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ABSTRACT
In many real-life networks, such as urban structures, protein inter-
actions and social networks, one of the key issues is to measure
the centrality of nodes, i.e. to determine which nodes and edges are
more central to the functioning of the entire network than others. In
this paper we focus on betweenness centrality — a metric based on
which the centrality of a node is related to the number of shortest
paths that pass through that node. This metric has been shown to
be well suited for many, often complex, networks. In its standard
form, the betweenness centrality, just like other centrality metrics,
evaluates nodes based on their individual contributions to the func-
tioning of the network. For instance, the importance of an intersec-
tion in a road network can be computed as the difference between
the full capacity of this network and its capacity when the inter-
section is completely shut down. However, as recently argued in
the literature, such an approach is inadequate for many real-life ap-
plications, as, for example, multiple nodes can fail simultaneously.
Thus, what would be desirable is to refine the existing centrality
metrics such that they take into account not only the functioning of
nodes as individual entities but also as members of groups of nodes.
One recently-proposed way of doing this is based on the Shapley
Value — a solution concept in cooperative game theory that mea-
sures in a fair way the contributions of players to all the coalitions
that they could possibly participate in. Although this approach has
been used to extend various centrality metrics, such an extension to
betweenness centrality is yet to be developed. The main challenge
when developing such a refinement is to tackle the computational
complexity; the Shapley Value generally requires an exponential
number of operations, making its use limited to a small number
of player (or nodes in our context). Against this background, our
main contribution in this paper is to refine the betweenness central-
ity metric based on the Shapley Value: we develop an algorithm
for computing this new metric, and show that it has the same com-
plexity as the best known algorithm due to Brandes [7] to compute
the standard betweenness centrality (i.e., polynomial in the size of
the network). Finally, we show that our results can be extended to
another important centrality metric called stress centrality.
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1. INTRODUCTION
Networks (or graphs) are a very natural representation of a va-

riety of real-life domains such as, among others, urban structures
[20], protein interactions [6], social networks [25] and computer
communication networks [13, 27]. Networks are also an impor-
tant modeling paradigm in Multi-Agent System (see, e.g., [2, 11]).
In many of these applications, it is often paramount to determine
which nodes (or vertices) and edges are more critical (or central)
to the functioning of the entire network than others. For example,
one may need to know the most influential persons in a social net-
work or the most important routes in a road network. To this end,
various centrality metrics, such as degree, closeness, eigenvalue or
betweenness, have been extensively studied in the literature.1 In
this paper we focus on betweenness centrality — a metric based on
which the centrality of a node is related to the number of shortest
paths that pass through that node. The importance of this central-
ity metric stems from the fact that it characterizes well many, often
complex and extensive, networks. In particular, a variety of natu-
rally evolving real-life networks, such as the internet or social net-
works, feature a power-law distribution of betweenness centrality
(as well as degree centrality) [3, 13]. Intuitively, in these so called
scale-free networks, there are relatively few nodes that contribute
to a large number of shortest paths. This implies that such networks
are hardly affected by random impairments but, at the same time,
they can be relatively easily affected by the removal of the most
central nodes [4]. For example, it was shown in the epidemiology
literature that the immunization of the most central nodes signifi-
cantly hinders epidemics [19]. As another example, in the internet
context, the betweenness centrality can be used to identify nodes
in a local network that are able to trace the communications of as
many users as possible [21].
1An overview of the most important centrality metrics can be found
in Koschützki at al. [18].
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Due to a variety of important applications, an ongoing line of re-
search tries to develop better centrality metrics that are more suit-
able for diverse real world situations [14]. Consider, for example,
the problem of designing an infrastructure network, such as a com-
munication network or power grid, where the design is required
to be resistant to random node failures. In this respect, centrality
metrics, which in this case are called vitality measures [18], simply
test the performance of a network with and without a given node.
For instance, the importance of an intersection in a road network
can be computed as the difference between the full capacity of this
network and its capacity when the intersection is completely shut
down. Naturally, the more adverse the consequences of a node fail-
ure are, the higher the centrality of this node becomes. Neverthe-
less, such an approach to computing centrality is often inadequate
for many real-life network applications.2 In more detail [1]:

• It is often insufficient to merely consider failures of individ-
ual nodes. This is because, in many real-world situations,
multiple nodes can fail simultaneously. This was, for in-
stance, the case with the Japanese power grids that were de-
stroyed during the 2011 tsunami. Whereas not much capacity
is lost when individual nodes fail in such a network, multi-
ple concurrent failures of certain critical nodes can be highly
detrimental. Such issues, however, are not considered in the
standard centrality metrics;

• A related impediment of standard centrality metrics is the
implicit assumption of node failure independence. This as-
sumption does not hold in many real-world situations when
nodes break down sequentially in a short period of time [26].

