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Abstract

The problem of automatic protein classification using only their primary structures plays an

important role in modern bioinformatics research, especially for proteins whose 3-D structures

are yet unknown. One of these types of proteins, at the center of this thesis, is class C of

the G-Protein Coupled Receptors super-family. This class is of a great interest in pharmaco-

proteomics, from the point of view of drug design, because of their involvement in signaling

pathways in cells of the central nervous system. The automatic classification of protein se-

quences may improve the understanding of their function and be a basis for the prediction of

their 3-D structure, which is an information of interest for drug research.

This thesis compares classification results for different versions of the same database, including

the most recent ones. This exploration of the evolution of classification provides relevant

information about its capabilities and limitations. Furthermore, and given that several data

transformations are investigated, it also provides strong evidence concerning the robustness of

these transformations.

The other important contribution of the thesis is the investigation oriented towards the defini-

tion of approaches for semi-automatized database curation by using the automatic evaluation

of the database changes between versions with advanced machine learning techniques. The

thesis shows the consistency in improvements of the quality of the data between three versions

of the database across different classification techniques and different primary structure trans-

formations. It also validates the recently introduced continuous distributed representation for

protein sequences, originally developed for natural text processing. This new representation is

shown to be adequate and robust for the task of primary structure classification.
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Chapter 1

Introduction

One of the most challenging problems in the field of bioinformatics in recent years and probably

one that will only get more complex in the near future is the tremendous growth of experimental

data availability. The reduction rates in the costs of the sequencing processes, compounded with

their increasing technological sophistication, are significantly beating the rates of computation

power growth, which follows Moore’s law [National Human Genome Research Institute, 2016].

The number of genomes and other biomolecules being sequenced also follows an exponential

trend of increase. In proteomics in particular, the context of the current thesis, data availability

is not growing at a comparable rate but, likewise, the improvement in speed and the increasing

accessibility of the required technologies have also led to a remarkable growth in this area

[Richards et al., 2015].

This leads to all types of bio-data management challenges, including data storage and transmis-

sion, database public access, or data curation, to name just a few. And this is even before we

consider the challenges related to the standardization of procedures for at least semi-automated

data analysis oriented towards meaningful biological and medical knowledge extraction and in-

terpretation.

This thesis is meant to contribute some tools and approaches to deal (or at least assist) with

the problem of data curation in protein databases. “Manual” human-based (and therefore

1



2 Chapter 1. Introduction

not fully automated) data curation is an essential task in proteomics (as made evident by the

many efforts devoted to the design and maintenance of large and publicly accessible protein

databases), but the assumption according to which this thesis is built is that such task can be

assisted by advances in semi-automated data analysis, based on statistical and machine learning

methodologies. This assistance holds the promise of delivering gains in curation efficiency and

reliability.

Many biological databases are curated and supported by research communities, networks and

public-private partnerships, at a considerable cost. The work reported in this thesis, even if

based on a specific publicly available and research network-managed database, was carried out

independently and mainly from a Machine Learning research perspective. The results of this

work and the knowledge herein generated, though, are meant to be of use for the database

curation teams.

1.1 Motivation and Objectives

There are two main objectives for this thesis. The first one is to investigate the adequacy and

potential of a newly proposed alignment-free transformation of protein primary structures (that

is, a quantitatively analyzable transformation of the protein symbolic sequences). This can be

accomplished by comparing the results of protein subtype classification obtained using this

transformation with those obtained by previously successfully applied transformations, using

similar classification procedures. The basic idea behind this recently defined transformation is

treating the protein symbolic amino acid sequence as a kind of text in which “words” would

correspond to protein motifs, thus taking advantage of methods originally developed for text

processing and, in particular, for distributed word representation.

The second main objective of this thesis is to investigate the evolution of the main publicly

accessible GPCR (G-Protein Coupled Receptors) proteins database. Previous research clearly

showed evidence of subtype labeling problems in one of the classes of GPCR, namely Class C.

Clearly and consistently misclassified proteins were found in earlier versions of the database,
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along with well-defined maximum performance limits, which were shown to be independent of

the choice of data transformation and classification method. This previous research was carried

out using the 2011 version of the database, while new and greatly modified versions have recently

been made available. The current thesis considers the 2011, May 2016 and September 2016

versions of the database. The aim is to perform an analysis of the changes of the consistency

and quality of the data, of use to database curators, using Machine Learning techniques.

1.2 Structure

This document consist of six chapters, including the current introductory one.

In the second chapter, the context of the investigated problem is explained, covering the general

terminology in proteomics, principles of GPCR structure and functionality and the description

of the analyzed database.

The third chapter includes a self-contained overview of previous work in similar problems and

for the particular problem of classification of class C proteins considered in the thesis.

Then, in the fourth chapter, a technical description of methods used in the thesis is presented.

The last two chapters cover the experimental settings description, main results and their dis-

cussion, as well as the conclusion and possible future ways of improvement and development of

the current work.



Chapter 2

Background

This chapter is split into four main sections covering different aspects of the biological back-

ground of the problems at hand. They are by no means written with the aim of providing a

complete overview of each of the topics, something that is well beyond the goals of the current

thesis. Instead, the reader is provided with sufficient contextual background as to be able to

appreciate the application interest of the reported research.

The first section is aimed at introducing the general biological background behind the problem,

so as to shed some light on a few of the basic concepts used in proteomics. The second section

explains the basic principles of GPCR’s activation and describes the specific features of the

class C of this type of proteins. In the third section, the specific database analyzed in the

following chapters is summarily described, focusing on the important changes to its contents

that can be observed through the three investigated versions. The last section introduces the

problem of data curation in biological databases, also known as bio-curation. The fact that the

thesis deals with database changes and adaptations over time should make its results useful

from the viewpoint of data quality management.

4



2.1. Protein primary structure classification 5

2.1 Protein primary structure classification

The protein molecule is a polymer consisting of amino acid molecules. There are 20 different

amino acids in the protein alphabet, usually encoded in symbolic form using the letters of the

Latin alphabet. The number of amino acids in protein molecules varies widely, from a few

dozens to over a thousand.

Four structural levels of the protein are commonly distinguished. The primary structure is

simply a description of the linear sequence of amino acids in the protein and, as such, it conveys

little explicit information about the 3-D crystal structure that the protein occupies in space.

The secondary and tertiary structures determine such 3-D shape of the molecule and,

consequently, its function. The quaternary structure also includes the bonds potentially

established between several protein molecules.

The primary structure is the easiest one to obtain and, even if it conveys little explicit infor-

mation about the 3-D crystal structure of the protein, it can still be used to predict it in the

form of the 3-D molecule folding, in order to investigate protein functionality.

The primary structure is also used in such tasks as remote homology detection, i.e. finding

genetic relations between the proteins of low sequence similarity and protein classification.

The current thesis covers only research that uses the available primary structures of the GPCR

proteins, given that the 3-D crystal structure of most of the investigated receptors is currently

still unknown.

2.2 G-protein coupled receptors

G-Protein Coupled Receptors (GPCR) are eukaryotic cell membrane proteins which are a part

of cell signal system and serve to connect external stimuli to the intracellular signaling pathways.

GPCRs are also called 7TM receptors because they share a common structure of seven trans-

membrane helices (TM1-TM7), along with the extracellular N-Terminus and the intracellular
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C-Terminus. The seven helices domain of the protein is linked by three intracellular and three

extracellular loops named ICL1 to ICL3 and ECL1 to ECL3, respectively, counting from the

N-terminus (See Fig. 2.1 for reference).

Figure 2.1: Basic graphical representation of the structure of a characteristic GPCR, namely
the human metabotropic glutamate receptor 1.

The intracellular part of the receptor connects to a G protein inside the cell membrane.

The receptor activation works as follows:

• First, the external molecule, called ligand, binds to some part of the receptor (either in

the N-Terminus or the 7TM domain), i.e. two molecules, receptor and ligand, create

chemical bonds that allow conveying activation through the membrane.

• The binding process activates the receptor, i.e. changes its formation.

• Activation of the receptor causes the dissociation of the G protein, which in turns starts

some signaling path inside the cell.

There are two types of ligand-binding: orthosteric and allosteric. The orthosteric binding causes

the activation of the receptor, while the allosteric one can modify (modulate) the activation in

different ways, while still allowing the orthosteric binding.
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The allosteric processes of modulation are widely used in pharmacological drug design to reduce,

increase or stop the activation of the protein by its natural ligand. Some of the drugs also use

the orthosteric binding site and their activity is in this case based on substitution of the natural

ligand [Lindsley et al., 2016].

Class C GPCRs

Class C of GPCRs gathers receptors that control action of the neurotransmitters glutamate

and γ-aminobutyric acid, sweet and “umami” taste and calcium homeostasis [Wu et al., 2014].

For class C receptors, the orthosteric ligand binds in the usually large extracellular N-Terminus,

which includes a structure known as Venus Flytrap (VFT) domain and a cystein-rich domain

(CDR) that connects the VFT to the 7TM domain. The allosteric modulators in class C bind

to the 7TM domain (See Figure 2.2).

Figure 2.2: Graphic simplified representation of the differences in structure and binding sites
of the GPCRs from different classes [Wu et al., 2014].

Considering their role in synaptic transmission in the central nervous system, class C receptors

are important for drug discovery due to their role in the interaction with drugs for the treatment

of psychiatric and neurological diseases such as schizoprenia, Parkinson’s disease and depression,
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amongst others [Gregory et al., 2012].

2.3 Data description

The GPCRdb [Munk et al., 2016, Isberg et al., 2016] is a publicly accessible repository of GPCR

databases and web tools for the analysis of membrane proteins including about 400 human spec-

imens.

Overall, the GPCRdb dataset contains 14,951 proteins from 3,184 species. At the time of

writing, this resource has been available for over 20 years and its management was transferred

in 2013 to Prof. David Gloriam’s research group at the University of Copenhagen in Denmark.

