Role of dislocations in formation of ohmic contacts to heavily doped n-Si

A.E. Belyaev1, V.A. Pilipenko2, V.M. Anischik3, T.V. Petlitskaya2, A.V. Sachenko1, V.P. Kladi’ko1, R.V. Konakova1, N.S. Boltovets4, T.V. Petlitskaya1, L.M. Kapitanchuk5, Ya.Ya. Kudryk1, A.O. Vinogradov1, V.N. Sheremet1

1V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 03028 Kyiv, Ukraine
Phone: 38(044) 525-61-82; fax: 38(044) 525-83-42; e-mail: konakova@isp.kiev.ua

2State centre “Belmicroanaliz”, subsidiary of R&D Centre “Belmicrosystems”, Open Joint Stock Company “Integral”, 220108 Minsk, Belarus

3Belarusian State University, 220030 Minsk, Belarus

4State Enterprise Research Institute “Orion”, 03057 Kyiv, Ukraine

5Paton Institute of Electric Welding, NAS of Ukraine, 03068 Kyiv, Ukraine

Abstract. We present experimental results concerning a high density of structural defects (in particular, dislocations) in the near-contact region of heavily doped n-silicon. They appear in the course of firing Au–Ti–Pd–n+ -Si ohmic contact at 450 °C for 10 min in a vacuum of $\sim 10^{-3}$ Pa. These defects lead to appearance of metal shunts that determine the current flow mechanism in these ohmic contacts. The calculated and experimental temperature dependences of contact resistivity, $\rho_c(T)$, are in good agreement. It is shown that ρ_c increases with temperature. This is characteristic of a model of ohmic contacts with a high dislocation density in the near-contact region of semiconductor.

Keywords: contact resistivity, ohmic contact, dislocation density, metal shunts.

1. Introduction

The effect of dislocations on electrophysical parameters of semiconductor materials, discrete devices and integrated circuits is known and well studied [1-12]. The dislocations produced in the course of p–n junction formation, as well as initial growth dislocations, increase the reverse current and induce a nonuniform microplasma breakdown. They reduce the lifetime of minority charge carriers in the active area of device structures as well as lead to other undesirable effects. The dislocation mechanisms of operating parameters degradation were found for the devices operating in the forward branch of the I–V curve (light-emitting diodes, laser diodes, Gunn diodes) and in the reverse branch of the I–V curve (IMPATT diodes, avalanche transistors, high-power rectifiers). The III–N heterostructures grown on foreign substrates are most vulnerable. The dislocation density in them varies within the range of 10^4 to 10^{10} cm$^{-2}$, depending on a substrate type and growth technique [6, 7].

At the same time, there exists a rather well grounded opinion that the presence of some amount of dislocations in the semiconductor active layer is necessary. In this case, at relatively high-temperature manufacturing operations (that are characteristic, e.g., of the technology of silicon or gallium arsenide devices), dislocations can serve as intrinsic gettering centers. They are beneficial for cleaning semiconductor materials and improvement of electrical characteristics [8-12].

However, the role of dislocations in formation of such an integral part of semiconductor devices as ohmic contacts has remained relatively unexplored so far. It should be noted, however, that some researchers implicitly indicated the role of structural defects (in particular, dislocations) in fabrication of ohmic contacts.
as early as in the sixties and seventies of the last century [13-16]. To illustrate, ohmic contacts to Si were formed on lapped surface with many structural defects (of a rather high concentration) serving, in particular, as recombination centers. The advantage of the contacts on lapped surface is their high adhesion. The structural factor plays its role in alloyed ohmic contacts, too.

A near-contact region of semiconductor appears owing to alloying contact material with semiconductor, which is followed by relaxation of intrinsic stresses. They appear because the alloy components and semiconductor have different lattice parameters and coefficients of thermal expansion α. As a result, the near-contact region of semiconductor has many structural defects, and among them – dislocations. It was intuitively believed that the predominant mechanism of current flow in these contacts is the recombination mechanism that ensures a low contact resistance. However, quantitative agreement between experimental data and calculated dependences has not been achieved. Even for silicon devices, temperature dependences of contact resistivity, ρ(T), still remain unexplored in a wide temperature range, despite the fact that silicon properties have been studied most comprehensively (as compared with other semiconductor materials), and the manufacturing technology for silicon devices is intensely developed.

