1, . . . , n:

Yi = min(Ti, Ci) and δi =

{
1 if Ti ≤ Ci,
0 if Ti > Ci

(1.9)
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1.1.4.1.2 Type II of censoring We don’t have a preset end for our study. When a num-
ber r(r < n) of failures has ocurred, our study ends. In this censoring, the number of
observed events is fixed. Then, the censoring time C is random.

Random: The failure and censoring times are treated as random variables with un-
known distributions. The T1, . . . , Tn failure times are i.i.d. with unknown distribution
function F. The same case for the censoring times Ci, with a distribution function G. We
observe the pairs (Yi, δi) for i for 1 to n where Yi = min(Ti, Ci), where Ci are the censoring
times for each individual and

δi =

{
1 if Ti ≤ Ci,
0 if Ti > Ci

(1.10)

We need independence between Ti and Ci for assuming the random censoring.

1.1.4.2 The likelihood function

For building any likelihood function for the right-censored data3, we must consider the
type of data and its censoring, truncation and independence or not between T and the
censored data. If that doesn’t happen, then we need much more information about the
behavior of the censoring times in our data.

The first function is the following, an individual censored at the right (for any type).
We have a discrete random variable Y. Now, the contribution of our individual at our
likelihood function depends of the observation and censoring times. We represent that as
(Y, δ). We have two situations:

1. Not censored individual: (Y, δ) = (y, 1). The contribution to L is given:

P{y, δ = 1} = P{Y = y, T ≤ C} = P{T = y, T ≤ C} =
P{T = y, y ≤ C} = P{T = y}P{C ≥ y} (1.11)

2. Censored individual: (Y, δ) = (y, 0). The contribution to L is given:

P{y, δ = 0} = P{Y = y, T > C} = P{C = y, T > C} ⇒
P{C = y, T > y} = P{C = y}P{T > y} (1.12)

We suppose that T is independent of C, so we calculate the contribution of an individ-
ual with observed data (y, δ) by P{y, δ} = (P{T = y}P{y ≤ C})δ(P{C = y}P{T >

3For a detailed explanation of the likelihood function, read Rohde (2014)
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y}1−δ. For the continuous case, the contribution of an individual (y, δ) is P{y, δ} =
( f (y)G(y))δ(g(y)S(y))1−δ.

A sample of individuals censored at right, is written as a product for each individual
and its contribution, with a sample (y1, δ1), . . . , (yn, δn).

n

∏
i=1

P{yi, δi} =
n

∏
i=1
{[ f (yi)]

δi [S(yi)]
1−δi}

n

∏
i=1
{G(yi)

δi [g(yi)]
1−δi} (1.13)

If C has a non-informative censoring to T and both variables are independent, then
the estimation for the distribution of T via likelihood function will not be dependent to C
and, then, we can work with one of the following likelihood functions:

n

∏
i=1
{[ f (yi)]

δi [S(yi)]
1−δi} (1.14)

Or because f (y) = λ(y)S(y), that:

n

∏
i=1
{[λ(yi)]

δi [S(yi)]} (1.15)

1.1.5 Non-parametric methods

With complete datasets, we can estimate the survival function: Ŝ(t) = 1− F̂(t), where F̂
is the empirical distribution function (EDF). But if we have, at least, one censored obser-
vation, then the EDF will not be a consistent estimator. Then this survival function will
be useless. We must use other ways, but in first place, some notation:

• The r different times: Y(1) < · · · < Y(i) < · · · < Y(r)

• Number of individuals at risk before Y(i): ni

• Number of individuals that fail at moment Y(i): di

1.1.5.1 Kaplan-Meier estimator

The most known estimator is Kaplan-Meier estimator (ŜKM). There, we compute the sur-
vival probabilities with a product limit formula, denoted as:

ŜKM(t) =


1 if t < Y(1)

∏
i:Y(i)≤t

(
1− di

ni

)
if t ≥ Y(1)

(1.16)
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If the last observation is censored, then the function isn’t well defined, because the
survival function never takes the value 0 and limt→∞ ŜKM(∞) > 0. How to deal with that?
We have two suggestions, from Efron and Gill, with the same behavior, asymptotically
speaking, but the latter has a better behaviour for small samples. We’ll show them below:

• Efron: Redefine ŜKM(t) = 0 for all t ≥ Y(n)

• Gill: Maintain ŜKM(t) = ŜKM(Y(n)) when δ(n) = 0 for all t > Y(n)

This estimator is a step function, broken by observed event times and a variable size,
depending on the number of events at each time Y(i) and the pattern of the censored
observations prior to Y(i).

If the data doesn’t have censored observations, then this estimator is reduced to the
empirical survival function, Ŝ(t) = 1− F̂(t)

For the cumulative hazard case, we must remind the relationship between the survival
and cumulative hazard functions. With that, we can compute an estimator of Λ(t), based
on the Kaplan-Meier estimator:

Λ̂KM(t) = − ln ŜKM(t) (1.17)

1.1.5.2 Nelson-Aalen estimator

For the cumulative hazard function, we have a non-parametric estimator, called Nelson-
Aalen estimator, with a better performance for small sample sizes, denoted as:

Λ̂NA(t) =

0 if t < Y(1)

∑
i:Y(i)≤t

di
ni

if t ≥ Y(1)
(1.18)

The estimator for the survival function is ŜNA(t) = e−λ̂NA(t)

It’s useful for:

1. Select between parametric models for the failure time.

2. Crude estimates of the hazard rate λ(t), the slope of the Nelson-Aalen estimator.

In the case of simultaneous multiple deaths, we can modified the Kaplan-Meier and
Nelson-Aalen estimators as distinct, even if we don’t know that distinction.

Kaplan-Meier
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ŜKM(t) =


1 if t < Y(1)

∏
i:Y(i)≤t

di−1
∏

k=0

(
1− 1

ni−k

)
if t ≥ Y(1)

(1.19)

Nelson-Aalen

λ̂NA(t) =


0 if t < Y(1)

∑
i:Y(i)≤t

di−1
∑

k=0

1
ni−k if t ≥ Y(1)

(1.20)

1.1.6 Kaplan-Meier Survival Curves

With our survivor function, S(t), we draw curves. In many cases, these survivor curves
will be step functions (an ideal curve will be smooth), as the curve showed below:

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1.1: An example of curve estimated by the Kaplan-Meier method, with the data of
lung cancer from the R package survival

The general formula for a KM survival probability at failure time t(j) is Ŝ(t(j−1)) ×
P̂r(T > t(j)|T ≥ t(j)).
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1.1.7 Parametric models

When we make our survival analyses, in a certain stage we’ll use our data for adjusting
and approximating a model. In that sense, the parametric models are useful.

A general idea about distributions in survival analysis is the following: the distribu-
tions can be adapted to our hazard function and we have the common parameters: α
and γ as the shape parameters, µ as the location parameter and β as the scale parame-
ter. With each distribution, our survival and hazard functions varies. Some of the most
important distributions for our work are: Weibull, Gumbel, Normal, Log-Normal, Logis-
tic, Log-logistic, Four-Parameter Beta Distribution, Exponential Power Distribution and
Exponentiated Weibull distribution, with its hazard rates.

Then, when we choose any parametric model for our survival analysis, we need some
type of fit (assess goodness of fit). We have, basically, two types of techniques, the graph-
ical, valid for non-censored and censored data (although in the latter case, we must read-
just sometimes our plot, because we have less valid points). And the analytical, that can
be regarded as measures of proximity between the empirical distribution and the hypoth-
esised. For the first, the techniques are probability plots (P-P and Q-Q), stablised probabil-
ity. For the second, Kolmogorov-Smirnov, Cramér-von Mises statistics, Anderson-Darling
statistics (weighted-L2 distance).

1.1.7.1 Distributions

For any distribution, we start with this data, with length n:

Y δ
Y1 δ1
Y2 δ2
. . . . . .
Yn δn

Table 1.2: A basic structure of data for survival analysis

And the random variable Ti (event time). T1, T2, . . . , Tn are i.i.d. random variables
with unknown cumulative distribution F. For that, we need some fitting for our chosen
distribution with that hypothesis:

H0 : F(·) = F0(·; θ) (1.21)

F(·) is the unknown distribution and F0(·, θ) is our desired theoretical distribution.
With that, we fit our data and we assess our goodness of fit. If we don’t specify parame-
ters, we might use the maximum likelihood estimate of θ, θ̂. If the data are censored, it’s
a good idea to use Kaplan-Meier or Nelson-Aalen estimators (F̂).

In first place, we have probability plots, useful for evaluate our chosen distribution
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at a glimpse. The most known are P-P and Q-Q plots, with its modifications and Stab-
lised Probability Plot (which transforms the axes to approximately get the same variance
in each plotted point) and Empirically Rescaled plot (useful for data heavily censored).
In the P-P plot, we plot the theoretical cumulative distribution against the estimated cu-
mulative distribution from data (can be estimated using Kaplan-Meier or Nelson-Aalen).
The graph can take numerous shapes. If we have a straight line from (0, 0) to (1, 1), then
the data follow the theoretical distribution. If we have, for example, a S-shaped graph,
then our distribution doesn’t adjust well to the data.

For the Q-Q plot, we use theoretical and estimated quartiles (F̂−1
0 (F̂(t)) against t). It’s

very similar to P-P.

In last place, we have the SP plot and ER plot. For the first, our purpose is to stabilise
the variance of the plotted points, because that enhances its interpretability.

For the latter, this plot is useful for randomly right-censored cases. In the ER, we plot
F̂u(F̂−1

0 (F̂(yi))) versus the empirical cumulative distribution of the points corresponding
to the uncensored observations, F̂u(yi). The visual appearence, in overall, is less sensitive
to the effects of different censoring patterns.

The cumulative hazard plot, similar to the plots showed above, is used to assess
the goodness of fit visually from a distribution. There, we transform our CHF (cumu-
lative hazard function) Λ into something linear in t or log(t). For each distribution, that
changes, but we have a common idea: 1) data for computing the Nelson-Aalen estimator
(Λ̂) of the cumulative hazard function and the MLE of the parameters of our theoretical
distribution; 2) look for a transformation A(·), relative to the cumulative hazard func-
tion of the theoretical distribution; 3) A(Λ̂) will be linear in natural or logarithmic scale.
Sometimes, we plot Λ−1(Λ(t)) versus t (probability plot).

1.1.7.2 State of the art of the goodness-of-fit models

Sometimes, when we deal with parametric models, we need to check how our chosen
model fits with the data set (and its degree of accuracy). We assess, then, the goodness of
fit in two ways, graphically and analytically.

1.1.7.2.1 Graphical goodness of fit For that, we have the cumulative hazard plots, the
probability plots P-P and Q-Q plots and the stabilised probability plot, a modification of
the P-P plot with the purpose of stabilise the variance of the plotted points, introduced
by Michael (1983). These methods are valid for both types of data, right-censored and
non-censored, although for the latter, the plots mentioned above have points not evenly
spread. But we can fix that with the empirically rescaled plot (Waller, 1992).

1.1.7.2.2 Statistics for the goodness of fit Most goodness of fit statistics are measures
of proximity between two distributions, the empirical and hypothesized, for example the
Kolmogorov-Smirnov statistic, based on the supremum distance, the Crámer-von Mises
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statistic and the Anderson-Darling statistics, using a weighted-L2 distance. These statis-
tics are useful for right-censored data, but with issues as an unknown asymptotic distri-
bution. We have few goodness of fit procedures for the time-continuous data with censor-
ing, and most of them are modificated versions of statistics for the non-censored data, as
a modification of Kolmogorov-Smirnov statistic for the type I censored data4. For a over-
all view and a manual for many leading methods of testing fit studied (centered, overall,
in the three major distributions, normal, exponential and uniform) plus the handling of
censoring data, we have Ralph B. D’Agostino (1986).

