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6 A CLASS OF LARGE GLOBAL SOLUTIONS

FOR THE WAVE–MAP EQUATION

ELISABETTA CHIODAROLI AND JOACHIM KRIEGER

EPFL Lausanne
Station 8, CH-1015 Lausanne, Switzerland

Abstract. In this paper we consider the equation for equivariant wavemaps
from R3+1 to S3 and we prove global in forward time existence of certainC∞-
smooth solutions which have infinite critical Sobolev norṁH

3
2 (R3) × Ḣ

1
2 (R3).

Our construction provides solutions which can moreover satisfy the additional
size condition‖u(0, ·)‖L∞(|x|≥1) > M for arbitrarily chosenM > 0. These solutions
are also stable under suitable perturbations. Our method, strongly inspired by
[9], is based on a perturbative approach around suitably constructed approximate
self–similar solutions.

1. Introduction

1.1. Corotational wave maps. Let M be the Minkowski spaceRn,1, with coor-
dinatesx = (x0, x1, . . . , xn) = (t, x) and letN be a smooth, complete, rotation-
ally symmetrick-dimensional Riemannian manifold without boundary. Following
Tachikawa [14], we can then identifyN, as a warped product, with a ball of radius
R∈ R+ ∪ {∞} in Rk equipped with a metric of the form

ds2
= du2

+ g2(u)dθ2, (1.1)

where (u, θ) are polar coordinates onRk, dθ2 is the standard metric on the sphere
S

k−1, andg : R→ R is smooth and odd,

g(0) = 0, g′(0) = 1. (1.2)

With these notations in hand, we can define awave map U: M → N as a stationary
point (with respect to compactly supported variations) of the functional

L[U] =
1
2

∫

M
〈∂µU, ∂

µU〉 =
1
2

∫

M
∂µu∂

µu+ g2(u)ΓA,B∂µθ
A∂µθB. (1.3)

Hence, they satisfy the Euler-Lagrange equations: if we denote the vector valued
mapU asU := (u, θ) ∈ Rk then it satisfies

{
∂µ∂

µu+ g(u)g′(u)ΓA,B∂µθ
A∂µθB

= 0
∂µ(g2(u)ΓA,B∂µθ

B) = 0.
(1.4)

We also introduce spatial polar coordinates (t, r, ω) ∈ R×R+ ×Sn−1 on M. In these
coordinates the metric onM takes the form

ds2
= −dt2 + dr2

+ r2dω2.
1
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SinceN is assumed to be rotationally symmetric, it becomes naturalto consider
equivariantwave maps by requiring that the orbit of any point inM under spatial
rotations maps into the orbit of the image point inN. When this mapping of the or-
bits has degree 1, we call the mapcorotational. We suppose to be in the equivariant
framework, thus we require that

u = u(t, r) and θ = θ(ω). (1.5)

It then follows thatθ : Sn−1→ Sk−1 has to be aneigenmap, i.e. a harmonic map of
constant energy density

e= |∇ωθ|
2.

Under this hypothesis, the wave map system (1.4) simplifies and reduces to the
following simple scalar wave equation for the spatially radial functionu : M → R

utt − urr −
n− 1

r
ur +

f (u)

r2
= 0, f (u) = eg(u)g′(u) (1.6)

1.2. Wave maps intoS3. We are interested in equivariant corotational wave maps
from M = R3+1 → S3

= N. In this case, it is immediate to represent the target
manifoldS3, as a warped product. Let us show the standard way how the standard
3-dimensional sphereS3 can be written with a rotationally symmetric metric of the
typedu2

+g2(u)ds2
2 whereds2

2 is the canonical metric onS2 ⊂ R3. We consider the
map

I : (0, π) × S2→ R × R3

I (u, θ) = (cosu, sinu · θ)

which maps into the unit sphere inR4. In order to see thatI is a Riemannian
isometry we compute the canonical metric onR×R3 (“can”) using the coordinates
(cosu, sinu · θ). In order to carry out the computation we use that

1 = (θ1)2
+ (θ2)2

+ (θ3)2

0 = 2(θ1dθ1
+ θ2dθ2

+ θ3dθ3).

Thus we obtain

can= (dcosu)2
+

∑
δi, j d(sinu θi) d(sinu θ j)

= sin2 u du2
+

∑
δi j

(
θi cosu du+ sinu dθi

) (
θ j cosu du+ sinu dθ j

)

= sin2 u du2
+ cos2 u du2

+ sin2 u
(∑

(dθi )2
)

= du2
+ sin2 u

(∑
(dθi )2

)
,

and the claim follows from the fact that
∑

(dθi )2 is exactly the canonical metricds2
2.

According to our notation, the functiong is here chosen to beg(u) := sin(u) and
it satisfiesg(0) = 0 andg′(0) = 1. Since we are dealing withM = R3+1, we have
heren = k = 3: for (t, r, ω) ∈ R × R+ × S2 on M andU := (u, θ) ∈ R × S2 we can
choose the mapθ = θ(ω) to be the identity map fromS2 to S2, whencee = 2. The
same “ansatz” was also considered in [10] for harmonic maps into spheres. It is



A CLASS OF LARGE GLOBAL SOLUTIONS FOR THE WAVE–MAP EQUATION 3

now clear that the problem of looking for equivariant and corotational wave maps
fromR3+1 to S3 reduces to solving the following equation (see (1.6))

utt − urr −
2
r

ur +
f (u)

r2
= 0, f (u) = 2 sinu cosu (1.7)

onR1+1.

2. Background literature and main result

The initial value problem for the wave map equation has drawna lot of attention
in the mathematical community in the last twenty years. In particular, wave maps
have been studied extensively in the case of a flat backgroundM. It is impossible
here to account for the large amount of publications in the subject, hence we will
quote some important contributions.

Let us make a short digression to explain the main problems related to the wave
maps equation with particular attention to the case of flat backgrounds. As for
other nonlinear evolutionary equations the first issues oneis confronted with are
the existence of global classical solutions and the development of singularities. The
local–in–time existence is rather standard but it is challenging to identify classes
of initial data for which global existence holds or on the contrary the identification
of specific initial data that lead to a breakdown (blow–up) ofthe solution in finite
time. If blow–up occurs it is interesting to get the idea behind its formation. For
scaling invariant equations with a positive energy, such asthe wave maps equation
(see [6]), heuristically one would expect finite–time blow–up when the shrinking
of the solution is energetically favorable, i.e. in the so called energy supercrit-
ical case, while global existence should occur when shrinking to smaller scales
is energetically prohibited, i.e. in the energy subcritical space. The limit case
when the energy itself is scaling invariant is called energycritical. For wave maps,
the criticality classification depends on the spatial dimension of the base manifold
M. The equation is energy subcritical, critical, or supercritical if dimM = 1 + 1,
dimM = 2+ 1 or dimM ≥ 3+ 1, respectively.

As anticipated in the previous section, in this paper we study the simplest energy
supercritical case: corotational wave maps from (3+ 1)- Minkowski space to the
three sphere which satisfy equation (1.7). Global well-posedness of the Cauchy
problem for this equation when data are small in a sufficiently high Sobolev space
follows from [13]. The existence of global weak solutions isshown in [11] for
any initial data of finite energy, but otherwise arbitrary. Furthermore, a number
of results concerning the Cauchy problem for equivariant wave maps are obtained
in [12]; in particular, local well-posedness with minimal regularity requirements
for the initial data is studied. On the other hand, in [11], Shatah has shown that
in the caseM = R3+1 andN = S3 the corotational wave map problem (1.7) ad-
mits self–similar solutions, thus making it possible to pose Cauchy problems with
smooth data whose solutions develop singularities in finitetime. This initiated
the construction of blow–up solutions in the form of self-similar solutions: for fur-
ther generalizations to more general targets and examples of non–uniqueness using
self–similar blow-up profiles see [12] and [2]. As usual, by exploiting finite speed
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of propagation,a self-similar solution can be used to construct a solution with com-
pactly supported initial data that breaks down in finite time. In fact, (1.7) admits
many self-similar solutions [1] and a particular one exhibiting blow–up was given
in closed form in [15] and is known asground stateor fundamental self–similar
solution. In [3], the blow–up of the ground state is shown to be stable indicating
that blow–up is a generic situation, see also [4], [5] and [6]. It is clear that self–
similar solutions play a crucial role in the blow–up theory for equation (1.7); they
correspond to self–similar data at the time of blow–up. Of course these solutions
leave the standard scaling critical Sobolev spaceḢ

3
2 at the blow–up time. In [7],

the author introduces a Besov space–based framework which includes the blowing
up solutions of Shatah [11] and Bizoń [1]; in particular twotypes of solutions of
(1.7) are constructed: on the one hand existence, uniqueness and scattering of solu-
tions starting from data which possess infinite critical Sobolev norm, but are small
in the sense of suitable Besov spaces is proven (i.e. in theseBesov spaces blow–up
does not occur), on the other hand large (in the sense of Besovspaces) data can
be considered only in the strictly self–similar case where existence still holds but
uniqueness is lost.