Some works in that area have recently appeared in the context of developing the elemental base for extremal electronics. The demand for these works arose from the necessity to estimate contact resistivity ρc at operating temperatures much above room temperature as well as at maximal temperature appearing under extreme conditions of electronic devices operation. It was found then that ρc grows with temperature in the high-temperature region [17-25]. This result could not be explained within the existing models. The explanation by Gol’dberg et al. [17-20, 23] referred only to a version of alloyed ohmic contact, under assumption that the current flows via metal shunts associated with dislocations. In that case, contact resistivity ρc should increase linearly with temperature due to metallic conduction via shunts.

Taking into account the model by Gol’dberg et al., a more general explanation for the experimental dependences ρc(T) was proposed in [24-28]. Using ohmic contacts to lapped Si as an example, it was shown that the calculated shunt density was close to the dislocation density (~10^7 cm^-2) determined from the etch pits on the initial (before contact formation) lapped Si surface. In that case, the calculated and experimental dependences ρc(T) practically coincided [27, 28].

Contact metallization in silicon microelectronic devices is formed, as a rule, on polished surface of heavily doped Si. According to the known models for contacts to heavily doped Si layers, a very slight reduction of ρc with temperature would be observed there. However, the existing data indicate a possibility of appearance of a high density of structural defects among the dislocations (with the density up to 10^8 cm^-2) in these contact structures. These are dislocations parallel to the interface, as well as those crossing the space charge region etc. The prepared specimens may also demonstrate dependence ρc(T) growing with temperature.

Therefore, it seemed expedient to study in detail temperature dependence ρc(T) for ohmic contacts to the standard substrate material used in the manufacturing technology for Si microwave diodes (e.g., n^+ - Si with the resistivity ~0.002 Ω·cm). The objective of our work is to elucidate the role of defect structure of metallization and near-surface silicon region both before and after thermal annealing (contact firing modes).

2. Specimens and methods of investigation

We studied the Au – Ti – Pd – n^+ - Si, Au – Pt – Pd – n^+ - Si and Au – Pt – Ti – Pd – n^+ - Si ohmic contacts made using layer-by-layer vacuum thermal deposition of metal onto heated up to 300 °C Si (111) wafers of about 300 μm thick, doped with arsenic (with the resistivity ~0.002 Ω·cm). The 10×10 mm² specimens with continuous metallization were used for structural and morphological investigations. To measure temperature dependences ρc(T) in the 100 to 380 K range, test transmission line method (TLM) structures were used. The specimens of both above types were investigated before and after annealing in vacuum (pressure ~10^-3 Pa) at 400 and 450 °C for 10 min.

The component concentration depth profiles in metallization layers and at contact-forming layer–silicon interfaces were measured on the specimens with continuous metallization using Auger spectrometry with a spectrometer LAS-2000. The phase composition of contact metallization was studied using the X-ray diffraction (XRD) technique with an X-ray diffractometer Philips X'Pert-MRD (CuKα = 0.15418 nm) in the Bragg–Brentano geometry. The morphological features of Si surface were investigated with an atomic-force microscope Nanoscope-IIIa (Digital Instruments, USA).