1.2 Goals of the master’s thesis

In this master thesis, our main purpose is to continue the work of Febrer Galvany (2015)
and Besalú i Mayol (2016) in the goodness of fit for right-censored data, a neccesary matter
in many survival analyses, because if our data doesn’t fit well with our chosen distribu-
tion, then our survival analysis can fail. For that, we build a R package, called GofCens,
with two functions, prob.plot and cum.haz.plot, and two datasets, which will be up-
dated in a foreseeable future (squashing bugs, adding features, improving performance,
adding datasets, upload it to CRAN and adding functions). We have four chapters and
two appendices.

In the Chapter 1, we explored some matters of the survival analysis, the distributions
and its density, survival, cumulative hazard and hazard functions, the censored data,
with special incidence in the right-censored data, the non-parametric methods as the well
known Kaplan-Meier estimator and the parametric methods, one of the most important
matters here, because these contains the goodness of fit in both ways, graphical and quan-
titative.

In the Chapter 2, we’ll review some of the parametrical techniques, quantitative and
graphical goodness of fit. The first will be reviewed briefly, because we won’t use tech-
niques such Kolmogorov-Smirnov in our package by the moment. By contrast, we’ll talk
extensively about the graphical goodness of fit, basically an application of four types of
functions for the distributions, density, survival, cumulative hazard and hazard func-
tions, because the two functions of our packages is about analysis. For last, we’ll review
the original R functions by Anna Febrer. Plus, we’ll talk about the R state of art in survival
analysis, incluiding graphical techniques.

In the Chapter 3, we’ll talk about the R package GofCens: its archives, functions and
dataset. Also, we’ll execute our functions for first time with dataset found in the survival
package (Therneau, 2015).

For the Chapter 4, we’ll test our functions with the two datasets of the package, gbcs
and whas500 and we’ll comment about that. This part could be useful for further correc-
tions of our package.

We conclude this thesis with the conclussions and the appendices about the R code
4See Dufour (1978) and Baar (1973)
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of the functions explained in the Chapter 3 and two tables of our distributions and its
functions.





Chapter 2

QUANTITATIVE AND GRAPHICAL TECHNIQUES
OF GOODNESS OF FIT AND AN OVERVIEW
OF R SOFTWARE

Following the brief explanation of the chapter 1, in this chapter we’ll explain the analytical
and graphical techniques of the goodness-of-fit tests. Plus, we’ll present a global vision
of the R software for data analysis and we’ll explain and test the two functions created by
Febrer Galvany (2015), prob.plots and CumHazPlot for a glimpse of the graphical tools of
goodness of fit in R.

2.1 Quantitative goodness of fit techniques

For this sort of techniques, we have a distinction between complete data (when for some
individuals it is only known that their failure time exceeds a certain censoring timee) and
right-censored cases (when, at least, an individual don’t have any failure time). With that
in mind, we can proceed to the basic notation of the goodness of fit tests.

We have the data (Yi, δi), where Yi = min(Ti, Ci)
1 and (δi) is the censoring indicator,

a binary variable with the following values, 0, equal to right censoring, and 1, equal to
{Ti ≤ Ci}.

In second place, we’ll show the hypothesis for assessing the goodness of fit, in where
an inappropiate theoretical distribution F0 can lead to incorrect results:

H0 : F(·) = F0(·; θ) (2.1)

There, F(·) is the unknown distribution of the event times and F0(·, θ) is our desired
theoretical distribution (for adjusting to the data and assess its goodness of fit). We can
completely specify F0 or let F0 undetermined except a finite dimensional parameter θ.
Then, we’ll calculate the maximum likelihood estimate of θ, θ̂. Then:

1For each individual, we have two parts: 1) Ti is a random variable which describe the event times
that are independent and identically distributed with unknown cumulative distribution F and Ci are the
censoring times for each individual

19
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F̂0(t) = F0(t; θ̂) (2.2)

If we have uncensored data, we can estimate F by the empirical cumulative distribu-
tion function. But if our data have right-censored observations, then we’ll estimate F by
the Kaplan-Meier or Nelson-Aalen estimators. The result is denoted by F̂.

Now, we can explain two of the following techniques, very well known in survival
analysis, as a brief introduction, although we don’t detail too much, because the main
protagonist of this report will be the graphical techniques and its uses in R.

2.1.1 Kolmogorov-Smirnov goodness of fit test

That’s the most known and used analytical method to test goodness-of-fit with complete
data. Then, the Kolmogorov-Smirnov statistic Dn for any given cumulative distribution
function F0 is the following:

Dn = sup
t
|F0(t)− F̂n(t)| (2.3)

Fn is the empirical distribution of the data, with n as the data sample size. If the
sample comes from distribution F0, by the Glivenko-Cantelli theorem, Dn converges to 0
when n goes to infinity. This result was carefully studied by Kolmogorov (1933), leading
him to find the asymptotic distribution of Dn under the null hypothesis, the Kolmogorov
distribution. N. Smirnov (1948) provided us with a table for the goodness-of-fit, after that
its study of the corresponding one-sided bounds (N. V. Smirnov, 1939).

The Kolmogorov distribution is the following random variable, where B(t) is the
Brownian bridge:

K = sup
t∈[0,1]

|B(t)| (2.4)

The cumulative distribution is:

P(K ≤ k) = 1− 2
∞

∑
j=1

(−1)j−1e−2j2k2
(2.5)

If the sample come from the hypothesised distribution F0, Kolmogorov showed that:

√
nDn

D−−−→
n→∞

sup
t
|B(F0(t))| (2.6)
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2.1.2 Grané Goodness of Fit test for Type I and Type II Right-censored
Data

Recently, a goodness of fit test, proposed by Grané (2012) has been published and it’s ad-
equate for data with particular patterns of right, left and double censoring. We will refer
to this as the Grané test. More recently, in a new paper (Strzalkowska-Kominiak & Grané,
2014), we have a new test statistic for the general right-censoring, with an unknown cen-
soring distribution.

We have a set of independent and identically distributed random variables, T1, . . . , Tn,
with cumulative distribution function F and the order statistics T(1) < · · · < T(n). With
that test, we can assess goodness of fit when the observations are less than CL and (or)
greater than CR are censored. For this report, we’ll just consider the right-censored data,
so we consider these time event values greater than CR. This test is suitable for Type I
and II censoring, but not for random-censored variables. We’ll test our null hypothesis
for every t:

H0 : F(t) = F0(t) (2.7)

F0 is a completely specific cumulative distribution function, but we can only use it for
testing t(1), . . . , t(r), where r is the number of observed events.

H0 : F(t(i)) = F0(t(i)), for i = 1, . . . , r (2.8)

If T is a random variable with cumulative distribution function F, F(T) follows an
uniform distribution in [0, 1], indeed:

P(F(T) < t) = P(T < F−1(t)) = F(F−1(t)) = t (2.9)

With that, with Ti for i = 1, . . . , n following a distribution with cdf F, F(Ti) follows a
Uniform in [0, 1]. If the null hypothesis (2.7) is true, F0(Ti) will also follow an Uniform in
[0, 1].

2.2 Graphical techniques of goodness-of-fit

In that subsection, we’ll talk about the visual side of the goodness of fit tests, the plotting,
the contrast between the theoretical and empirical distributions. At a first glance, the
graphical techniques are very useful (and simple) exploratory tools for understanding
the distribution of the data and testing the following null hypothesis:

H0 : F(·) = F0(·|θ) (2.10)
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2.2.1 Probability plots

With these tools, we can check rapidly if our chosen distribution is appropiate or not. We
have four of them, P-P, Q-Q, stabilised probability and empirically rescaled.

2.2.1.1 P-P plot

Called the Probability-Probability plot, this plot consists of plotting F0(t), theoretical cu-
mulative distribution with its parameters estimated by maximum likelihood if are un-
known, against F̂(t), the estimated cumulative distribution function derived from data.
For the right censored cases, we estimate the empirical distribution with Kaplan-Meier or
Nelson-Aalen techniques. The graph must be a straight line from (0, 0) to (1, 1), depicted
below, if the data really follows the theoretical distribution:

0.0 0.4 0.8

0.
0

0.
4

0.
8

F̂(t)

F̂
0(t

)

If the data doesn’t fit, then we have a S-shape, as shown below:
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F̂
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)

Figure 2.1: An example of a unfitted probability-probability plot for the normal distribu-
tion

Then, we can discard that distribution. A reminder: the estimates of the distribution
F0 only can be changed with the uncensored observations, so the points plotted in any
P-P plot will be equal to yi when δi = 1. If the data are uncensored or have a censoring
of Type I or II, then all the plotted points are evenly distributed in a line from (0, 0) to
( r

n , r
n ), where r is the number of observed events and n, the sample size. If the proportion

of random censored data are high, this distribution is not longer the right one. Then, we
can observe a situation where some points are more concentrated near to (0, 0) than (1, 1)

2.2.1.2 Q-Q plot

Known as Quartile-Quartile and similar to P-P plot, there we’ll plot the theoretical quar-
tiles, F̂−1

0 (F̂(t)) against the estimated quartiles, t. If the theoretical distribution F0 fits well
the data, the plot should be close to a straight line; otherwise, we’ll get a curved plot, as
depicted below. This means that the data doesn’t follow very well F0.
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Figure 2.2: An example of unfitted Q-Q plot for the normal distribution.

But we have a caveat: the plotted points may be not evenly spread even if our data
are complete (in a certain area of our graph, we could have most of the points), leading to
potential biased conclusions.

2.2.1.3 Stabilised Probability Plot

Michael (1983) introduced the stabilised probability plot as a transformation of the P-P
plot with the purpose of stabilise the variance of the plotted points, which are approxi-
mately equal and, hence, that enhances its interpretability. Originally, in the P-P and Q-Q
plots, the variance of the points differ.

If F0 = F and its parameters are known, F̂0(yi) can be regarded as an uniform or-
der statistic. If these parameters are unknown but efficiently estimated, then that’s true
asympotically. We can use an arcsin transformation for stabilise the variance of F̂0(yi)

across a uniform order statistic. For example, if we have S = 2
π arcsin(

√
U) where

U ∼ Uni f orm[0, 1], the probability density function of S is given, for 0 ≤ s ≤ 1 by:

f (s) =
π

2
sin(πs) (2.11)

That’s the sine distribution, with an interesting property, same asymptotic variance
for its order statistics, equal to 1/π2, independent of its position. Then, we define the
stabilised probability plot as:

2
π

arcsin(
√

F̂0(yi)) (2.12)
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If F0 fits the data, we have a line from (0, 0) to (1, 1). Otherwise, the points will be
plotted as a S-shaped figure, such the plot depicted below:

SP
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Figure 2.3: An example of fitted SP plot for the normal distribution, with some outliers.

2.2.1.4 Empirically Rescaled plot

If we have uncensored data or have a Type I or II censoring for our data, we can use a
P-P plot, better than the Q-Q plot, due to some issues, an uneven spread for all its points,
fixed with an uniform horizontal spacing between points. But if we have some random
right-censored data, the P-P plot isn’t so useful because we have a non-uniform size for
the empirical estimates of the probability function and its jumps

Due to that, Walter and Turnbull (Waller, 1992) proposed the empirically rescaled plot,
in where we plot F̂u(F̂−1

0 (F̂(yi))) versus F̂u(yi):
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Figure 2.4: An example of unfitted ER plot for the normal distribution, with the real data
points above the line.

F̂u is the empirical cumulative distribution function of the points corresponding the
uncensored observations. If the theoretical distribution fit the data, we have a straight
line from (0, 0) to (1, 1). Otherwise, we’ll have a S-shape plot. For last, among all the
probabilistic plots, its appearence is the less sensitive to the different censoring patterns.