Its classification of the available proteins follows the international IUPHAR system recommen-

dations.

The whole database originally consisted of 7 classes: A (Rhodopsin), B1 (Secretin), B2 (Adhe-

sion), C (Glutamate), F (Frizzled), Taste 2 and “other” GPCRs. This classification followed

the system suggested in [Kolakowski Jr, 1993].

2.3.1 Class C GPCR data

At the highest level of grouping, class C discriminates the proteins according to the type of

ligand as ion, amino acid, and sensory receptors.

At the second level of classification of the current database version, four subclasses are dis-

tinguished: metabotropic glutamate receptors (amino acid), GABAB (amino acid), calcium

sensing (ion) and taste 1 receptors (sensory), covering sweet and umami tastes. The earlier

version of the database (2011) included three extra sensory-related subclasses of the second

level, namely vomeronasal, pheromone and odorant receptors.

As previously mentioned, class C proteins are characterized by the existence of a large extracel-

lular domain, which behaves as a binding site for natural ligands, and by the transmembrane
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domain (7TM) where allosteric modulators bind. This makes them promising drug targets and

justifies the current extensive research they are subject to.

2.3.2 Database changes

This thesis covers three versions of the database: the first one from 2011, and two recent

drastically changed versions: those of May 2016 and September 2016.

Over those five years, GPCRdb has undergone major changes in the total numbers of proteins

belonging to class C, in the proportion between the different subclasses and even in the se-

quences contained in each of those subclasses (see Table 2.1 and Figure 2.3). Note that the

database changed the whole management and development team in 2013.

Family 2011 May 2016 Sept 2016 2011 ∩ May 2016 May 2016 ∩ Sept 2016
MGluR 351 467 516 93 (26%) 357 (76%)
Calsium-sensing 48 125 103 10 (21%) 91 (73%)
GABAB 208 60 89 10 (5%) 50 (83%)
Taste 1 65 193 228 42 (65%) 129 (67%)
Orphans 147 193 18 0 18 (9%)
Total 155 647

Table 2.1: Number of proteins in each subclass in the different datasets.

Figure 2.3: Class distribution for databases
left - March 2011, middle - May 2016, right - September 2016

The main changes happened switching from the 2011 version to the one of May 2016, with

only 155 protein sequences remaining unchanged. Not only the receptors of three subclasses

(vomeronasal, odorant and pheromone) were removed in full from class C, but the number of

proteins in the other remaining subclasses also changed significantly.
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The Metabotrobic Glutamate (MGluR) Receptors subclass grew by 33% and only 26% of

sequences were kept unchanged (”2011 ∩May 2016” column in table 2.1). The Calcium-Sensing

Receptors subclass increased more than twice, keeping only 10 sequences unchanged. Finally,

the Taste 1 subclass grew threefold, while the GABAB receptors subclass, on the contrary,

decreased more than threefold.

The changes between the two 2016 versions are not that substantial, but still significant for

a mere four-month period. In this case, the number of sequences kept completely unchanged

varies from 65% to 85% for the four subclasses. The MGluR subclass kept growing in the

September 2016 version by 10%; the GABAB and Taste 1 also increased in number by 50%

and 18% respectively. Instead, Calcium-sensing decreased by 18%. The largest of differences,

though, is in the number of orphan receptors (those not assigned to a subclass). Less than 10%

of the original orphans were kept in the last versions.

2.4 Data curation

In many of the databases used for data analysis tasks with Machine Learning and statistical

tools, data are provided ’as is’ i.e. without explicit and/or complete guarantees of their va-

lidity from different viewpoints: consistency, artificats and errors, data missingness, or label

reliability, to name a few.

However, biological information in its current form, and mainly in the -omics sciences, is usually

curated by specially assigned professional scientists. This is a key issue, given that expert-

curated knowledge bases that are accessible using web-tools are becoming one of the main

driving forces in contemporary research in biology in general and bioinformatics in particular.

The responsibilities of curators include data collection, consistency and accuracy control, anno-

tation using widely accepted nomenclatures, collection and standardization of results published

in scientific literature, evaluation of computational analysis, etc.

Data curation in biological research (sometimes known as biocuration) requires broad expertise
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in the domain because of the vast amount of information available from literature, which is

usually not without its controversy and errors, and often lacking a unified and standardized

approach for the representation and analysis of data.

Biocuration has been described as “the activity of organizing, representing and making biologi-

cal information accessible” [Howe et al., 2008] to biologists. This activity, as a result, concerns

data engineering tasks. Note though that it is far from being an established and well-defined ac-

tivity and failure to establish and standardize biocuration procedures and to fund these efforts

properly may hamper the complete process of scientific knowledge extraction.

One of the challenges of curation is the unambiguous identification of biological entities (proteins

in the case of this thesis) from existing studies and literature. In the end, data trustworthiness

can only be ensured through costly data management [Lord et al., 2004]. This task, when

understood as “manual” expert curation, is uncertain and error-prone, so that the development

of computational procedures to assist human experts in it is worth pursuing.

Note that GPCRs have been categorized into different classes and subclasses on the basis of

sequence homology procedures [Isberg et al., 2016]. That is, receptor labeling is itself homology

model-based and, therefore, uncertain to a degree and at least debatable.

According to these concerns, this thesis provides an analysis of class annotation in the GPCR

protein database performed using Machine Learning techniques. It is based on three different

version of the GPCRdb from different time periods and then can be considered from viewpoint

of a cross-check of the quality and consistency of the database.



Chapter 3

Previous Work

Existing approaches to the problem of protein classification are commonly based on the concept

of similarity between sequences. This chapter provides an overview of the most efficient and

widely spread protein similarity measures used in this problem, along with the corresponding

classification techniques that make use of these measures.

The first section gives an overview of the similarity techniques successfully applied in previous

research for classification and homology detection for a wide range of proteins.

In the second section commonly used classification techniques for these tasks are considered.

The last section covers the classification of the G-protein coupled receptors of class C in par-

ticular, providing also a summary of the results achieved in previous research in this specific

domain.

3.1 Protein sequence similarity measures

Two main groups of protein similarity measures can be distinguished in biological research. The

first group includes those based on sequence alignment methods, which were designed to find

regions with functional and structural relationships between two or more sequences. Protein

sequence alignment methods have long history and are more conventional in biology than the

12
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second group of protein similarity measures, which use different mechanisms and are usually

referred to as “alignment-free” similarities because they do not have alignment of the sequence

as a pre-requisite.

Alignment methods go back to Needleman-Wunsch algorithm (1970), its later variation Smith-

Waterman (1981), and their faster, less accurate but extremely popular counterpart BLAST

(1990)[Altschul et al., 1990]. The Needleman-Wunsch is a global alignment method for the

whole sequences. The latter two are local alignment algorithms which compare subsequences

of all possible lengths. The BLAST algorithm is extremely popular and ubiquitous and its

original publication has been cited over 60,000 times at the time of writing this thesis.

However, and despite the popularity of alignment techniques, there is also intense research in

the investigation of alignment-free sequence similarities. The four groups of similarities are

considered below: family-based generative models, motif-based similarities, similarities based

on amino acid composition transformation and a heterogeneous group of techniques which use

physico-chemical properties of amino acids and spatial sequence information.

The first group of models to mention is family-based generative models. What these models

have in common is that they are trained on the set of evolutionary related proteins - families

- and try to capture common information in this set. The two main models in this group are

profile-based and Hidden Markov Model (HMM)-based similarities.

The profile-based model unites information from a group of sequences in a “profile”, i.e. the

probability matrix that reflects the statistics of occurrences of amino acids in a certain position

in a sequence [Gribskov et al., 1987]. Multiple sequence alignment techniques are commonly

used to build this matrix. This method is not entirely an alignment-free technique.

The other quite popular and effective similarity model is based on HMM [Krogh et al., 1994].

This well-known statistical model is trained on protein sequences to assign high probabilities

to the sequences from a particular set. Thus, it captures the most conserved primary structure

from a given family. HMM similarity exploits the same idea as the profile-based modeling but

in a more general way.
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The second group of similarity methods is based on protein motifs, i.e. amino acid sequence

patterns of likely biological significance. Instead of focusing on the whole sequence comparison,

the vector space of motif presence can be used to build a similarity measure. The authors of

this approach [Ben-Hur and Brutlag, 2003] showed that it can outperform BLAST and Smith-

Waterman similarities when combined with Support Vector Machine classifiers for the task of

remote homology detection.

A key element of alignment-free sequence analysis is the type of sequence transformation used.

The third group of similarities is based on amino acid composition (AAC) transformation

[Chou and Zhang, 1993]. The AAC is a simple transformation of the protein sequence to the

vector of frequencies of the 20 amino acids alphabet. The AAC can be considered from the

viewpoint of n-gram concept. The idea of n-gram is widely used in computational linguistics

and refers to a contiguous subsequence of size n from a sequence of items. The n-grams of

protein sequences can be interpreted as short motif. Considering this definition, the AAC

transformation can be seen as a 1-gram (or unigram) transformation into frequencies and can

thus be generalized to n-gram frequencies transformation. The main problem with n-grams is

the exponential growth of the computational complexity (number of possible different n-gram

combinations) as a function of n. Some of the works use this extension of AAC where the

maximum value of n is set to 3 [König et al., 2015b, Shkurin and Vellido, 2016].

The forth group of similarity measures make use of transformation which incorporate spacial

information and physico-chemical properties of amino acids: pseudo-AAC, autocross-covariance

transformation, physico-chemical distance transformation.

The pseudo-AAC was introduced by Chou in [Chou, 2001] as an extension of AAC that uses

autocorrelation of the sequence computed between original sequence and its shifted version with

some lag. Each amino acid is substituted by the vector composed of its hydrophobicity value,

hydrophilicity value, and side-chain mass. Extending AAC with physico-chemical properties

of amino acids. is successfully applied in GPCR classification using two different amino acids

grouping schemes developed by Sandberg and Davies [Shkurin and Vellido, 2016].