After chemical removal of metallization layers, silicon surface was etched in selective Wright etch at room temperature for 90 s to detect etch pits associated with structural defects, in particular, dislocations. The investigations of specimen surfaces (after removal of metallization and selective etching) as well as specimen cleavages with deposited metal films were performed using a high resolution scanning electron microscope (SEM) S-4800 (Hitachi, Japan). The elemental composition of metal films and microinclusions in Si was determined with an energy dispersive X-ray spectrometer Quantax 200 with XFlash 5030 Detector (Bruker AXS, Germany).
3. Experimental results and discussion

A. X-ray diffraction studies

Au−Ti−Pd−n⁺−Si. Fig. 1 presents the XRD spectra of Au−Ti−Pd−n⁺−Si contact metallization taken before and after annealing at 400 and 450 °C for 10 min. One can see that the phase composition of the contact system under investigation (both initial specimen and those annealed at 400 °C) practically did not change. It involved the Pd₃Si phase and Au. The XRD spectra also had reflections from Si (curves 1 and 2, respectively). In the course of annealing at 450 °C for 10 min (curve 3), the Au₂Si and Pd₁₀₀−xSix phases appeared in addition to those available. The contact became nonuniform as compared to the previous two states (initial and after annealing at 400 °C for 10 min).

Au−Pt−Pd−n⁺−Si. The XRD spectrum of contact metallization on the initial specimen involved reflections from polycrystalline metals Au, Pt and Pd. Annealing at 400 °C for 10 min. led to formation of the Pd₂Si phase. Along with that phase, platinum and gold silicides appeared after annealing at 450 °C for 10 min. Formation of Au-based solid solution that involved Au, Pt, Pd and Si was also observed. According to the literature data [29], such a composition of contact metallization has to result in a nonuniform contact layer−Si interface.

Au−Pt−Ti−Pd−n⁺−Si. The XRD spectra of the initial contact demonstrated a set of reflections only from Au and Pt metallization. It indicates the polycrystalline structure of individual metal layers (curve I in Fig. 2). The XRD spectrum of contact annealed at 400 °C for 10 min, along with reflections from Au and Pt metallization, had Pd and Ti reflections (curve 2 in Fig. 2). It is indicative of the transition from initial X-ray amorphous Pd and Ti layers to polycrystalline ones in the course of annealing. Further annealing at 450 °C led to appearance of the Pd₃Si phase, while the reflections from Pt disappeared (curve 3 in Fig. 2).

Fig. 1. XRD spectra of Au−Ti−Pd−n⁺−Si contact metallization before (1) and after annealing at 400 °C (2) and 450 °C (3) for 10 min.

B. Concentration depth profiles of metallization components

Au−Ti−Pd−n⁺−Si. Shown in Figs 3a,b are the concentration depth profiles of the contact metallization components before and after annealing at 450 °C for 10 min. One can see (Fig. 3a) that the silicide phase is formed in the course of Pd deposition. The Ti film contains a rather big amount of oxygen (over 10%) and carbon (~8–10%). The Au film is enriched up to 20% with oxygen at the interface with Ti. Annealing this contact metallization at 400 °C for 10 min does not change its layered structure considerably. Intensification of silicides formation at the Pd-Si interface is proceeding in the course of annealing at 450 °C for 10 min. A “step” appears in the Si concentration depth profile (Fig. 3b). Mass transfer of titanium into gold film as well as gold to the interface with silicon was also observed. The above results are in good agreement with the XRD data (Fig. 1).

Au−Pt−Pd−n⁺−Si. Figs 4a-c and 5a-c present the concentration depth profiles of the contact metallization components and a map of elements distribution over the specimen end (vertical cleavage). One can see that the initial specimen has the metallization with a typical layered structure (Figs 4a and 5a). Annealing at 400 °C for 10 min leads to considerable smearing the Au−Pt and Pt−Si interfaces and Pd mass transfer into Si and Pt. It is also shown on the map of elements distribution (Figs 4b and 5b). After annealing at 450 °C for 10 min, the layered structure of contact metallization deteriorates, and interpenetration of metal and Si to the corresponding regions of contact structure is observed (Fig. 4c). In this case, the near-contact region of silicon becomes essentially nonuniform (Fig. 5c).

It should be noted that the characteristic distinction between the Au−Pt−Pd−n⁺−Si and Au−Ti−Pd−n⁺−Si contact metallizations is a slight amount (practically complete absence) of oxygen and carbon in the Au−Pt−Pd−n⁺−Si contact.