2.2.2 Cumulative Hazard plots

For these plots, we transform the cumulative hazard function Λ in somewhat linear in t
or log(t). This transformation varies for each distribution, with the same premise:

1. Computing the Nelson-Aalen estimator Λ̂ from data and the maximum likelihood
of the parameters of our chosen distribution

2. For the cumulative hazard function of our chosen distribution, we seek a transfor-
mation A(·) with the purpose of get linearity in A(Λ̂).

In Febrer Galvany (2015), in the chapter 2, we have a table with the expressions for the
cumulative hazard plot for each distribution. We show an example below, in where we
measure the adequateness for each distribution.
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Figure 2.5: A grid of cumulative hazard plots for six distributions. The three others are
discarded by errors in maximum likelihood estimations.

Sometimes, the cumulative hazard plot can be considered a probability plot between
Λ−1(Λ(t)) and t. With that and an appropiate distribution, the cummulative hazard plots
will draw a straight line between (0, 0) and (1, 1). Otherwise, we’ll have the same straight
line but with a different scale, slope and intercept.
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2.3 An overview of R software for graphical tests and two
examples of functions, ProbPlots and CumHazPlot

2.3.1 R software

In first place, in the R software (R Core Team, 2017), we have two views for the survival
analysis:

• https://cran.r-project.org/web/views/Survival.html

• https://cran.r-project.org/web/views/Distributions.html

For the first view, we have many packages related with the survival analysis in overall,
some of them already incorporated with R, as the survival package for computing the
Kaplan-Meier estimator. For the censored data, muhaz can be very useful (hazard func-
tion), as the package ICE (for interval censored data). But for many analysis, we must to
consider the following facts: the time variable, in many cases, is a numeric variable. For
example, the number of days for a treatment (written as c(234, 221, 245,...) in R).
The censoring variable is a binary variable with two values, 0 and 1.

For the second view, we cover the distributions in overall, important for all sorts of
statistical techniques, but for the survival analysis we just interested in the following dis-
tributions, Weibull, Gumbel, Normal, Log-Normal, Logistic, Log-logistic, Four-Parameter
Beta Distribution, Exponential Power Distribution and Exponentiated Weibull distribu-
tion, with its parameters, shape or location, depending of the distribution, and scale.
Mainly, for many of these distributions, we have the base R functions for the ditributions,
d, p, q, and r. For some more specialized distributions, as the Gumbel, we need extra
packages such ActuDistns.

At last, for fitting distributions, neccesary under many statistical techniques, as the
goodness of fit, we have the very useful package fitdistrplus (Delignette-Muller &
Dutang, 2015a), which saves us work because, for example, the fitdistr function will
estimate the parameters of our desired distribution with maximum likelihood using the
function mledist, although we can choose other methods such the moment matching
estimation.

In second place, we’ll briefly comment how to make graphics (Murrell, 2012) in R,
fundamental for some aspects in the survival analysis. For that, we must differentiate
between the classic plotting system, inside one of the base R packages, graphics, and the
graphical system based in the grammar of graphics (Wilkinson, 2005), ggplot2. For the
first case, we have a system in what we draw in a empty plot, created with the command
plot(), like a sheet of paper. With commands as lines or abline, we draw new layers
for our plot. We can’t delete one of these layers if we don’t create a new plot.

Based in the grammar of graphics, which, ggplot2, by Hadley Wickham, provides us
another approach in plotting, separating any graph in basic components and thinking be-
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yond concepts as scatterplot (Wickham, 2010), such the y-axis and x-axis or the aesthetics.
Basically, we think in terms of layers. In first place, in ‘ggplot2‘, we choose the data and
we make a aesthetics. The first argument for any plot can be the following:

ggplot(data, mapping=aes(x=data$x, y=data$y))

Later, we can draw the shape of our plot adding with layer. For a scatterplot, we can
write the following:

ggplot(data, mapping=aes(x=data$x, y=data$y)) + geom_point()

And we can aggregate more layers. That allows us a better level of personalization
and, in overall, better aesthetics with less effort. Even, we can save the plot in an inde-
pendent object.

my_graph <- ggplot(data, mapping=aes(x=data$x, y=data$y))
my_graph + geom_line()

With the R landscape about survival analysis in mind and a brief description of the
two more used plotting techniques, we’ll show two functions (Febrer Galvany, 2015) that
do a nice job of checking in a glimpse the goodness-of-fit of our data.

2.3.2 prob.plots

The prob.plots function have its foundations in the idea of plots for checking the good-
ness of fit, with four main types of plots, the ones presented in the subsection 2.2.1: sta-
bilised probability, empirically rescaled, P-P and Q-Q. We have, there, two realms: the
theoretical and the real distribution. Our goal is to check the fitting of the theoretical
distribution.

For that, we test the following hypothesis, where F is the real cumulative distribution
of our data and F0, our selected distribution, whose parameters can be calculated for
maximum likelihood with the function fitdistcens (Delignette-Muller & Dutang, 2015b)
or we can specify our desired parameters:

H0 : F = F0(·; θ)

Then, with that, we have the following function, with seven arguments in total.

prob.plots <- function(time,
cens,
distribution,
beta.limits=c(0,1),
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plots = c("PP","QQ","SP","ER"),
colour = c("green4","deepskyblue4",

"yellow3","mediumvioletred"),
parameters = list(shape = NULL, shape2 = NULL,

location = NULL, scale = NULL))

We list the explanation for each argument:

• time: A variable of times until the event of interest.

• cens: A binary variable for the censored observations.

• distribution: Our chosen distribution from nine: normal, Weibull, Gumbel, expo-
nential, log-normal, logistic, logg-logistic, beta, exponential power and exponenti-
ated Weibull.

• beta.limits: If we choose the beta distribution, we have to determine its bounds,
lower and upper. By default, is c(0, 1).

• plots: A vector with our plots, PP (P-P plot), QQ (Q-Q plot), SP (Stabilised Probability
Plot) and ER, Empirically Rescaled Plot. By default, we display the four plots.

• colour: For default, is a vector of four colours (one for each plot)

• parameters: With that, we can specify by hand the parameters of the chosen theo-
retical distribution

If we want to execute the function, both variables, time and cens must be numeric. For
default, our output will be an figure with the four probability plots, as the chunk shown
below, with a dataset, from a German Breast Cancer study (David W. Hosmer, 2008), of
N=686, testing it against an theoretical normal distribution:
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## $distr
## [1] "Normal"
##
## $location
## [1] 2373.418
##
## $scale
## [1] 1151.843

In the output, we can see that the data doesn’t adjust very well to the normal distri-
bution and, below, we’ll see the parameters of our distribution that we can extract as a
single value, as output$location or the scale.

2.3.3 CumHazPlot

In this function, our purpose is to check the fitting of our data for different distributions:

CumHazPlot<-function(time, cens,
distributions=c("gumbel","norm","logis",

"weibull","lnorm","loglogis"),
beta.limits=c(0,1),
colour = c("orangered","darkolivegreen3","cadetblue2",
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"red3","green4","deepskyblue4",
"hotpink","yellow3","mediumvioletred")

We have five arguments:

• time: A variable of times until the event of interest.

• cens: A binary variable for the censored observations.

• distribution: Our vector of distributions from nine: normal, Weibull, Gumbel,
exponential, log-normal, logistic, log-logistic, beta, exponential power and expo-
nentiated Weibull. By default, we have six distributions, although we can use ‘all‘
for considering the nine distributions

• beta.limits: If we choose the beta distribution, we have to determine its bounds,
lower and upper. By default, is c(0, 1)

• colour: For default, is a vector of four colours (one for each plot)

For the output, we have, for default, six cumulative hazard plots corresponding to the
Gumbel, Normal, Logistic, Weibull, Log-normal and Log-logistic distributions. We need
just two arguments, ‘time‘, the times until the event, and ‘cens‘, the censoring indicator
for every failure time:

CumHazPlot(time, cens)

Now, we’ll execute the function with the same dataset about breast cancer:
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## <simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient, rcens = rcens, lcens = lcens, icens = icens, ncens = ncens, ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE, method = meth, lower = lower, upper = upper, ...): function cannot be evaluated at initial parameters>
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We find, that, the best distribution are the log-normal, with a very well fitted curve.
Plus, we see an error message for the beta distribution, the output of the MLE, and the
location or shape and scale for every disstribution in numerical terms, parameters that can
be calculated by hand or via maximum likelihood. We can extract it with the following
command, functionoutput\$distribution

And with that, we conclude the presentation of the functions and the second chapter.
In the following chapter, we’ll present an improvement, a R package called GofCens.





Chapter 3

THE R PACKAGE GOFCENS

In this chapter, we’ll write, mainly, a brief description of the creation of the R package and
a documentation with every object of our package, the functions and the datasets, shown
below.

## [1] "cum.haz.plot" "gbcs" "prob.plot" "whas500"

3.1 Overall vision

3.1.1 Description

In the context of the development of graphical techniques for the goodness of fit in sur-
vival analysis, as shown in the first two chapters of this report, this package is a log-
ical step after the functions of Febrer Galvany (2015), shown in the Chapter 2. Also,
for a proper package, I made some modifications and I added documentation and two
datasets, which I’ll show later, with explanations for each variable. These modifications
have the purpose of making the functions more fast and intuitive for the final user, al-
though we must pay a price there: the loss of options in our function for the personaliza-
tion.

3.1.2 Some files of the package

In this subsection, we’ll talk about essential files of our package.

3.1.2.1 DESCRIPTION

The most important file of the package, contains the basic information for our package:
version number, authors, lazy loading, imports, title, maintainer, license type, a brief
description of our package, encoding and many other options. We’ll put the description
file of our package for a glimpse:

35
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packageDescription("GofCens")

## Package: GofCens
## Type: Package
## Title: Graphical tests for the goodness-of-fit of right-censored
## data in survival analysis
## Version: 0.5
## Authors@R: c(person("Daniel", "García Carrasco", role=c("aut",
## "cre")), person("Guadalupe", "González Melis",
## role=c("aut")), person("Klaus", "Langohr", role=c("aut")),
## person("Mireia", "Besalú", role=c("aut")))
## Author: Daniel García Carrasco [aut, cre], Guadalupe González
## Melis [aut], Klaus Langohr [aut], Mireia Besalú [aut]
## Maintainer: Daniel García Carrasco
## <daniel.garcia.carrasco@estudiant.upc.edu>
## Description: This package is useful for making graphical
## diagnostics of the goodness of fit for right-censored data
## in two forms, the probability plots and cumulative hazard
## plots
## Imports: ggplot2, gridExtra, survival, grid, fitdistrplus,
## ActuDistns
## License: GPL
## Date/Publication: 2017-05-15 15:57:48
## Encoding: UTF-8
## LazyData: true
## LazyLoad: Yes
## Built: R 3.4.0; ; 2017-06-05 16:18:59 UTC; unix
##
## -- File: /home/daniel/R/x86_64-pc-linux-gnu-library/3.4/GofCens/Meta/package.rds

3.1.2.2 NAMESPACE

One of the most important parts of building a package is specifing the namespace, al-
beit can be complex and confusing (Wickham, 2015), due to its conceptions, spaces for
names. With a namespace, we can make our package self-contained thanks to defining
the imports, when we define how a function in one package finds a function in another,
and exports, which helps us to avoid conflicts with other packages. For this package,
we mantain a simple namespace file, with importing all the functions from some needed
packages (although in a future we can specify some functions for optimization) and ex-
porting all the functions that match a pattern.
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exportPattern("^[[:alpha:]]+")
import(survival)
import(fitdistrplus)
import(grid)
import(ggplot2)
import(gridExtra)
import(ActuDistns)

3.1.2.3 CITATION

Inside the folder ./inst, this file swows how to cite our package:

citation("GofCens")

##
## To cite GofCens in publications, please use:
##
## Daniel García et al. Goodness-of-fit R package for
## Right-censored data.
##
## A BibTeX entry for LaTeX users is
##
## @Manual{,
## author = {Daniel García Carrasco & et al.},
## title = {Goodness-of-fit R package for Right-censored data},
## year = {2017},
## }

The output is in BibTeX, very useful if you write a report, book or article in LATEXand
you want to have your bibliography, usually in a separated .bib file.