Moving from this background literature, where essentiallyglobal well-posedness
for equation (1.7) is known only for finite critical norm and self–similar blow–up
seems a generic situation, we present a completely new result on global existence
of smooth solutions of (1.7) with infinite critical Sobolev norm Ḣ

3
2 × Ḣ

1
2 . More-

over, we can construct such solutions so that they satisfy also the size condition
‖u(0, ·)‖L∞(r≥1) > M for arbitrarily chosenM > 0. The building block for our
construction are self–similar solutions which are smooth away from the light cone
but singular across it. Our method, strongly inspired by [9], first consists in regu-
larizing the self–similar solutions near the light cone, thus obtaining approximate
self–similar solutions and then proceeds by solving a perturbative problem around
the approximate self–similar solutions so to generate global solutions. In fact, the
regularization destroys the scaling invariance and this turns out to be important for
the ensuing perturbative argument. The smooth data thus constructed have infinite
critical norm

‖u[0]‖
Ḣ

3
2 (R3)×Ḣ

1
2 (R3)

= ∞

only because of insufficient decay at infinity and not because of some singular
behavior in finite space-time.

More precisely the main theorem of this paper is the following.

Theorem 2.1. The equation(1.7) for corotational equivariant wave maps from
R

3+1 to S3 admits smooth data( f , g) ∈ C∞ × C∞ decaying at infinity to zero,
satisfying

‖( f , g)‖
Ḣ

3
2 (R3)×Ḣ

1
2 (R3)

= ∞ but ‖( f , g)‖Ḣs(R3)×Ḣs−1(R3) < ∞

for any s> 3
2 and such that the corresponding evolution of(1.7)exists globally in

forward time as a C∞–smooth solution. In fact the initial data can be chosen such
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that
‖ f ‖L∞(r≥1) > M,

for arbitrary M > 0. The solutions thus obtained are stable with respect to a
certain class of perturbations.

Moreover, the solutions of Theorems 2.1 exhibit a precise asymptotic descrip-
tion. Let us remark that the possibility of achieving‖ f ‖L∞(r≥1) > M leads to solu-

tions which are not even small in Besov spaces (such asḂ
3
2
2,∞× Ḃ

1
2
2,∞) as it is instead

the case for the global solutions constructed in [7].

The paper is organized as follows. In Section 3 we construct smooth self-similar
solutions of the form

Q0(t, r) = Q
( r
t

)

for r > t or r < t by a reduction to a nonlinear Sturm-Liouville problem, see (3.1).
We solve this ODE by use of fixed point arguments using smallness inL∞. As we
will see, starting with small data ata = 0, Q0 exhibits a singularity of the form
|a − 1| log |a − 1| neara = 1 which precisely fails logarithmically to belong to the
scaling critical Sobolev spacėH

3
2 (R3). In the second part of Section 3 we glue

together the two solutions residing inside and outside the light-cone, respectively,
at r = t to form a continuous functionQ0(r, t) which decays ata = ∞ asa−1 (and
thus fails to lie inḢ

3
2 at∞).

Section 4 shows that one of the parameters determining the self–similar solution
of Section 3 near the singularity ata = 1 can be chosen arbitrarily large, leading to
rapid growth and oscillation of the solution on the seta > 1 neara = 1; the nice
behavior of non–linear terms allows to extend these solutions all the way toa = ∞,
where they again decay asymptotically likea−1. Thanks to this extension we can
achieve the large solutions announced in Theorem 2.1.

Section 5 is devoted to the regularization ofQ0 near the light cone: we multiply
the singular components ofQ0 by a smooth cut-off function localized ata = 1
which leaves untouched the solution far from the light cone.The smooth function
thus obtained is no longer an exact solution of (1.7), but in the next section we show
that it can be perturbed in a smooth way to obtain exact solutions. The concluding
argument is the content of Section 6: it relies on the energy supercritical nature of
the problem and imitates the ideas already present in [9]. The methods of Sections
5 and 6 apply to the case of small self–similar solutions constructed in Section 3 as
well as to large–size self–similar solutions as constructed in Section 4.

3. Self–similar solutions

A self–similarsolution of the Cauchy problem for a wave mapu is a solution
that depends only on the ratior/t. Such solutions are thus constant along rays
emanating from the origin in space–time, and consequently experience a gradient
singularity at the origin (if non–trivial). The existence of non–trivial self-similar
solutions was proven in the case ofM = R3+1 (which we are concerned with) first
by Shatah in [11] whereN = S3, then it was extended to more general rotationally
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symmetric, non–convex targets by Shatah and Tahvildar-Zadeh in [12] and also
extended to higher dimensions forM by the same authors in a joined work with
Cazenave [2]; a particular self–similar solution exhibiting blow–up was explicitly
given in [15],

In the corotational setting, equation (1.7) admits a self–similar solution

u(t, r) = Q
( r
t

)

if Q satisfies the following ordinary differential equation ina := r/t

(1− a2)Q′′(a) +

(
2
a
− 2a

)
Q′(a) −

1
a2

f (Q(a)) = 0, (3.1)

with f defined as above to bef (Q) = 2 sinQcosQ. Indeed we can compute

ut = −
r

t2
Q′

( r
t

)
, utt =

2r

t3
Q′

( r
t

)
+

r2

t4
Q′′

( r
t

)

ur =
1
t
Q′

( r
t

)
, urr =

1
t2

Q′′
( r
t

)

whence equation (3.1). The natural initial conditions ata = 0 are

Q(0) = 0, Q′(0) = d0. (3.2)

We immediately observe that the possible singularities fora solution of (3.1) on
[0, 1] can occur only ata = 0 anda = 1. In the following we will show existence of
exact solutions to (3.1) by carefully analysing the behavior neara = 0 anda = 1.
The strategies involved here are inspired by the analogous construction in [9].

Lemma 3.1. There existsε > 0 small enough such that, for any0 ≤ d0 ≤ ε, the
equation(3.1) admits a unique smooth solution on[0, 1/2] with initial conditions
(3.2). Furthermore

Q(1/2) = d0ϕ0(1/2)+O(d3
0)

Q′(1/2) = d0ϕ
′
0(1/2)+O(d3

0), (3.3)

where

ϕ0(a) =
3
4

[
2
a
+

1− a2

a2
log

(
1− a
1+ a

)]
.

Proof. We consider the associated linear equation

Q′′(a) +
2
a

Q′(a) −
2

a2(1− a2)
Q(a) = 0, (3.4)

with fundamental system

ϕ1(a) =
1− a2

a2
, ϕ2(a) =

2
a
+

1− a2

a2
log

(
1− a
1+ a

)
. (3.5)

We define the Green functionG(a, b) for 0 < b < a < 1

G(a, b) :=
ϕ1(a)ϕ2(b) − ϕ1(b)ϕ2(a)

W(b)
(3.6)
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where the WronskianW is defined as

W(b) := ϕ1(b)ϕ′2(b) − ϕ′1(b)ϕ2(b). (3.7)

By explicit computation we obtain

W(b) =
4

b2
,

G(a, b) =
1− a2

4a2

(
2b+ (1− b2) log

(
1− b
1+ b

))
−

1− b2

4

(
2
a
+

1− a2

a2
log

(
1− a
1+ a

))
.

(3.8)

If we consider the inhomogeneous equation

ψ′′(a) +
2
a
ψ′(a) −

2
a2(1− a2)

ψ(a) = H(a) (3.9)

with initial conditions
ψ(0) = 0, ψ′(0) = 0, (3.10)

then a solution in integral form can be obtained via the Greenfunction as

ψ(a) =
∫ a

0
G(a, b)H(b)db.

In view of this, we can make an ansatz for the self–similar solution of the non–
linear equation (3.1) by choosingH as a non–linear function ofQ itself, i.e. by
thinking of H as the difference between the non–linear equation (3.1) and the lin-
earized one (3.4): more precisely we defineH as the following function ofQ(a)
anda

H(Q(a)) :=
sin(2Q(a)) − 2Q(a)

a2(1− a2)
(3.11)

and we seek for a solutionQ of (3.1) on 0≤ a ≤ 1/2 with initial conditions (3.2)
of the form

Q(a) =
3
4

d0ϕ2(a) +
∫ a

0
G(a, b)H(Q(b)))db. (3.12)

We remark thatϕ2 is analytic on (−1, 1) with expansion

ϕ2(a) =
4
3

a+
4
15

a3
+O(a5),

whenceϕ(0) = 0 andϕ′(0) = 4/3. For the sake of brevity we introduceϕ0(a) :=
3
4ϕ2(a) so that we can simplify the ansatz (3.12) to

Q(a) = d0ϕ0(a) +
∫ a

0
G(a, b)H(Q(b))db, (3.13)

so that the smallness parameterd0 is highlighted. In order to solve (3.1) on [0, 1/2]
we set up a contraction argument by use of the ansatz (3.13). We define the mapT
as

(T f)(a) := d0ϕ0(a) +
∫ a

0
G(a, b)H( f (b))db, (3.14)
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where f belongs to some suitable functional normed spaceXd0 to be chosen such
that T : Xd0 → Xd0 is a contraction. According to our ansatz, we assume that
0 ≤ d0 ≤ ε and we introduce the spaceXd0

Xd0 := d0ϕ0 +
{
h(a) | h ∈ C2([0, 1/2]), ‖h‖C2[0,1/2] ≤ d0

2, |h(a)| ≤ d0
2a2

}
.