© 2013, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine
Fig. 3. Concentration depth profiles of metallization components in Au–Ti–Pd–n⁺-Si ohmic contact before (a) and after (b) annealing at 450 °C for 10 min.

Au–Pt–Ti–Pd–n⁺-Si. The concentration depth profiles of the Au–Pt–Ti–Pd–n⁺-Si contact metallization components taken before and after annealing at 450 °C for 10 min, as well as scanning electron microscope (SEM) photographs of vertical cleavages of the contact structures before and after annealing at 400 and 450 °C for 10 min are presented in Figs 6a, b and 7a, b, respectively. One can see that initial contact metallization has a layered structure. The titanium film contains over 10% oxygen and carbon (Fig. 6a).

The layered structure of metallization deteriorates in the course of annealing at 450 °C for 10 min (Fig. 6b). Si, Pt and Pd atoms (up to 50 at.% Si and more than 10 at.% Pt and Pd) penetrate through all the metallization layers to the external contact surface. The internal surface of the near-contact region on the Si side contains a considerable amount of Ti, Au and Pt. Judging from the presence of the “steps” in the concentration depth profiles, the corresponding silicide phases may be formed in the metallization layers. This conclusion is in agreement with the XRD data obtained for this specimen (Fig. 2, curve 3).

Fig. 4. Concentration depth profiles of metallization components in Au–Pt–Pd–n⁺-Si ohmic contact before (a) and after annealing at 400°C (b) and 450°C (c) for 10 min.

The results obtained with Auger spectrometry are confirmed by the morphological features of vertical cleavages on the initial and annealed specimens. Fig. 7a presents a SEM photograph of the vertical cleavage of the initial specimen, with a rather abrupt contact-forming layer–Si interface. After annealing the specimen at 450 °C for 10 min, one can see a columnar metallization structure in the SEM photograph of the cleavage (Fig. 7c). Its elemental composition and SEM photograph of the cleavage are presented in Figs 8a, b. The spectral characteristic of the columnar structure was obtained from five columnar inclusions. It follows from Fig. 8b that the elemental composition of the analyzed column, along with Si, also involves Pt and Au.

© 2013, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine
Fig. 5. Metallization component maps for Au–Pt–Pd–n⁺-Si ohmic contact before (a) and after annealing at 400 °C (b) and 450 °C (c) for 10 min.

C. Morphological features of Si surface after removal of metallization layers

Au–Ti–Pd–n⁺-Si. After removal of metallization layers with chemical etching, the Si surface was studied using atomic force microscopy. Table 1 presents the data on roughness for 2×2 µm² (un)annealed specimens. One can see that, after removal of metallization, the microreliefs of the initial non-metallized and Si surfaces differ considerably. A developed roughness indicates the process of interaction between Pd and Si that appears at Pd deposition and is activated at annealing. It correlates with the data of XRD and Auger electron spectrometry.

Au–Pt–Pd–n⁺-Si. The SEM photographs (Figs 9–11) present the morphological features of the Au-Pt-Pd metallization layers surfaces and the metal–Si interface (taken before and after annealing at 400 and 450 °C for 10 min) obtained using successive ion etching. One can see from Figs 9 a–c and 10 a–c that the metal layers of the initial and annealed contact structures have microstructures that differ but slightly. They are characterized by comparatively uniform distribution of grains of the same size. The contact-forming layer–silicon interface (representing per se Si surface) in the initial specimen has smaller grains than those in the specimen annealed at 400 °C for 10 min (Figs 9d and 10d). It indicates interaction between the phases in that region, occurring at Pd film deposition and in the course of further annealing.

The above processes proceed more intensely in the course of annealing at 450 °C for 10 min (Fig. 11 a–e). A nonuniform block structure (linear block sizes from fractions of micrometer up to 1…1.5 µm) appears on the Au film surface (Fig. 11a). The subsequent, more dense large-grain structures represent the region of AuPt mixing and Pt layer (Fig. 11b, c, respectively) as well as a microstructure of the region of Pd and Si mixing (Fig. 11e).