3.1.2.4 INDEX

After creating some functions and datasets, when we install our package, an INDEX file
is generated automatically, with a brief description of any object from our package. If
we write library(help = "GofCens"), we have an output with the description of our
package and the index of the functions and datasets. Also, if we write help(package =
"GofCens"), we have the index in a dedicated HTML page.
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3.2 Functions

Another novelty of this package is the change of the names for both functions with respect
to Anna Febrer in a classic programming convention, separated by dots, less personal-
ization options with the purpose of making the code simpler and a change of plotting
package to ggplot2 for better aesthetics, although we pay the price in form of slower ex-
ecution due to the package gridExtra (Auguie, 2016). With the microbenchmark package
(Mersmann, 2015), we checked the performance of both functions. 7 to 8 times slower,
and with lineprof (Wickham, 2017), we found the main bottleneck in our functions, the
already mentioned grid.

3.2.1 Function prob.plot

The purpose of the function is to check the fitting of the theoretical distribution versus the
empirical distribution. The arguments are the following:

prob.plot <- function(time, cens, distribution = c("exp", "weibull", "gumbel",
"norm", "lnorm", "logis", "loglogis", "beta", "exppower"),
beta.limits = c(0, 1), parameters = list(shape = NULL, shape2 = NULL,

location = NULL, scale = NULL))

In the first argument, time, we specify a numeric variable with the time of our sub-
jects for the survival analysis. For the next argument, cens, we specify a binary variable,
usually numeric if we follow the R notation for data1, with the following values, 0 and 1,
where 0 indicates right censoring. The third and last mandatory argument, distribution,
is the theoretical distribution we want to test for our data.

For last, we have two optional arguments. The first is beta.limits, useful if we choose
the beta distribution, and the second is parameters, if we want to input specify param-
eters when we choose our desired distribution, those will be calculated by maximum
likelihood.

When we execute our function, we have a grid of four plots, under ggplot2 (Wickham,
2009) with its general parameters, shape and theoretical distribution. With the shape, we
can explain the fit of our data with respect to the theoretical distribution, and with the
location, we know the spread of our data (the location is related to parameters as µ in the
normal distribution). The output is the following, with the dataset aml from the package
survival, with the variables time and status, indicating us the survival in patients with
Acute Myelogenous Leukemia:

1although can be a integer with the following values, 0L and 1L
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Figure 3.1: Example of prob.plot function

We have, then, a grid of four plots. In overall, the variable doesn’t fit very well with
the probability plots. That suggests us to choose another distribution.

3.2.2 Function cum.haz.plot

The purpose of this function is to check the fitting of our survival data for each function.
The arguments are the following:

cum.haz.plot <- function(time, cens, beta.limits = c(0, 1))

We have the mandatory arguments time, for the time variable, numeric, and cens, for
the censoring variable, with two values, 0 and 1. Plus, we have the argument beta.limits,
with two values, the lower and upper bounds, useful if we want to take in account the
beta distribution too. When we execute the function, we obtain a grid of nine plots, an im-
provement, although for that, I used a trick, changing the values of the parameters calcu-
lated by maximum likelihood. Plus the calculated parameters of shape/location and scale
for all the distributions. If we don’t specify any values for the beta limits or we use data
between 0 and 1, then the plot related to the beta distribution will have a message, "out
of range". In the figure shown below, we show an example applying our function to the
variables stop and event from the dataset bladder, from survival package (Therneau,
2015).
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Figure 3.2: Example of function cum.haz.plot

## $weibull
## shape scale
## 0.9859713 77.0350620
##
## $lognormal
## location scale
## 4.099860 1.638241
##
## $loglogistic
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## shape scale
## 1.119871 55.595922
##
## $expweibull
## shape1 shape2 scale
## 0.38114162 4.39537849 0.09733064
##
## $exppower
## shape scale
## 0.21949836 0.02923544
##
## $gumbel
## location scale
## 54.45799 21.01467
##
## $normal
## location scale
## 45.21056 27.63363
##
## $logistic
## location scale
## 44.55244 16.77359

We have nine graphs for each distribution, plus a list of parameters for each distribu-
tion. We can have, then, a glimpse for choosing the best distribution. In this case, the
better distributions could be the log normal, exponentiated weibull or log-logistic (the
Normal distribution, for example, has some outliers).

3.3 Datasets

Our package has two datasets, gbcs and whas500, although in a future we can incorporate
more.

3.3.1 Dataset gbcs

This dataset, from David W. Hosmer (2008), is from several cancer clinical trials in Ger-
many, from the German Breast Cancer Study Group, with the purpose to illustrate meth-
ods for building prognostic models (Sauerbrei & Royston, 1999).

We can invoke that using the R command GofCens::gbcs. Its variables, 16, are the
following:

1. id: Study ID, an integer between 1 and 686.
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2. diagdate: Date of diagnosis in the following format, a factor variable with the
ddmmyyyy. Can be transformed with as.date().

3. recdate: Date of Recurrence or of Recurrence Free Survival, with the format ddmmyyyy.

4. deathdate: Date of Death, with the format ddmmyyyy.

5. age: Age at diagnosis, an integer.

6. menopause: Menopausal status, an integer with two possible states, 1 = Yes, 2 = No.

7. hormone: Hormone Therapy, an integer with two possible states, 1 = Yes, 2 = No.

8. size: Tumor size in milimeters, an integer.

9. grade: Tumor grade, a factorial variable with three values, 1 to 3.

10. nodes: Number of nodes involved, an integer with values from 1 to 51.

11. prog_recp: Number of Progesterone Receptors, an integer between 1 and 2380.

12. estrg_recp: Number of Estrogen Receptors, from 1 to 1144 in integer format.

13. rectime: Time to recurrence, counted in days.

14. censrec: Recurrence Censoring, a binary variable with the following values, 0 =
Censored and 1 = Recurrence.

15. survtime: Time to death, counted in days.

16. censdead: Death Censoring, a binary variable with two values, the censored, equal
to 0, and the death, equal to 1.

For a brief exploration:

head(gbcs, 10)

## id diagdateb recdate deathdate age menopause hormone size grade
## 1 1 17/08/1984 15/04/1988 16/11/1990 38 1 1 18 3
## 2 2 25/04/1985 15/03/1989 22/10/1990 52 1 1 20 1
## 3 3 11/10/1984 12/04/1988 06/10/1988 47 1 1 30 2
## 4 4 29/06/1984 24/11/1984 24/11/1984 40 1 1 24 1
## 5 5 03/07/1984 09/08/1989 09/08/1989 64 2 2 19 2
## 6 6 24/07/1984 08/11/1989 08/11/1989 49 2 2 56 1
## 7 7 26/06/1985 19/06/1986 16/08/1986 53 2 1 52 2
## 8 8 10/09/1984 10/03/1991 10/09/1991 61 2 2 22 2
## 9 9 05/11/1984 12/11/1991 12/11/1991 43 1 1 30 2
## 10 10 14/06/1985 12/12/1991 12/12/1991 74 2 2 20 2
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## nodes prog_recp estrg_recp rectime censrec survtime censdead
## 1 5 141 105 1337 1 2282 0
## 2 1 78 14 1420 1 2006 0
## 3 1 422 89 1279 1 1456 1
## 4 3 25 11 148 0 148 0
## 5 1 19 9 1863 0 1863 0
## 6 3 356 64 1933 0 1933 0
## 7 9 6 29 358 1 416 1
## 8 2 6 173 2372 1 2556 0
## 9 1 22 0 2563 0 2563 0
## 10 1 462 240 2372 0 2372 0

summary(gbcs)

## id diagdateb recdate deathdate
## Min. : 1.0 05/02/1986: 4 15/10/1990: 9 25/09/1991: 8
## 1st Qu.:172.2 15/04/1987: 4 25/09/1991: 9 04/12/1991: 7
## Median :343.5 15/12/1987: 4 04/12/1991: 7 15/10/1990: 7
## Mean :343.5 18/06/1986: 4 22/01/1992: 6 15/01/1991: 6
## 3rd Qu.:514.8 22/01/1986: 4 23/10/1991: 6 22/01/1992: 6
## Max. :686.0 23/01/1986: 4 15/01/1992: 5 23/10/1991: 6
## (Other) :662 (Other) :644 (Other) :646
## age menopause hormone size
## Min. :21.00 Min. :1.000 Min. :1.000 Min. : 3.00
## 1st Qu.:46.00 1st Qu.:1.000 1st Qu.:1.000 1st Qu.: 20.00
## Median :53.00 Median :2.000 Median :1.000 Median : 25.00
## Mean :53.05 Mean :1.577 Mean :1.359 Mean : 29.33
## 3rd Qu.:61.00 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.: 35.00
## Max. :80.00 Max. :2.000 Max. :2.000 Max. :120.00
##
## grade nodes prog_recp estrg_recp
## Min. :1.000 Min. : 1.00 Min. : 0.0 Min. : 0.00
## 1st Qu.:2.000 1st Qu.: 1.00 1st Qu.: 7.0 1st Qu.: 8.00
## Median :2.000 Median : 3.00 Median : 32.5 Median : 36.00
## Mean :2.117 Mean : 5.01 Mean : 110.0 Mean : 96.25
## 3rd Qu.:2.000 3rd Qu.: 7.00 3rd Qu.: 131.8 3rd Qu.: 114.00
## Max. :3.000 Max. :51.00 Max. :2380.0 Max. :1144.00
##
## rectime censrec survtime censdead
## Min. : 8.0 Min. :0.0000 Min. : 8.0 Min. :0.0000
## 1st Qu.: 567.8 1st Qu.:0.0000 1st Qu.: 798.8 1st Qu.:0.0000
## Median :1084.0 Median :0.0000 Median :1338.0 Median :0.0000
## Mean :1124.5 Mean :0.4359 Mean :1320.6 Mean :0.2493
## 3rd Qu.:1684.8 3rd Qu.:1.0000 3rd Qu.:1824.8 3rd Qu.:0.0000
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## Max. :2659.0 Max. :1.0000 Max. :2668.0 Max. :1.0000
##

The average age is 53. Other data of interest are the incidence of the hormone therapy,
with a 35.9 per cent of women with hormone therapy, an average of 29.33 milimeters
for the tumor size and, for last, the average number of receptors for progesterone and
estrogen are 110 and NA, respectively.

The median time to recurrence is 1807 days.

3.3.2 Dataset whas500

This dataset shows us the results of a longitudinal study with 1-year periods from 1975
to 2001 for patients admitted in the hospital of Worcester, in Massachusetts, for acute
myocardial infarction (David W. Hosmer, 2008)2, with the purpose of describing factors
associated with trends over time in the incidence and survival rates following hospital
admission for acute myocardial infarction. The variables are the following:

1. id: Identification number, a numeric vector with values from 1 to 500.

2. age: Age for each patient at the time of hospital addmision, a numeric vector.

3. gender: Gender, a binary variable with two values, 0 = Male and 1 = Female. Can
be converted to an factorial with as.factor.

4. hr: Initial Heart Rate, beats per minute.

5. sysbp: Initial Systolic Blood Pressure, calculated in mmHg (millimeters of mercury).

6. diasbp: Initial Diastolic Blood Pressure, calculated in mmHg (millimeters of mer-
cury).

7. bmi: Body Mass Index, a numeric vector, calculated in the following way, kg/m2.