The set
{
h(a) | h ∈ C2([0, 1/2]), ‖h‖C2[0,1/2] ≤ d0

2, |h(a)| ≤ d0
2a2

}
defines a closed

convex subset of a linear space which we equip with the following norm

‖h‖Xd0
:= ‖h‖C2[0,1/2] + sup

0<a< 1
2

|h(a)|

a2
.

Our claim can be precisely formulated:there existsε > 0 small enough such that
for any0 ≤ d0 ≤ ε the equation(3.1)has a unique solution in Xd0.

We now proceed to the proof of the claim. As a first step we show thatT maps
Xd0 into itself. First of all, by (3.8) we have the following expansion for 0< b < a

G(a, b) =
1− a2

4a2

(
4
3

b3
+O(b5)

)
−

1− b2

4

(
2
a
+

1− a2

a2
log

(
1− a
1+ a

))
.

Hence, if we considerG(a,b)
b2(1−b2) , we get for 0< b < a

G(a, b)
b2(1− b2)

=
1− a2

4a2

(
4
3

b+O(b3)

)
−

1
4b2

(
2
a
+

1− a2

a2
log

(
1− a
1+ a

))
.

While the first term in G(a,b)
b2(1−b2) is clearly analytic for 0< b < a, the second term

exhibits a singularity of the type−1/b2 nearb = 0: nonetheless when dealing with
T we can get rid of this singularity by integrating it against [sin(2f (b))−2 f (b)] for
f ∈ Xd0.

Let us now consider a functionf ∈ Xd0 which we can write asf (b) = d0ϕ0(b) +
hf (b): since f satisfies by definition the initial conditionf (0) = 0 we are allowed
to expandH( f (b))(b2(1− b2)) in a neighborhood ofb = 0(= f (0)) in the following
standard way

H( f (b))(b2(1− b2)) =

sin(2f (b)) − 2 f (b) = −
4
3

f (b)3
+

4
15

f (b)5
+O( f (b)7) (3.15)

Moreover, for 0≤ b ≤ 1/2, any f ∈ Xd0 satisfies| f (b)| ≤ cd0b+ d2
0b2 ≤ Md0b for

an absolute constantM > 0 and ifd0 is small enough. This bound onf (b) together
with (3.15) gives the key estimate for killing the singularity in the second term of

G(a,b)
b2(1−b2) . Indeed, thanks to all previous considerations, iff ∈ Xd0 we can bound

h(a) :=
∫ a

0
G(a, b)H( f (b))db =

∫ a

0

G(a, b)

b2(1− b2)
[sin(2f (b)) − 2 f (b)]db
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for 0 ≤ a ≤ 1/2 as follows

|h(a)| ≤ M3d3
0a2 ≪ d2

0a2,

|h′(a)| ≤ M3d3
0a≪ d2

0a,

|h′′(a)| ≤ M3d3
0 ≪ d2

0, (3.16)

providedd0 is small enough, i.e. providedε > 0 is chosen sufficiently small. This
proves thatT : Xd0 → Xd0.
To prove the claim it remains to show thatT is indeed a contraction onXd0 with
respect to its norm. We considerf , g ∈ Xd0 and using similar arguments as above
we can estimate

‖T f − Tg‖Xd0
≤ Cd0

2‖ f − g‖Xd0

which implies thatT is a contraction ford0 sufficiently small, whence the claim.
In order to conclude for the regularity of the solution we canargue similarly as
Krieger and Schlag did in [9, Lemma 2.1]. �

The next step consists in solving equation (3.1) backwards starting froma = 1

Lemma 3.2. There existsε > 0 small enough such that, for any d1, d2 ∈ (−ε, ε),
the equation(3.1)admits a unique solution on[1/2, 1) of the form

Q(a) = d1ϕ1(a) + d2ϕ2(a) + (d3 − d2)
2
a
+ Q1(a) (3.17)

where d3 is given bysin(4d3) = 4d2 and with

ϕ1(a) =
1− a2

a2
= O(1− a),

ϕ2(a) =
2
a
+

1− a2

a2
log

(
1− a
1+ a

)
= 2

(
1+O(1− a)

)
+ 2O

(
(1− a) log(1− a)

)
,

Q1(a) =
(
|d1|

3
+ |d2|

3
)
O
(
(1− a)2 log2(1− a)

)
(3.18)

where the expansions hold for a∈ [1/2, 1]. Moreover for a= 1/2 we have

Q(1/2) = d1ϕ1(1/2)+ d2ϕ2(1/2)+ 4(d3 − d2) +O
(
|d1|

3
+ |d2|

3
)

Q′(1/2) = d1ϕ
′
1(1/2)+ d2ϕ

′
2(1/2)− 8(d3 − d2) +O

(
|d1|

3
+ |d2|

3
)
. (3.19)

Proof. Similarly as we have done in the proof of Lemma 3.1, we argue here by
contraction arguments. The ansatz forQ solution of (3.1) is given in integral form
as

Q(a) = Q0(a) + (d3 − d2)
2
a
−

∫ 1

a
G(a, b)

sin(2Q(b)) − 2Q0(b) − 2Q1(b)

b2(1− b2)
db (3.20)

with Q0 defined as
Q0(a) := d1ϕ1(a) + d2ϕ2(a)

and whereG is the Green function defined in (3.8). AssumingQ has the form
(3.17), then the integral equation (3.20) can be viewed as anequation forQ1 that
can be solved by contraction. The asymptotics (3.18) are a consequence of the
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behavior of G(a,b)
b2(1−b2) for 1/2 ≤ a < 1 anda < b < 1. Indeed we can writeG(a,b)

b2(1−b2) as
the sum of the following two terms

G1(a, b) : =
1− a2

4a2

(
2

b(1− b2)
+

1

b2
log

(
1− b
1+ b

))

G2(a, b) : = −
1

4b2

(
2
a
+

1− a2

a2
log

(
1− a
1+ a

))
(3.21)

so we clearly see that for 1/2 ≤ a < 1 anda < b < 1

G1(a, b) ≈ (1− a)

(
1

(1− b)
+ log(1− b)

)

G2(a, b) ≈ −
(
2+ 2(1− a) log (1− a)

)
. (3.22)

Now, integrating these two terms against
[
sin(2Q(b)) − 2Q0(b) − 2Q1(b)

]
which

is of orderO
(
(1 − b) log(1− b)

)
and using the fact that sin(4d3) = 4d2 allows to

conclude that the integral in the ansatz (3.20) decays like
(
(1−a)2 log2(1−a)

)
. �

We remark that on the interval (1/2, 1) we obtained a 2-parameter family (d3

indeed is determined byd2) of solutions: this allows us to solve the non–linear
connection problem ata = 1/2, i.e. to “glue” smoothly ata = 1/2 the solutions of
Lemma 3.1 and those of Lemma 3.2.

Corollary 3.3. Given any d0 small enough, the ordinary differential equation(3.1)
admits a unique C2 self–similar solution Q(a) on the interval[0, 1) with initial
conditions(3.2). In a left neighborhood of a= 1 this solution Q has the form
(3.17), i.e. it behaves as follows

Q(a) = d1O(1− a) + 2d2O
(
(1− a) log(1− a)

)
+ d3 + Q1(a) (3.23)

with Q1 as in(3.18)(Q1(1) = 0).

Proof. In order to prove this corollary of Lemmas 3.1 and 3.2 we simply apply the
inverse function theorem. More precisely, given anyd0 small enough, by Lemma
3.2 we can associate to it the unique solutionQ. Now, we aim at findingd1 and
d2 small such that (3.19) match the values ofQ and Q′ at a = 1/2, i.e. (3.3).
Since the Jacobian determinant of (3.19) viewed as functions of d1, d2 in exactly
the Wronskian ofϕ1, ϕ2, we easily see that its value at (d1, d2) = 0 is 1. It being
non-zero, we can invoke the inverse function theorem and findthe desiredd1, d2

small. �

Let us finally note that the obtained solution just fails logarithmically to be in
Ḣ

3
2 .
The next step consists in solving the self–similar ODE (3.1)in the exterior light

cone, i.e. fora = r/t > 1. Similarly as for the interior light cone, we first solve
the problem on the two intervals (1, 2] and [2,∞) and then we will glue the two
solutions at the connection pointa = 2.
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Lemma 3.4. There existsε > 0 small enough such that, for anỹd1, d̃2 ∈ (−ε, ε),
the equation(3.1)admits a unique solution on(1, 2] of the form

Q(a) = d̃1ϕ̃1(a) + d̃2ϕ̃2(a) − (d̃3 − d̃2)
2
a
+ Q̃1(a) (3.24)

whered̃3 is given bysin(4̃d3) = 4d̃2 and with

ϕ̃1(a) =
a2 − 1

a2
= O(a− 1),

ϕ̃2(a) = −
2
a
+

a2 − 1

a2
log

(
a− 1
a+ 1

)
= 2

(
− 1+O(a− 1)

)
+ 2O

(
(a− 1) log(a− 1)

)
,

Q̃1(a) =
(
|d̃1|

3
+ |d̃2|

3
)
O
(
(a− 1)2 log2(a− 1)

)
(3.25)

where the expansions hold for a∈ (1, 2]. Moreover for a= 2 we have

Q(2) = d̃1ϕ̃1(2)+ d̃2ϕ̃2(2)− 4(d̃3 − d̃2) +O
(
|d̃1|

3
+ |d̃2|

3
)

Q′(2) = d̃1ϕ̃1
′(2)+ d̃2ϕ̃2

′(2)+ 8(d̃3 − d̃2) +O
(
|d̃1|

3
+ |d̃2|

3
)
. (3.26)

We omit the proof of Lemma 3.4 since it can be carried out exactly along the
line of the proof of Lemma 2 3.2

Lemma 3.5. There existsε > 0 small enough such that, for any q1, q2 ∈ (−ε, ε),
the equation(3.1) admits a unique solution on[2,∞) which , for a→ ∞, has the
form

Q(a) = q1ϕ̃1(a) + q2ϕ̃2(a) +O

(
1

a2

)
(3.27)

with

ϕ̃1(a) =
a2 − 1

a2
,

ϕ̃2(a) = −
2
a
+

a2 − 1

a2
log

(
a− 1
a+ 1

)
= −

4
a
+O

(
1

a2

)
,

(3.28)

where the last expansion holds for a→ ∞. Moreover for a= 2 we have

Q(2) = q1ϕ̃1(2)+ q2ϕ̃2(2)+O
(
|q1|

3
+ |q2|

3
)

Q′(2) = q1ϕ̃1
′(2)+ q2ϕ̃2

′(2)+O
(
|q1|

3
+ |q2|

3
)
. (3.29)

Proof. As in the proof of Lemma 3.1 we make use of the Green function, now
defined in terms of̃ϕ1 andϕ̃2, i.e.

G̃(a, b) :=
ϕ̃1(a)ϕ̃2(b) − ϕ̃1(b)ϕ̃2(a)

W̃(b)
, (3.30)

where the WronskiañW is now defined as

W̃(b) := ϕ̃1(b)ϕ̃′2(b) − ϕ̃′1(b)ϕ̃2(b). (3.31)
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Similarly to the computation in the proof of Lemma 3.1 we obtain

W̃(b) =
4

b2
,

G̃(a, b) =
a2 − 1

4a2

(
−2b+ (b2 − 1) log

(
b− 1
b+ 1

))
−

b2 − 1
4

(
−

2
a
+

a2 − 1

a2
log

(
a− 1
a+ 1

))
.

(3.32)

In this case, the natural ansatz forQ is as follows

Q(a) = q1ϕ̃1(a) + q2ϕ̃2(a) +
∫ ∞

a
G̃(a, b)

sin(2Q(b)) − 2Q(b)
b2(1− b2)

db. (3.33)

In order to solve (3.1) on [2,∞) we can set up a contraction argument for the ansatz
(3.33) in analogy to the proof of Lemma 3.1. Let us note that wehave the following

G̃(a, b)
b2(1− b2)

=
a2 − 1
4a2

(
2

b(b2 − 1)
−

1
b2

log

(
b− 1
b+ 1

))

+
1

4b2

(
−

2
a
+

a2 − 1
a2

log

(
a− 1
a+ 1

))

which to leading order (and up to constants) fora, b → ∞ exhibits the following
decay

G̃(a, b)

b2(1− b2)
≈

1

b3
−

1

ab2
.

Integrating this against
[
sin(2Q(b)) − 2Q(b)

]
for a < b < ∞ gives the asymptotics

(3.27). The values (3.29) are simply obtained by substituting a = 2. �

In view of Lemmas 3.4 and 3.5 which both generate a two-parameter family of
solutions we can glue those ata = 2 so to produce a one smooth solution for all
a > 1. This is done in the following corollary.

Corollary 3.6. Given any q1, q2 small enough, the ordinary differential equation
(3.1)admits a unique C2 self–similar solution Q(a) on the interval(1,∞) with the
asymptotics(3.27)-(3.28). In a right neighborhood of a= 1 the solution Q has the
form (3.24).

Proof. The corollary can be proven once more thanks to the inverse function the-
orem. Givenq1, q2 small enough, Lemma 3.5 provides a unique solutionQ for
a ∈ [2,∞) with asymptotics (3.27)-(3.28). Now, we aim at finding̃d1 andd̃2 small
(d̃3 is given as function of̃d2) such that (3.26) given by Lemma 3.4 match the val-
ues ofQ andQ′ ata = 2, i.e. (3.29). Since the Jacobian determinant of (3.26), i.e.
the Wronskian, does not vanish and by smallness ofq1 andq2, we can apply the in-
verse function theorem in a neighborhood of (d̃1, d̃2) = 0 and solve the connection
problem ata = 2. �

Finally, to complete the construction of the self–similar solution we will connect
just continuously the solution on [0, 1) provided by Corollary 3.3 with the solution
on (1,∞) provided by Corollary 3.6.
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Corollary 3.7. Given any small d0, there exists a unique C2 solution Q(a) of the
ordinary differential equation(3.1)on [0, 1) with initial conditions(3.2). By Corol-
lary 3.6, this solution can be extended non-uniquely to a continuous function on
a ≥ 1 which solves(3.1)on a> 1 and behaves as

Q(a) = q1 − 4q2a−1
+O(a−2) (3.34)

for a → ∞. The global continuous solutions on a≥ 0 must satisfy the condition
2d3 = −2d̃3 (see Lemmas 3.2 and 3.4). Let us denote these solutions on a> 0 by
Q0(a), then we have the following global representation

Q0(a) = C1
|a2 − 1|

a2
+C2

|a2 − 1|

a2
log

(
|a− 1|
a+ 1

)
+C3Q3(a) + Q4(a) (3.35)

for a ≥ 1/2, where Q3 =
1
a is smooth at a= 1 and Q4(a) = O(|a− 1|2 log2(|a− 1|))

consists of higher order terms.

Proof. Given any smalld0, Corollary 3.3 provides us withd1, d2, d3 and with aC2

solutionQ on [0, 1). On the other hand, thanks to Corollary 3.6 anyq1, q2 small
enough givẽd1, d̃2 andd̃3 corresponding to aC2 solution on (1,∞). The freedom
of selectingq1 andq2 small allows us to make the choice in such a way thatd̃3

satisfies−2d̃3 = 2d3, i.e. such that we can extend continuouslyQ to a > 1. �

4. Large self–similar solutions

In this section we show that it is possible to choose a big constant d̃1 in Lemma
3.4 thus allowing to construct solutions which are arbitrarily large in the exterior
light-cone. Indeed, by Corollary 3.7, the continuity condition at the light cone
involves only d̃3 (and hencẽd2) leaving freedom of choice for̃d1. Hence, the
goal here is to prove the existence of a solution to the ODE (3.1) on a > 1 for
d̃1 large. The first step consists in proving the analogue of Lemma 3.4 on a right
neighborhood ofa = 1 for arbitraryd̃1.

Lemma 4.1. There existsε > 0 small enough such that, for anỹd2 ∈ (−ε, ε) and
for anyd̃1 ≥ 1 arbitrary, the equation(3.1)admits a unique solution Q on(1, 1+ℓ]
with ℓ = cd̃1

− 1
2 for some absolute constant c> 0 small enough. This solution Q

has the form

Q(a) = d̃1ϕ̃1(a) + d̃2ϕ̃2(a) − (d̃3 − d̃2)
2
a
+ Q̃1(a) (4.1)

whered̃3 is given bysin(4̃d3) = 4d̃2 (and hencẽd3 is also small) and with

ϕ̃1(a) =
a2 − 1

a2
= O(a− 1),

ϕ̃2(a) = −
2
a
+

a2 − 1
a2

log

(
a− 1
a+ 1

)
= 2

(
− 1+O(a− 1)

)
+ 2O

(
(a− 1) log(a− 1)

)
,

Q̃1(a) = d̃1O
(
(a− 1)2 log2(a− 1)

)
(4.2)
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where the expansions hold for a∈ (1, 1+ ℓ]. Moreover, there exists a∗ ∈ (1, 1+ ℓ]
such that

|Q(a∗)| ≈ d̃1
1
2 . (4.3)

As a consequence Q(a∗) can be made arbitrarily large by choosing̃d1 sufficiently
large.

Proof. The key ideas are inherited from the proof of Lemma 3.2 exceptthe fact that
we have to deal here with lack of smallness forq̃1: this is overcome by a bootstrap
argument.

The ansatz forQ is given in integral form as

Q(a) = Q̃0(a) − (d̃3 − d̃2)
2
a
+

∫ a

1
G̃(a, b)

sin(2Q(b)) − 2Q̃0(b) − 2Q̃1(b)

b2(1− b2)
db (4.4)

with Q̃0 defined as

Q0(a) := d̃1ϕ̃1(a) + d̃2ϕ̃2(a)

and whereG̃ is the Green function defined in (3.30). AssumingQ has the form
(4.1), the integral equation (4.4) can be solved by contraction for Q̃1. More pre-
cisely, forQ as in (4.1), we would like to obtaiñQ1 as fixed point of the following
equation

Q̃1(a) =
∫ a

1
G̃(a, b)

sin(2Q(b)) − 2Q̃0(b) − 2Q̃1(b)

b2(1− b2)
db. (4.5)

For the sake of clarity let us define

Q1(a) :=
Q̃1(a)

(a− 1)2 log2(a− 1)

In order to run the fixed point argument for equation (4.5) we need to show that the
bound

|Q1(a)| ≤ C|d̃1| (4.6)

improves upon itself on the intervala ∈ [1, 1 + ℓ], with ℓ = cd̃1
− 1

2 as given by the
statement of the lemma, if inserted in the equation (4.5). More precisely, our goal
is to prove that the bound (4.6) entails the following betterone

|Q1(a)| ≤
C
2
|d̃1|.

As a first step, we computeG̃(a,b)
b2(1−b2) and we easily obtain

G̃(a, b)

b2(1− b2)
=

a2 − 1

4a2

(
2

b(b2 − 1)
−

1

b2
log

(
b− 1
b+ 1

))

+
1

4b2

(
−

2
a
+

a2 − 1

a2
log

(
a− 1
a+ 1

))
.
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Similarly to (3.21), we can writeG̃(a,b)
b2(1−b2) as the sum of two terms̃G1 andG̃2 which

behave as follows for 1< a ≤ 1+ ℓ and 1< b < a

G̃1(a, b) ≈ (a− 1)

(
1

(b− 1)
+ log(b− 1)

)

G̃2(a, b) ≈ −
(
−2+ 2(a− 1) log(a− 1)

)
. (4.7)

The choice ofl is such that on [1, 1+ℓ] the non-linearities involving̃Q1 in
[
sin(2Q(b))−

2Q̃0(b)−2Q̃1(b)
]

are dominated by their first order (linear) approximation. We also

introduceQ0(a) := Q̃0(a) − (d̃3 − d̃2)2
a so thatQ(a) = Q0(a) + Q̃1(a). Now, we can

write sin(2Q(b)) − 2Q̃0(b) − 2Q̃1(b) as follows

sin(2Q) − 2Q̃0 − 2Q̃1 =
(
sin(2Q0) cos(2̃Q1) − 2Q̃0

)

+

(
cos(2Q0) sin(2Q̃1) − 2Q̃1

)

=: A+ B. (4.8)

The condition sin(4̃d3) = 4d̃2 already ensures that̃Q1(1) = 0. Now, we can expand
sin and cos in (4.8) and integrate againstG̃1 andG̃2,

At first we considerA. With the choice ofℓ = cd̃1
− 1

2 for some small constant
c > 0 and under the assumption (4.6) oñQ1, cos(2̃Q1) can be approximated by 1,
being the higher order terms dominated by the first order one;as a consequenceA
can be further expanded as follows (remember that sin(4d̃3) = 4d̃2)

A ≈
[
sin(−4d̃3) cos(β) + cos(−4d̃3) sin(β)

]
cos(2̃Q1) − β + 4d̃2

≈
[
−4d̃2 (1+ (cos(β) − 1)) + (β + (sin(β) − β))

]
− β + 4d̃2

≈
[
−4d̃2 (cos(β) − 1) + (sin(β) − β)

]
(4.9)

whereβ ≈ 4d̃1(b − 1) + 4d̃2(b − 1) log(b − 1) and where we also approximated
cos(−4d̃3) by 1 beingd̃3 small. If we integrateA againstG̃1, in particular against
the first and leading term of̃G1 i.e. (a− 1)/(b− 1) we obtain

d̃−1(a− 1)−2
∣∣∣∣∣
∫ a

1
G̃1(b) A db

∣∣∣∣∣

. d̃−1ℓ−2(a− 1)
∫ a

1

1
b− 1

∣∣∣∣−4d̃2 (cos(β) − 1) + (sin(β) − β)
∣∣∣∣ db

. c−2(a− 1)
∫ a

1

(
4|d̃2| + 2

) ∣∣∣∣∣
β

b− 1

∣∣∣∣∣ db

.

(
4|d̃2| + 2

) (
(d̃1 + |d̃2|)ℓ

2
+ |d̃2|ℓ

2| log ℓ|
)
≪ 1 (4.10)

by choice ofℓ = cd̃1
− 1

2 . Similarly we can also estimate the term corresponding
to the integral ofA againstG̃2. As far as the integral involvingB is concerned we
argue as follows. Using the fact that cos(2Q0) is bounded and that sin(2̃Q1) behaves
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to leading order as (2̃Q1) due to the choice ofℓ = cd̃1
− 1

2 and to the assumption
(4.6), we can estimate

d̃−1(a− 1)−2
∣∣∣∣∣
∫ a

1
G̃1(b) B db

∣∣∣∣∣

≤ d̃−1ℓ−2
∣∣∣∣∣
∫ a

1
G̃1(b)

(
cos(2Q0(b)) sin(2Q̃1(b)) − 2Q̃1(b)

)
db

∣∣∣∣∣

. c−2
∣∣∣∣∣
∫ a

1
G̃1(b)

[ (
cos(2Q0(b)) − 1

)
sin(2Q̃1(b)) +

(
sin(2Q̃1(b)) − 2Q̃1(b)

) ]
db

∣∣∣∣∣

. cd̃−
1
2 ≪ 1 (4.11)

and an analogous estimate can be obtained when integratingB againstG̃2. The
large value exhibited in (4.3) is achieved by choosinga∗ = 1+ ℓ/2. �

Lemma 4.2. The solutions to(3.1) provided by Lemma 4.1 on(1, 1 + l] can be
extended to(1,∞) as a smooth globally bounded solution Q(a), which behaves as

Q(a) = c1 + c2a−1
+O(a−2) (4.12)

for a→ ∞ and for non–vanishing constants c1 and c2.

Proof. Let us recall that we are dealing with the following ODE ((3.1))

Q′′(a) +
2
a

Q′(a) −
(2 sinQ(a) cosQ(a))

a2(1− a2)
= 0, (4.13)

where the non–linearity(2 sinQ(a) cosQ(a)) is clearly bounded. Hence, away
from the singularitiesa = 0 anda = 1, standard elliptic estimates allow to prove
L∞ bounds independent of the existence time so that solutions can be extended for
all time.

�

5. Excision of singularity near light cone a = 1: approximate solutions

In the previous section we have shown the existence of self–similar solutionsQ0

to (3.1) which are smooth away from the light cone but are onlycontinuous ata = 1
i.e. across the light cone. Our goal is to construct global smooth solutions to (1.7)
which have infinite critical normḢ

3
2 departing from these self–similar solutions

by excision of the singularity neara = 1. In order to achieve this, we introduce a
smooth cut–off functionχ(t − r) whose support lies at a distanceC from the light
cone: more preciselyχ(x) = 1 for |x| ≥ 2C andχ(x) = 0 for |x| ≤ C. In view of
Corollary 3.7, we know that neara = 1, the functionQ0 is of the form

Q0(a) = C1
|a2 − 1|

a2
+C2

|a2 − 1|

a2
log

(
|a− 1|
a+ 1

)
+C3Q3(a) + Q4(a) (5.1)

whereQ3 =
2
a is smooth ata = 1 andQ4(a) = O(|a− 1|2 log2(|a − 1|)) consists of

higher order terms. For the sake of simplicity we introduce

R(t, r) = R(a) = C1
|a2 − 1|

a2
+C2

|a2 − 1|
a2

log

(
|a− 1|
a+ 1

)
.
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Thus, we modify the exact singular solution near the light cone by introducing the
following approximate solution

uapprox(t, r) := χ(t − r) [R(a) + Q4(a)] +C3Q3(a) (5.2)

Now, we will estimate the errors which arise when computing the expression

∂ttuapprox− ∂rr uapprox−
2
r
∂ruapprox+

f (uapprox)

r2
.

Since for our estimates, the termQ4 is of higher order we will neglect it in the
following computations. First of all, we remark when applying derivatives only to
χwe getR(∂ttχ−∂ttχ) which vanishes sinceχ(t− r) solves the 1–dimensional wave
equation. When only one time derivative falls onχ(t − r) we get

2χ′(t − r)∂tR(t, r) = 2χ′(t − r)sign(t − r)

(
2C1

t

r2
− 2C2

t

r2
log

(
|r − t|
r + t

)
− 2C2

1
r

)
.

Similarly, when one derivative∂r falls onχ(t − r) we obtain

−2χ′(t − r)∂rR(t, r) = 2χ′(t − r)sign(t − r)

(
2C1

t2

r3
+ 2C2

t2

r3
log

(
|r − t|
r + t

)
+ 2C2

t

r2

)
.

Finally, we compute the contribution from−2
r R∂rχ which gives

−2χ′(t − r)

(
C1
|r2 − t2|

r3
+C2

|r2 − t2|

r3
log

(
|r − t|
r + t

))
.

Summing up all the terms involvingχ′ we have the following expression

2C2 χ
′(t − r) log

(
|r − t|
r + t

) (
t

r2

∣∣∣∣∣
r
t
− 1

∣∣∣∣∣ −
t2

r3

∣∣∣∣∣
r
t
− 1

∣∣∣∣∣
)
− 2C2χ

′(t − r)
( t

r2

∣∣∣∣∣
r
t
− 1

∣∣∣∣∣
)

+ 2C1χ
′(t − r)

(
t2

r3

∣∣∣∣∣∣
r2

t2
− 1

∣∣∣∣∣∣ − 2
t2

r3

∣∣∣∣∣
r
t
− 1

∣∣∣∣∣
)

which is of sizet−3, sinceχ′ has support in the stripC ≤ |t− r | ≤ 2C where|r/t−1|
behaves as 1/t.

Moreover, the error from the nonlinear term is of the following form

1
r2

f

(
χ(t − r)

(
C1
|r2 − t2|

r2
+C2

|r2 − t2|

r2
log

(
|r − t|
r + t

))
+ 2C3sign(t − r)

t
r

)

−
χ(t − r)

r2
f

(
C1
|r2 − t2|

r2
+C2

|r2 − t2|

r2
log

(
|r − t|
r + t

)
+ 2C3sign(t − r)

t
r

)

= O(t−3)

This implies that

�uapprox+
f (uapprox)

r2
∈ L2(R3),

in light of the support properties of this expression, and isof ordert−2 at fixed time
t in this norm. Thus all the errors beat the scaling.



18 ELISABETTA CHIODAROLI AND JOACHIM KRIEGER

6. From an approximate solution to an exact solution

Here we construct exact solutions via the ansatz

u(t, r) = uapprox(t, r) + ǫ(t, r).

We recall that we are considering the case of targetS
3, in which case we have

g(u) = sinu. Then we obtain the following wave equation which is in fact onR5+1:
(
ǫ

r

)

tt
−

(
ǫ

r

)

rr
−

4
r

(
ǫ

r

)

r
= −

1
r

sin(2ǫ) − 2ǫ
r2

cos(2uapprox)

−
sin(2uapprox)

r3
(cos(2ǫ) − 1)

−
2ǫ

r3

[
cos(2uapprox) − 1

]

+
e0

r
.

(6.1)

Note that by introducing the new variablev = ǫ
r , we get “essentially” the new wave

equation

vtt − △R5v = v3
+

vu2
approx

r2
+

v2uapprox

r
+

1
r

e0.

For the purely cubic term, we get the scalingv(t, r) → λv(λt, λr), which onR5+1

corresponds tosc =
3
2, as expected. Thus it is natural to try to run an iteration

in the spaceH
3
2

R5. It is then natural to work with the Strichartz normsL∞t L5
x ∩

L2
t L10

x ∩ L2
t (∇
− 1

2
x L5

x), with the same scaling asL∞t Ḣ
3
2

R5. Then the interaction terms
vu2

approx

r2 ,
v2uapprox

r , appear critical, since the first can be reduced to

vuapprox

rt
,

which fails logarithmically to belong toL1
t Ḣ

1
2 . Thus, as in the paper [9], we shall

also be taking advantage of the Hamiltonian structure to handle this low frequency
issue. We state

Proposition 6.1. Let C ≥ 1 a given constant, T≥ 1 sufficiently large, depend-
ing on d̃1 in the approximate solution. Assume that the C∞-smooth data v[T] =
(v(T, ·), vt(T, ·)) are radial and supported in the annulus r∈ [T −C,T +C]. Also,
assume that̃d2 for the approximate solution is sufficiently small (less than an ab-
solute constant), and that for aδ1 > 0 = δ1(C) sufficiently small, we have

∥∥∥v[T]
∥∥∥

Ḣ
3
2 (R5)∩Ḣ1(R5)×Ḣ

1
2 (R5)∩L2(R5)

≤ δ1.

Then the problem(6.1) with initial data v[T] at time t = T admits a global-in-
forward time solution v(t, ·) of class C∞.

The existence of the solutionv will follow from a standard local existence result
as well as a more sophisticated bootstrap argument which is at the heart of the
matter, as in [9]. The local existence result is as follows:
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Proposition 6.2. Given data v[T] with the same support properties as above, sat-
isfying ∥∥∥v[T]

∥∥∥
Ḣ

3
2 (R5)×Ḣ

1
2 (R5)

≪ 1,

then there exists a time T1 > T and a solution of(6.1)of class

v ∈ L∞t Ḣ
3
2 ([T,T1] × R5), vt ∈ L∞t Ḣ

1
2 ([T,T1] × R5)

with compact support on every time slice t∈ [T,T1]. If v[T] ∈ Ḣs ∩ Ḣs−1, s> 3
2,

then so is the solution at all times t∈ [T,T1].

The proof is standard and we refer to [9, Section 7] for a similar argument.

Before stating the key bootstrap proposition, we recall thefollowing set of stan-
dard Strichartz estimates, in theR5+1-setting:

Lemma 6.3. Let �5+1u = 0. Then for 1
p +

2
q ≤ 1, p ≥ 2, we have (u[0] =

(u(0, ·), ut(0, ·)))
∥∥∥(−△)

γ

2 u
∥∥∥

Lp
t Lq

x
≤ C

∥∥∥u[0]
∥∥∥

Ḣ
3
2×Ḣ

1
2
, γ = −1+

1
p
+

5
q
.

Next, the bootstrap proposition:

Proposition 6.4. Let us assume all hypotheses of Proposition 6.1. Then there exists
C1 > 1 with C1δ1 ≪ 1, as well as a constantγ = γ(d̃1,2, δ1,T) > 0, such that for
any T1 > T, the following conclusion holds:∥∥∥v

∥∥∥
L2

t (L10
x ∩∇

− 1
2

x L5
x)([T,T1]×R5)

+ sup
t∈[T,T1]

∥∥∥v[t, ·]
∥∥∥

Ḣ
3
2∩( t

T )γ Ḣ1(R5)×Ḣ
1
2∩( t

T )γL2(R5)
≤ C1δ1

implies
∥∥∥v

∥∥∥
L2

t (L10
x ∩∇

− 1
2

x L5
x)([T,T1]×R5)

+ sup
t∈[T,T1]

∥∥∥v[t, ·]
∥∥∥

Ḣ
3
2∩( t

T )γḢ1(R5)×Ḣ
1
2∩( t

T )γL2(R5)
≤

C1

2
δ1.

Proof. We follow closely the procedure in [9]. We commence with the energy type
norm, i. e.

sup
t∈[T,T1]

∥∥∥v[t, ·]
∥∥∥( t

T )γḢ1(R5)×( t
T )γL2(R5).

Multiplying (6.1) byvt and integrating in space-time, we get
∫

R5
[v2

t + |∇xv|
2] dx|t=T1 =

∫

R5
[v2

t + |∇xv|
2] dx|t=T

−

∫ T1

T

∫

R5

1
r

sin(2vr) − 2vr

r2
cos(2uapprox)vt dxdt

−

∫ T1

T

∫

R5

sin(2uapprox)

r3

(
cos(2vr) − 1

)
vt dxdt

−

∫ T1

T

∫

R5

2v

r2

[
cos(2uapprox) − 1

]
vt dxdt

+

∫ T1

T

∫

R5

e0

r
vt dxdt.

(6.2)
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We treat the terms on the right via integration by parts. For the second term on the
right, introducing

E(x) :=
∫ x

0
(siny− y) dy, |E(x)| . |x|4,

we get

∫ T1

T

∫

R5

1
r

sin(2vr) − 2vr

r2
cos(2uapprox)vt dxdt

=

∫

R5
r−4E(vr) cos(2uapprox) dx|T1

T −

∫ T1

T

∫

R5
2r−4E(vr) sin(2uapprox)uapprox,t dxdt.

To bound these terms we use interpolation betweenL
10
3

x andL5
x. With

1
4
= α ·

3
10
+ (1− α) ·

1
5
=

1
5
+
α

10
,

we getα = 1
2, whence

∣∣∣∣∣
∫

R5
r−4E(vr) cos(2uapprox) dx|T1

T

∣∣∣∣∣ .
∫

R5
v4 dx.

∑

t=T,T1

‖∇xv(t, ·)‖2
L2

x

(∫

R5
|v|(t, ·)5 dx

) 2
5

≪ sup
t∈[T,T1]

‖∇xv(t, ·)‖2
L2

x
,

where in the last step we have used the bootstrap assumption.This can then be
easily absorbed on the left hand side in (6.2).
On the other hand, for the space time integral, we have

∣∣∣∣∣∣

∫ T1

T

∫

R5
2r−4E(vr) sin(2uapprox)uapprox,t dxdt

∣∣∣∣∣∣

.

∫ T1

T

∫

R5
t−1v4 dxdt≤ sup

t∈[T,T1]

(∫

R5
|v|(t, ·)5 dx

) 2
5
∫ T1

T
t−1‖∇xv(t, ·)‖2

L2
x
dt.

To bound this last term, using the bootstrap assumption, we have (with an absolute
implied constant independent of all other constants)

sup
t∈[T,T1]

(∫

R5
|v|(t, ·)5 dx

) 2
5
∫ T1

T
t−1‖∇xv(t, ·)‖2

L2
x
dt

. (C1δ1)2
∫ T1

T
t−1(C1δ1)2

( t
T

)2γ
dt ≤

(C1δ1)2

2γ
(C1δ1)2

(T1

T

)2γ

,

which suffices for the bootstrap, providedδ2
1 ≪ γ. This deals with the second

term on the right hand side of (6.2). To deal with the third term, write F(x) :=
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∫ x

0
[cosx− 1] dx, whence|F(x)| . |x|3. Then we obtain

∫ T1

T

∫

R5

sin(2uapprox)

r3
(cos(2vr) − 1) vt dxdt

=

∫

R5
r−4F(vr) sin(2uapprox) dx|T1

T

−

∫ T1

T

∫

R5
r−4F(vr) cos(2uapprox) · 2uapprox,t dxdt.

Here we have

∣∣∣∣∣
∫

R5
r−4F(vr) sin(2uapprox) dx|T1

T

∣∣∣∣∣ ≤
∑

t=T,T1

∫

R5

|v3(t, ·)|
r

dx

≤ 2 sup
t∈[T,T1]

∥∥∥∥∥
v(t, ·)

r

∥∥∥∥∥
L2

x

∥∥∥v2(t, ·)
∥∥∥

L2
x

. 2 sup
t∈[T,T1]

‖∇xv(t, ·)‖2
L2

x
‖v(t, ·)‖L5

x

≪ sup
t∈[T,T1]

‖∇xv‖
2
L2

x
,

where we have used Hardy’s inequality and the bootstrap assumption. This can
again be absorbed on the left hand side of (6.2). We similarlyinfer the bound

∣∣∣∣∣∣

∫ T1

T

∫

R5
r−4F(vr) cos(2uapprox) · 2uapprox,t dxdt

∣∣∣∣∣∣

.
Cδ1

γ
(C1δ1)2

(T1

T

)2γ

,

which suffices providedδ1 ≪ γ.

For the fourth term on the right hand side of (6.2), we have to argue slightly
differently, since now the smallness has to come fromuapprox, which however is
large immediately outside the light cone. Write

∫ T1

T

∫

R5

2v

r2

[
cos(2uapprox) − 1

]
vt dxdt

=

∫

R5

v2

r2

[
cos(2uapprox) − 1

]
dx|T1

T

+

∫ T1

T

∫

R5

v2

r2
sin(2uapprox)uapprox,t dxdt.
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For the first term on the right and evaluated att = T1, we get
∫

R5

v2

r2

[
cos(2uapprox) − 1

]
dx|T1 =

∫

r<T1−C

v2

r2

[
cos(2uapprox) − 1

]
dx|T1

+

∫

r∈[T1−C,T1+C]

v2

r2

[
cos(2uapprox) − 1

]
dx|T1.

For the first term use that| cos(2uapprox) − 1| ≪d̃2
1, whence by Hardy’s inequality

∣∣∣∣∣∣

∫

r<T1−C

v2

r2

[
cos(2uapprox) − 1

]
dx|T1

∣∣∣∣∣∣ ≪
∥∥∥∇xv(T1, ·)

∥∥∥2
L2

x
,

which can be absorbed on the right hand side of (6.2). For the remainder term,
smallness has to be a consequence of the additionalr-localization. In fact, from
Strauss’ inequality for radial functions, we infer

|v(t, r)| . r−
3
2 ‖v(t, ·)‖Ḣ1 ,

and so ∣∣∣∣∣∣

∫

r∈[T1−C,T1+C]

v2

r2

[
cos(2uapprox) − 1

]
dx|T1

∣∣∣∣∣∣

.

∥∥∥v(T1, ·)
∥∥∥2

Ḣ1

∫

r∈[T1−C,T1+C]
r−5 · r4 dr ≪

∥∥∥v(T1, ·)
∥∥∥2

Ḣ1

sinceT1 > T ≫ 1 by assumption. Hence this term can be absorbed on the right
hand side of (6.2). For the space time integral above, we similarly divide it into an
integral overr < t −C, r ∈ [t −C, t +C], and by similar reasoning we obtain

∣∣∣∣∣∣

∫ T1

T

∫

R5

v2

r2
sin(2uapprox)uapprox,t dxdt

∣∣∣∣∣∣

≪

∫ T1

T

∥∥∥∇x(t, ·)
∥∥∥2

L2
x

t
dt

where the implied constant depends ond̃1 as well asT(in particular, the latter needs
to be large enough in relation tõd1 for this term to be small), and so we can again
close provided the implied constant is small enough in relation toγ.

Finally, to control the last term on the right in (6.2), we use
∣∣∣∣∣∣

∫ T1

T

∫

R5
vt

e0

r
dxdt

∣∣∣∣∣∣ .
∫ T1

T
‖vt(t, ·)‖L2

x
‖
e0

r
(t, ·)‖L2

x
dt

.

∫ T1

T


‖vt(t, ·)‖2L2

x

t2
+ t−2

 dt≪ (C1δ1)2
(T1

T

)2γ

provided we pickT sufficiently large. This completes the bootstrap for the norm

sup
t∈[T,T1]

∥∥∥v[t, ·]
∥∥∥

( t
T )γḢ1(R5)×( t

T )γL2(R5).
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We continue with the Strichartz type norms of critical scaling, given by
∥∥∥v

∥∥∥
L2

t (L10
x ∩∇

− 1
2

x L5
x)([T,T1]×R5)

+

∥∥∥(v, vt)
∥∥∥

L∞t Ḣ
3
2×L∞t Ḣ

1
2 ([T,T1]×R5)

.

Using the standard Strichartz estimates for free waves onR
5+1, it suffices to prove

the bound
∥∥∥F(v)

∥∥∥
L1

t Ḣ
1
2 ([T,T1]×R5)

≪ C1δ1

whereF(v) denotes the right hand side of (6.1). We estimate the individual com-
ponents on the right:

The contribution of−1
r

sin(2ǫ)−2ǫ
r2 cos(2uapprox). We can bound this by

∥∥∥∥∥
1
r

sin(2ǫ) − 2ǫ

r2
cos(2uapprox)

∥∥∥∥∥
L1

t Ḣ
1
2 ([T,T1]×R5)

.

∥∥∥v3
∥∥∥

L1
t Ḣ

1
2 ([T,T1]×R5)

+

∥∥∥v3(∇
1
2
x v)r

∥∥∥
L1

t L2
x([T,T1]×R5) +

∥∥∥v4r
1
2
∥∥∥

L1
t L2

x([T,T1]×R5)

+

∥∥∥v3t−
1
2
∥∥∥

L1
t L2

x([T,T1]×R5),

where we have taken advantage of writing

1
r

sin(2ǫ) − 2ǫ
r2

cos(2uapprox) = v3 sin(2ǫ) − 2ǫ
ǫ3

cos(2uapprox)

and also used the fractional derivative Leibniz rule. Then we estimate

‖v3‖
L1

t Ḣ
1
2 ([T,T1]×R5)

. ‖∇
1
2
x v‖

L∞t L
10
3

x ([T,T1]×R5)
‖v‖2

L2
t L10

x ([T,T1]×R5)

. ‖v‖
L∞t Ḣ

3
2 ([T,T1]×R5)

‖v‖2
L2

t L10
x ([T,T1]×R5)

. (C1δ1)3 ≪ C1δ1.

Next, taking advantage of the Strauss’ inequality|v(t, r)| . r−1
∥∥∥v(t, ·)

∥∥∥
Ḣ

3
2
, we have

∥∥∥v3(∇
1
2
x v)r

∥∥∥
L1

t L2
x([T,T1]×R5) +

∥∥∥v4r
1
2
∥∥∥

L1
t L2

x([T,T1]×R5)

. C1δ1

∥∥∥v2(∇
1
2
x v)

∥∥∥
L1

t L2
x([T,T1]×R5) + (C1δ1)

1
2
∥∥∥v7

2
∥∥∥

L1
t L2

x([T,T1]×R5)

. C1δ1

∥∥∥v
∥∥∥2

L2
t L10

x ([T,T1]×R5)

∥∥∥∇
1
2
x v

∥∥∥
L∞t L

10
3

x ([T,T1]×R5)

+ (C1δ1)
1
2
∥∥∥v

∥∥∥2
L2

t L10
x ([T,T1]×R5)

∥∥∥v3
2
∥∥∥

L∞t L
10
3

x ([T,T1]×R5)

. (C1δ1)
1
2
∥∥∥v

∥∥∥2
L2

t L10
x ([T,T1]×R5)

∥∥∥v
∥∥∥

L∞t Ḣ
3
2 ([T,T1]×R5)

≪ C1δ1.
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Finally, for the contribution ofv3t−
1
2 , we use the fact that by the Huyghen’s princi-

ple, the support of the functionv(t, r) is contained in the setr < t +C, and so

∥∥∥v3t−
1
2
∥∥∥

L1
t L2

x([T,T1]×R5) .
∥∥∥v

∥∥∥2
L2

t L10
x ([T,T1]×R5)

∥∥∥v
∥∥∥

L∞t L5
x([T,T1]×R5)

∥∥∥t− 1
2
∥∥∥

L∞t L10
x ([T,T1]×{r≤t+C})

. (C1δ1)3.

The contribution of−2ǫ
r3

[
cos(2uapprox) − 1

]
. Here we distinguish between high

and low frequency factors. Specifically, we write schematically

2ǫ

r3

[
cos(2uapprox) − 1

]
=

2ǫ
r

P<t−δ

[
cos(2uapprox) − 1

r2

]
+

2ǫ
r

P≥t−δ

[
cos(2uapprox) − 1

r2

]
.

For the second term on the right, we exploit that

P≥t−δ

[
cos(2uapprox) − 1

r2

]

enjoys a special smallness property. In fact, by direct computation, we get

∇x

[
cos(2uapprox) − 1

r2

]
= ∇x


u2

approx

r2

cos(2uapprox) − 1

u2
approx



=

∇x(
uapprox

r
)
uapprox

r

cos(2uapprox) − 1

u2
approx



+


u2

approx

r2
∇x


cos(2uapprox) − 1

u2
approx




and we bound these terms byO
(

log t
t3

)
. It follows that

∣∣∣∣∣∣P≥t−δ

[
cos(2uapprox) − 1

r2

]∣∣∣∣∣∣ .
log t

t3−δ
.

This allows to bound the high frequency term by

∥∥∥∥∥∥
2ǫ
r

P≥t−δ

[
cos(2uapprox) − 1

r2

]∥∥∥∥∥∥
Ḣ

1
2 (R5)

.

∥∥∥v
∥∥∥L10

x

∥∥∥ χr.t

∥∥∥
L5

x

∥∥∥∥∥∥P≥t−δ∇
1
2
x

[
cos(2uapprox) − 1

r2

]∥∥∥∥∥∥
L5

x(r.t)

+

∥∥∥∇
1
2
x v

∥∥∥
L5

x

∥∥∥χr.t

∥∥∥
L5

x

∥∥∥∥∥∥P≥t−δ

[
cos(2uapprox) − 1

r2

]∥∥∥∥∥∥
L10

x (r.t)

.
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We conclude that∥∥∥∥∥∥
2ǫ
r

P≥t−δ

[
cos(2uapprox) − 1

r2

]∥∥∥∥∥∥
L1

t Ḣ
1
2 ([T,T1]×R5)

.

∥∥∥v
∥∥∥

L2
t L10

x ([T,T1]×R5)

∥∥∥∥∥∥∥

∥∥∥∥∥∥tP≥t−δ∇
1
2
x

[
cos(2uapprox) − 1

r2

]∥∥∥∥∥∥
L5

x(r.t)

∥∥∥∥∥∥∥
L2

t [T,T1]

+

∥∥∥∥∥∇
1
2
x v

∥∥∥∥∥
L2

t L5
x([T,T1]×R5)

∥∥∥∥∥∥∥

∥∥∥∥∥∥tP≥t−δ

[
cos(2uapprox) − 1

r2

]∥∥∥∥∥∥
L10

x (r.t)

∥∥∥∥∥∥∥
L2

t [T,T1]

.

[∥∥∥v
∥∥∥

L2
t L10

x ([T,T1]×R5) +
∥∥∥∇

1
2
x v

∥∥∥
L2

t L5
x([T,T1]×R5)

] ∥∥∥∥∥
log t

t1−δ

∥∥∥∥∥
L2

t [T,T1]

≪ C1δ1

on account ofT ≫ 1.
Next, consider the low frequency term

2ǫ
r

P<t−δ

[
cos(2uapprox) − 1

r2

]

= P
<t−

δ
2

(
2ǫ
r

)
P<t−δ

[
cos(2uapprox) − 1

r2

]

+ P
≥t−

δ
2

(
2ǫ
r

)
P<t−δ

[
cos(2uapprox) − 1

r2

]
.

For the second term on the right, we get
∥∥∥∥∥∥P
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δ
2

(
2ǫ
r

)
P<t−δ

[
cos(2uapprox) − 1

r2

]∥∥∥∥∥∥
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t Ḣ
1
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.
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1
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3
4δ〈∇x〉

1
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[
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and then use that from our bootstrap hypothesis we have
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while using Bernstein’s inequality, we have
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on account ofT ≫ 1. The conclusion is that∥∥∥∥∥∥P
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[
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On the other hand, for the term where all factors have low frequency, i. e.

P
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δ
2

(
2ǫ
r

)
P<t−δ

[
cos(2uapprox) − 1

r2

]
,

we exploit the extra outer derivative and low frequency control (with a small loss):
we have at fixed timet
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2
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1
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where we have taken advantage of
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2
v(t, ·)
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L

10
3

x

. ‖v(t, ·)‖Ḣ1 .

( t
T

)γ
.

Also, the additional factorst−
δ
4 which ensure integrability stem from the operator

∇
1
2
x P<t−δ . Thus if we arrange (as we may) thatγ ≪ δ, we find
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providedT is sufficiently large (in relation toδ−1). This finally concludes bounding
the contribution from

−
2ǫ

r3

[
cos(2uapprox) − 1

]
.

The contribution of
sin(2uapprox)

r3

(
cos(2ǫ) − 1

)
. We again use the high-low fre-

quency method, which is somewhat simpler to implement here:write
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For the second term on the right, use that
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and so we find∥∥∥∥∥∥P≥t−δ

(
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2
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+
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(
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L2

t L10
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For the low frequency term, we get
∥∥∥∥∥∥P<t−δ

(
sin(2uapprox)
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(
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(
sin(2uapprox)
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t L10
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The contribution ofe0
r . Here we immediately check that

∥∥∥e0
r

∥∥∥
L1

t Ḣ
1
2 ([T,T1]×R5)

.

T−1 ≪ C1δ1 if T is sufficiently large, which is as desired. The proof of Proposi-
tion 6.4 is thereby concluded.

7. Proof of the main result

Here we shall show how to conclude Theorem 2.1 building on theprevious sec-
tions. Indeed Theorem 2.1 follows from Proposition 6.1, thesolution to (1.7) being
given byu := uapprox+ ǫ(t, r) whereǫ(t, r) := rv with v provided by Proposition
6.1. The initial data (f , g) are given by (u(T, ·), ut(T, ·)) whereT > 0 depending
on d̃1 is given by Proposition 6.1. Since (v, vt) does have finite critical norm, but
the approximate solution (uapprox, ∂tuapprox) does not, we easily conclude that the
initial data have infinite critical norm. Clearly the perturbation (ǫ, ǫt) lies in the
spacesḢs × Ḣs−1 for s > 3

2 by construction (remind that (v, vt) is compactly sup-
ported). Moreover, due to the asymptotics forr → ∞ of the self–similar solutions
given by formulas (3.34) and (4.12), in the small and large case respectively, we
have that (uapprox− q1, ∂tuapprox), (uapprox− c1, ∂tuapprox) respectively, has finite
norm inḢs× Ḣs−1 for s> 3

2: that is how we understand the finiteness inḢs× Ḣs−1

for s > 3
2 of the data (f , g) as claimed in Theorem 2.1. Of course the condition

‖ f ‖L∞(r≥1) > M, for arbitraryM > 0, can be achieved simply by choosingd̃1 > M2

in the context of large self–similar solutions as provided by Lemma 4.1. Finally
the stability under a certain class of perturbations is a consequence of the fact that
v belongs to an open set with respect to the norms of Proposition 6.2.
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Poincaré Phys. Théor.68 (1998), no. 3, 315–349.

[3] Roland Donninger,On stable self-similar blowup for equivariant wave maps, Comm. Pure
Appl. Math.64 (2011), no. 8, 1095–1147.

[4] Roland Donninger and Peter C. Aichelburg,Spectral properties and linear stability of self-
similar wave maps, J. Hyperbolic Differ. Equ.6 (2009), no. 2, 359–370.

[5] , A note on the eigenvalues for equivariant maps of theSU(2)sigma-model, Appl. Math.
Comput. Sci.1 (2010), no. 1, 73–82.

[6] Roland Donninger, Birgit Schörkhuber, and Peter C. Aichelburg,On stable self-similar blow
up for equivariant wave maps: the linearized problem, Ann. Henri Poincaré13 (2012), no. 1,
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