After removal of metallization, the Si surface (see Fig. 11e) contains free Si surface and individual small inclusions. The results of our analysis of the inclusions elemental composition at five points are summarized in Table 2. Shown in Fig. 12 is a SEM photograph of Si surface after removal of metallization; indicated are the points for which an analysis of the inclusions elemental composition was made. One can conclude that interpenetration of metals and silicon occurs over the whole thickness of metallization, up to detection of gold on Si surface and mass transport of silicon into metallization layers. The latter is supported by the results of the elemental analysis of Au film surface in the Au–Pt–Pd–n⁺-Si contact metallization after annealing at 450 °C for 10 min.
Fig. 7. SEM photograph of vertical cleavages in Au–Pt–Ti–Pd–n⁺-Si contact structures before (a) and after annealing at 400 °C (b) and 450 °C (c) for 10 min.

Fig. 8. SEM photograph of the cleavage fragment (a) and elemental composition (b) of Au–Pt–Ti–Pd–n⁺-Si contact structure after annealing at 450 °C for 10 min.

Fig. 9. SEM photograph of surface morphology of Au (a), Pt (b), Pd (c) and Si (d) layers in the Au–Pt–Pd–n⁺-Si contact structure before annealing.
Fig. 10. SEM photograph of surface morphology of Au (a), Pt (b), Pd (c) and Si (d) layers in the Au–Pt–Pd–n⁺-Si contact structure after annealing at 400 °C for 10 min.

Fig. 11. SEM photograph of surface morphology of Au (a), AuPt (b), Pt (c), Pd (d) and Si (e) layers in the Au–Pt–Pd–n⁺-Si contact structure after annealing at 450 °C for 10 min.
Table 1. The features of Si surface microrelief after removal of metallization from the initial and annealed specimens.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Initial specimen</th>
<th>After annealing at 450 °C for 10 min</th>
<th>Initial n^+-Si substrate (epi-ready)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS, nm</td>
<td>8.86</td>
<td>12.41</td>
<td>0.30</td>
</tr>
<tr>
<td>R_a, nm</td>
<td>16.49</td>
<td>23.82</td>
<td>0.17</td>
</tr>
<tr>
<td>Z_{max}, nm</td>
<td>78.12</td>
<td>93.90</td>
<td>0.60</td>
</tr>
</tbody>
</table>

RMS – root-mean-square roughness; R_a – arithmetical mean roughness; Z_{max} – maximal height of surface roughness.

Table 2. Elemental composition of five local areas at the contact-forming layer–Si interface.

<table>
<thead>
<tr>
<th>Point #</th>
<th>Si</th>
<th>Pd</th>
<th>Pt</th>
<th>Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>99.88</td>
<td>0.06</td>
<td>0.00</td>
<td>0.06</td>
</tr>
<tr>
<td>2</td>
<td>99.85</td>
<td>0.00</td>
<td>0.05</td>
<td>0.11</td>
</tr>
<tr>
<td>3</td>
<td>52.78</td>
<td>2.71</td>
<td>44.51</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>49.04</td>
<td>4.73</td>
<td>46.23</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>49.09</td>
<td>4.56</td>
<td>46.35</td>
<td>0.00</td>
</tr>
</tbody>
</table>

A SEM photograph of Au surface, with indicated points at which an analysis of the film elemental composition was made, is presented in Fig. 13. Table 3 presents the data on the Au film elemental composition determined at six points. The points 1–3 contain over 40% Si, over 5% Pd and less than 45% Pt. These (and similar) regions in Fig. 13 are dark. The light-colored regions (points 4–6) contain over 94% Au; however, they contain also Si (4.26, 2.89 and 1.56 at.%) and a small amount of Pd (see point 5).