8. cvd: History of Cardiovascular Disease, a binary variable with two values, 0 = No
and 1 = Yes.

9. afb: Atrial Fibrillation, a binary variable with two values, 0 = No and 1 = Yes.

10. sho: Cardiogenic Shock, a binary variable with two values, 0 = No and 1 = Yes.

11. chf: Congestive Heart Complications, a binary variable with two values, 0 = No
and 1 = Yes.

12. av3: Complete Heart Block, a binary variable with two values, 0 = No and 1 = Yes.

2Originally, from Robert J. Goldberg, from the Departament of Cardiology at the Medical School in the
University of Massachusets
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13. miord: MI Order, a binary variable with two values, 0 = First and 1 = Recurrent.

14. mitype: MI type, a binary variable with two values, 0 = non Q-wave and 1 = Q-
Wave.

15. year: Cohort Year, a numeric vector that can be converted in a factor with the fol-
lowing values: 1 = 1997, 2 = 1999 and 3 = 2001.

16. admitdate: Hospital Admission Date, a factor with levels mmddyyyy.

17. disdate: Hospital Discharge Rate, a factor with levels mmddyyyy.

18. fdate: Date of last Follow Up, a factor with levels mmddyyyy.

19. los: Length of Hospital Stay, a numeric vector with the days from hospital admis-
sion to hospital discharge.

20. dstat: Discharge Status from Hospital, a binary vector with two values, 0 = Alive,
1 = Dead.

21. lenfol: Total Length of Follow-up, a numeric vector that counts the days from the
hospital admission date to the date of last follow-up.

22. fstat: Vital Status at Last Follow-up, a binary vector with two values, 0 = Alive, 1
= Dead.

A brief exploration in R is the following:

head(whas500, 10)

## id age gender hr sysbp diasbp bmi cvd afb sho chf av3 miord
## 1 1 83 0 89 152 78 25.54051 1 1 0 0 0 1
## 2 2 49 0 84 120 60 24.02398 1 0 0 0 0 0
## 3 3 70 1 83 147 88 22.14290 0 0 0 0 0 0
## 4 4 70 0 65 123 76 26.63187 1 0 0 1 0 0
## 5 5 70 0 63 135 85 24.41255 1 0 0 0 0 0
## 6 6 70 0 76 83 54 23.24236 1 0 0 0 1 0
## 7 7 57 0 73 191 116 39.49046 1 0 0 0 0 0
## 8 8 55 0 91 147 95 27.11609 1 0 0 0 0 0
## 9 9 88 1 63 209 100 27.43554 1 0 0 1 0 0
## 10 10 54 0 104 166 106 25.54448 1 0 0 0 0 0
## mitype year admitdate disdate fdate los dstat lenfol fstat
## 1 0 1 13/01/1997 18/01/1997 31/12/2002 5 0 2178 0
## 2 1 1 19/01/1997 24/01/1997 31/12/2002 5 0 2172 0
## 3 1 1 01/01/1997 06/01/1997 31/12/2002 5 0 2190 0
## 4 1 1 17/02/1997 27/02/1997 11/12/1997 10 0 297 1
## 5 1 1 01/03/1997 07/03/1997 31/12/2002 6 0 2131 0
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## 6 0 1 11/03/1997 12/03/1997 12/03/1997 1 1 1 1
## 7 1 1 10/03/1997 15/03/1997 31/12/2002 5 0 2122 0
## 8 1 1 11/01/1997 15/01/1997 15/02/2001 4 0 1496 1
## 9 0 1 31/12/1996 04/01/1997 09/07/1999 4 0 920 1
## 10 0 1 16/01/1997 21/01/1997 31/12/2002 5 0 2175 0

summary(whas500)

## id age gender hr
## Min. : 1.0 Min. : 30.00 Min. :0.0 Min. : 35.00
## 1st Qu.:125.8 1st Qu.: 59.00 1st Qu.:0.0 1st Qu.: 69.00
## Median :250.5 Median : 72.00 Median :0.0 Median : 85.00
## Mean :250.5 Mean : 69.85 Mean :0.4 Mean : 87.02
## 3rd Qu.:375.2 3rd Qu.: 82.00 3rd Qu.:1.0 3rd Qu.:100.25
## Max. :500.0 Max. :104.00 Max. :1.0 Max. :186.00
##
## sysbp diasbp bmi cvd
## Min. : 57.0 Min. : 6.00 Min. :13.05 Min. :0.00
## 1st Qu.:123.0 1st Qu.: 63.00 1st Qu.:23.22 1st Qu.:0.75
## Median :141.5 Median : 79.00 Median :25.95 Median :1.00
## Mean :144.7 Mean : 78.27 Mean :26.61 Mean :0.75
## 3rd Qu.:164.0 3rd Qu.: 91.25 3rd Qu.:29.39 3rd Qu.:1.00
## Max. :244.0 Max. :198.00 Max. :44.84 Max. :1.00
##
## afb sho chf av3
## Min. :0.000 Min. :0.000 Min. :0.00 Min. :0.000
## 1st Qu.:0.000 1st Qu.:0.000 1st Qu.:0.00 1st Qu.:0.000
## Median :0.000 Median :0.000 Median :0.00 Median :0.000
## Mean :0.156 Mean :0.044 Mean :0.31 Mean :0.022
## 3rd Qu.:0.000 3rd Qu.:0.000 3rd Qu.:1.00 3rd Qu.:0.000
## Max. :1.000 Max. :1.000 Max. :1.00 Max. :1.000
##
## miord mitype year admitdate
## Min. :0.000 Min. :0.000 Min. :1.000 12/10/2001: 4
## 1st Qu.:0.000 1st Qu.:0.000 1st Qu.:1.000 25/10/1999: 4
## Median :0.000 Median :0.000 Median :2.000 29/06/2001: 4
## Mean :0.342 Mean :0.306 Mean :1.984 01/08/1999: 3
## 3rd Qu.:1.000 3rd Qu.:1.000 3rd Qu.:3.000 02/08/1999: 3
## Max. :1.000 Max. :1.000 Max. :3.000 04/10/1997: 3
## (Other) :479
## disdate fdate los dstat
## 12/11/2001: 4 31/12/2002:285 Min. : 0.000 Min. :0.000
## 03/10/2001: 3 21/08/1999: 3 1st Qu.: 3.000 1st Qu.:0.000
## 04/08/1997: 3 07/12/2001: 2 Median : 5.000 Median :0.000
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## 06/01/1997: 3 10/12/2001: 2 Mean : 6.116 Mean :0.078
## 08/06/2001: 3 11/12/2001: 2 3rd Qu.: 7.000 3rd Qu.:0.000
## 10/11/1997: 3 12/11/2001: 2 Max. :47.000 Max. :1.000
## (Other) :481 (Other) :204
## lenfol fstat
## Min. : 1.0 Min. :0.00
## 1st Qu.: 296.5 1st Qu.:0.00
## Median : 631.5 Median :0.00
## Mean : 882.4 Mean :0.43
## 3rd Qu.:1363.5 3rd Qu.:1.00
## Max. :2358.0 Max. :1.00
##

The average age is 69.846, with an average of 66 years for the 300 males and an average
of 74 years for the females. Other data of interest are the average BMI, 26.6137799, which
means overweight, or the median length of the follow-up, 1627 days.





Chapter 4

APPLICATIONS WITH REAL DATA SETS

In this chapter, we’ll try the two functions of our package, presented with detail in the
former chapter, with two datasets, gbcs and whas500, also presented and explained. We’ll
use the function with() for a cleaner code, as in the following example:

with(gbcs, prob.plot(time, cens, "distribution"))

4.1 Probability Plots

We’ll try this function with the ten possible distributions, showed below:

## [1] "exp" "weibull" "gumbel" "norm" "lnorm"
## [6] "logis" "loglogis" "beta" "expweibull" "exppower"

We try this function with the variables of gbcs, survtime, the time to death, and
censdead, a binary variable related to the censoring or not of the deaths. We’ll start for
the normal distribution:

with(gbcs, prob.plot(survtime, censdead, "norm"))

49
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Probability plots for a Normal distribution

Shape or location: 2373.418 	 Scale: 1151.843

We can check in this graph that the probability-probability and stabilised probability
plots are the better, while the empirically rescaled plot are less adequate. In last place, we
can discard the quartile-quartile plot, isn’t adequate to the data.

Logistic-normal distribution:

with(gbcs, prob.plot(survtime, censdead, "lnorm"))
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Probability plots for a Log−normal distribution

Shape or location: 8.035 	 Scale: 1.083

For this distribution, all the four plots work very well. In overall, we can choose this
distribution.

Logistic distribution:

with(gbcs, prob.plot(survtime, censdead, "logis"))
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Probability plots for a Logistic distribution

Shape or location: 2344.947 	 Scale: 672.638

There, only the P-P plot and, in a lesser extent, the SP plot fits relatively well with the
data for a logistic. We can discard the Q-Q plot, definitely.

Log-logistic distribution:

with(gbcs, prob.plot(survtime, censdead, "loglogis"))
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Probability plots for a Log−logistic distribution

Shape or location: 1.708 	 Scale: 2859.797

There, we see a strange value. The slope of the Q-Q plot are very inusual and, in a
lesser extent, the slopes of the P-P and SP plots. Only the ER plot, that fits very well, has a
normal slope. We can check that, in overall, the better distribution is the log-normal and,
in a lesser sense, the normal distribution

Now, we have other five distributions which present different types of errors, starting
for the exponential distribution.

with(gbcs, prob.plot(survtime, censdead, "exp"))

## <simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient, rcens = rcens, lcens = lcens, icens = icens, ncens = ncens, ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE, method = meth, lower = lower, upper = upper, ...): non-finite finite-difference value [1]>

## Error in fitdistcens(data, "exp"): the function mle failed to estimate the



54 4.1. Probability Plots

parameters,
## with the error code 100

We can see that the exponential distribution fails due to an incorrect calculation in the
maximum likelihood parameters. That indicates us that maybe the data doesn’t follow on
exponential distribution. We can try to change the default values for the MLE or indicate
some parameters. We’ll try the same version with parameters.

with(gbcs, prob.plot(survtime, censdead, "exp", parameters = list(shape = 0.091, shape2 = NULL,
location = NULL, scale = NULL)))

## <simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient, rcens = rcens, lcens = lcens, icens = icens, ncens = ncens, ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE, method = meth, lower = lower, upper = upper, ...): non-finite finite-difference value [1]>

## Error in fitdistcens(data, "exp"): the function mle failed to estimate the
parameters,
## with the error code 100

We find the same issue for the shape argument (although in the exponential distribu-
tion is the scale parameter). With two values, 1 and 0.091, we have the same error in MLE.
We’ll try the other distributions.

Weibull distribution:

with(gbcs, prob.plot(survtime, censdead, "weibull"))

## Error in while (theor.QQ[i] > empirical_f[1, index + 1]) index <- index + :
missing value where TRUE/FALSE needed

We found the next issue:

## Error in while (theor.QQ[i] > empirical_f[1, index + 1]) index <- index +
:missing value where TRUE/FALSE needed

That’s an interesting issue for a future revision of the package, related with a possible
error in the coding of the theor.QQ.

Gumbel distribution:

with(gbcs, prob.plot(survtime, censdead, "gumbel"))

## <simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient, rcens = rcens, lcens = lcens, icens = icens, ncens = ncens, ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE, method = meth, lower = lower, upper = upper, ...): function cannot be evaluated at initial parameters>

## Error in fitdistcens(data, "gumbel", start = list(mu = -3, beta = 3)): the
function mle failed to estimate the parameters,
## with the error code 100
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We have the same issue with the maximum likelihood estimation.