Somehow similar to Chou’s idea of using autocorrelation is used in the model of autocross-
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covariance transformation (ACC) [Wold et al., 1993] which considers protein sequence as a time

sequence with several spacial dimensions. These dimensions can be computed from physical-

chemical properties of amino acids or using position-specific score matrix [Liu et al., 2011]. For

more detailed explanation of this transformation and AAC please refer to Section 4.1.

Another transformation which is based on the combination of physico-chemical properties

and incorporation of spatial sequence information is physico-chemical distance transforma-

tion (PDT) [Liu et al., 2012]. Similarly to pseudo AAC, it computes the difference between

amino-acids physical chemical properties using the original sequence and its shifted version.

This method has a second variant which is based on a profile sequence instead of the orig-

inal one. PDT was used for GPCR protein classification of class C [König et al., 2015b,

Cruz-Barbosa et al., 2015] and gave results similar to other alignment-free transformations.

3.2 Protein sequence classification models

This section covers classifiers which are widely used for the task of protein sequence classification

in combination with the similarity techniques discussed in the previous section.

One of the most popular models used for classification of protein sequences is the Support

Vector Machine (SVM). One of the possible explanations of its ubiquity apart from its great

performance is the possibility to use the arbitrary similarity measure between two sequences

by the exploitation of the kernel trick. Originally, SVMs build a linear decision boundary be-

tween classes. Introduction of the kernel allows to consider the high-dimensional feature spaces

without need of heavy computations. Thus, SVMs allow to avoid exact vector representation

of the sequence and can be applied to the analysis of symbolic sequences by just providing an

adequate kernel function.

The variety of approaches successfully used in combination with SVM is impressive, covering lo-

cal alignment [Shah et al., 2008], motif-based [Ben-Hur and Brutlag, 2003, H̊andstad et al., 2007],

ACC [Dong et al., 2009], PDT [Liu et al., 2012] and many others.
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A completely different method from SVM is the Random Forest (RF) classifier, which has

also successfully been applied in many bioinformatics tasks including protein classification

[Kandaswamy et al., 2011], protein function prediction [Lin et al., 2011], an 3-D structure pre-

diction [Dehzangi et al., 2010], amongst others, using only primary structure protein sequence

information. The effectiveness of RF and its main advantage is based on its ensemble learning

approach, i.e., the combination of several weak classifiers (decision trees) [Breiman, 2001]. The

base classifiers for RF are decision trees. Each of the tree is trained on a sampled version of

the dataset with replacement and on a random subset of features. As a tree-based classifier,

RF can naturally deal with multi-class classification, which is the case of protein classification.

As an ensemble technique it can be used for providing a closer look at the phenomenon of

misclassification and misclassification consistency, i.e the base classifiers can assign different

labels for the same sample, and the final decision is made by voting system. These votes can be

used to more closely inspect the misclassified sequence [Shkurin and Vellido, 2016]. For more

detailed explanation of RF and SVM refer to Section 4.2.

The next group of classifiers to consider is artificial neural network (ANN)-based classifiers. The

idea to use ANNs for protein classification and secondary structure prediction appeared back

in late 80-s - early 90-s [Qian and Sejnowski, 1988, Demeler and Zhou, 1991, Wu et al., 1992].

Most of the studies of these years used Multi-Layer Perceptron (MLP) architectures and were

trained using the back-propagation algorithm. The MLP is an ANN organized in several layers,

where each of the layers is fully connected with neighboring layers. The representation of the

protein sequence required to turn it into fixed-size vectors, then used as an input for the ANN.

More recent research uses ANN architectures that work with sequences of arbitrary lengths, such

as Recurrent Neural Networks (RNN) [Pollastri et al., 2002, Mishra and Pandey, 2012]. This

family of network architectures is characterized by the directed cycle in the connections, i.e. the

outputs from the previous sample are used in the processing of the new sample. The input then

can be of arbitrary length and no transformation is needed for the whole sequence, but only for

each of the 20 amino acids. Thus, the trained network performs two tasks: the transformation

of the sequence and its classification. A particular instantiation of RNNs, the Long Short-Term

Memory (LSTM) model was shown to be a fast and effective alternative to SVM and MLP
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classifiers for the task of protein remote homology detection in [Hochreiter et al., 2007].

3.3 Previous research on GPCR class C

Note that the research compiled in this thesis is part of a wider effort concerning the analysis

of Class C GPCRs. This effort was substantiated in a Spanish R+D program research project

called “KAPPA AIM: Knowledge Acquisition in Pharmacoproteomics using Advanced Artificial

Intelligence Methods” and in the ongoing project “COIN-GPCR: Computational Intelligence

for Knowledge Discovery from G Protein-Coupled Receptors”.

In this section, I briefly describe the main previous published work resulting from these projects

that led to formulate the open questions that the thesis aims to answer.

Early work on the 2011 version of the database provided clear indications that there ex-

isted boundaries to the separability of the different Class C subclasses, using both supervised

[König et al., 2014, König et al., 2015a] and semi-supervised [Cruz-Barbosa et al., 2015] learn-

ing approaches. Furthermore, some of the classes, precisely those which were removed in the

2016 versions of the databases (vomeronasal, odorant and pheromone), were the most respon-

sible for such lack of separability.

These results were also confirmed from the viewpoint of visualization-oriented unsupervised

learning. In this case, the subclasses that were shown to be worse discriminated by su-

pervised classifiers were also shown to heavily overlap in unsupervised visualization models

[Cárdenas Domı́nguez et al., 2015]. Close and detailed inspection of the sequence misclassifica-

tion behaviour, though, revealed an interesting pattern. Some of these misclassifications were

far too consistent, in the sense that the sequence was almost always misclassified (by difference

classifiers and different implementations of the same classifier) as belonging to a specific wrong

subclass.

This behaviour suggested the possibility of an instance of the label noise problem occurring.

This is, the possibility that the sequence subclass labels were actually wrong as the result
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of the uncertainty of the own database sequence labeling procedure, very often model-based

itself. This would explain both the presence of consistently misclassified proteins and (at least

partially) the limits of sub-class discrimination accuracy which exist independently of the choice

of data transformation and classification technique.

The problem was first analyzed in [König et al., 2015b], were individual sequences were short-

listed as potential cases of label noise to be further analyzed by database curators. Unsur-

prisingly perhaps, most of them belonged to the same three subclasses identified as the most

difficult to discriminate. The data transformations used in this work were alignment-free: AAC,

digram frequencies, ACC and PDT, and the classifier of choice was SVM.

Further work in [Shkurin and Vellido, 2016] again employed alignment-free data transforma-

tions, in this case with a Random Forest classifier to gauge the consistency of misclassification.

As was aforementioned this ensemble technique with an internal classification voting system

is naturally adequate for classification consistency analyses. The transformations were based

on n-gram frequencies using amino acids directly of two of physico-chemical groupings. Thus,

the accuracies achieved were similar across transformations and most consistent misclassifi-

cations were again detected mainly in the same three sub-classes: vomeronasal, odorant and

pheromone.

All these previous studies were based on the earlier 2011 version of the database, a fact that

automaticaly raised the following question: if the 2011 database, which included vomeronasal,

odorant and pheromone as Class C GPCR subclasses, suffered from these classification prob-

lems, would the new 2016 versions of the database, which do not include those subclasses, suffer

from the same problems? This thesis is a step on the direction of answering such question.



Chapter 4

Methods

The experiments reported in this thesis were carried out taking into account the previous

published research on class C described in section 3.3. Therefore, the methods described in

this chapter were selected so as to compare with the ones shown to be most successful in those

studies, with the new recently introduced data transformation techniques.

The transformations that delivered good results in class C GPCR classification in previous

work include AAC, Digram composition and ACC. Being briefly introduced in previous work

review they are described in details in the following section, devoted to sequence alignment-free

transformations.

The other newly introduced transformation techniques were developed for the statistical lan-

guage modeling problem and were only recently applied to analyze protein sequences for the

first time [Asgari and Mofrad, 2015]. They are described in more detail in the same following

section.

The classification techniques of choice are SVM, Random Forest and Naive Bayes, which are

all summarily explained in the second section of this chapter.

19
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4.1 Alignment-free sequence transformations

4.1.1 Amino-acid composition and digram composition

Amino acid composition (AAC) [Chou and Zhang, 1993] is a very simple sequence transfor-

mation that includes summarized information about the composition of the sequences (a 20-

dimensional vector, where each element is relative rate of occurrence of an amino acid in the

sequence) and eliminates all the structural and sequential information. It also has no infor-

mation about physico-chemical properties of the amino-acids though many of the amino-acids

are close and can be easily substituted by one another without changing the physico-chemical

properties of the whole sequence.

The digram transformation is a slightly more advanced one, but still very simple. The digram

is the specific case of an n-gram transformation, where n=2. The transformation thus consists

of the frequencies of occurrence of all possible amino acid pairings (resulting in a 20x20=400-

dimensional vector).

4.1.2 ACC transformation

The auto-cross-covariance transformation (ACC) was introduced in [Wold et al., 1993] and is

more complex than the previous ones because it explicitly takes into account the order of amino

acids in the sequence and their physico-chemical properties.

Each of the amino acids is represented by 5 z-scales [Sandberg et al., 1998], which are derived

from 26 possible physico-chemical properties. Then, for each of the 5 dimensions (d = 1, . . . , 5)

the vector of auto-covariance is computed using a fixed lag l.

ACd(l) =
n−l∑
i=1

(vd,i − v̄d)(vd,i+l − v̄d)
(n− l)p

.
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For each of the pairs of the dimensions the cross-covariance with lag is computed:

CCdd
′(l) =

n−l∑
i=1

(vd,i − v̄d)(vd′,i+l − v̄′d)
(n− l)p

.