The above data show that, being annealed at 400 °C for 10 min, the Pt layer cannot prevent mass transfer in the Au–Pt–Pd–n^+-Si metallization layers and does not serve as a diffusion barrier. The metallized regions localized at the interface with Si cause formation of a nonuniform ohmic contact – metal shunts penetrating through silicon. Their role in formation of ohmic contacts was considered as a working hypothesis in [17-20, 23]. Its validity was proved in [25] at experimental investigation of temperature dependence of contact resistivity using ohmic contacts to n^+-GaN with a high dislocation density as an example.

Au–Pt–Ti–Pd–n^+-Si. Our analysis of the morphological features of the Si near-contact region before and after annealing at 400 °C for 10 min showed that there was no essential changes of the dislocation density (it was ~103cm$^{-2}$ in the initial n^+-Si substrate). Fig. 14 shows Si surface (after removal of metallization and selective chemical etching with Wright etch) of a specimen annealed at 450 °C for 10 min. Judging from the features of defects, the structural defects with the density over 1010cm$^{-2}$ (among them dislocation loops) are localized in a thin near-contact layer of silicon. They may appear due to relaxation of intrinsic stresses in contacts, for which contact-forming layers and silicon have very different values of both the lattice parameter a and the coefficient of thermal expansion α [29-33]. Another possible reason for their appearance may be relaxation of stresses related to local stress raisers [8, 12].

Table 4 presents the literature data on the above parameters for the phases detected with the XRD technique in the contact structure under investigation. One can see that for most of the silicide phases
Table 3. Elemental composition in the local areas of Au film in Au–Pt–Pd–n⁺-Si metallization after annealing at 450 °C for 10 min.

<table>
<thead>
<tr>
<th>Point #</th>
<th>Si</th>
<th>Pd</th>
<th>Pt</th>
<th>Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45.62</td>
<td>6.34</td>
<td>45.02</td>
<td>3.03</td>
</tr>
<tr>
<td>2</td>
<td>41.66</td>
<td>6.89</td>
<td>38.41</td>
<td>13.03</td>
</tr>
<tr>
<td>3</td>
<td>43.47</td>
<td>5.73</td>
<td>41.20</td>
<td>9.60</td>
</tr>
<tr>
<td>4</td>
<td>4.26</td>
<td>0.00</td>
<td>0.00</td>
<td>95.74</td>
</tr>
<tr>
<td>5</td>
<td>2.89</td>
<td>2.92</td>
<td>0.00</td>
<td>94.20</td>
</tr>
<tr>
<td>6</td>
<td>1.56</td>
<td>0.00</td>
<td>0.00</td>
<td>98.44</td>
</tr>
</tbody>
</table>

Table 4. Some parameters of metal layers and intermetallics appearing in the Au–Pt–Ti–Pd–n⁺-Si contact [29-33].