In an attempt to address the above shortcomings, the notion of
group centrality [12] has been proposed by which centrality is mea-
sured not only for individual nodes but also for groups of them.
Whereas, in principle, this notion tackles the issue of group fail-
ures, its use is rather limited. This is because it only answers the
question of how important a certain group of nodes is. However, it
is often unknown ex ante which particular groups of nodes should
be considered, e.g., in a natural disaster scenario, where it is not
possible to identify a priori the nodes that will be affected. Even
if we evaluate all possible groups, we are still left without a syn-
thetic ranking of individual nodes’ importance. Thus, what would
be more desirable is to have a metric of importance of an indi-
vidual node that takes into account many (preferably all) potential
groups that this node can belong to. One such metric is the recently-
proposed notion of the game theoretic network centrality [15, 24]
based on the Shapley Value. In more detail, the Shapley Value is
one of the key solution concepts in game theory. It advocates a
fair division of payoff from a coalitional game and is computed
as the weighted average of marginal contributions of players to all
the coalitions that they could potentially participate in. The basic
idea behind the Shapley Value-based centrality is to define a game
over the network, where nodes are players and collections of nodes
are coalitions. In this game, the value of any coalition reflects the
consequences of a simultaneous failure of all the nodes involved
in this coalition. The marginal contribution of a node to a coali-
tion is interpreted as the change in severity of such a failure if this
additional node failed with all the other nodes already involved in
the coalition. The Shapley Value computed for such a game shows
the weighted average of all the marginal contributions of each node
to all the potential coalitions of nodes. This addresses both prob-
lems related to the standard centrality metrics. Note, however, that
2A failure of a node should be understood as an inability to perform
its previous role, e.g. to control the information flow.

computing the Shapley Value in the general case requires a number
of operations that is exponential in the number of players. This is
clearly not desirable, especially given networks with large numbers
of nodes. Thus, to be able to use Shapley Value-based metrics in
practice, it is crucial that this complexity is significantly reduced.

Against this background, our contributions in the present paper
can be summarised as follows:

1. To date, the Shapley Value was used to refine two standard
metrics: degree centrality [24] and closeness centrality [1].
Our first contribution in this paper is to develop the refine-
ment of the betweenness centrality metric based on the Shap-
ley Value;

2. We propose a polynomial-time algorithm for computing the
new metric. Interestingly, although our algorithm involves
the computation of the Shapley Value, we show that it has the
same complexity as the best known algorithm due to Brandes
[7] to compute the standard betweenness centrality.

3. Finally, we show that the above results can be extended to
another centrality metric, namely the stress centrality [23,
18] — a concept closely related to betweenness centrality.

The remainder of the paper is organized as follows. In Section 2,
basic notations and definitions are presented. In Section 3, we in-
troduce the new betweenness centrality based on the Shapley Value.
The polynomial time algorithm to compute the new metric is de-
scribed in Section 4. In Section 5, we summarize our results and
present the most promising directions for future research. Finally,
a proof is provided in the appendix.

2. PRELIMINARIES
In this section we introduce basic concepts from cooperative

game theory that are needed in our analysis.
A graph (or network) G is composed of vertices (or nodes) and

edges. Their sets will be denoted V (G) and E(G), respectively,
where every edge in E(G) connects two vertices in V (G). An
edge connecting vertices u, v ∈ V (G) will be denoted by (u, v).
We will also consider weighted networks in which a weight (label)
is associated with every edge in E(G). Informally, a path is a se-
quence of connected edges. The shortest path between two given
vertices u and v is a path that ends with these vertices and mini-
mizes the weights of the involved edges (or minimizes the number
of edges in the case of unweighted networks). It will be denoted by
u

p
; v or simply p if there is no risk of confusion.
Next, we define the notion of a coalitional game and the Shapley

Value [22]. In particular, by A = {a1, . . . , a|A|} we will denote
the set of players that participate in a coalitional game. A charac-
teristic function ν : 2A → R assigns to every coalition C ⊆ A
a numerical value representing its performance. It is assumed that
ν(∅) = 0. A coalitional game in a characteristic function form
is then a tuple (A, ν). It is usually assumed that the grand coali-
tion, i.e. the coalition of all the players in the game, has the high-
est value and, therefore, is formed. One of the fundamental ques-
tions in cooperative game theory is how to divide the payoff from
the grand coalition between the players. Whereas, in principle,
there may be an infinite number of such divisions, we are inter-
ested in those that meet certain desirable criteria. In this respect,
in his highly-regarded paper, Shapley proposed to evaluate the role
of each player in the game proportionally to a (weighted) average
marginal contribution of this player to all possible coalitions. The
importance of the Shapley Value stems from the fact that it is the



unique division scheme that meets the following four fairness cri-
teria:

1. Efficiency — the entire payoff of the grand coalitions is dis-
tributed among players;

2. Symmetry — all players with the same marginal contribu-
tions to all coalitions receive exactly the same payoff;

3. Null player — players with no marginal contribution to every
coalition receive no payoff; and

4. Additivity — values for two given games sum up to the value
computed for the sum of both games.

To formalize this concept we denote by π ∈ Π(A) a permutation
of players inA, and by Pπ(i) the coalition made of all predecessors
of player ai in π. In more detail, denoting by π(j) the location of
aj in π, we have Pπ(i) = {aj ∈ π : π(j) < π(i)}. Shapley [22]
defined the value of ai, denoted SVi(A, ν), as the average marginal
contribution of ai to coalition Pπ(i) over all π ∈ Π. Formally:

SVi(A, ν) =
1

|A|!
∑
π∈Π

[ν(Pπ(i) ∪ {ai})− ν(Pπ(i))]. (1)

The intuition behind the above formula is as follows: suppose
that the players arrive at a certain meeting point in a random order.
Furthermore, assume that every player ai who arrives receives the
marginal contribution that this arrival brings to those already at the
meeting point. The payoff of player ai from the coalitional game is
then the average of these contributions taken over all the possible
orders of arrival.