The vi,d is the value of d-th descriptor of the i-th amino acid in the sequence.

The lag takes values from 1 to L (maximum lag, fixed) and p is a normalization constant. The

best values of p and L are selected by cross-validation.

The length of the resulting vector depends on the maximum lag and is built as follows:

[AC(1) CC(1) AC(2) CC(2) .. AC(L) CC(L)].

4.1.3 Distributed representations

As long as the primary structure of a protein is represented as a sequence of letters of arbitrary

length in the Latin alphabet (that is, as a symbolic sequence), the idea of using methods

of natural language processing (NLP) comes about naturally. This field has well-established

methods of statistical language modeling whose goal is to learn the joint probability distribution

of sequences of words in natural language.

One of the fundamental problems in statistical language modeling lies in the fact that learning

the joint distribution of sequences of words requires a huge number of parameters estimations

which depends on the length l of the sequence exponentially as |V |l, where |V | is vocabulary

size [Bengio et al., 2003].

One of the NLP models recently introduced to face this problem resorts to a distributed rep-

resentation of the words in IRm. The joint probability function is learned in terms of these

distributed representations and is expressed as a product of the conditional probabilities of a

word given its context.

The distributed representations are built to capture the statistical properties of the dataset. The

idea behind the name “distributed” can be expressed by the following properties: one concept
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in the domain is represented in several dimensions and one dimension unites information about

several real-world concepts.

As long as the distributed representation is in practice learned using a feed-forward ANN model,

this “distributed” property of representation is implemented by using shared weights for all of

the input elements.

One very popular ANN architecture for learning statistical language models with distributed

word representations was introduced in [Bengio et al., 2003]. It is composed of three layers: a

projection layer (that computes distributed representation), a non-linear hidden layer and an

output softmax layer to predict the probability of each word in the vocabulary. This architecture

has two main computational advantages: the number of free parameters scales linearly with

the growth of the vocabulary size and it also scales linearly with the growth of sequence length.

Mikolov and colleagues, in [Mikolov et al., 2013b], introduced a further computational improve-

ment for distributed representations by separating learning word representations from learning

a language model. Two main simplifications for the architecture of the ANN are made: the

nonlinear hidden unit is completely removed and the word vectors computed from each word in

the context are summed (Figure 4.1, on the left). The model is called Continuous Bag-of-Words

(CBOW) because of its similarity to the standard NLP Bag-of-Words model, which also disre-

gards information about word order while keeping information about multiplicity. Authors go

even further and introduce the Continuous Skip-gram architecture which instead of predicting

the word out of its context is trained to predict the context given one word. This group of

models and their implementation in particular are well-known as “word2vec”.

These representations are shown to capture the syntactic and semantic relationship between

words, i.e., linear operations in the obtained vector space capture some semantic or syntactic

transformations over words in natural language, such as the comparative form of an adjective

(big-bigger), or a ’capital-country’ relationship. Thus, for example, the subtraction of the vector

for the word ’France’ from the vector for ’Paris ’ and addition of the vector for ’Italy ’ gives a

vector that is very close to the vector of ’Rome’ i.e. ’Paris’ - ’France’ + ’Italy’ = ’Rome’.
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Figure 4.1: The architecture of two models for learning word embeddings
[Mikolov et al., 2013a].

CBOW

The CBOW model is an ANN with one hidden layer. The input layer takes a subset from C

words (where C is a parameter of the model) before and after the given word and sums their

projections from a shared projection matrix. The output layer acts as a log-linear classifier

which predicts the probability of the given word using the input. As long as the projections are

summed up the order of the words in the context has no influence to the output which explains

the name ’bag-of-words’ of the method.

Continuous Skip-gram

A skip-gram is a generalization of an n-gram. While an n-gram is a contiguous sequence of n

items from a given sequence, the skip-gram allows the sequence to be discontinuous, i.e. have

gaps of size not more than k in total. More formally, the k -skip-n-gram for a sentence w1...wm
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of arbitrary length m is:

{wi1 , wi2 , ..., win|
n∑
j=2

ij − ij−1 < k}.

This idea of a skip-gram was used to build a second model which can also be represented as an

ANN. The input is the middle word, which is projected to some vector space and the output is

the probability of the words to appear within some range around the input word. More distant

words have smaller weights when sampling the training set.

Protein structure modeling

This part is devoted to the explanation of the application of distributed word representations

to the problem of protein classification using primary structures. The classification problem is

split into two steps: getting a vector representation of a sequence and using this vector to train

a classifier.

The concept of “word” in protein sequence is expressed as an n-gram of amino acids i.e. a

contiguous subsequence of n amino acids. The whole sequence is considered as a “sentence” of

the non-overlapping “words”.

The distributed representation model is then trained to represent every n-gram as a fixed size

vector. Getting a representation of a sentence from single word representations can be done

by simply summing up all the word vectors. In this way a fixed size vector representation of a

protein sequence can be obtained.

The idea of this representation of protein sequences was introduced in [Asgari and Mofrad, 2015].

It was also shown that this representation can capture meaningful physical and chemical prop-

erties of the proteins.

The training set is constructed using protein sequences by transforming them into n-gram

(words) sequences. As long as words are chosen to be non-overlapping to consider all the

possible n-grams in a sequence it should be split using offsets from 0 to n − 1. Thus, one

sequence is transformed into n sequences of n-grams (Figure 4.2).
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Figure 4.2: An example: obtaining training sequences from original sequence of human
metabotropic glutamate receptor 1.

Each of the shifted sequences is then used to form training samples. Each training sample

consists of a context and a middle word. The context is chosen using a context window size pa-

rameter - C i.e. maximum distance between the current and predicted word within a sequence.

For a given C, a random value R from 1 to C is sampled. Then, R words from the history and

R words from future are considered as a context for a middle word.

Then, training is performed depending on the type of the model. For the CBOW model, the

input is constructed from the subset of all context words and the model is trained to maximize

the probability for the middle word. For the Skip-gram model, the input is the middle word

and the model is trained to maximize the average probability of all context words (Figure 4.3).

Summing up, the hyper-parameters for the distributed representation model are: the type of

the model - CBOW or Continuous Skip-gram; the n - size of n-gram; the context window size

C; and the size of the output vectors.

From here on, the distributed representations obtained for the protein sequences are referred

to as “prot2vec”.
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Figure 4.3: The architecture of Continuous Skip-gram model for the protein sequences

4.2 Classifiers

4.2.1 Support Vector Machines

Support Vector Machine (SVM) classifiers have de facto become the most popular method for

protein classification. Their popularity can be explained by two main reasons: their simplicity

combined with good performance, and the advantages of the kernel trick.

The SVM, introduced in [Boser et al., 1992], is trained to represent a function which is consid-

ered as a border between classes. The function is a linear combination of supporting vectors,

i.e. of data samples that are close to the discriminative border. The optimal number of these

vectors is estimated during a training process. The good generalization performance of the

model can be explained by the nature of optimization function. The algorithm is trained to

maximize the margin between the boundary and training samples.

In turn, the kernel trick allows to consider the task of class separation in a new dual space

where the decision function can be expressed as a linear combination of basis functions, i.e.

kernels.

The kernel trick allows to use convex optimization techniques due to linearity of decision func-

tion, even though the model itself is a non-linear function of input. The second great benefit of
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a kernel trick is computational tractability. The kernel is a tractable function of input samples,

while the direct computations in dual space could be intractable or resource-consuming, as the

dual space can even have infinite dimensionality.

The most widely used kernel functions are Radial Basis Functions (RBF) with their centers

corresponding to support vectors.

4.2.2 Random Forest

The Random Forest (RF) classifier is an ensemble decision tree-based classifier. The decision

tree classifiers are trained to split an input space into the regions with associated class labels.

The splits are typically axis-aligned and are selected to maximize the gain in specified metrics

which are usually the Gini impurity or the information gain.

The main improvement of RF over simple decision tree classifier is the usage of bagging tech-

niques and the random subspace method.

Bagging (or bootstrapped aggregating) is a technique of model averaging which uses models

trained on subsamples of the original training set. The sub-sampling is performed independently

with replacement. The technique allows to avoid over-fitting. That is, the generalization error

is shown to converge to a limit with the growth of the number of trees [Breiman, 2001].

The random subspace method also allows to avoid over-fitting. It decreases the generalization

error by reducing the correlation between trees. The computation times for training such forests

are reasonably low.

The most popular implementation for the RF considers axis-aligned splits. This can cause worse

performance for RF than for linear classifiers for problems with significant linear dependencies

between variables (for example, when one of two classes appear for samples where x1 > x2) but

performs well for non-linear problems.
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4.2.3 Naive Bayes

Naive Bayes is a simple model that will provide us with a baseline for performance comparison.

It is based on simply applying the Bayes theorem with the assumption of independence of

variables, which is considered somehow ’naive’.

Under this assumption, which in practice often works well, the probability of a class Ci (i =

1..N) given an input X could be then computed as:

P (Ci|X) = P (Ci)
N∏
n=1

P (Xn|Ci).

This probability could be used for class prediction using Maximum A Posteriori (MAP) esti-

mation:

y = argmax
i
P (Ci)

N∏
n=1

P (Xn|Ci).

The classifiers differ depending on the assumption about the probability distribution for P (Xn|Ci).

For continuous variables the typical assumption is a Gaussian distribution:

P (Xn|Ci) =
1√

2πσ2
n

exp
−Xn−µn

2σ2n .

The parameters for the Gaussian i.e. µn and σn are estimated using Maximum Likelihood.

4.3 Visualization techniques

Visualization of high dimensional data often becomes a key to their understanding, leading in

turn to insights about the more efficient way to process them and making preliminary hypothesis

about their structure and separability.

In order to visualize the data, dimensionality reduction techniques can be used. Unsupervised

dimensionality reduction techniques (those which do not use labeled data) are of particular
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interest because they allow to get an unbiased understanding of data structure and class sepa-

rability.

One of the most popular dimensionality reduction techniques is Principal Component Analy-

sis (PCA), summarily described next. This is followed by the description of a recently de-

veloped technique that has attracted much attention of late, called Stochastic Neighbour-

hood Embeddings (SNE), and a description of a variant called t-distributed SNE (t-SNE)

[Maaten and Hinton, 2008].

4.3.1 PCA

PCA is a linear dimensionality reduction technique which is aimed at preserving the variance

of the data. The lower space variables are linearly uncorrelated and are sorted in terms of

percentage of variance of original data. As a consequence the dissimilar points are mapped as

far as possible in lower dimensions. The dimensionality of the new space can thus be varied

depending on the need of the research. For visualization techniques it is obviously convenient

to use first 2 or 3 components. By its nature, PCA is sensitive to feature scales.

4.3.2 T-SNE

T-SNE performs a mapping from a high-dimensional input space in which the analyzed data

reside to a lower dimensional space of latent variables in such a way that the local structure of

the data is preserved as much as possible [Hinton and Roweis, 2002]. This allows to understand

the structure of the data in cases when high dimensional data is lying in several low-dimensional

manifolds. For example, for proteins distributed representations the different manifolds in the

output space may represent different protein classes.

The non-linear mapping between spaces is learned by minimizing the Kullback-Leibler diver-

gence between the conditional probabilities which represent similarities in both spaces. The

conditional probability of xj to be a neighbor of xi is equal to the proportion of its density

under a Gaussian distribution centered in xi:
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P (xj|xi) =
exp −(||xj−xi||)

2

2σ2
i∑

k 6=j exp −(||xk−xi||)
2

2σ2
i

.

The name of the method ”stochastic neighbourhood embedding” is explained by the fact that

the position of the point in the new space is determined via its neighbours. T-SNE is an improve-

ment over the SNE method which uses a symmetric cost function and the Student t-distribution

instead of a Gaussian distribution for low dimensional similarities. This allows simpler opti-

mization computations and avoids the ”crowding problem” [Maaten and Hinton, 2008] (as a

t-Student distribution is less sensible to the presence of data outliers).

4.4 Performance metrics

Several performance metrics are used to select the best classification model in cross-validation.

It is important to understand the difference between these figures of merit because they have

much influence on the interpretation of the achieved results.

The accuracy metric is typical of classification tasks, and is calculated as the percentage of

the correctly classified samples. It suits only reasonably well class-balanced data because it

treats all the classes equally. One alternative to this is the use of a weighted metric, which is

an average of binary metric weighted by the prevalence of the classes. The binary weighted

metrics used in the reported experiments are precision, recall, and the f-score.

Precision and recall reflect the relevance of the result of a given class. Precision specifies the

fraction of correctly classified samples out of all samples classified to be in a class. Recall defines

the fraction of correctly classified out of all true samples of a class. Precision is then covers

type I errors (false positives) and recall type II errors (false negatives).

The F-score is a harmonic mean of precision and recall. It unites information from both metrics

and thus is more demonstrative if both types of errors are considered as equally undesirable.

The other way of treating multiclass classification with unbalanced classes is using metrics
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which are adjusted to this type of task. Matthews correlation coefficient (MCC), for instance,

is used for binary classification with unbalanced data and is generalized for the case of multiclass

classification.

In summary, for the task of multiclass classification with k classes and N samples, the used

metrics will be the following:

Accuracy =

∑k
i=1 tpi
N

,

Precision =

∑k
i=1wi(

tpi
tpi+fpi

)

N
,

Recall =

∑k
i=1wi(

tpi
tpi+fni

)

N
,

F -score =

∑k
i=1 2wi

precisioni∗recalli
precisioni+recalli

N
,

MCC =

∑
i

∑
j

∑
l CiiCjl − CijCli

2

√∑
i(
∑
j Cij)(

∑
i′|i′ 6=i

∑
j′ Ci′j′) 2

√∑
i(
∑
j Cji)(

∑
i′|i′ 6=i

∑
j′ Cj′i′)

,

where

wi is the “weight” of a given class, equal to the number of samples in this class;

tpi is the number of samples of the given class which were classified as belonging to the class;

fpi is the number of samples of the other classes which were classified as belonging to the given

class;

fni is the number of samples of the given class which were classified as belonging to the other

classes; and

Cij is the ij-th element of Ck×k confusion matrix, which contains all classes.
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Experiments and results

This chapter covers the description of the performed experiments and the most important

results along with their discussion. Further detailed results can be found in Appendices A-C.

The first section is devoted to the comparison of sequence data transformations, including AAC,

Digram composition and ACC. Then, the next two sections are devoted to the comparison of

prot2vec trained on different datasets and prot2vec with different hyper-parameters. After

that, the best models of prot2vec are compared to best models of ACC. The fifth section

considers different classification techniques and their performances. The discussion also covers

the comparison of the results for the three versions of the database, based on all the presented

results.

The last part of the chapter provides further empirical evidence to support the previously

presented results from the point of view of unsupervised learning visualization techniques.

All the experiments in this chapter were set and performed using the same algorithm, as follows:

1. Randomly permute data.

2. Perform stratified split into 5 folds.

3. Take first fold as test set, the rest folds as training set .

32
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4. Perform grid search with 5-fold cross-validation on the training set to choose best hyper-

parameters, maximizing f-score.

5. Evaluate performance for test set .

6. Repeat steps 3-5 for the next 4 folds.

7. Report an average performance for the 5 test sets.

The models used for the experiments were: prot2vec trained on Swiss-Prot, prot2vec trained on

GPCRdb, ACC, AAC and Digram composition. The classifiers of choice were: Random Forest,

SVM and Gaussian Naive Bayes. The hyper-parameters for the classifiers are summarily listed

in Tables 5.1 and 5.2 for SVM and RF respectively.

Hyper-parameter Values
Kernel parameter γ 0.1, 0.01, 0.001, 0.0001, 0.00001, 1e-06, 1e-07
Penalty parameter C 1,2,3,4,5, 50,100,1000, 10000
Kernel RBF

Table 5.1: Hyper-parameters for the SVM classifier

Hyper-parameter Values
Number of trees 100, 500, 1000
Criterion Gini impurity
Fraction of features to consider for each split 0.1, 0.4, 0.7, 1.0
The minimum number of samples to make split 1, 2, 1%, 5%

Table 5.2: Hyper-parameters for RF classifier

5.1 Classification with different transformations

First, the different transformations used with SVM classifier are compared to each other for

each of the database versions (tables 5.4-5.6). The SVM classifier was used because of its better

performance for all the transformations. This is discussed in detail in the next section.

As previously mentioned, the transformations under consideration are: AAC, Digram composi-

tion and ACC. They are comparable for each of the version of the database because they either
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Hyper-parameter Values
Normalization constant p 0.5, 1, 2
Maximum lag L 2..30 (with step 2)

Table 5.3: Hyper-parameters for ACC transformation.

Model Accuracy MCC F-measure
AAC 0.7682 0.7091 0.7677
Digram 0.9172 0.8965 0.9159
ACC (p=0.5, L=13) 0.9278 0.9095 0.9271

Table 5.4: Classification results for the 2011 database using the SVM classifier.

Model Accuracy MCC F-measure
AAC 0.9846 0.9749 0.9844
Digram 0.9941 0.9904 0.9941
ACC (p=0.5, L=21) 0.9964 0.9944 0.9964

Table 5.5: Classification results for the May 2016 database using the SVM classifier

Model Accuracy MCC F-measure
AAC 0.9743 0.9584 0.9743
Digram 0.9925 0.9875 0.9923
ACC (p=0.5, L=21) 0.9957 0.9931 0.9957

Table 5.6: Classification results for the September 2016 database using the SVM classifier.

have no hyper-parameters (AAC, Digram) or their hyper-parameters are fine-tuned for each

version separately (ACC, the hyper-parameters checked are presented in Table 5.3).

The AAC transformation is the simplest and has the worst performance which can be explained

by its simplicity. The digram transformation performance is very close to ACC. This is also an

unexpected result because ACC incorporates the sequential information and physico-chemical

properties of amino acids while digram takes only into account the number of subsequences

composed by two amino acids.

Comparison of the three tables for the different versions of the dataset show a clear picture of

improvement of its quality during time. The most significant step was made switching from

the 2011 to the May 2016 versions. Taking into account that the most problematic classes in

the 2011 database were vomeronasal, pheromone and odorant receptors and that they were

removed in the 2016 versions, the overall improvement in classification makes sense. This is

further confirmed by the confusion matrices (Tables 5.7-5.9).
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MGlu CaS GABAB VN Ph Od Taste 1
MGlu 345 0 0 0 2 4 0
CaS 0 45 0 0 2 1 0
GABAB 2 0 215 0 1 0 0
VN 0 1 0 311 28 4 0
Ph 8 0 1 23 356 4 0
Od 2 1 0 11 13 75 0
Taste 1 1 0 0 0 0 0 44

Table 5.7: Confusion matrix for the ACC transformation of the 2011 database, using the SVM
classifier.

GABAB Taste 1 MgluR CaS
GABAB 58 1 1 0
Taste 1 0 193 0 1
MgluR 0 0 467 0
CaS 0 0 1 124

Table 5.8: Confusion matrix for the ACC transformation of the May 2016 database, using the
SVM classifier.

