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Abstract. We present the results of an experimental campaign on a set of specimens manu-

factured from a typical carbon/epoxy unidirectional laminate. Preliminary tests are per-

formed to evaluate the elastic properties of the base laminate. Then, double cantilever beam 

(DCB) and end-notched flexure (ENF) tests are conducted to assess the delamination tough-

ness in pure fracture modes I and II, respectively, and evaluate the elastic interface constants. 

Afterwards, mixed-mode bending (MMB) tests are carried out with three values of the lever-

arm length. The outcomes of the preliminary and pure fracture mode tests are used as an in-

put to a previously developed enhanced beam theory (EBT) model of the MMB test. Lastly, 

theoretical predictions and experimental results are compared. 

2119

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/87082099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Stefano Bennati, Paolo Fisicaro, Luca Taglialegne and Paolo S. Valvo 

1 INTRODUCTION 

Composite materials are subject to a variety of damage phenomena at both the microscopic 

and macroscopic scales. Analysis of delamination failure is usually conducted through ener-

getic principles derived in the context of Fracture Mechanics [1]. Several testing procedures 

are used to measure delamination toughness of composite laminates [2]. For pure fracture 

modes I and II, the double cantilever beam (DCB) [3] and end-notched flexure (ENF) [4] tests 

are used, respectively. For I/II mixed-mode fracture, the mixed-mode bending (MMB) test has 

been standardised by ASTM for unidirectional laminates. Assuming linear behaviour, the 

MMB test can be considered as the superposition of the DCB and ENF tests [5]. 

We have developed an enhanced beam theory (EBT) model of the MMB test, whereby the 

specimen is considered as an assemblage of two identical sublaminates, modelled as laminat-

ed Timoshenko beams. The sublaminates are partly connected by a linearly elastic–brittle in-

terface, transmitting both normal and shear stresses. In previous works, an explicit solution of 

this problem – with analytical expressions for the specimen compliance, energy release rate, 

and mode mixity – has been obtained. This solution yields, as special cases, the solutions for 

the DCB and ENF tests [6, 7]. Based on the latter, an experimental compliance calibration 

strategy has been proposed to evaluate the constants of the elastic interface [8]. Recently, the 

model has been applied to predict also the response of the MMB test under cyclic loads by 

introducing a fracture mode-dependent fatigue growth law [9]. 

Here, we present the results of an experimental campaign on a set of carbon/epoxy unidi-

rectional laminated specimens. Preliminary tests are performed to evaluate the elastic proper-

ties of the base laminate. Then, DCB and ENF tests are conducted to assess the delamination 

toughness in pure fracture modes I and II, respectively, and evaluate the elastic interface con-

stants. Afterwards, MMB tests are carried out with three values of the lever-arm length. The 

outcomes of the preliminary and pure fracture mode tests are used as an input to the EBT 

model of the MMB test. Lastly, theoretical predictions and experimental results are compared. 

2 ENHANCED BEAM THEORY MODEL OF THE MMB TEST 

2.1 Mechanical model 

In the MMB test, a laminated specimen with a delamination of length a is simply support-

ed and loaded through a rigid lever (Fig. 1a). We denote with L = 2�, B, and H the length, 

width, and thickness of the specimen, respectively. The delamination divides the specimen 

into two sublaminates, each of thickness h = H/2. The load applied by the testing machine, P, 

is transferred to the specimen as a combination of an upward load, Pu, and a downward load, 

Pd, respectively applied at the delaminated end and mid-span cross sections. The lever-arm 

length, c, can be adjusted to vary the intensities of Pu and Pd, thus imposing a desired ratio, 

GI/GII, of the energy release rates associated to fracture modes I and II. Global reference x- 

and z-axes are aligned with the specimen longitudinal and transverse directions, respectively. 

In the enhanced beam theory model [6, 7], the specimen is regarded as an assemblage of 

sublaminates. Accordingly, let A1, C1, and D1 be the sublaminate extensional, shear, and 

bending stiffnesses, respectively [10]. For unidirectional laminated specimens, A1 = Exh,

C1 = 5 Gzxh/6, and D1 = Exh
3/12, where Ex and Gzx are the longitudinal Young’s modulus and 

transverse shear modulus, respectively. The sublaminates are partly connected by an elastic–

brittle interface. Let kz and kx be the elastic constants of the distributed springs, respectively 

acting along the normal and tangential directions with respect to the interface plane (Fig. 1b). 