The above formula can be rewritten into an equivalent form as:

SVi(A, ν) =
∑

S⊆A\{ai}

|S|!(|A| − |S| − 1)!

|A|! [ν(S ∪ {ai})− ν(S)]. (2)

In the network context, we will denote a coalitional game defined
on network G by (V (G), ν), where a set of vertices is a set of
players, A = V (G), and ν : 2V (G) → R is the characteristic
function, where ν(∅) = 0. Sometimes, we will use the phrase
“value of coalition S” when referring to ν(S).

3. SHAPLEY VALUE-BASED
BETWEENNESS CENTRALITY

In this section we propose the Shapley Value-based betweenness
centrality. We start with the definition of the standard betweenness
centrality [14]:

Definition 1. The betweenness centrality of a vertex v is defined
as a function c : V → R : cb(v) =

∑
s 6=v 6=t

σst(v)
σst

, 3 where σst is
the number of shortest paths from s to t (if s = t then σst = 1), and
σst(v) is the number of shortest paths from s to t passing through
vertex v (if v ∈ {s, t} then σst(v) = 0).

Intuitively, the betweenness centrality metric represents the load
placed on a given vertex in a network. One of the key applications
of this metric is to measure the ability of different nodes to control
the information flow within a network. However, as we will now
show, there are cases where the standard betweenness centrality
metric does not produce accurate measurements in such applica-
tions. Consider, for example, the network in Figure 1. By comput-
ing the centrality of each node in this network using the standard
3To deal with unconnected graphs it is assumed that 0

0
= 0.

Figure 1: Sample network.

betweenness metric, we find that both v9 and v10 are ranked equally
(i.e., cb(v9) = cb(v10) = 98)! This is clearly not accurate since
the failure of v9 has more adverse consequences on the ability to
pass information through the network than the failure of v10. For
example, if v10 fails, then the bottom right nodes (i.e., v16, v17,
v18, and v19) can still communicate with one another. On the other
hand, if v9 fails, then the bottom left nodes (v12, v13, v14, and v15)
can no longer communicate with each other.

In an attempt to deal with this issue, Everett and Borgatti [12]
proposed the notion of group betweenness centrality of the form:

cgb(S) =
∑
s/∈S
t/∈S

σst(S)

σst
,

where S ⊆ V (G) is a subset of vertices under consideration, and
σst(S) is the number of the shortest paths from s to t passing
through some vertex in S (if s ∈ S or t ∈ S then σst(S) = 0). This
centrality metric, however, only evaluates a given subset of vertices
S, and this implies that the evaluation of individual nodes remains
unchanged. For instance, given the network in Figure 1, group be-
tweenness centrality gives exactly the same ranking of v9 and v10

as the standard betweenness centrality, i.e., cgb(v9) = cgb(v10) =
98 (the only difference is that the former centrality evaluates {v9}
and {v10}, while the latter one evaluates v9 and v10, respectively;
this change does not affect the evaluations of those two nodes).
Therefore, even if we evaluate all possible 2|V (G)| subsets using
group centrality, we are still left without one synthetic ranking of
individual vertices’ importance.

To address this problem, we now introduce the Shapley Value-
based betweenness centrality:

Definition 2. Given a network G, the Shapley Value-based be-
tweenness centrality of a vertex v ∈ V (G) is defined as a function
cSh : V → R : cSh(v) = SVv(V (G), ν), where ν is the charac-
teristic function defined as ν : 2V (G) → R : ν(S) =

∑
s/∈S
t/∈S

σst(S)
σst

with S ⊆ V (G).

As mentioned in Section 2, the Shapley Value divides the payoff
of the grand coalition among players by evaluating their marginal
contributions to any coalition they may possibly belong to. Simply,
the higher these marginal contributions are, the higher the Shap-
ley value of a player is. Or, to rephrase it in the context of this
paper, the more a vertex contributes to the performance of any
possible group of vertices (that this vertex belongs to), the higher



its betweenness centrality should be. Thus, unlike the group be-
tweenness centrality, our Shapley Value-based centrality provides
synthetic ranking of individual vertices’ importance. Coming back
to the example in Figure 1, we find that: cSh(v9) = 18.2, while
cSh(v10) = 16.0833. In other words, our metric is able to reflect
the difference in centrality between v9 and v10 because the evalu-
ation of each node is done from a global perspective of all subsets
in the network. This approach, among other advantages, grasps
a nuance that {a10, a11} play the the same role as {v9}, and this
because cgb({v9}) = cgb({v10, v11}).

Our notion can be seen as analogous to the Shapley Value-based
degree and closeness centralities. Having defined it, in the next
section we will propose a polynomial time algorithm to compute it.

4. ALGORITHMS TO COMPUTE THE SHAP-
LEY VALUE BASED BETWEENNESS CEN-
TRALITY

Although the formula for the Shapley Value in (2) is less compu-
tationally involved than in (1), it still requires analyzing a number
of coalitions that is exponential in the number of players. Specifi-
cally, in our network context one would need to analyseO(2|V (G)|)
coalitions, i.e., groups, of vertices. To circumvent this major ob-
stacle, we propose in this section two polynomial algorithms for
computing the Shapley Value-based betweenness centrality: one
for weighted graphs, and the other for unweighted graphs. Inter-
estingly, we show that the first algorithm has the same complexity
as the best known algorithm to compute the betweenness centrality
in the standard form (due to Brandes [7]). Furthermore our both
algorithms can be easily adapted to work on directed graphs.

4.1 A Look at Marginal Contributions
Given a graph G and some vertex v ∈ V (G), we would like to

compute the expected marginal contribution of this vertex to the set
of vertices Pπ(v) occurring before v in a random permutation π of
all vertices of the graph. We split our analysis into two cases: one
of positive and one of negative marginal contributions, respectively.

Firstly, we consider positive contributions. In what follows, let
us focus on some particular shortest path p which contains vertex
v. Recall that we denote by σst the number of shortest paths be-
tween vertices s and t, and by σst(v) the number of shortest paths
between vertices s and t where every path passes through vertex v
and v 6= t 6= s. Every path in σst(v) has a positive contribution to
the coalition Pπ(v) through v if and only if it is not yet controlled
by any vertex from set Pπ(v). In this case, the positive contribu-
tion equals 1

σst
. The necessary and sufficient condition for this to

happen can be expressed by Ψ(p) ∩ Pπ(v) = ∅, where Ψ(p) is
the set of all vertices lying on the path p including endpoints. That
is, vertices s and t, as well as the rest of the vertices from path p,
should not belong to Pπ(v).

Now, let us introduce a Bernoulli random variable B+
v,p which

indicates whether vertex v makes a positive contribution through
path p to set Pπ(v). Thus, we have:

E[
1

σst
B+
v,p] =

1

σst
P [Ψ(p) ∩ Pπ(v) = ∅],

where P [·] denotes probability, and E[·] denotes expected value. In
other words, we need to know the probability of having v precede
all other vertices from Ψ(p) \ {v} in a random permutation of all
vertices in the graph. Combinatorial arguments (see the Appendix)
show that this happens with probability 1

|Ψ(p)| . Thus:

E[
1

σst
B+
v,p] =

1

σst|Ψ(p)| . (3)

Secondly we examine a potential negative contribution of vertex
v to set Pπ(v). Such a contribution happens when path p ends with
v. Specifically, if coalition Pπ(v) already controls path p, along
with vertex v, then not only is there no value added from v becom-
ing a member of this coalition, but there is a negative effect of this
move. In particular, the group betweenness centrality assumes that
a set of vertices S controls only those paths with both ends not be-
longing to S. Therefore, when v becomes a member of coalition
Pπ(v), its negative contribution through path p is − 1

σsv
, where,

following the previous convention, we denote the number of paths
that start with some s end with v by σsv .

Now, we will analyse a probability of such a negative contri-
bution to happen by considering a complementary event in which
path p makes neutral contribution to set Pπ(v). This happens if
and only if either vertex s belongs to set Pπ(v), or this path is
not controlled by any of the vertices in Pπ(v). Formally: s ∈
Pπ(v) ∨ (Ψ(p) ∩ Pπ(v)) = ∅. Now, by introducing a Bernoulli
random variable B−v,p which indicates whether that vertex v makes
a negative contribution through path p to set Pπ(v), we get the fol-
lowing expression:

E[− 1

σsv
B−v,p] = − 1

σsv
(1−P [s ∈ Pπ(v)∨(Ψ(p)∩Pπ(v)) = ∅]).

Again, one can show with combinatorial arguments that this prob-
ability is P [Ψ(p)∩Pπ(v) = ∅] = 1

|Ψ(p)| and due to symmetry that
P [s ∈ Pπ(v)] = 1

2
. Finally, from the disjointness of these two

events, we

E[− 1

σsv
B−v,p] =

2− |Ψ(p)|
2σsv|Ψ(p)| . (4)

Before proceeding, we define ∂st to be the set of all shortest
paths from s to t, and, analogously, ∂st(v) to be the set of shortest
paths from s to t passing through vertex v.4 Now, using the ex-
pected value of Bernoulli random variables (3) and (4) we are able
to compute the Shapley Value of vertex v, which is the expected
marginal contribution of v to Pπ(v), as:

SVv(V (G), ν) =
∑
s 6=v 6=t

∑
p∈∂st(v)

E[
1

σst
B+
v,p] +

∑
s 6=v

∑
p∈∂sv

E[− 1

σst
B−v,p]

=
∑
s 6=v 6=t

∑
p∈∂st(v)

1

σst|Ψ(p)| +
∑
s 6=v

∑
p∈∂sv

2− |Ψ(p)|
2σsv|Ψ(p)| .