Beta distribution:

with(gbcs, prob.plot(survtime, censdead, "beta", beta.limits=c(as.numeric(0), as.numeric(1))))

## Error in start.arg.default(data10, distr = distname): values must be in [0-1]
to fit a beta distribution

We have an error with the beta distribution, because the values of the variable survtime
must be between 0 and 1.

For the exponential power distribution, we also have problems for estimating the pa-
rameters:

with(gbcs, prob.plot(survtime, censdead, "exppower"))

## <simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient, rcens = rcens, lcens = lcens, icens = icens, ncens = ncens, ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE, method = meth, lower = lower, upper = upper, ...): function cannot be evaluated at initial parameters>

## Error in fitdistcens(data, "exppow", start = list(alpha = 0.5, beta = 0.5)):
the function mle failed to estimate the parameters,
## with the error code 100

For last, we use the exponential Weibull distribution:

with(gbcs, prob.plot(survtime, censdead, "expweibull"))

## <simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient, rcens = rcens, lcens = lcens, icens = icens, ncens = ncens, ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE, method = meth, lower = lower, upper = upper, ...): function cannot be evaluated at initial parameters>

## Error in fitdistcens(data, "expwei", start = list(alpha = 1, gamma = 1, : the
function mle failed to estimate the parameters,
## with the error code 100

There, we’ll found another error 100 when we estimate the parameters.

Now, we change to the whas500 dataset and we have the following results for all the
distributions. We start with the exponential distribution and since the function won’t
estimate the parameters, we choose to try with a scale of 0.1:

# exp with parameters
with(whas500, prob.plot(lenfol, fstat, "exp"))

## Error in fitdistcens(data, "exp"): the function mle failed to estimate the
parameters,
## with the error code 100
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# exponential
with(whas500, prob.plot(lenfol, fstat, "exp", parameters = list(shape = NULL, shape2 = NULL,

location = NULL, scale = 0.1)))

## Error in round(out.p$shape, 3): non-numeric argument to mathematical function

# gumbel
with(whas500, prob.plot(lenfol, fstat, "gumbel"))

## Error in fitdistcens(data, "gumbel", start = list(mu = -3, beta = 3)): the
function mle failed to estimate the parameters,
## with the error code 100

# exponential power
with(whas500, prob.plot(lenfol, fstat, "exppower"))

## Error in fitdistcens(data, "exppow", start = list(alpha = 0.5, beta = 0.5)):
the function mle failed to estimate the parameters,
## with the error code 100

# exp-weibull
with(whas500, prob.plot(lenfol, fstat, "expweibull"))

## Error in fitdistcens(data, "expwei", start = list(alpha = 1, gamma = 1, : the
function mle failed to estimate the parameters,
## with the error code 100

With the exponential without parameters, we found the already known error 100.
With the scale parameter, now we found an error related with a non-numeric argument.
For the other three distributions, as with the exponential distribution with parameters,
Gumbel, exponential power and exponential Weibull, we have the same issues, the error
100, related to the maximum likelihood estimation.

For the Weibull distribution:

with(whas500, prob.plot(lenfol, fstat, "weibull"))

## Error in while (theor.QQ[i] > empirical_f[1, index + 1]) index <- index + :
missing value where TRUE/FALSE needed

There, we have the same coding issue already commented.

Now, we’ll try with the four functioning distributions, normal, logistic normal, logistic
and log-logistic:
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# normal
with(whas500, prob.plot(lenfol, fstat, "norm"))
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Probability plots for a Normal distribution

Shape or location: 1517.167 	 Scale: 1207.895

# logistic normal
with(whas500, prob.plot(lenfol, fstat, "lnorm"))
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Probability plots for a Log−normal distribution

Shape or location: 7.706 	 Scale: 3.396

# logistic
with(whas500, prob.plot(lenfol, fstat, "logis"))
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Probability plots for a Logistic distribution

Shape or location: 1484.735 	 Scale: 754.063

#log-logistic distribution
with(whas500, prob.plot(lenfol, fstat, "loglogis"))
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Probability plots for a Log−logistic distribution

Shape or location: 0.528 	 Scale: 2054.235

The probability plots for all four distributions don’t adjust totally well. For example,
for the best functioning distributions, logistic normal and log-logistic, we have some out-
liers below or above the line. The other two distributions, normal and logistic, can be
discarded. The points follow, in overall, a S-shape. The empirical distribution doesn’t fit
well with the theoretical.

For last, we can try the beta distribution with data between 0 and 1. For that, we create
with the function runif() an uniformly distributed random variable:

with(whas500, prob.plot(runif(500), fstat, "beta"))
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Probability plots for a Beta distribution

Shape or location: 1.026 	 Scale: 0

There, we’ll find an almost perfect fit with all the plots.

4.1.1 Comments

For both datasets, we have four working distributions, normal, logistic, beta and log-
normal. For the other datasets, diagnoses are the following: we need to improve the
maximum likelihood estimations for several distributions: gumbel, exponential and ex-
ponential power, due to the error 100, or change the code. For example, we could use the
package ActuDistns. For the other two distributions, log-logistic and weibull, we have
different issues, related to coding. For last, for the log-logistic distribution, we solved the
issue with the out.p, from this piece of code, so finally we have five working distributions:
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qloglogis <<- function(p,alpha,beta) beta*(p/(1-p))^(1/alpha)

In this case, we’ll save the function in the environment of a function with just the
following assignment character, <-. Other issue is related to the naming of the location
or shape. A possible solution for that could be introducing a equal convention for all the
distributions, shape or location, although that can be confusing, but the structure of the
function (the use of grids and ggplot2, for example) implies some generalization.

In overall, this function needs some reworking in future versions of this package.

4.2 Cumulative Hazard Plots

For this section, we have, for default, two ways. For default, we can test the cumulative
hazard plots for the Weibull, Gumbel, Normal, Log-Normal, Logistic, Log-Logistic, Ex-
ponentiated Weibull and Exponentiated Power distributions. If our data are adequate, as
explained in the former section, and we can use the beta distribution, then we can have
the cumulative hazard for all distributions.

We execute the first example with the gbcs dataset.

with(gbcs, cum.haz.plot(survtime, censdead))
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## $weibull
## shape scale
## 1.542139 3447.907817
##
## $lognormal
## location scale
## 8.034958 1.082831
##
## $loglogistic
## shape scale
## 1.707972 2859.797238
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##
## $expweibull
## shape1 shape2 scale
## 0.1862231 101.5483373 1.7088390
##
## $exppower
## shape scale
## 0.035520058 0.004731005
##
## $gumbel
## location scale
## 2634.958 779.245
##
## $normal
## location scale
## 2373.418 1151.843
##
## $logistic
## location scale
## 2344.9468 672.6382

In this example, we can observe that the better distribution for our data are the log-
normal and exponentiated weibull distributions, because the curve is very well fitted,
with some outliers. To a lesser extent, we have the log-logistic distribution. For the ex-
ponential power distribution, we have a strange graph due to the maximum likelihood
estimation of the parameters, 0.000000005 for the shape and scale. For last, the other dis-
tributions don’t fit very well, as the weibull distribution, because there, we have our data
points under the fit line. Under the grid of plots, we have a list of parameters for each
distribution, shape or location and scale.

By other hand, with the whas500 dataset, the plot doesn’t work because in some . For
the variables los, dstat, lenfol and fstat, we have the same issue, an error code 100.
For the first pair of variables, we have as before an issue with the maximum likelihood
estimation of the parameters. We can check that:

with(whas500, cum.haz.plot(los, dstat))

## <simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient, rcens = rcens, lcens = lcens, icens = icens, ncens = ncens, ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE, method = meth, lower = lower, upper = upper, ...): non-finite value supplied by optim>

## Error in fitdistcens(data, "weibull"): the function mle failed to estimate
the parameters,
## with the error code 100

with(whas500, cum.haz.plot(lenfol, fstat))
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## <simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient, rcens = rcens, lcens = lcens, icens = icens, ncens = ncens, ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE, method = meth, lower = lower, upper = upper, ...): non-finite finite-difference value [3]>

## Error in fitdistcens(data, "expwei", start = list(shape1 = 0.01, shape2 = 0.01,
: the function mle failed to estimate the parameters,
## with the error code 100

We found issues with two different distributions, Weibull and Exponential Weibull.

4.2.1 Comments

The function brings us a grid of nine plots, although if one distribution fails, for example
with the gbcs dataset, then we don’t have the grid, because for default we choose to
show all the distributions. For fixing that, we could use an universal conditional. If a
distribution doesn’t have the error 100, then we graph its hazard. If not (else), then we
don’t plot the distribution with this error. We can see it with an example: if we estimate
some values for the parameters inside the code, with some data, as gbcs, will work, but
with other data, as whas500, won’t work.

This function, compared to prob.plot, is more independent for each calculation, so
we don’t need an universal naming convention for the parameters when we graph our
hazards. Plus, some distributions, due to its parameters, have strange graphs. For next
versions, we can recheck that and even use packages as ActuDistns.

In overall, the function also needs more reworking.





Chapter 5

CONCLUSIONS

In this present work, we presented a new R package or the goodness of fit with right-
censored data. This package can be very useful for check the fit of our desired distribution
according to our chosen data before to make our desired survival analysis. Without a
good fit, we could fail.

We provided four parts: an overview of the survival analysis, the state of the art in
goodness of fit for right-censored data (quantitative and graphical techniques), a brief
exploration of the R landscape in these matters and a R package for the goodness of fit for
the right-censored data and its applications, called GofCens.

For the first part, corresponding to the Chapters 1 and 2, we presented some building
blocks of the survival analysis, as the Kaplan-Meier estimator, the censored data (espe-
cially the right censoring) or the distributions.

For the second part, we presented briefly two quantitative goodness of fit techniques,
the Kolmogorov-Smirnov goodness of fit test, a well known statistical test, and Grané test
of goodness-of-fit, especialized for right-censored data.

Connecting the two former parts, we presented the state of the art of R functions in
survival analysis, especially in the distributions, the right-censored data and the goodness
of fit. Also, we presented the two original functions from Anna Febrer, ProbPlots and
CumHazPlot, our starting point for the R package.

Finally, we presented a R package dedicated to the graphical goodness of fit, GofCens,
with two functions, its help pages, some essential files such the DESCRIPTION and two
datasets. Also, we tested it under many possible circumstances, with the purpose of
knowing its inner workings and limitations. The functions, in overall, have some issues,
especially with the calculations of the parameters for our distributions by maximum like-
lihood and the speed of execution in both functions due to the gridExtra package.

The future

As we saw in the Chapter 4, the package have many issues, but this bring us an op-
portunity for improving many parts and, even more important, a long-term purpose for
our package. Our intention is to mantain this package in a R repository for packages as
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CRAN, so in a future we’ll fix, add or recheck functions of this package. We have some
examples of proposals:

1. Present an alternative, the base graphics. Two main functions there: plot() and
par() for the grid.

2. Add more datasets.

3. Fix prob.plot and cum.haz.plot, make them less dependent on maximum likeli-
hood calculations. One possible idea is to use the package ActuDistns, albeit we
can lose flexibility.

4. Fix and improve the help pages.

For last, this thesis is the continuation of a long term project in the GRBIO (Grup de
Recerca en Bioestadística i Bioinformàtica) related to goodness-of-fit techniques for right-
censored data. In this package, we implemented R functions related to the graphic anal-
ysis. In a future, we can incorporate functions related to the other groups of techniques:
chi-squared statistic, empirical survival function and correlation measures.





Appendices
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Appendix A

R CODE

A.1 prob.plot

prob.plots <- function(time, cens, distribution=c("exp", "weibull", "gumbel", "
norm", "lnorm", "logis", "loglogis", "beta", "expweibull", "exppower"), beta.
limits=c(0,1), parameters=list(shape = NULL, shape2 = NULL, location = NULL,
scale = NULL)){

# check variables
stopifnot(is.numeric(time), is.numeric(cens))

# Transform the input data to the needed format
input <- list(n = length(time), survKM = survfit(Surv(time, cens)~1, type='

kaplan-meier'), data = data.frame(left=time, right=ifelse(cens==1, time, NA)
))

# Compute the event times
t = summary(input[[2]])$time

# Compute the survival at the event times
surv.value = summary(input[[2]])$surv
uncensored = rep(1, length(t))
u.point.surv = survfit(Surv(t, uncensored)~1, type='kaplan-meier')
u.point = 1 - u.point.surv$surv
empirical_f = rbind(c(0, t, Inf), c(0, u.point, 1))
u.estimate = rep(0, length(u.point))
in.p = parameters

# distributions

data <- input$data

# exponential

if(distribution=="exp") {
if(is.null(in.p$scale)) {
fit.exp <- fitdistcens(data, "exp")
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rate.exp <- unname(fit.exp$estimate[1])
} else rate.exp <- 1/in.p$scale
theor.PP <- pexp(t, rate.exp)
theor.QQ <- qexp(1 - surv.value, rate.exp)
out.p <- list(distrib = "Exponential", scale = 1/rate.exp)

}
# weibull
if(distribution=="weibull"){
if(is.null(in.p$shape) || is.null(in.p$scale)){
fit.wei <- fitdistcens(data,"weibull")
shape.wei <- unname(fit.wei$estimate[1])
scale.wei <- unname(fit.wei$estimate[2])

}
else{
shape.wei <- in.p$shape
scale.wei <- in.p$scale

}
theor.PP <- pweibull(t, shape.wei, scale.wei)
theor.QQ <- qweibull(1-surv.value, shape.wei, scale.wei)
out.p <- list(distr = "Weibull", shape = shape.wei, scale = scale.wei)

}
# log-weibull (gumbel)
if(distribution=="gumbel"){
dgumbel <<- function(x,mu,beta){
1/beta*exp((x-mu)/beta)*exp(-exp((x-mu)/beta))}

pgumbel <<- function(q,mu,beta) 1-exp(-exp((q-mu)/beta))
qgumbel <<- function(p,mu,beta) log(log(1/(1-p)))*beta+mu
if(is.null(in.p$location) || is.null(in.p$scale)){
fit.gum <- fitdistcens(data,"gumbel",start=list(mu=-3,beta=3))
loc.gum <- unname(fit.gum$estimate[1])
scale.gum <- unname(fit.gum$estimate[2])

}
else{
loc.gum <- in.p$location
scale.gum <- in.p$scale

}
theor.PP <- pgumbel(t, loc.gum, scale.gum)
theor.QQ <- qgumbel(1-surv.value, loc.gum, scale.gum)
out.p <- list(distr = "Gumbel", shape = loc.gum, scale = scale.gum)

}
# normal
if(distribution=="norm"){
if(is.null(in.p$location) || is.null(in.p$scale)){
fit.norm <- fitdistcens(data,"norm")
loc.norm <- unname(fit.norm$estimate[1])
scale.norm <- unname(fit.norm$estimate[2])

}
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else{
loc.norm <- in.p$location
scale.norm <- in.p$scale

}
theor.PP <- pnorm(t, loc.norm, scale.norm)
theor.QQ <- qnorm(1-surv.value, loc.norm, scale.norm)
out.p <- list(distr = "Normal", shape = loc.norm, scale = scale.norm)

}
# log-normal
if(distribution=="lnorm"){
if(is.null(in.p$location) || is.null(in.p$scale)){
fit.lnorm <- fitdistcens(data, "lnorm")
loc.lnorm <- unname(fit.lnorm$estimate[1])
scale.lnorm <- unname(fit.lnorm$estimate[2])

}
else{
loc.lnorm <- in.p$location
scale.lnorm <- in.p$scale

}
theor.PP <- plnorm(t, loc.lnorm, scale.lnorm)
theor.QQ <- qlnorm(1-surv.value, loc.lnorm, scale.lnorm)
out.p <- list(distr = "Log-normal", shape = loc.lnorm, scale = scale.lnorm)

}
# logistic
if(distribution=="logis"){
if(is.null(in.p$location) || is.null(in.p$scale)){
fit.log <- fitdistcens(data,"logis")
loc.logis <- unname(fit.log$estimate[1])
scale.logis <- unname(fit.log$estimate[2])

}
else{
loc.logis <- in.p$location
scale.logis <- in.p$scale

}
theor.PP <- plogis(t, loc.logis, scale.logis)
theor.QQ <- qlogis(1-surv.value, loc.logis, scale.logis)
out.p <- list(distr = "Logistic", shape = loc.logis, scale = scale.logis)

}
# log-logistic
if(distribution=="loglogis"){
dloglogis <<- function(x,alpha,beta) {
(alpha*beta^(-alpha)*x^(alpha-1))/(1+(x/beta)^alpha)^2}

ploglogis <<- function(q,alpha,beta) 1/(1+(q/beta)^(-alpha))
qloglogis <- function(p,alpha,beta) beta*(p/(1-p))^(1/alpha)
if(is.null(in.p$shape) || is.null(in.p$scale)){
fit.loglog <- fitdistcens(data,"loglogis", start=list(alpha=1,beta=1))
shape.loglogis <- unname(fit.loglog$estimate[1])
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scale.loglogis <- unname(fit.loglog$estimate[2])
}
else{
shape.loglogis <- in.p$shape
scale.loglogis <- in.p$scale

}
theor.PP <- ploglogis(t, shape.loglogis, scale.loglogis)
theor.QQ <- qloglogis(1-surv.value, shape.loglogis, scale.loglogis)
out.p <- list(distr = "Log-logistic", shape = shape.loglogis, scale = scale.

loglogis)
}
# beta
if(distribution=="beta"){
a.beta<-beta.limits[1]
b.beta<-beta.limits[2]
if(is.null(in.p$shape) || is.null(in.p$shape2)){
fit.beta <- fitdistcens((data-a.beta)/(b.beta-a.beta),"beta")
shape1.beta <- unname(fit.beta$estimate[1])
shape2.beta <- unname(fit.beta$estimate[2])

}
else{
shape1.beta <- in.p$shape
shape2.beta <- in.p$shape2

}
theor.PP <- pbeta((t-a.beta)/(b.beta-a.beta), shape1.beta, shape2.beta)
theor.QQ <- qbeta((1-surv.value), shape1.beta, shape2.beta)*
(b.beta-a.beta)+a.beta

out.p <- list(distr = "Beta", shape = shape1.beta, shape2 = shape2.beta,
scale = beta.limits)

}
# Exponentiated Weibull
if(distribution=="expweibull"){
dexpwei <<- function(x,alpha,gamma,beta){
gamma*alpha*beta^alpha*x^(alpha-1)*
exp(-(beta*x)^alpha)*(1-exp(-(beta*x)^alpha))^(gamma-1)}

pexpwei <<- function(q,alpha,gamma,beta) (1-exp(-(beta*q)^alpha))^gamma
qexpwei <<- function(p,alpha,gamma,beta){
(log(1/(1-p^(1/gamma))))^(1/alpha)/beta}

if(is.null(in.p$shape) || is.null(in.p$shape2) || is.null(in.p$scale)){
fit.expwei <- fitdistcens(data,"expwei",

start=list(alpha=1,gamma=1,beta=1))
shape1.expwei <- unname(fit.expwei$estimate[1])
shape2.expwei <- unname(fit.expwei$estimate[2])
scale.expwei <- unname(fit.expwei$estimate[3])

}
else{
shape1.expwei <- in.p$shape
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shape2.expwei <- in.p$shape2
scale.expwei <- in.p$scale

}
theor.PP <- pexpwei(t, shape1.expwei, shape2.expwei, scale.expwei)
theor.QQ <- qexpwei(1-surv.value, shape1.expwei,

shape2.expwei, scale.expwei)
out.p <- list(distr = "Exponetiated␣Weibull", shape = shape1.expwei,

shape2 = shape2.expwei, scale = scale.expwei)
}
# Exponential power
if(distribution=="exppower"){
dexppow <<- function(x,alpha,beta){
alpha*beta^alpha*x^(alpha-1)*
exp((beta*x)^alpha)*exp(1-exp((beta*x)^alpha))}

pexppow <<- function(q,alpha,beta) 1-exp(1-exp((beta*q)^alpha))
qexppow <<- function(p,alpha,beta) (log(1-log(1-p)))^(1/alpha)/beta
if(is.null(in.p$shape) || is.null(in.p$scale)){
fit.exppow <- fitdistcens(data,"exppow",start=list(alpha=0.5,beta=0.5))
shape.exppow <- unname(fit.exppow$estimate[1])
scale.exppow <- unname(fit.exppow$estimate[2])

}
else{
shape.exppow <- in.p$shape
scale.exppow <- in.p$scale

}
theor.PP <- pexppow(t, shape.exppow, scale.exppow)
theor.QQ <- qexppow(1-surv.value, shape.exppow, scale.exppow)
out.p <- list(distr = "Exponential␣Power", shape = shape.exppow,

scale = scale.exppow)
}
# building the data
index <- 0
for (i in 1:length(u.point)){
while (theor.QQ[i]>empirical_f[1,index+1]) index <- index + 1
if(index!=0) u.estimate[i] <- empirical_f[2,index]

}
ggdat <- data.frame(PPx=1-surv.value, PPy=theor.PP, QQx=t, QQy=theor.QQ, SPx=2/

pi*asin(sqrt(1-surv.value)), SPy=2/pi*asin(sqrt(theor.PP)), ERx=u.point, ERy
=u.estimate)

# plots
PP <- ggplot(data=ggdat, aes(x=PPy, y=PPx)) + geom_point(colour="red") + xlab(

expression(hat(F)(t))) + ylab(expression(hat(F)[0](t))) + geom_abline(
intercept=0) + annotate("text", label="P-P", x=Inf, y=-Inf, hjust=1, vjust
=-1, size=6, fontface="bold", family="URWBookman")

QQ <- ggplot(data=ggdat, aes(x=QQx, y=QQy)) + geom_point(colour="#0073B1") +
xlab(expression(t)) + ylab(expression(paste(hat(F)[0]^{-1})( hat(F)(t)) )) +
geom_abline(intercept = min(t)) + annotate("text", label="Q-Q", x=Inf, y=-
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Inf, hjust=1, vjust=-1, size=6, fontface="bold", family="URWBookman")
SP <- ggplot(data=ggdat, aes(x=SPx, y=SPy)) + geom_point(colour="#E69F00") +

xlab(expression(paste(2/pi %*% arcsin(hat(F)(t)^{1/2})))) + ylab(expression(
paste(2/pi %*% arcsin(hat(F)[0](t)^{1/2})))) + geom_abline(intercept=0) +
annotate("text", label="SP", x=Inf, y=-Inf, hjust=1, vjust=-1, size=6,
fontface="bold", family="URWBookman")

ER <- ggplot(data=ggdat, aes(x=ERx, y=ERy)) + geom_point(colour="#006400") +
xlab(expression(hat(F)[u](t))) + ylab(expression(hat(F)[u](paste(hat(F)
[0]^{-1})(hat(F)(t))))) + geom_abline(intercept=0) + annotate("text", label=
"ER", x=Inf, y=-Inf, hjust=1, vjust=-1, size=6, fontface="bold", family="
URWBookman")

grid.arrange(PP, QQ, SP, ER, ncol=2, top=paste("Probability␣plots␣for␣a", out.p
$distr, "distribution"), bottom=paste("Shape␣or␣location:", round(out.p$
shape, 3), "\t", "Scale:", round(out.p$scale, 3)))