GABAB Taste 1 MgluR CaS
GABAB 87 1 0 0
Taste 1 0 226 0 1
MgluR 0 0 516 0
CaS 0 1 1 101

Table 5.9: Confusion matrix for the ACC transformation of the September 2016 database, using
the SVM classifier

5.2 Comparison of prot2vec models with fixed hyper-

parameters

In the original proposal, [Asgari and Mofrad, 2015] all the hyper-parameters for prot2vec trans-

formation were fixed:

• n = 3 (size of n-gram);

• C = 25 (size of context window);

• size of output vectors = 100;

• model type - Skip-gram.
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As a training set, the Swiss-Prot database of October 2014 version was used. Swiss-Prot is a part

of the Universal Protein Resource (UniProt), which contains more than 500,000 manually anno-

tated protein sequences [Consortium et al., 2017]. The authors made their 3-gram representa-

tions publicly available from Harvard Dataverse: http://dx.doi.org/10.7910/DVN/JMFHTN.

For comparison of the prot2vec models trained on the different datasets the hyper-parameters

were fixed to the values described in the original proposal. With these hyper-parameters,

two models are obtained: the first one, trained on Swiss-Prot of October 2014 (from publicly

available 3-gram representations), and the second one trained on the whole GPCRdb (not only

class C) of one of the two versions of 2016 (Table 5.10).

Database Model Accuracy MCC F-measure

2011
prot2vec - Swiss-Prot 2014 10 0.8901 0.8624 0.8894
prot2vec - GPCRdb May2016 0.8636 0.8294 0.8637

May 2016
prot2vec - Swiss-Prot 2014 10 0.9882 0.9809 0.9881
prot2vec - GPCRdb Sept2016 0.9858 0.9775 0.9858

Sept 2016
prot2vec - Swiss-Prot 2014 10 0.9914 0.9860 0.9914
prot2vec - GPCRdb Sept2016 0.9925 0.9875 0.9925

Table 5.10: Classification results for all databases using SVM classifier and prot2vec transfor-
mation

The performances of the two versions of the prot2vec trained using Swiss-Prot and GPCRdb are

very close for both version of 2016, a result that was not expected because Swiss-Prot contains

proteins with different functions and structures and a model trained using all these proteins

was not expected to be relevant for classification of the very specific type of proteins (class C

GPCRs) under investigation in this thesis.

On the other hand, the training set size for models trained on GPCRdb is about 35 times smaller

than that of Swiss-Prot (≈14,000 and ≈500,000 respectively). Despite this size difference, the

models are comparable, which is either explained by the higher similarity of the proteins inside

GPCRdb (which compensates the small size of the training set), or by the sufficiency of this

relatively small number of proteins for good classification.

However, the difference between the two models is larger for the 2011 database version. The

possible explanation for this is the mismatch between the training version of GPCRdb and the

http://dx.doi.org/10.7910/DVN/JMFHTN
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version used for classification. This is because the full database of 2011 is no longer available

and thus the closest in time version was used (May 2016).

5.3 Hyper-parameter selection for prot2vec and its com-

parison with ACC

The parameters presented in Table 5.11) were used for the comparison of the different sets of

hyper-parameters for training distributed representations .

Parameter Values
n-gram size 2, 3, 4, 5 (n=5 only for GPCRdb Sept 2016)
C - context window size 5, 10, 20, 25, 30, 40
output vector size 100, 200, 300
model type CBOW, Skip-gram

Table 5.11: Hyper-parameters used in training the continuous vector representations of n-grams
of amino acids.

First, the search of the optimal hyper-parameters was performed using the latest version

(September 2016) of the GPCRdb as training set and class C sequences of the same version for

classification purposes (see results in Appendix B). We discovered that with this settings for

classification the resulting accuracy approaches 100%, meaning that almost any combination

of hyper-parameters works extremely well.

One conclusion which can be made for this experiment is that the prot2vec transformation with

different parameters shows consistency of classification across different model types (Skip-gram,

CBOW), different sizes of vectors, n-grams lengths and context windows. There are no linear

dependencies, which can be interpreted as robustness of this type of transformations for this

dataset.

The other conclusion is that the older version of the dataset, which provides far worse results,

will be probably more illustrative in terms of showing differences across the hyper-parameters.

The second experiment was performed using the old 2011 GPCRdb version trained on the
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Swiss-Prot dataset of April 2017 (see results in Appendix C). There is an increasing trend in

accuracy as the size of the output vectors increases.

The best results for classification for all the versions of the dataset, among the three transfor-

mations from section 5.1, were achieved by ACC. For a completely fair comparison of ACC and

prot2vec, the prot2vec hyper-parameters should be fine-tuned as it was done for ACC.

The results in Tables 5.12 and 5.13 compare prot2vec trained on Swiss-Prot with ACC for

the version of 2011 database and prot2vec trained on GPCRdb with ACC for the version of

September 2016 respectively.

Model Best hyper-parameters Accuracy MCC F-measure
prot2vec - Swiss-Prot 2017 04 size=300, n=5, C=20, CBOW 0.9232 0.9038 0.9231
ACC p=0.5, L=13 0.9278 0.9095 0.9271

Table 5.12: Classification results for the 2011 database using the SVM classifier with distributed
representations compared to ACC.

Model Best hyper-parameters Accuracy MCC F-measure
prot2vec - GPCRdb Sept 2016 size=200, n=2, C=25, CBOW 0.9968 0.9948 0.9968
ACC p=0.5, L=21 0.9957 0.9931 0.9957

Table 5.13: Classification results for the September 2016 database, using the SVM classifier
with distributed representations compared to ACC.

For both versions, the differences of results for prot2vec and ACC are below 0.5%, that is,

rather small. The version of 2011 is even more demonstrative, because of the larger difference

in results between ACC and other models. The comparable performance of ACC and prot2vec

can lead to two interesting conclusions: 1) the models are equally applicable for the problem

of GPCR class C classification and 2) the models are achieving the optimal performance limits

as described in [König et al., 2015b].

5.4 Comparison of different classifiers

The second set of experiments compares the results for the given transformations with different

classifiers (tables 5.14-5.16). The transformations presented are the two prot2vec transforma-
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tions with fixed hyper-parameters : n-gram size = 3, output vector size = 100, context window

= 25, model - Skip-gram; the results for others transformations can be found in Appendix A.

Model Classifier Accuracy MCC F-measure

prot2vec (Swiss-Prot 2014 10)
NB 0.6000 0.5153 0.6070
RF 0.8583 0.8220 0.8566
SVM 0.8901 0.8624 0.8894

prot2vec (GPCRdb May2016)
NB 0.5854 0.4931 0.5889
RF 0.7947 0.7446 0.7971
SVM 0.8636 0.8294 0.8637

Table 5.14: Classification results for the 2011 database using distributed representation.

Model Classifier Accuracy MCC F-measure

prot2vec (Swiss-Prot 2014 10)
NB 0.8118 0.7229 0.8207
RF 0.9716 0.9535 0.9713
SVM 0.9882 0.9809 0.9881

prot2vec (GPCRdb May2016)
NB 0.8615 0.7972 0.8688
RF 0.9775 0.9642 0.9775
SVM 0.9858 0.9775 0.9858

Table 5.15: Classification results for the May 2016 database, using distributed representation.

Model Classifier Accuracy MCC F-measure

prot2vec (Swiss-Prot 2014 10)
NB 0.9113 0.8619 0.9132
RF 0.9850 0.9758 0.9849
SVM 0.9925 0.9875 0.9925

prot2vec (GPCRdb Sept2016)
NB 0.9808 0.9692 0.9809
RF 0.9893 0.9826 0.9893
SVM 0.9925 0.9875 0.9925

Table 5.16: Classification results for the September 2016 database, using distributed represen-
tation.

The Naive Bayes classifier was used for baseline purposes and it fulfills such expectations. The

difference between NB results and results for SVM and RF are larger for the 2011 version and

become smaller for the most recent versions. This shows a different perspective on database

version comparison, because, using only SVM, the difference between the two last versions is

not clear. With NB, results show the significant improvement of the quality in the last version

(September 2016) over the previous one (May 2016) - over 10% accuracy. The NB classifier is

considered as more demonstrative in a sense that its good or bad performance more directly

depends on the underlying data and not on the fine-tuning of the hyper-parameters.
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The RF model performs worse than SVM for all the transformations which can be explained by

the nature of decision-tree classifiers, which can show bad performance with linear dependencies,

or perhaps even by the lack of hyper-parameter fine-tuning.

Note that, in any case, the classification using the 2016 databases yields excellent results,

with very few misclassifications for all transformations and all classifiers. From the point of

view of database curation, this is very good news, as misclassifications are now scarce and

can be individually tackled in far more detail. Note that the amount of misclassifications

in the 2011 database was significant and that, out of the misclassified cases, many showed

very consistent misclassification behaviours that hinted the existence of label noise problems.

Note that shortlisting those cases required detailed investigation [Shkurin and Vellido, 2016,

König et al., 2015b].

5.5 Visualization

Two techniques were used for sequence data visualization: PCA and t-SNE. The new visu-

alization open-source tool provided by Google Inc. - TensorBoard (https://www.tensorflow.

org/get started/summaries and tensorboard) allows to interactively visualize high-dimensional

data in 3-D and 2-D using both techniques. The transformation used for all the cases was

Swiss-Prot-based prot2vec (version October 2014).

5.5.1 PCA

The PCA technique, despite its simplicity and linear nature, reflects the structure of the datasets

discovered by classification (Figure 5.1). As can be seen from the 3-D plots of first 3 principal

components, the 2011 version of the dataset contains very mixed data and the borders between

classes cannot be clearly seen.

For the May 2016 version, the classes can be visually distinguished and some are actually

quite separated from the others. Almost all of the Calcium-Sensing receptors are far from

https://www.tensorflow.org/get_started/summaries_and_tensorboard
https://www.tensorflow.org/get_started/summaries_and_tensorboard
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Figure 5.1: PCA with 3 components: left - 2011, middle - May 2016, right - September 2016

other points, while Taste 1 are also grouped together. GABAB are still seen to be mixed with

Metabotropic glutamate receptors, though.