(5)

The above equation provides insight into the Shapley Value-based
betweenness centrality: it is not simply the classical betweenness
centrality scaled by the number of vertices that belong to each path.
This is because, the second part of the sum resembles the closeness
centrality, but with distances measured as the number of vertices
on the shortest paths. So, if the vertex lays in the middle of many
shortest paths, then its value will be higher.

4.2 The Case of Unweighted Graphs
In this subsection we will construct an efficient algorithm for

computing the Shapley Value-based betweenness centrality for un-
weighted graphs. Specifically, in such graphs, the number of ver-
tices in the shortest path between s and t is simply equal to the
distance between s and t, denoted as d(s, t).5 In other words, we

4Note that σst = |∂st| and σst(v) = |∂st(v)|.
5For notational convenience we assume that distance between two
vertices is the number of vertices on the shortest path between them
(not the number of edges), e.g. d(s, s) = 1.



have: |Ψ(p)| = d(s, t). Based on this, it is possible to simplify (5)
as follows:

SVv(V (G), ν) =
∑
s 6=v 6=t

∑
p∈∂st(v)

1

σstd(s, t)
+
∑
s 6=v

∑
p∈∂sv

2− d(s, v)

2σsvd(s, v)

=
∑
s 6=v

(∑
t6=v

σst(v)

σstd(s, t)
+

2− d(s, v)

2d(s, v)

)
. (6)

The above equation provides some interesting insights: by trans-
forming the second element of the inner sum 2−d(s,v)

2d(s,v)
= 1

d(s,v)
+ 1

2

we find that, in unweighted graphs, the Shapley Value using group
betweenness centrality as a characteristic function is in fact the sum
of the distanced scaled betweenness centrality (introduced by Bor-
gatti and Everett in [5]) and the closeness centrality, shifted by half.

Now, we adopt the framework presented in [7] so as to accom-
modate equation (6). We denote by δs,t(v) = σst(v)

d(s,t)σst
a pair-

dependency, which is the positive contribution that vertices s and t
make to the assessment of vertex v in equation (6). Analogously,
we denote by δs,·(v) =

∑
t∈V δs,t(v) one-side dependency, which

is the positive contribution that vertex s makes to the evaluation of
vertex v in the equation (6).

A naive way to compute the betweenness centrality is to first
compute the number of shortest paths between all pairs, and then
sum all pair-dependencies. This process takesO(|V |3) time. Bran-
des [7] proposed an algorithm to improve this complexity by using
some recursive relation. This algorithm runs in O(|V | · |E|) time,
and requiresO(|V |+ |E|) space. We will now show that, although
our new centrality is based on the Shapley Value, it can be com-
puted with the same complexity as Brandes’s algorithm.

Building upon Brandes [7], and its modification for distanced
scaled betweenness centrality presented in [8] we have:

δs,·(v) =
∑

w: (v,w)∈E
d(s,w)=d(s,v)+1

σsv
σsw

(
1

d(s, w)
+ δs,·(w)

)
. (7)

Now, we are able to compute our Shapley Value-based between-
ness centrality for a vertex v by iterating over all other vertices and
summing their contributions. Using (6) and (7) we get:

SVv(V (G), ν) =
∑
s 6=v

(
δs,·(v) +

2− d(s, v)

2d(s, v)

)
. (8)

Algorithm 1 modifies Brandes’s approach and computes the Shap-
ley Value-based betweenness centrality. It runs inO(|V |·|E|) time,
and requires O(|V |+ |E|) space.

Firstly, in lines 7 - 15, the algorithm calculates both the distance
and the number of shortest paths from a source s to each vertex.
While doing that, for each vertex v, all directly preceding vertices
occurring on shortest paths from s to v are stored in memory. This
process uses Breadth-First Search [10] which takes O(|V |) time
and O(|V | + |E|) space. In the second step (lines 20 and 22),
the algorithm uses formula (8) to calculate the contribution of the
source s to the value of our betweenness centrality for each vertex
that is reachable from the source. This step also takes O(|V |) time
and O(|V |+ |E|) space.

As visible in formula (8), in an undirected graph, each path is
considered twice. Thus in line 20 which is inside the loop we mul-
tiply the influence of the vertex s by two. At the end of the al-
gorithm, in line 23, we halve the accumulated result. Finally, we
note that it is very easy to adopt Algorithm 1 to directed graphs. To
this end, we remove the loop from line 23 and halve the contribu-

Algorithm 1: Computing Shapley Value-based betweenness
centrality for unweighted graphs

Input: Graph G = (V,E)
Data: queueQ, stack S for each v ∈ V and some source s:
d(s, v) : distance from v to the source s
Preds(v) : list of predecessors of v on the shortest paths from
source s
σsv : the number of shortest paths from s to v
δs,·(v) : the one-side dependency of s on v
Output: cSh(v) Shapley Value-based betweenness centrality

for each vertex v ∈ V
1 foreach v ∈ V do
2 cSh(v)← 0;

3 foreach s ∈ V do
4 foreach v ∈ V do
5 Preds(v)← empty list; d(s, v)←∞; σsv ← 0;

6 d(s, s)← 1; σss ← 1; enqueue s→ Q;
7 whileQ is not empty do
8 dequeue v ← Q; push v → S;
9 foreach w such that (v, w) ∈ E do

10 if d(s, w) =∞ then
11 d(s, w)← d(s, v) + 1
12 enqueue w → Q
13 if d(s, w) = d(s, v) + 1 then
14 σsw ← σsw + σsv;
15 append v → Preds(w);

16 foreach v ∈ V do δs,·(v)← 0;
17 while S is not empty do
18 pop w ← S;
19 foreach v ∈ Preds(w) do
20 δs,·(v)← δs,·(v) + σsv

σsw
( 1
d(s,w)

+ δs,·(w));

21 if w 6= s then
22 cSh(w)← cSh(w) + δs,·(w) + 2−d(s,w)

d(s,w)
;

23 foreach v ∈ V do
24 cSh(v) = cSh(v)

2
;

tion of the vertex s from line 22, which now should look as follows:

22 : cSh(w)← cSh(w) + δs,·(w) + 2−d(s,w)
2d(s,w)

;

4.3 The Case of Weighted Graphs
While the focus of the previous subsection was on unweighted

graphs, in this subsection we show how to compute the Shapley
Value-based betweenness centrality for weighted graphs. In partic-
ular, we consider one of the most popular semantics of weighted
graphs, where the weight λ(v, u) of the edge between v and u is
interpreted as the distance between v and u . Thus, it is very likely
that for some shortest path s

p
; t it holds that |Ψ(p)| 6= d(s, t).

We will denote by Υst the sum of the reciprocals of the num-
ber of vertices belonging to all particular shortest paths between
vertices s and t. Formally:

Υst =
∑
p∈∂st

1

|Ψ(p)| . (9)

Furthermore, following our convention, we also define Υst(v) =



∑
p∈∂st(v)

1
|Ψ(p)| . Now, using (9) it is possible to simplify (5) as

follows:

SVv(V (G), ν) =
∑
s 6=v

(∑
t 6=v

Υst(v)

σst
+

Υsv

σsv
− 1

2

)
. (10)

In order to compute this value efficiently, we need to overcome
two main algorithmic challenges. The first is how to efficiently
compute Υst for each s and t. The second challenge is how to
recursively compute the term

∑
t6=v

Υst(v)
σst

, which is the one-side
dependency in weighted graphs (denoted as δs,·(v)). That is,

δs,·(v) =
∑
t∈V

Υst(v)

σst
. (11)

In the above equation, counting all shortest paths between source
s and each vertex t, as well as the number of vertices in each such
path, is not challenging: it can be done using O(V 2) space. How-
ever, it is not clear whether there exists any recursive relation that
computes (11), i.e. a similar relation to that used in (7).

In order to compute (11) recursively, we will define an array
Tst which stores the number of shortest paths between vertices s
and t. as well as the number of vertices in each such path. More
specifically, Tst[i] : i ∈ {1, . . . , |V |} is the number of shortest
paths between s and t that contain exactly i vertices. The array Tst
uniquely determines the polynomial Wst with terms Tst[i]xi. We
define seven operation on such arrays:

Shifting T→st and T←st increase or decrease the indices of all values
of the array by one, respectively. This takes O(|V |) time.

Evaluating ‖Tst‖ returns
∑|V |
i=1

Tst[i]
i

. Time complexity isO(|V |).

Adding Tsv⊕Tsu is an operation of adding two polynomialsWsv

and Wsu. It takes O(|V |) time. We will denote by
⊕

the
sum of a series of polynomials.

Multiplying Tsv⊗Tvt is an operation of multiplying two polyno-
mials Wsv and Wvt. This takes O(|V | log |V |) time using
the polynomial multiplying algorithm from [10].

Dividing Tsv � Tvt is an operation of dividing polynomials Wsv

and Wvt. This takes O(|V | log |V |) time.

Dividing by real Tsv ÷ k means dividing every value in the array
by the real value k. This operation takes O(|V |) time.

Resetting Tsv ← 0 is an operation that assigns 0 to each cell in
Tsv .

Observe that ‖Tst‖ = Υst. Therefore, to overcome the first
algorithmic challenge, it is sufficient to compute ‖Tst‖. We will
use the following relation:

Tsv =
⊕

u: d(s,u)+
λ(u,v)=d(s,v)

T→su . (12)

Using Dijkstra’s algorithm [10], as well as equation (12), we
can compute Tst for every t and some source s. If vertex u pre-
cedes vertex v on some shortest path from source s, all shortest
paths stored in Tsu extended by vertex v are part of the set of
shortest paths stored in Tsv . This procedure takes O(|V |2|E| +
|V |2 log |V |) time.

To solve the second algorithmic challenge, it is necessary to no-
tice the following relationship:

Tst(v) = (Tsv ⊗ Tvt)←st = Tsv ⊗ T←vt . (13)

Following our convention, Tst(v) is an array that stores informa-
tion about the paths between s and t that pass through the vertex v.
Every path stored in the array Tsv can be extended by every path
stored in the array Tvt. This operation, which is in fact the multi-
plication of two polynomials Wsv and Wvt, gives us information
about all shortest paths from s to t passing through v. The vertex v
is counted twice, so by shifting left the result of multiplication we
shorten all paths by one.

Now, we are able to infer the recursive relation. Changing type of
one-side dependency (11) to the type of the proposed array δ∗s,·(v) =⊕

t∈V
Tst(v)
σst

, using (13), and using the property of a polynomial
operation, we obtain the following relation 6:

δ∗s,·(v) =
⊕

w: d(s,v)+
λ(v,w)=d(s,w)

(
T→sv
σsw
⊕ Tsv ⊗ (δ∗s,·(w)� T←sw)

)
. (14)

Equations (10) and (11), and definition of δ∗s,·(v) give us the
ultimate formula:

SVv(V (G), ν) =
∑
s6=v

(∥∥δ∗s,·(v)
∥∥+
‖Tsv‖
σsv

− 1

2

)
. (15)

We use the above result to construct Algorithm 2 that computes
the Shapley Value-based betweenness centrality for weighted graphs
inO(|E|·|V |2 log |V |) time. The algorithm requireO(|V |2) space.

Algorithm 2 shows great similarity to Algorithm 1. The only
difference is that we do not operate on numbers of shortest paths
between vertices, but on the special array introduced, which is the
reason behind the higher complexity. However, analogously to Al-
gorithm 1, we are able to easily adapt this algorithm to work on
directed graphs. It is necessary to remove the loop from line 27 and
halve the contribution of vertex s from line 26. Thus, for the case
of directed graphs, this lines becomes:

26 : cSh(w)← cSh(w) +
∥∥δ∗s,·(w)

∥∥+ ‖Tsw‖
σsw

− 1
2
;

4.4 Shapley Value-based Stress Centrality
We will now show how to adapt Algorithms 1 and 2 so that they

efficiently compute the stress centrality based on the Shapley Value.
Intuitively, the stress centrality [23, 18] is used to identify the ver-
tices that are exposed to high loads. Formally,

Definition 3. The stress centrality of node v is defined as a func-
tion c : V → R : cs(v) =

∑
s 6=v 6=t σst(v).

Although the stress centrality has a very similar functional form
to the betweenness centrality, both metrics may rank nodes differ-
ently. The above definition of centrality can be refined to the Shap-
ley Value-based stress centrality, as follows:

Definition 4. Given network G, the Shapley Value-based stress
centrality of vertex v ∈ V (G) is defined as a function cSh : V →
R : cSh(v) = SVv(V (G), ν), where ν is the characteristic func-
tion defined as ν : 2V (G) → R : ν(S) =

∑
s/∈S
t/∈S

σst(S) with

S ⊆ V (G).
6We omit the precise description of a derivation which is analogous
to Brandes’ derivation of the equation (7).



where group stress centrality is defined in an analogous way to that
of the group betweenness centrality in Section 3. The analysis of
the expected marginal contribution of some vertex v ∈ V (G) to
the set of vertices Pπ(v) in the context of group stress centrality c
leads to the following equation:

SVv(V (G), c) =
∑
s6=v 6=t

∑
p∈∂st(v)

E[B+
v,p] +

∑
s 6=v

∑
p∈∂sv

E[−B−v,p]

=
∑
s6=v 6=t

∑
p∈∂st(v)

1

|Ψ(p)| +
∑
s 6=v

∑
p∈∂sv

2− |Ψ(p)|
2|Ψ(p)| ,

(16)

where we use the same notation as in Section 4.1.

Algorithm 2: Computing Shapley Value-based betweenness
centrality for weighted graphs

Input: weighted graph G = (V,E), with weight function
λ : E → R+

Data: priority queueQ with key d(), stack S for each
vertex v ∈ V and some source s:
d(s, v) : the distance from s to v
Preds(v) : the list of predecessors of v on the shortest paths
from source s
σsv : the number of shortest paths from s to v
δ∗s,·(v) : one-side dependency of s on v with type of the array
Tsv : the number of shortest paths from s to v with accuracy to
the number of vertices belonging to them stored in array
Output: cSh(v) Shapley Value-based betweenness centrality

1 foreach v ∈ V do
2 cSh(v)← 0;

3 foreach s ∈ V do
4 foreach v ∈ V do
5 Preds(v)← empty list; d(s, v)←∞; σsv ← 0;

6 d(s, s)← 1; σss ← 1; enqueue s→ Q;
7 whileQ is not empty do
8 extract v ← Q with minimal d(s, v);
9 push v → S;

10 foreach w such that (v, w) ∈ E do
11 if d(s, w) > d(s, v) + λ(v, w) then
12 d(s, w)← d(s, v) + λ(v, w)
13 insert/update w → Q with d(s, w);
14 σsw ← 0; Tsw ← 0;
15 Preds(w)← empty list;

16 if d(s, w) = d(s, v) + λ(v, w) then
17 σsw ← σsw + σsv;
18 append v → Preds(w);
19 Tsw = Tsw ⊕ T→sv ;

20 foreach v ∈ V do δ∗s,·(v)← 0;
21 while S is not empty do
22 pop w ← S;
23 foreach v ∈ Preds(w) do
24 δ∗s,·(v)← δ∗s,·(v)⊕ T→sv

σsw
⊕Tsv⊗ (δ∗s,·(w)�T←sw);

25 if w 6= s then
26 cSh(w)← cSh(w) +

∥∥δ∗s,·(w)
∥∥+ 2‖Tsw‖

σsw
− 1

27 foreach v ∈ V do
28 cSh(v) = cSh(v)

2
;

Using (16), and following similar steps to those that we took dur-
ing the analysis of the betweenness centrality, we infer analogous
recursive equations for computation one-side dependency δs,·(v).
In case of unweighted graphs, we get δs,·(v) =

∑
t∈V (G)

σst(v)
d(s,t)

and obtain:

δs,·(v) =
∑

w: (v,w)∈E
d(s,w)=d(s,v)+1

σsv

(
1

d(s, w)
+
δs,·(w)

σsw

)
. (17)

The modification of Algorithm 1 based on equations (16) and
(17) consists of changing lines 20 and 22 so that they become:

20 : δs,·(v)← δs,·(v) + σsv( 1
d(s,w)

+
δs,·(w)

σsw
);

22 : cSh(w)← cSh(w) + δs,·(w) + σsw( 2−d(s,w)
d(s,w)

);

Then, in case of weighted graphs, where δ∗s,·(v) =
⊕

t∈V Tst(v)
we obtain:

δ∗s,·(v) =
⊕

w: d(s,v)+
λ(v,w)=d(s,w)

(
T→sv ⊕ Tsv ⊗ (δ∗s,·(w)� T←sw)

)
. (18)

Equations (16) and (18) result in changing lines 24 and 26 from
Algorithm 2 into the following:

24 : δ∗s,·(v)← δ∗s,·(v)⊕ T→sv ⊕ Tsv ⊗ (δ∗s,·(w)� T←sw);

26 : cSh(w)← cSh(w) +
∥∥δ∗s,·(w)

∥∥+ 2 ‖Tsw‖ − σsw;

This concludes the necessary modifications of Algorithms 1 and
2 in order to compute the Shapley Value-based stress centrality.

5. SUMMARY AND FUTURE WORK
In Table 1, we present a summary of the results obtained in this

paper. To date, following the seminal work of Gómez et al. [15],
the game theoretic refinements for the degree [24] and closeness [1]
centralities were proposed and their computational properties were
studied in Aadithya et al. [1]. In the present paper we propose
the Shapley Value-based betweenness centrality and develop two
polynomial algorithms for computing it. We also show that these
results can be easily extended to the related notion of the stress
centrality.

Standard Group SV-based Efficient
centrality centrality centrality computation

node [12] [24] [1]
closeness [12] [1] [1]

betweenness [12] this paper this paper
stress this paper this paper this paper

Table 1: Summary of the results obtained in this paper.

Regarding future research, our work can be extended to a variety
of other centrality metrics. In particular, similarly to the stress cen-
trality, there are other, though less known, versions of the between-
ness centrality [8] to which our results stretch straightforwardly.
Another interesting, and indeed more challenging, extension is to
derive (and efficiently compute!) the Shapley Value-based forms of
other metrics such as the graph centrality [17], the reach centrality
[16], the edge centrality [18], the flow betweenness centrality [18],
and current flow centrality [9].
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APPENDIX: Combinatorial Proof
Theorem 1. Let K be a set of elements such that |K| = k. Let

L and R be two disjoint subsets of K, such that: |L| = l, |R| = r.
Now, given some element x ∈ K, where x /∈ L ∪ R, and given
a random permutation π ∈ Π(K), the probability of having every
element in L before x, and every element in R after x, is:

P [∀e∈Lπ(e) < π(x) ∧ ∀e∈Rπ(e) > π(x)] = 1

(l+1)(l+r+1
r )

PROOF. Let us first count the permutations that satisfy the as-
sumption: ∀e∈Lπ(e) < π(x) ∧ ∀e∈Rπ(e) > π(x). Specifically:

• Let us choose l + r + 1 positions in the sequence of all ele-
ments from K. There are

(
n

l+r+1

)
such possibilities.

• Now, in the first l chosen positions, place all elements fromL.
Directly after those, place the element x. Finally, in the last r
chosen positions, place all elements from R. The number of
such line-ups is l!r!.

• The remaining elements can be arrange in (n− (l+ r+ 1))!
different possibilities.

Thus, the number of permutations satisfying our assumption is:(
n

l+r+1

)
l!r!(n− (l + r + 1))! = n!

(l+1)(l+r+1
r )

,

From Theorem 1 we can obtain the probability of an event in
which the vertex v laying on the path p precedes all the other ver-
tices from this path in a random permutation of all vertices in the
graphG. Now, by settingK = V (G), L = ∅ andR = Ψ(p)\{v},
we obtain the desired probability: 1

|Ψ(p)| .