The mathematical formulation of the problem and its detailed solution are available in the cit-

ed references [6, 7]. Here, only the final useful expressions are recalled. 
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Figure 1: (a) MMB test specimen with loading lever and (b) detail of the crack-tip region and elastic interface. 

2.2 Compliance  

For linearly elastic load-deflection response, the compliance of a test specimen is defined 

as C = �/P, where P is the applied load and � is the displacement of the load application point 

[2]. The compliance of the MMB test specimen turns out to be 
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are the compliances of the DCB and ENF test specimens, respectively [7]. Furthermore, 
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are the roots of the characteristic equations of the governing differential problem [6]. 

Eqs. (2) and (3) show that both CDCB and CENF are the sums of three contributions, respec-

tively depending on the sublaminate bending stiffness (Euler-Bernoulli beam theory), the 

transverse shear deformability (Timoshenko’s beam theory), and the elastic interface. Both 

CDCB and CENF are expressed by cubic polynomials of the delamination length, a, except for 

an exponential term (negligible in most cases) appearing in the expressions for CENF. Thus, 

the EBT model provides a rationale for some semi-empirical relationships of the literature 

[11]. Furthermore, since CDCB depends on kz (through λ1 and λ2) and CENF depends on kx

(through λ5), Eqs. (2) and (3) offer a basis to evaluate the elastic interface constants from ex-

perimental results of DCB and ENF tests [8]. 

2.3 Energy release rate  

Under I/II mixed-mode fracture conditions, the energy release rate can be written as 

G = GI + GII, where GI and GII are the contributions related to fracture modes I and II, respec-

tively. For the MMB test specimen, 
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are the loads responsible for fracture modes I and II, respectively. By substituting Eqs. (2) and 

(3) into (5), we obtain 
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are crack length correction parameters [7]. Eqs. (8) can be regarded as a generalisation for 

multidirectional laminates of the formulas given by the ASTM standard [5] for unidirectional 

laminated specimens. 
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2.4 Mode mixity 

To characterise the relative contributions of fracture modes I and II, we introduce the 

mode-mixity angle, 

II

I

arctan
G

G
ψ . (9) 

For the MMB test specimen, by substituting Eqs. (6) and (7) into (9), we obtain 
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Eq. (10) can be solved to obtain the lever-arm length yielding a desired mode mixity, 
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3 EXPERIMENTAL TESTS 

To validate the developed theoretical model, we have conducted an experimental campaign 

on unidirectional laminated specimens obtained from a typical carbon fibre/epoxy matrix 

composite laminate. First, the elastic properties of the base laminate have been determined 

through three-point bending tests on specimens with no delamination. By following a proce-

dure similar to that proposed in [12], the following average values have been obtained: longi-

tudinal Young’s modulus Ex = 117.7 GPa, transverse shear modulus Gzx = 1.42 GPa. Then, 

various delamination toughness tests have been conducted on a set of 7 delaminated speci-

mens. The overall length of each specimen was 250 mm. This has allowed each specimen to 

be tested under several testing configurations, e.g. first a DCB test, until the delamination had 

propagated to a certain length, and then another configuration, e.g. ENF or MMB tests. This is 

in line with standard testing procedures in fracture modes I and II [3, 4]. Table 1 shows the 

cross-section sizes and the performed tests of each specimen. 

Specimen # Width B (mm) Height H (mm) Tests

1 25.15 3.23 MMB, ENF

2 25.18 3.24 MMB, ENF

3 25.18 3.24 DCB, MMB

4 25.14 3.20 DCB, MMB

5 25.04 3.13 DCB, MMB

6 25.27 3.19 DCB, MMB, ENF

7 25.20 3.09 DCB, MMB, ENF

Average 25.16 3.18 –

Table 1: Geometry of tested specimens. 
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Figures 2a and 2b show typical load, P, vs. displacement, δ, curves obtained from the DCB 

and ENF tests, respectively. In order to apply the experimental compliance calibration strate-

gy to evaluate the elastic interface constants, kx and kz, it is necessary to measure the values of 

the specimen compliances, CDCB and CENF, at different values of delamination length, a [8]. In 

DCB tests, crack propagation is stable, so that this objective can be achieved simply by corre-

lating the measured values of P and δ during the crack propagation stage with the correspond-

ing values of a. In ENF tests, since crack propagation is generally unstable (for a < 0.7 �) [13], 

a different strategy has to be used. In this study, we have conducted the ENF tests by first 

loading and unloading the specimens within the elastic range of behaviour, i.e. without 

achieving crack propagation, at several values of the delamination length. The main outcomes 

of the DCB and ENF tests are summarised in Table 2. 

For comparison, the theoretical predictions of the EBT model for the performed tests are 

shown with dashed black lines on the same plots in figure 2. The curves in the linearly elastic 

range of behaviour are obtained from the model by assuming the average values of kx and kz. 

The curves in the crack propagation stage correspond to the fulfilment of the pure mode I and 

mode II propagation criteria, G = GI = GIc and G = GII = GIIc, respectively, with the average 

delamination toughness values obtained from the tests (Table 2). 

(a) (b) 

Figure 2: Typical load-displacement curves from (a) DCB and (b) ENF tests. 

DCB tests ENF tests

Specimen #

Normal spring 

constant kz

(N/mm3)

Mode I delamina-

tion toughness 

GIc (N/m)

Tangential spring 

constant kx

(N/mm3)

Mode II delami-

nation toughness 

GIIc (N/m)

1 – – 3.297×103 1516.3

2 – – 3.287×103 1567.2

3 3.046×104 604.6 – –

4 9.919×102 447.0 – –

5 4.885×103 560.2 – –

6 5.632×103 655.8 3.340×103 1604.1

7 2.455×105 693.6 3.441×103 1170.8

Average 5.750×104 592.2 3.340×103 1464.6

Table 2: Results of DCB and ENF tests. 
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Figure 3 shows the load vs. displacement curves obtained from the MMB tests. For com-

parison, the theoretical predictions of the EBT model are shown with dashed black lines on 

the same plots. The curves in the linearly elastic range of behaviour are obtained from the 

model by assuming average values of kx and kz. The curves in the crack propagation stage are 

obtained by assuming the following elliptical mixed-mode crack-growth criterion [9]: 

2 2
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. (13) 

The latter can be shown to be equivalent to consider G = Gc with the following definition 

of fracture mode-dependent delamination toughness: 
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Figure 3: Load-displacement curves from MMB tests with lever-arm length  

(a) c = 95 mm, (b) c = 83 mm, and (c) c = 58 mm. 
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Figure 4a shows the values of GI vs. GII at the onset of delamination growth in the MMB 

tests, as computed through Eqs. (7) with (6) and (8). The dashed black line represents the cor-

responding values as computed through the mixed-mode crack-growth criterion Eq. (13). Fig-

ure 4b shows the total G at the onset of delamination growth as a function of the mode-mixity 

angle, ψ, as computed from Eq. (9). For comparison, the dashed black line represents the crit-

ical energy release rate as given by Eq. (14). 

(a) (b)

Figure 4: Critical energy release rate at the onset of delamination growth in MMB tests:  

(a) mode I vs. mode II contributions; (b) total energy release rate vs. mode-mixity angle. 

4 CONCLUSIONS  

We have presented the results of an experimental campaign aiming at validating a previ-

ously developed analytical solution for an enhanced beam theory model of the MMB test 

specimen. Preliminary tests have been performed to evaluate the elastic properties of the base 

material consisting of a typical carbon/epoxy unidirectional laminate. Then, DCB and ENF 

test have been conducted to assess the delamination toughness in pure fracture modes I and II, 

respectively. Besides, an experimental compliance calibration procedure has been applied to 

evaluate the elastic interface constants. Lastly, MMB tests have been conducted with three 

values of the lever-arm length. Based on the preliminary and pure fracture mode test results, 

predictions have been made for the MMB tests by using the enhanced beam theory model. A 

good agreement between the theoretical predictions and experimental results has been ob-

tained. 
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