}
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A.2 cum.haz.plot

cum.haz.plot <- function(time, cens, beta.limits=c(0,1)){
# Transform the input data to the needed format
n <- length(time)
data <- data.frame(left=time, right=ifelse(cens==1,time,NA))
survNA <- survfit(Surv(time, cens)~1, type='fleming')
# Compute the Cumulative Hazard
Haz <- round(with(summary(survNA), -log(surv)), 6)
# Compute the event times
t<-summary(survNA)$time
# Compute the survival at the event times
surv.value<-summary(survNA)$surv
# Computing parameters
parameters <- list()
# some graphical definitions
blank <- theme(axis.title.y=element_blank())
outrange <- ggplot(data=data.frame(y=1, x=1)) + coord_flip(ylim = c(0, 1), xlim

= c(0, 1)) + annotate("text", x=0.5, y=0.5, label="The␣data␣is␣out␣of␣range
") + theme(axis.title.y=element_blank())

# functions
# gumbel
dgumbel <<- function(x,location,scale){
1/scale*exp((x-location)/scale)*exp(-exp((x-location)/scale))

}
pgumbel <<- function(q,location,scale){ 1-exp(-exp((q-location)/scale)) }
# log-logis
dloglogis <<- function(x,shape,scale){
(shape*scale^(-shape)*x^(shape-1))/(1+(x/scale)^shape)^2

}
ploglogis <<- function(q,shape,scale) 1/(1+(q/scale)^(-shape))
# beta
a.beta<-beta.limits[1]
b.beta<-beta.limits[2]
# exponentiated weibull
dexpwei <<- function(x,shape1,shape2,scale){
shape2*shape1*scale^shape1*x^(shape1-1)*exp(-(scale*x)^shape1)*(1-exp(-(scale*

x)^shape1))^(shape2-1)
}
pexpwei <<- function(q,shape1,shape2,scale){ (1-exp(-(scale*q)^shape1))^shape2

}
# exponential power
dexppow <<- function(x,shape,scale){
shape*scale^shape*x^(shape-1)*exp((scale*x)^shape)*exp(1-exp((scale*x)^shape))

}
pexppow <<- function(q,shape,scale) 1-exp(1-exp((scale*q)^shape))
# distributions with the following condition, if(min(data[,1]) < 0): exp-
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weibull, exppower, log-logis, log-normal and weibull (5/9)
# distributions without the condition: normal, logistic and gumbel
# distributions with if(max(data[,1])>b.beta || min(data[,1])<a.beta): beta
if(min(data[,1]) < 0) {
weibull <- outrange + ggtitle("Weibull")
lognormal <- outrange + ggtitle("lognormal")
loglogis <- outrange + ggtitle("Log-Logistic")
expweibull <- outrange + ggtitle("Exponentiated␣Weibull")
exppower <- outrange + ggtitle("Exponential␣Power")

} else {
# weibull
fit.wei <- fitdistcens(data,"weibull")
shape.wei <-fit.wei$estimate[1]
scale.wei <- fit.wei$estimate[2]
trans.wei <- function(Haz) log(Haz)
parameters$weibull <- c(shape.wei, scale.wei)
reg.wei <- function(t) shape.wei*(-log(scale.wei)+log(t))
weibull <- qplot(x=log(t), y=trans.wei(Haz)) + geom_line(aes(x=log(t), y=reg.

norm(t))) + ggtitle("Weibull") + blank
# log-normal
fit.lnorm <- fitdistcens(data, "lnorm")
loc.lnorm <- fit.lnorm$estimate[1]
names(loc.lnorm) <- "location"
scale.lnorm <- fit.lnorm$estimate[2]
names(scale.lnorm) <- "scale"
trans.lnorm <- function(Haz) qnorm(1-exp(-Haz))
parameters$lognormal <- c(loc.lnorm, scale.lnorm)
reg.lnorm <- function(t) (log(t)-loc.lnorm)/scale.lnorm
lognormal <- qplot(x=log(t), y=trans.lnorm(Haz)) + geom_line(aes(x=log(t), y=

reg.lnorm(t))) + ggtitle("Log-Normal") + blank
# log-logistic
fit.loglog <- fitdistcens(data,"loglogis", start=list(shape=1,scale=1))
shape.loglogis <- fit.loglog$estimate[1]
scale.loglogis <- fit.loglog$estimate[2]
trans.loglogis <- function(Haz) log(exp(Haz)-1)
parameters$loglogistic <- c(shape.loglogis, scale.loglogis)
reg.loglogis <- function(t) shape.loglogis*(log(t)-log(scale.loglogis))
loglogis <- qplot(x=log(t), y=trans.loglogis(Haz)) + geom_line(aes(x=log(t), y

=reg.loglogis(t))) + ggtitle("Log-Logistic") + blank
# exponentiated weibull
fit.expwei <- fitdistcens(data, "expwei", start=list(shape1=0.01,shape2=0.01,

scale=0.01))
shape1.expwei <- fit.expwei$estimate[1]
shape2.expwei <- fit.expwei$estimate[2]
scale.expwei <- fit.expwei$estimate[3]
trans.expwei <- function(Haz){
log(-log(1-(1-exp(-Haz))^(1/shape2.expwei)))}
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parameters$expweibull <- c(shape1.expwei, shape2.expwei, scale.expwei)
reg.expwei <- function(t) shape1.expwei*log(scale.expwei*t)
expweibull <- qplot(x=log(t), y=trans.expwei(Haz)) + geom_line(aes(x=log(t), y

=reg.expwei(t))) + ggtitle("Exponentiated␣Weibull") + blank
# exponential power: 0.000000005
fit.exppow <- fitdistcens(data,"exppow", start=list(shape=0.000000005,scale

=0.000000005))
shape.exppow <- fit.exppow$estimate[1]
scale.exppow <- fit.exppow$estimate[2]
trans.exppow <- function(Haz) log(log(Haz+1))
parameters$exppower <- c(shape.exppow, scale.exppow)
reg.exppow <- function(t) shape.exppow*log(scale.exppow*t)
exppower <- qplot(x=log(t), y=trans.exppow(Haz)) + geom_line(aes(x=log(t), y=

reg.exppow(t))) + ggtitle("Exponentiated␣power") + blank
}
# the three distributions that not depends of the conditions
# gumbel
fit.gum <- fitdistcens(data,"gumbel", start=list(location=0,scale=3000))
shape.gum <- fit.gum$estimate[1]
scale.gum <- fit.gum$estimate[2]
trans.gum <- function(Haz) log(Haz)
parameters$gumbel <- c(shape.gum, scale.gum)
reg.gum <- function(t) (t-shape.gum)/scale.gum
gumbel <<- qplot(x=t, y=trans.gum(Haz)) + geom_line(aes(x=t, y=reg.gum(t))) +

ggtitle("Gumbel") + blank
# normal
fit.norm <- fitdistcens(data,"norm")
loc.norm<-fit.norm$estimate[1]
names(loc.norm) <- "location"
scale.norm <- fit.norm$estimate[2]
names(scale.norm) <- "scale"
trans.norm <- function(Haz) qnorm(1-exp(-Haz))
parameters$normal <- c(loc.norm, scale.norm)
reg.norm <- function(t) (t-loc.norm)/scale.norm
normal <- qplot(x=t, y=trans.norm(Haz)) + geom_line(aes(x=t, y=reg.norm(t))) +

ggtitle("Normal") + blank
# logistic
fit.log <- fitdistcens(data,"logis")
loc.logis <- fit.log$estimate[1]
scale.logis <- fit.log$estimate[2]
trans.logis <- function(Haz) log(exp(Haz)-1)
parameters$logistic <- c(loc.logis, scale.logis)
reg.logis <- function(t) (t-loc.logis)/scale.logis
logistic <- qplot(x=t, y=trans.logis(Haz)) + geom_line(aes(x=t, y=reg.logis(t))

) + ggtitle("Logistic") + blank
# beta distribution
if(max(data[,1])>b.beta || min(data[,1])<a.beta) {
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betap <- outrange + ggtitle("Beta")
} else {
fit.beta <- fitdistcens((data-a.beta)/(b.beta-a.beta),"beta")
shape1.beta <- fit.beta$estimate[1]
shape2.beta <- fit.beta$estimate[2]
trans.beta <- function(Haz) qbeta(1-exp(-Haz),shape1.beta,shape2.beta)
parameters$beta <- list(param = c(shape1.beta, shape2.beta), domain = beta.

limits)
reg.beta <- function(t) (t-a.beta)/(b.beta-a.beta)
betap <- qplot(x=t, y=trans.beta(Haz)) + geom_line(aes(x=t, y=reg.beta(t))) +

ggtitle("Beta") + blank
}
# a grid of plots
grid.arrange(weibull, gumbel, normal, lognormal, logistic, loglogis, betap,

expweibull, exppower, ncol=3)
parameters

}





Appendix B

DISTRIBUTIONS

In the Chapter 1 we already explored the basic mechanisms of the distributions applied to
survival analysis, so we’ll talk about the most used distributions, Weibull, Exponential,
Gumbel, normal, log-normal, logistic, log-logistic, beta, exponential power and expo-
nentiated Weibull, very suitable for most of our survival analyses from a very practical
approach, with the R software available. The purpose is to know better the mechanisms
behind our R package, with the numerical and graphical methods for goodness of fit,
reviewed in detail in the Chapter 2.

We’ll denote the shape parameters as α and γ, the location parameter as µ and the scale
parameter as β, following the criterion of Febrer Galvany (2015). Now, we’ll show two
tables with the distributions mentioned, one with the density functions and its survival
functions and the other with the cumulative hazard and hazard functions.
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B.1 Density and survival functions

Distribution Density Function [ f (t)] Survival Function [S(t)]
Weibull αβαtα−1e−(βt)α

e−(βt)α

Exponential βeβt e−βt

Gumbel 1
β e
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Logistic e
− t−µ

β

β(1+e
− t−µ

β )2

e
− t−µ

β

1+e
− t−µ

β

Log-logistic αtα−1β−α[
1+

(
t
β

)α]2
1

1+

(
t
β

)α

Beta 1
B(α,γ)

(t−a)α−1(b−t)γ−1

(b−a)α+γ−1

B(α,γ)−B t−a
b−a

(α,γ)

B(α,γ)

Exp-Power αβαtα−1e(βt)α
e1−e(βt)α

e1−e(βt)α

Exp-Weibull γαβαtα−1e−(βt)α
[1− e−(βt)α

]γ−1 1− [1− e−(βt)α
]γ

Table B.1: Survival and density functions
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B.2 Cumulative hazard and hazard functions

Distribution Cumulative Hazard Function [Λ(t)] Hazard Function [λ(t)]
Weibull (βt)α αβαtα−1

Exponential βt β

Gumbel e
t−µ

β 1
β e

t−µ
β

Normal − log
(
1− φ

( t−µ
β

)) 1
β
√

2π
× e

− (t−µ)2

2β2

1−φ(
t−µ

β )

Log-normal − log
(

1− φ

(
t−µ

β

)) 1
βt
√

2π
e
− (log t−µ)2

2β2

1−φ
(

log t−µ
β

)
Logistic log

(
1 + e

t−µ
β
) e

t−µ
β

β
(

1+e
t−µ

β
)

Log-logistic log
[

1 +
( t

β

)α
]

αβ−αtα−1

1+( t
β )

α

Beta − log
(B(α,γ)−B t−a

b−a
(α,γ)

B(α,γ)

)
[(t−a)α−1(b−t)γ−1]/(b−a)α+γ−1

B(α,γ)−Bt(α,γ)

Exp-Power e(βt)α − 1 αβαtα−1e(βt)α

Exp-Weibull − log(1− [1− e−(βt)α
]γ) αβγ(βt)α−1[1−e−(βt)α ]γ−1e−(βt)α

1−[1−e−(βt)α ]γ

Table B.2: Hazard functions
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