<table>
<thead>
<tr>
<th>Metal</th>
<th>Lattice parameter, nm</th>
<th>Structure</th>
<th>Lattice mismatch parameter f</th>
<th>Coefficient of thermal expansion α, K⁻¹</th>
<th>Phase formation temperature, °C</th>
<th>Young’s modulus, GPa</th>
<th>Poisson ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>0.389</td>
<td>FCC</td>
<td>−0.28</td>
<td>11.75×10⁻⁶; 13×10⁻⁶</td>
<td>115–125</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>0.323</td>
<td>hexagonal</td>
<td>−0.4</td>
<td>8.3×10⁻⁶</td>
<td>110</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>Pt</td>
<td>0.392</td>
<td>FCC</td>
<td>−0.27</td>
<td>8.99×10⁻⁶</td>
<td>150–175</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td>0.408</td>
<td>FCC</td>
<td>−0.24</td>
<td>14×10⁻⁶</td>
<td>78–83</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>0.543</td>
<td>diamond</td>
<td>2.54×10⁻⁶</td>
<td></td>
<td>110–160</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Pd₂Si</td>
<td>1.3055</td>
<td>2.749</td>
<td>hexagonal</td>
<td>1.4</td>
<td>100–300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd₃Si</td>
<td>0.5735</td>
<td>0.7555</td>
<td>0.5260</td>
<td>0.056</td>
<td>350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd₅Si</td>
<td>0.5599</td>
<td>0.3381</td>
<td>0.6133</td>
<td>0.03</td>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd₅Ti</td>
<td>0.548</td>
<td>0.8976</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt₃Si</td>
<td>0.559</td>
<td>0.3603</td>
<td>0.5932</td>
<td>0.03</td>
<td>225–300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt₃Si₂</td>
<td>0.786</td>
<td>tetragonal</td>
<td>0.0055</td>
<td></td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au₅Si₂</td>
<td>0.9406</td>
<td>1.5487</td>
<td>hexagonal</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti₅Si₂</td>
<td>0.7429</td>
<td>0.5139</td>
<td>hexagonal</td>
<td>0.37</td>
<td>11×10⁻⁶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiSi</td>
<td>0.6544</td>
<td>0.3638</td>
<td>0.4977</td>
<td>0.2</td>
<td>10.4×10⁻⁶</td>
<td>500</td>
<td>2200</td>
</tr>
<tr>
<td>TiSi₂</td>
<td>0.8253</td>
<td>0.4783</td>
<td>0.854</td>
<td>FC orthorhombic</td>
<td>12.5×10⁻⁶; 14.5×10⁻⁶</td>
<td>600</td>
<td>2060</td>
</tr>
<tr>
<td>Pd₃Si</td>
<td>0.6497</td>
<td>0.3437</td>
<td>hexagonal</td>
<td>0.2</td>
<td>100–300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt₃Si</td>
<td>0.3933</td>
<td>0.5910</td>
<td>tetragonal</td>
<td>−0.27</td>
<td>200–500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt₃Si₂</td>
<td>0.7716</td>
<td>0.7773</td>
<td>0.7776</td>
<td>monoclinic</td>
<td>0.42</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>TiSi₂</td>
<td>0.362</td>
<td>1.376</td>
<td>0.3605</td>
<td>BC orthorhombic</td>
<td>−0.33</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Au₅Si²⁺</td>
<td>1.950</td>
<td>Cubic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

contacting with Si, mismatch of lattice parameters $f = (a_1 - a_2) / a_2$, where a_1 is the lattice parameter of film (in our case, silicide) and a_2 is that of Si, exceeds 0.02. According to [8], in this case, dislocations in the form of characteristic loops can be formed near the contacting layer–Si interface.

Beside this, a number of other factors may serve as sources of dislocations. One can mention, for example, a developed micrelief that appears in the course of bombarding Si surface by metal atoms when depositing metal layers, as well as weakening of interatomic bonds near the metal film–Si interface that makes the Peierls barrier lower. Among other reasons, various stress risers may also play their role, e.g., such surface contaminations as thin nonuniform oxide layers and local microinclusions (it is very difficult to exclude them from the factual manufacturing process).

A high density of structural defects in a thin near-contact region of silicon indicates the absence of recrystallization and structural ordering in the layers adjacent to the interface on the side of Pd₃Si as well as Si. These are just the defects via which in the course of metal deposition or annealing metal atoms penetrate into silicon, resulting in formation of metal shunts.
108

D. Electrical characteristics of palladium disilicide-based ohmic contact and discussion

The parameters of ohmic contacts formed by palladium disilicide with Ti, Pt and Pt-Ti barrier interlayers were almost the same for the initial and annealed specimens. In this case, annealing promoted reduction of contact resistivity ρ_c in the 150 to 380 K temperature range practically by an order of magnitude. So, let us consider temperature dependence $\rho_c(T)$ that is typical for the contacts studied.

The $I-V$ curves of ohmic contacts obtained for TLM structures before and after annealing were linear within the whole range of temperature measurements. Both the calculated and measured $\rho_c(T)$ curves for the Au–Ti–Pd–n^+–Si ohmic contact are presented in Fig. 15. The characteristic feature of dependence $\rho_c(T)$ is ρ_c growing with temperature. This behavior is not described by the known mechanisms of current transfer in metal–semiconductor contacts. In [34], it was proposed to explain dependence $\rho_c(T)$ for similar ohmic contacts to n–Si by conduction via metal shunts associated with dislocations that appear in the near-contact region of silicon. Checking that mechanism on ohmic contacts to lapped Si (with the initial dislocation density up to 2×10^{10} cm$^{-2}$) demonstrated, in comparison with the experiment, adequacy of the proposed model [27, 28].