The picture for the September 2016 version is even better. All of the classes can be seen as

separable groups with the exception of just a few points, which are likely to be the cause of the

minor misclassifications.

5.5.2 T-SNE

Figure 5.2: t-SNE: left - 2011, middle - May 2016, right - September 2016



42 Chapter 5. Experiments and results

Database Perplexity Learning rate Number of iterations
2011 24 1 69
May 2016 56 0.1 141
September 2016 56 0.1 145

Table 5.17: Parameters for t-SNE visualization technique.

T-SNE works differently from PCA, which leads to a different resulting structure (see Figure

5.2). The points group in blocks the size of which is indirectly controlled by the perplexity

parameter of the model.

The hyper-parameters for t-SNE were chosen empirically by using perplexities in a range from

2 to 100, with step 1, and learning rates from 0.001 to 100, with step 1 in logarithmic scale

(Table 5.17).

The blocks for the two 2016 versions consist of the same classes and as a result classes become

separable with minor exceptions. For the version of 2011, however, classes are quite mixed

though not as much as in the PCA transformation.
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Conclusion

6.1 Summary of Thesis Achievements

The thesis has two perspectives: 1) application of machine learning techniques to investigate

the changes of the quality of data in three different versions of the database, 2) application of

distributed transformation model developed for natural text processing to the task of protein

classification.

The first objective was obtained using five transformations, three classifiers and two visualiza-

tion techniques. All of the experiments show that the most significant improvement in data

quality were made between the version of 2011 and May 2016. These improvements can be

explained mostly by the elimination of three problematic classes: vomeronasal, odorant and

pheromone receptors. The best accuracy of classification was improved by about 7%.

The differences between the versions of May and September 2016 are not so large and are more

controversial because some of the transformations perform better with earlier version while

others on the contrary - with later version. Thus the quality of the data is almost the same,

while the changes in classes distribution is significant.

The second objective of the exploration of prot2vec transformation was achieved by the following

components in experimental part:

43
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• Comparison with three other alignment-free transformations. Prot2vec performance dif-

ference with ACC is less than 0.5%.

• Training on two different training databases - Swiss-prot and GPCRdb. The difference

between two databases as training sets is not significant though Swiss-prot is more uni-

versal, because it worked well for all three version of test database, while GPCRdb has

the best performance when the training and test version of the database match.

• Training with different hyper-parameters: context window size, size of output vector,

length of n-gram, two types of models - Skip-gram and CBOW. The prot2vec provided

consistent results with all the hyper-parameters checked with a small increasing trend for

the size of the output vector.

The experimental results reported in the thesis provide evidence that the prot2vec transforma-

tion is adequate and robust enough for the classification of protein primary structures, even if

it does not provide clear advantages with respect to other existing and investigated sequence

transformations.

6.2 Future Work

This thesis has opened a few avenues of research that could easily be followed in future work.

Such work might include the processing of new versions of the GPCRdb database as they

are released in the public domain, exploring their evolution as an aid to data curation. Such

aid would be in the form of identification of potential cases of sub-class mislabeling. This

analysis could also be extended to include more detailed levels of sub-class characterization (for

instance, metabotropic glutamate receptors and GABAB receptors are known to be structured

as a collection of subtypes at different levels; the first are known to be divided into eight types,

but also in three different groups in this case based on their pharmacology and G protein-

coupling profile).

All these results could be provided to the public through web-based access. This could include
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the scores and confusion matrices for classification and consistent misclassifications found, in-

cluding detailed information of individual proteins consistently mislabeled.

The investigation of the prot2vec transformation technique could be advanced by taking into

account the whole GPCR database, instead of only its class C. In this case, some of the other

classes might include receptors that are well characterized from the point of view of their 3-D

structure, an information that could be used to supplement the analyses.
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Appendix A

Results of classification for different

transformations

Model Classifier Accuracy MCC F-measure

AAC
NB 0.7033 0.6307 0.7046
RF 0.8563 0.8194 0.8536
SVM 0.7682 0.7091 0.7677

prot2vec (Swiss-Prot 2014 10)
NB 0.6000 0.5153 0.6070
RF 0.8583 0.8220 0.8566
SVM 0.8901 0.8624 0.8894

prot2vec (GPCRdb May2016)
NB 0.5854 0.4931 0.5889
RF 0.7947 0.7446 0.7971
SVM 0.8636 0.8294 0.8637

Digram
NB 0.8358 0.7949 0.8375
RF 0.9106 0.8881 0.9080
SVM 0.9172 0.8965 0.9159

ACC
NB 0.8430 0.8064 0.8455
RF 0.8848 0.8562 0.8775
SVM 0.9278 0.9095 0.9271

Table A.1: Classification results for 2011 database using different transformations

A
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54 Appendix A. Results of classification for different transformations

Model Classifier Accuracy MCC F-measure

AAC
NB 0.9550 0.9271 0.9551
RF 0.9799 0.9675 0.9796
SVM 0.9846 0.9749 0.9844

prot2vec (Swiss-Prot 2014 10)
NB 0.8118 0.7229 0.8207
RF 0.9716 0.9535 0.9713
SVM 0.9882 0.9809 0.9881

prot2vec (GPCRdb May2016)
NB 0.8615 0.7972 0.8688
RF 0.9775 0.9642 0.9775
SVM 0.9858 0.9775 0.9858

Digram
NB 0.9811 0.9688 0.9808
RF 0.9893 0.9821 0.9893
SVM 0.9941 0.9904 0.9941

ACC
NB 0.9799 0.9673 0.9798
RF 0.9870 0.9793 0.9866
SVM 0.9964 0.9944 0.9964

Table A.2: Classification results for May 2016 database using different transformations

Model Classifier Accuracy MCC F-measure

AAC
NB 0.9594 0.9368 0.9598
RF 0.9829 0.9724 0.9829
SVM 0.9957 0.9931 0.9957

SWISSPROT
NB 0.9113 0.8619 0.9132
RF 0.9850 0.9758 0.9849
SVM 0.9925 0.9875 0.9925

prot2vec (GPCRdb Sept2016)
NB 0.9808 0.9692 0.9809
RF 0.9893 0.9826 0.9893
SVM 0.9925 0.9875 0.9925

Digram
NB 0.9893 0.9826 0.9893
RF 0.9947 0.9913 0.9948
SVM 0.9925 0.9875 0.9923

ACC
NB 0.9338 0.8933 0.9323
RF 0.9712 0.9526 0.9708
SVM 0.9743 0.9584 0.9743

Table A.3: Classification results for September 2016 database using different transformations
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56 Appendix B. Hyper-parameters comparison for prot2vec trained on GPCRdb

Model N-gram Size Window Accuracy MCC F-measure

Skip-gram 3 100

5 0.9925 0.9879 0.9925
10 0.9915 0.9863 0.9914
20 0.9925 0.9879 0.9925
25 0.9915 0.9861 0.9915
30 0.9936 0.9898 0.9936
40 0.9947 0.9913 0.9946

CBOW 3 100

5 0.9925 0.9880 0.9925
10 0.9936 0.9898 0.9935
20 0.9915 0.9862 0.9914
25 0.9947 0.9912 0.9947
30 0.9947 0.9913 0.9947
40 0.9914 0.9862 0.9914

Skip-gram 3 200

5 0.9925 0.9876 0.9925
10 0.9947 0.9911 0.9946
20 0.9936 0.9895 0.9936
25 0.9936 0.9896 0.9936
30 0.9925 0.9879 0.9925
40 0.9936 0.9898 0.9935

CBOW 3 200

5 0.9957 0.9931 0.9957
10 0.9957 0.9929 0.9957
20 0.9936 0.9895 0.9936
25 0.9925 0.9880 0.9924
30 0.9936 0.9897 0.9936
40 0.9947 0.9912 0.9946

Skip-gram 3 300

5 0.9957 0.9930 0.9957
10 0.9957 0.9930 0.9957
20 0.9947 0.9913 0.9946
25 0.9936 0.9898 0.9936
30 0.9947 0.9914 0.9946
40 0.9947 0.9912 0.9946

CBOW 3 300

5 0.9957 0.9929 0.9957
10 0.9936 0.9895 0.9935
20 0.9936 0.9896 0.9936
25 0.9936 0.9898 0.9936
30 0.9947 0.9913 0.9946
40 0.9936 0.9897 0.9936

Table B.1: Comparison of distributed representation hyper-parameters for September 2016
database using SVM classifier, trained on GPCRdb same version, n-gram size = 3
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Model N-gram Size Window Accuracy MCC F-measure

Skip-gram 4 100

5 0.9882 0.9804 0.9882
10 0.9904 0.9845 0.9904
20 0.9914 0.9864 0.9915
25 0.9936 0.9899 0.9936
30 0.9925 0.9880 0.9926
40 0.9957 0.9931 0.9957

CBOW 4 100

5 0.9851 0.9764 0.9850
10 0.9883 0.9809 0.9882
20 0.9872 0.9796 0.9872
25 0.9925 0.9875 0.9925
30 0.9925 0.9883 0.9925
40 0.9914 0.9860 0.9915

Skip-gram 4 200

5 0.9883 0.9806 0.9883
10 0.9925 0.9878 0.9925
20 0.9904 0.9842 0.9903
25 0.9936 0.9896 0.9936
30 0.9947 0.9914 0.9947
40 0.9947 0.9915 0.9946

CBOW 4 200

5 0.9861 0.9773 0.9860
10 0.9882 0.9809 0.9883
20 0.9872 0.9796 0.9871
25 0.9925 0.9880 0.9924
30 0.9883 0.9817 0.9883
40 0.9904 0.9846 0.9904

Skip-gram 4 300

5 0.9893 0.9828 0.9892
10 0.9914 0.9862 0.9915
20 0.9915 0.9861 0.9914
25 0.9914 0.9861 0.9914
30 0.9936 0.9894 0.9936
40 0.9957 0.9931 0.9957

CBOW 4 300

5 0.9850 0.9757 0.9850
10 0.9893 0.9827 0.9893
20 0.9904 0.9846 0.9905
25 0.9936 0.9898 0.9936
30 0.9904 0.9843 0.9904
40 0.9925 0.9878 0.9926

Table B.2: Comparison of distributed representation hyper-parameters for September 2016
database using SVM classifier, trained on GPCRdb same version, n-gram size = 4
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Model N-gram Size Window Accuracy MCC F-measure

Skip-gram 2 100

5 0.9957 0.9932 0.9957
10 0.9947 0.9914 0.9947
20 0.9925 0.9878 0.9925
25 0.9957 0.9930 0.9957
30 0.9925 0.9881 0.9926
40 0.9936 0.9894 0.9936

CBOW 2 100

5 0.9957 0.9931 0.9957
10 0.9947 0.9911 0.9946
20 0.9925 0.9880 0.9925
25 0.9936 0.9899 0.9936
30 0.9925 0.9876 0.9925
40 0.9957 0.9931 0.9957

Skip-gram 2 200

5 0.9915 0.9863 0.9914
10 0.9925 0.9876 0.9925
20 0.9947 0.9910 0.9947
25 0.9947 0.9917 0.9947
30 0.9936 0.9890 0.9936
40 0.9947 0.9913 0.9947

CBOW 2 200

5 0.9925 0.9880 0.9925
10 0.9936 0.9894 0.9936
20 0.9957 0.9934 0.9958
25 0.9968 0.9948 0.9968
30 0.9936 0.9895 0.9936
40 0.9947 0.9913 0.9947

Skip-gram 2 300

5 0.9947 0.9916 0.9946
10 0.9936 0.9896 0.9936
20 0.9947 0.9912 0.9947
25 0.9947 0.9913 0.9947
30 0.9947 0.9911 0.9946
40 0.9947 0.9913 0.9946

CBOW 2 300

5 0.9936 0.9896 0.9936
10 0.9947 0.9911 0.9947
20 0.9957 0.9931 0.9958
25 0.9947 0.9914 0.9946
30 0.9957 0.9934 0.9958
40 0.9957 0.9933 0.9957

Table B.3: Comparison of distributed representation hyper-parameters for September 2016
database using SVM classifier, trained on GPCRdb same version, n-gram size = 2
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Model N-gram Size Window Accuracy MCC F-measure

Skip-gram 5 100

5 0.9936 0.9896 0.9936
10 0.9915 0.9864 0.9913
20 0.9915 0.9862 0.9914
25 0.9915 0.9862 0.9915
30 0.9957 0.9932 0.9957
40 0.9957 0.9933 0.9958

CBOW 5 100

5 0.9904 0.9845 0.9904
10 0.9957 0.9929 0.9957
20 0.9925 0.9880 0.9926
25 0.9925 0.9879 0.9925
30 0.9947 0.9913 0.9947
40 0.9904 0.9845 0.9903

Skip-gram 5 200

5 0.9936 0.9895 0.9936
10 0.9957 0.9929 0.9957
20 0.9936 0.9898 0.9936
25 0.9968 0.9947 0.9968
30 0.9936 0.9897 0.9936
40 0.9947 0.9915 0.9947

CBOW 5 200

5 0.9883 0.9811 0.9883
10 0.9893 0.9830 0.9894
20 0.9883 0.9812 0.9882
25 0.9893 0.9829 0.9895
30 0.9936 0.9897 0.9936
40 0.9893 0.9829 0.9893

Skip-gram 5 300

5 0.9915 0.9863 0.9914
10 0.9925 0.9880 0.9925
20 0.9947 0.9915 0.9947
25 0.9947 0.9915 0.9947
30 0.9947 0.9915 0.9947
40 0.9947 0.9915 0.9947

CBOW 5 300

5 0.9861 0.9777 0.9861
10 0.9915 0.9864 0.9915
20 0.9850 0.9760 0.9850
25 0.9904 0.9846 0.9904
30 0.9883 0.9812 0.9884
40 0.9883 0.9811 0.9881

Table B.4: Comparison of distributed representation hyper-parameters for September 2016
database using SVM classifier, trained on GPCRdb same version, n-gram size = 5
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Model N-gram Size Window Accuracy MCC F-measure

Skip-gram 3 100

5 0.8828 0.8533 0.8827
10 0.8901 0.8626 0.8895
20 0.8841 0.8553 0.8844
25 0.8682 0.8350 0.8675
30 0.8742 0.8431 0.8739
40 0.8815 0.8516 0.8810

CBOW 3 100

5 0.8980 0.8725 0.8981
10 0.8907 0.8638 0.8901
20 0.8947 0.8690 0.8942
25 0.8828 0.8538 0.8816
30 0.8841 0.8555 0.8832
40 0.8980 0.8731 0.8979

Skip-gram 3 200

5 0.9000 0.8750 0.9001
10 0.8993 0.8742 0.8990
20 0.8980 0.8726 0.8982
25 0.8940 0.8677 0.8937
30 0.9066 0.8831 0.9067
40 0.8907 0.8632 0.8906

CBOW 3 200

5 0.9046 0.8815 0.9037
10 0.9053 0.8819 0.9052
20 0.9139 0.8923 0.9139
25 0.9073 0.8839 0.9073
30 0.9086 0.8858 0.9081
40 0.9079 0.8850 0.9073

Skip-gram 3 300

5 0.9113 0.8889 0.9103
10 0.9099 0.8873 0.9094
20 0.9166 0.8955 0.9164
25 0.9093 0.8864 0.9094
30 0.9040 0.8797 0.9035
40 0.8947 0.8684 0.8952

CBOW 3 300

5 0.9106 0.8880 0.9106
10 0.8987 0.8733 0.8990
20 0.9007 0.8753 0.9007
25 0.9119 0.8897 0.9114
30 0.9013 0.8763 0.9010
40 0.9079 0.8847 0.9079

Table C.1: Comparison of distributed representation hyper-parameters for 2011 database using
SVM classifier, trained on Swiss-Prot 2017 04, n-gram size = 3
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Model N-gram Size Window Accuracy MCC F-measure

Skip-gram 4 100

5 0.8795 0.8493 0.8788
10 0.8781 0.8474 0.8776
20 0.8735 0.8422 0.8737
25 0.8589 0.8239 0.858
30 0.8675 0.8340 0.8675
40 0.8642 0.8298 0.8637

CBOW 4 100

5 0.8675 0.8339 0.8674
10 0.8689 0.8354 0.8681
20 0.8828 0.8530 0.8824
25 0.8715 0.8387 0.8707
30 0.8854 0.8564 0.8850
40 0.8927 0.8653 0.8923

Skip-gram 4 200

5 0.8954 0.8692 0.8948
10 0.8762 0.8455 0.8760
20 0.9040 0.8801 0.9045
25 0.8947 0.8684 0.8952
30 0.8927 0.8658 0.8931
40 0.8934 0.8667 0.8933

CBOW 4 200

5 0.8980 0.8722 0.8981
10 0.8940 0.8671 0.8927
20 0.8914 0.8640 0.8910
25 0.8927 0.8655 0.8923
30 0.8947 0.8678 0.8938
40 0.9013 0.8761 0.9006

Skip-gram 4 300

5 0.9046 0.8806 0.9046
10 0.9132 0.8913 0.9128
20 0.8887 0.8612 0.8881
25 0.9073 0.8838 0.9062
30 0.8954 0.8689 0.8942
40 0.8960 0.8699 0.8957

CBOW 4 300

5 0.9060 0.8821 0.9054
10 0.9079 0.8850 0.9078
20 0.9172 0.8963 0.9166
25 0.9205 0.9006 0.9199
30 0.9113 0.8886 0.9099
40 0.9093 0.8862 0.9088

Table C.2: Comparison of distributed representation hyper-parameters for 2011 database using
SVM classifier, trained on Swiss-Prot 2017 04, n-gram size = 4
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Model N-gram Size Window Accuracy MCC F-measure

Skip-gram 2 100

5 0.8815 0.8515 0.8804
10 0.8887 0.8604 0.8876
20 0.8834 0.8542 0.8822
25 0.8709 0.8379 0.8698
30 0.8834 0.8543 0.8827
40 0.8828 0.8527 0.8812

CBOW 2 100

5 0.9060 0.8822 0.9054
10 0.9086 0.8856 0.9087
20 0.8993 0.8740 0.8989
25 0.8993 0.8740 0.8997
30 0.9060 0.8821 0.9055
40 0.9013 0.8761 0.9011

Skip-gram 2 200

5 0.9066 0.8829 0.9058
10 0.9073 0.8837 0.9067
20 0.8987 0.8728 0.8976
25 0.8901 0.8625 0.8893
30 0.9033 0.8786 0.9022
40 0.8993 0.8736 0.8980

CBOW 2 200

5 0.9132 0.8913 0.9124
10 0.9126 0.8905 0.9124
20 0.9132 0.8915 0.9130
25 0.9192 0.8988 0.9187
30 0.9073 0.8837 0.9065
40 0.9079 0.8845 0.9070

Skip-gram 2 300

5 0.9093 0.8864 0.9088
10 0.9192 0.8989 0.9186
20 0.9073 0.8837 0.9068
25 0.9086 0.8857 0.9083
30 0.9066 0.8836 0.9066
40 0.9033 0.8791 0.9028

CBOW 2 300

5 0.9060 0.8821 0.9051
10 0.9119 0.8900 0.9114
20 0.9232 0.9038 0.9231
25 0.9132 0.8912 0.9124
30 0.9166 0.8954 0.9161
40 0.9146 0.8930 0.9143

Table C.3: Comparison of distributed representation hyper-parameters for 2011 database using
SVM classifier, trained on Swiss-Prot 2017 04, n-gram size = 2
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