It should be noted that a high density of structural defects in the near-contact region of Si after annealing the Al–Si ohmic contact at 510 °C for 15 min followed by removal of the metallization layer was observed in [35]. The density of structural defects (estimated from the etch pits) exceeded 10^{10} cm$^{-2}$ (see Fig. 16 [35]). In that case, the $I-V$ curves of some test transistors with that metallization and defect near-contact region indicated the presence of short-circuits in the structure of transistor active areas.

The temperature dependence of ρ_c for those contacts was not studied. We do not know a direct experiment to observe a rather high dislocation density in the near-contact region of Si appeared in the course of ohmic contact formation as well as investigation of its effect on the dependence $\rho_c(T)$. In our work, we made an attempt to compensate this gap.

Indeed, the above results on structural investigations of contact metallizations, contact-forming layer–silicon interface and near-contact region of Si after removal of metallization indicate one and the same. One can see that the Pd$_2$Si–Si interface is nonuniform in all three types of ohmic contacts based on the Pd$_2$Si ($\text{Au–Ti} (\text{Pt, Pt–Ti})–\text{Pd–} n^+–\text{Si}$) contact-forming layer, including the initial contact deposited onto a silicon substrate heated up to 350 °C and annealed. After annealing at 450 °C for 10 min, the near-contact region of Si has a high density of structural defects, first of all dislocations.
It should be noted that the observed density of structural defects may be somewhat higher than the calculated one, since not all the structural defects promote formation of metal shunts. It does not contradict to the known notions about types of structural defects in Si and their electrical activity [8].

4. Conclusion

Thus, our structural and morphological investigations of metallization in contacts for heavily doped n-Si and near-contact region of silicon showed that a high density of structural defects, in particular, dislocation loops ($\geq 10^{10}$ cm$^{-2}$) appears in the course of ohmic contact formation in a thin Si layer. The origin of these defects may be related to relaxation of stresses caused by mismatch of thermal expansion coefficients of silicide phases and Si, and reduction of film volume of contact-forming metal (in our case, Pd) at Pd$_2$Si formation.

Judging from the results of our metallographic analysis, formation of metal shunts is possible at annealing (contact firing) even before appearance of recrystallized layer. It is indicative of a high density of structural defects in a thin near-contact layer of silicon. However, the data obtained in our work do not give an answer about specific mechanism of appearance of a high density of structural defects in the Si near-contact layer. Elucidation of the nature of this phenomenon makes a separate problem; we plan to return to it later.

Our analysis of the temperature dependence $\rho_c(T)$ for contact metallization formed in the above way on the basis of the Pd$_2$Si contact-forming layer showed that contact resistivity ρ_c increases with temperature. It is related to the current flowing via metal shunts associated with dislocations. Good agreement was obtained between the calculated and experimental dependences $\rho_c(T)$ in ohmic contacts with a high dislocation density in the near-contact region of semiconductor. In this case (as follows from the model of formation of the prepared ohmic contact), the higher is the density of conducting dislocations in the near-contact layer of semiconductor, the lower is the contact resistivity.

Acknowledgements

This work was supported by the State Fund for Fundamental Researches SFFR-BRFFR-2013 (Project 54.1/012).

References

3. M. Albrecht, H.P. Strunk, J.L. Weyher, I. Grzegory, S. Porowski, T. Wosinski, Carrier recombination at...
35. L.D. Buyko, V.P. Lesnikova, V.A. Filipenko, V.V. Rozhkov, The features of interaction of Al-Si system under thermal and pulsed optical treatments // Elektronnaya Tekhnika, Ser. 6 Materialy, No.2, p. 16-21 (1984), in Russian.

© 2013, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine