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Abstract: Within this paper, the assessment of tension stiffening effects on a reinforced concrete 
element with the circular sections subjected to axial and bending loads is presented. To this 
purpose, an enhancement of an analytical model already present within the actual technical 
literature is proposed. The accuracy of the enhanced method is assessed by comparing the 
experimental results carried out in past research and the numerical ones obtained by the model. 
Finally, a parametric study is executed in order to study the influence of axial compressive force on 
the flexural stiffness of reinforced concrete elements that are characterized by a circular section, 
comparing the secant stiffness evaluated at yielding and at maximum resistance, considering and 
not considering the effects of tension stiffness. 

Keywords: tension stiffening; circular section; flexural behavior; concrete cracking; numerical 
model 

1. Introduction

Reinforced concrete elements are characterized—even for low force values—by nonlinear 
behavior, mainly due to the stress–strain relationship of the two forming materials: concrete and 
steel. The exact modeling of such behavior can prove to be a very hard issue, and for this reason, 
several simplifications are usually adopted in order to take into account only the most relevant 
nonlinear aspects affecting the particular studied problem. 

However, the low tensile strength of the concrete can be indicated as the most influencing 
nonlinearity source. The idea of the composite material “reinforced concrete” (r.c.) itself was 
originally developed to overcome such a limitation of the concrete. The low tensile strength does not 
influence so much the ultimate resistance of a reinforced concrete element. On the contrary, it can 
modify the element stiffness also for a high value of the external force due to the "tension stiffening". 
Tension stiffening can be defined as the phenomenon leading to an increase in the stiffness of a 
concrete section due to the transmission of stresses from the reinforcing bar to the boundary concrete 
in the tension between two adjacent cracks (Figure 1). 
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Figure 1. Effects of the tension stiffening on an isolated reinforcing bar. 

The way of modeling this phenomenon is currently codified by different standards, and several 
studies have been carried out in the last decade. 

Eurocode 2 [1] and CEB-fib Model Code 2010 [2] consider tension stiffening in terms of strain, 
curvature, or deflection, and interpolate the computed parameter evaluated on the uncracked 
section and on the fully cracked one using the following expressions. 

( )2 11α ζα ζ α= + −  (1) 
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where α is the mean value of the parameter of interest (strain, curvature, or deflection) of the 
element segment comprised between two consecutive cracks; α1 and α2 are the corresponding values 
computed in the uncracked and fully cracked sections, respectively; ζ is the distribution coefficient, 
β is a factor that takes into account long term effects (β = 1.0 for short term effects, β = 0.5 for 
sustained loads or many cycles of repeated loading); σS is the stress in the reinforcement in tension 
calculated on the cracked section; and σSF is the evaluated stress under the loading conditions 
causing first cracking. Eurocode 2 [1] proposes also an expression for the evaluation of the crack’s 
interaxis mean value, srm: 
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where: 
− Φs is the mean value of the reinforcing bars’ diameter; 
− K1 is a coefficient that takes into account the bond properties of bond reinforcement; 
− K2 is a coefficient that takes into account the distribution of strain (pure tension or bending); 

and 
− ρp,eff = Ast/Act is the effective reinforcement ratio evaluated as the ratio between the area of the 

reinforcing bars, Ast, contained within the concrete cross section portion effectively influenced 
by the bars in the formation of cracks. 

The effects of tension stiffening on the flexural behavior of r.c. elements are considered in many 
other studies. The first ones can be attributed to Vecchio and Collins [3], Collins and Mitchell [4], and 
Belarbi and Hsu [5,6]. The results of such studies are compared, and their differences well explained 
by the research of Bentz [7], which proposes also the use of an expression that takes into account the 
different bond conditions, and leads to a better estimation of the crack’s width and stiffness at 
service load of r.c. elements. Salvatore et al. [8] studied its effect on flexural behavior, with particular 
attention to a ductility evaluation of rectangular concrete sections reinforced with special, 
dual-phase [9], steel bars. Shukri et al. [10] studied the tension stiffening contribution of near-surface 



Materials 2017, 10, 669 3 of 16 

 

mounted Carbon Fiber Reinforced Polymer (CFRP) to the behavior of strengthened r.c. beams. 
Shukri et al. [11] introduced tension stiffening effects to develop a mechanical model for the 
simulation of r.c. hinges under reversed cyclic loading. Sato et al. [12] extended the results to the r.c. 
members with externally bonded fiber-reinforced polymers, providing models to estimate crack 
spacing and the influence of tension stiffening effects. Stramandinoli et al. [13] developed a model in 
which the tensile stress–strain curve of concrete displays an exponential decay in the post-cracking 
range, defined by a parameter that depends on the reinforcement ratio and on the steel-to-concrete 
modular ratio. The numerical results obtained by the model showed good agreement with several 
experimental results on simply supported beams with rectangular cross sections tested under 
4-point bending. Lee et al. [14] presented a tension stiffening model able to calculate average tensile 
stresses in concrete after the yielding of reinforcement in the r.c. elements has been subjected to 
uniaxial tension, shear, or flexure. Kaklauskas et al. [15] studied the effects of shrinkage on tension 
stiffening on rectangular sections with symmetrical or asymmetrical reinforcement, providing 
free-of-shrinkage tension stiffening relationships. Soltani et al. [16] developed a computational 
model for the analysis of r.c. membrane elements that have been subjected to general inplane 
stresses, considering the effects of tension stiffening, the stress transfer across cracks due to 
aggregate interlock, and dowel action with consideration to the kinking effect of reinforcements at 
the crack plane. The comparison of the method through a comparison with some experimental 
results demonstrated the accuracy of the proposed model. 

An important aspect to consider in the study of the tension stiffening phenomenon is the 
definition of the "effective area", defined as the portion of concrete surrounding the reinforcing bar 
involved in the transmission of stresses from the bar to the concrete itself. 

Eurocode 2 [1] defines the effective area, only for typical rectangular sections, as the area having 
the same width of the section and a height hc,eff equal to the minimum among 2.5(h − d), (h − x)/3 and 
h/2, where the meaning of the symbols is well explained by Figure 2. CEB-fib Model Code 2010 [2] 
suggests similar values, stating that, in the absence of a more refined model, the effective concrete 
area in tension can be assessed as 2.5(h − d) < (h − x)/3. 

 

Figure 2. Effective area for rectangular section defined by Eurocode 2 [1]. 

Several authors have proposed different expressions for the evaluation of the effective area. 
Manfredi and Pecce [17] recommended a refined fiber model for the analysis of r.c. beams, which 
includes an explicit formulation of the bond–slip relationship that employs an effective area around 
the reinforcement that occupies the whole width of the section and has a height hc,eff = (c + 8.5ϕ), with 
c being the concrete cover and ϕ the reinforcing bar diameter. Braga et al. [18] studied a slip model 
that also takes into account hardening phenomena. Kwak and Song [19], in their study on an 
analytical model which can simulate the post-cracking behavior and tension stiffening effect in a r.c. 
tension member, proposed that the effective area of concrete in tension can be represented by Ac,eff ≈ 
1/4(1 + nρ)bh, with b and h the width and height of the section, respectively, n = Es/Ec, and ρ the ratio 
of steel reinforcement (As/bh). Castel et al. [20] came up with the following expression for Ac,eff, 
which is based on a multi-linear stress profile in the full depth of the concrete section between the 
flexural cracks: 



Materials 2017, 10, 669 4 of 16 

 

( ) ( ) ( )
( ),

/ 2 / 2
/ 2 1

2 2 / 2ct eff s
b d x a b h d a

A b a b h d a A
d x a

 − − − −
= + ⋅ + − − − − 

− −  
 (4) 

The meaning of the symbols is explained in Figure 3.  

 
Figure 3. Geometrical parameters used in equation (4).  

All of these works deal with the definition of the effective area on rectangular r.c. sections. Very 
little work has been done on circular sections, even if they represent important elements in the field 
of r.c. construction. It is in fact sufficient to think about the bridge piers or pile foundations that are 
realized with circular sections: bridge piers are often realized this way, while pile foundations 
practically always are. Wiese et al. supplied an expression for the determination of the effective area 
of symmetrically reinforced circular sections, idealizing the reinforcement as a continuous ring. J. F. 
Carbonell-Marquez et al. [21] presented a definition of the effective area in circular cross sections for 
both symmetric and asymmetric layouts, and demonstrated the validity of the proposed expression 
by comparing it with the experimental results on r.c. members subjected to pure flexure. Mondal 
and Prakash [22] came up with an improved analytical model for r.c. circular columns under 
combined axial-torsional load conditions, demonstrating that neglecting tension stiffening can lower 
sensibly the accuracy of the numerical/analytical models used in predicting test data. 

The influence of tension stiffening on the global behavior of elements with a circular cross 
section and subjected to the combined axial–flexural action has not, however, as far as the authors 
know, been ever quantified. The question of if, or in which conditions, it is necessary to model 
tension stiffening still remains without clear answers. Moreover, the influence on tension stiffening 
effects of the axial force, to which circular cross section elements such as bridge piers and pile 
foundations are usually subjected, or of the reinforcement ratio, has never been quantified. 

Within the present paper, the modeling approach adopted by Salvatore et al. [8] for rectangular 
sections is enhanced and adapted to circular, symmetrically reinforced, cross sections. The reliability 
of the model’s results is then tested, comparing them with the experimental results of tests carried 
out on circular elements characterized by different reinforcement ratios, and subjected to a 
combined axial force and bending moment. Finally, a parametric analysis using the proposed model 
is executed, to estimate the influence of various parameters (axial force, reinforcement ratio) on the 
global behavior of r.c. elements having a circular cross section. 

2. Modeling Tension Stiffening 

Salvatore et al. [8] proposed a model based on the CEB-fib Model Code 1998 [23] approach, 
upholding the classical hypotheses of plane cross-sections and perfect adherence between steel bars 
and the surrounding concrete, even after cracking, in all sections (cracked and uncracked ones). The 
bond–slip relation is assumed to be rigid–plastic, as illustrated in Figure 4a, where τb1 is the bond 
stress in the elastic phase, and τb2 is the bond stress at yielding. The bond and steel tensile stresses, 
together with the steel tensile strain resulting from the application of an increasing force to the steel 
bar, are schematically shown in Figure 4b. 
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(a) 

 
(b) 

Figure 4. (a) Bond–slip relation for the steel–concrete interface; (b) adherence, stress, and strain in the 
steel. 

To consider the deformational effects consequent to sliding between the steel and the concrete 
and the consequent redistribution of stresses, a fictitious elasticity modulus, Ect, for the concrete in 
tension in the post-cracking phase is defined. 

The definition of Ect is derived from the equilibrium equation of an infinitesimal length of bar 
surrounded by the portion of concrete involved in the transmission of stresses from the bar to the 
concrete itself. On the base of the stress condition of the steel bar, Salvatore et al. [8] derived the 
following expression of Ect: 
for σscr ≤ σs,max < fy : 
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for fy < σs,min or σs,min ≤ fy < σs,max and x < xy : 
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where σs,min and σs,max are the minimum and maximum stresses in the bar occurring respectively in 
the midline section and in the cross-sections of the element where the crack forms; σscr is the stress in 
the steel upon first cracking; and, finally, xy is the distance from the cracked section where the stress 
in the steel begins to be lower than the yield stress. 

Observations 

The modelling approach adopted by Salvatore et al. [8] briefly described in the previous 
paragraph suffers, however, from some inaccuracies. In the case of the reinforcing bar subjected to 
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stresses lower than the yield ones, the elasticity modulus in tension Ect would be defined by 
Equation (5), but the following observations can be made: 

− for 𝜎𝜎𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚
𝐸𝐸𝑠𝑠

− 4
Φ𝑠𝑠 𝐸𝐸𝑠𝑠

𝜏𝜏𝑏𝑏1𝑥𝑥 = 0, 𝐸𝐸𝑐𝑐𝑐𝑐(𝑥𝑥) → ∞. This result is unrealistic given that the upper limit of 

Ect(x), Ect,lim should be at least equal to the elastic modulus of the concrete in compression, Ec. 
− for 𝜎𝜎𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝑠𝑠
− 4

Φ𝑠𝑠 𝐸𝐸𝑠𝑠
𝜏𝜏𝑏𝑏1𝑥𝑥 < 0,𝐸𝐸𝑐𝑐𝑐𝑐(𝑥𝑥) < 0. This result has no physical meaning, too. The lower 

limit of Ect should be equal to zero (corresponding to the cracked section). 
In Figure 5, Equation (5) is plotted for different values of σscr. 

 
Figure 5. Elasticity modulus in tension, Ect, as a function of the distance from the cracked section, x, 
for different values of the stress in the steel upon first cracking, σscr. 

It is immediate to understand that, in order to obtain real physical meaning, the fictitious 
elasticity modulus in tension Ect should respect the following limits: 

,lim0 ( )ct ctE x E≤ <  (8) 

where Ect,lim represents the likely maximum value of the elasticity modulus in tension, assumed, in 
the present study, to be equal to the concrete elasticity modulus in compression. 

For this reason, we assumed, for σscr ≤ σs,max < fy,: 
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In Figure 6, the trend of the elasticity modulus in tension, Ect, evaluated by adopting Equation 
(9) is shown. 
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Figure 6. Trend of the elasticity modulus in tension, Ect, as a function of the crack distance assumed 
within this work. 

3. Flexural Behavior of a Circular Section Considering Tension Stiffening 

The moment–rotation behavior of the circular cross section portion of an element that is 
comprised between two consecutive cracks can be obtained by integrating the moment–curvature 
relationship along the length of the element itself, and adopting for the concrete in tension the 
fictitious elasticity modulus given by Equations (6), (7), and (9). Alternatively, as assumed in the 
present study, the element can be discretized in smaller elements, and the curvature considered to 
be constant within each element. The rotation, ΘA-B, between the two consecutive cracked sections 
can be so evaluated as follows: 

4 2 48 4 4 4 8A B A BA Bλ λ λ
λ λ λ λ λχ χ χ χ χ−Θ = + + + +  (10) 

where χA, χλ/4A, χ λ/2, χ λ/2B, and χB are, with reference to Figure 8, the curvature evaluated 
respectively at the cracked section A, at a distance equal to λ/4 from section A, in the middle 
between the two consecutive cracked sections A and B, at a distance equal to λ/4 from section A, 
and at the cracked section B. 

To evaluate the moment–curvature relationship, each section was so discretized into a finite 
number of longitudinal fibers (Figure 7), distinguishing the confined and unconfined concrete 
zones in compression and the concrete part influenced by the tension stiffening. The hypotheses of 
plane sections and absence of slip between steel bars and the surrounding concrete were adopted. 
The effective area of concrete in tension was obtained following the Eurocode 2 [1] approach. 

 
Figure 7. Element portion comprised between two consecutive cracks: (a) Fibers of the circular 
section; (b) sections studied for the evaluation of the total rotation. 
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The concrete behavior in compression was modeled using the Mander [24] approach for the 
confined zone and the Popovics [25] one for the unconfined concrete. For the concrete in tension a 
brittle linear elastic behavior, as proposed by CEB-fib Model Code 2010 [2], was used. A bilinear 
hardening behavior was assumed for the steel reinforcing bars. An example of the resulting 
moment-curvature curve, evaluated in correspondence of a cracked section, is shown in Figure 8a. 
The effects of tension stiffening are evident when the moment-curvature curve, evaluated on the 
cracked section at λ/4 and at λ/2, is compared (Figure 8b). It can be seen that, thanks to the presence 
of concrete in tension between the two cracks, the ultimate bending moment of the λ/4 and λ/2 
sections is greater than the cracked section’s one, meaning that the plastic rotation of the element 
tends to accumulate within the cracked sections. 

 
(a) 

 
(b) 

Figure 8. Examples of the moment-curvature curve computed for the circular pile studied by 
Teherani [16]: (a) typical shape for the cracked section; (b) comparison between the computed 
behaviors at cracked, λ/4, and λ/2 sections. 

The displacement of a circular cross section element in bending was then easily estimated, by 
subdividing it into blocks. The length of each block in the cracked portion of the element was 
assumed to be equal to the crack’s distance. In the uncracked portion it was assumed to be the 
maximum block length observed in the cracked zone. 

The relative displacement between two sections, Δtot, was computed by summing the 
displacements, δi, of each block comprised between the two sections. 

1 1 1

N N i

tot i i j
i i j

Hδ
= = =

 
∆ = = Θ  

 
∑ ∑ ∑  (11) 

where Hi, is the length of the i block; N is the number of blocks in which the portion of element is 
divided into; and Θi is the relative rotation between the two faces of the i block evaluated using 
Equation (10), as shown in Figure 9. 

 
Figure 9. Evaluation of the relative displacement between two sections of an element in bending. 
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4. Experimental Validation 

The procedure described in the previous paragraphs was validated by applying it to evaluate 
the load-deflection curves of several r.c. circular cross section elements, and then comparing them 
with the experimental results. 

4.1. Description of the Experimental Results 

For this purpose, the experimental tests conducted by Lehman and Moehle [26] and by 
Calderone and Lehman [27] were used. Both publications provide a lot of details regarding the 
geometrical and mechanical characteristics of the section, on the loading mode, and the cracks 
pattern during the test and on its completion. In both cases the test setup was equal: the column is 
fixed to the base and loaded transversely by a cyclic force and axially by a constant one, as shown in 
Figure 10. 

 
Figure 10. Bending Moment Profile M(zi). 

Lehman and Moehle [26] tested a total of five specimens, while focusing the study on the 
influence of the slenderness ratio on column behavior. Table 1 summarizes the main geometrical and 
mechanical characteristics of the specimens. All of the the columns were subjected, during the 
experiments, to an external compressive force equal to 654 kN. Calderone and Lehman [27] tested 
four specimens, while varying the column slenderness and the transversal reinforcement as shown 
in Table 2. All of the columns were subjected to an external compressive force equal to 720 kN. 

Table 1. Main geometrical and mechanical properties of specimens tested by Lehman and Moehle [26].  

Column 
ID 

Height 
(mm) 

Section 
Diameter 

(mm) 

Concrete 
Cover 
(mm) 

Long. 
Reinforcement 
[number and 

diameter 
(mm) of bars] 

Transverse 
Reinforcement 

[diameter 
(mm)/spacing 

(mm)] 

Concrete 
f’c  

(MPa) 

Long. 
Reinfor
cement  
fy (MPa) 

Trans. 
Reinforc

ement 
fy  

(MPa) 
407 2438 609.6 33.4 11 Φ16 Φ6/ 32 43.4 471.6 668.1 
415 2438 609.6 33.4 22 Φ16 Φ6/ 32 43.4 471.6 668.1 
430 2438 609.6 33.4 44 Φ16 Φ6/ 32 43.4 471.6 668.1 
815 4877 609.6 33.4 22 Φ16 Φ6/ 32 43.4 471.6 668.1 
1015 6096 609.6 33.4 22 Φ16 Φ6/ 32 43.4 471.6 668.1 

Table 2. Main geometrical and mechanical properties of specimens tested by Calderone and Lehman [27].  

Column 
ID 

Height 
(mm) 

Section 
Diameter 

(mm) 

Concrete 
Cover 
(mm) 

Long. 
Reinforcement 
[number and 

diameter 
(mm) of bars] 

Transverse 
Reinforcement 

[diameter 
(mm)/spacing 

(mm)] 

Concrete 
f’c  

(MPa) 

Long. 
Reinfor
cement  
fy (MPa) 

Trans. 
Reinforc

ement 
fy  

(MPa) 
328 1829 609.6 41.3 28 Φ19 Φ6/25 27.6 483.0 483.0 

328T 1829 609.6 41.3 28 Φ19 Φ6/76 27.6 483.0 483.0 
828 4877 609.6 41.3 28 Φ19 Φ6/76 27.6 483.0 483.0 
1028 6096 609.6 41.3 28 Φ19 Φ6/51 27.6 483.0 483.0 
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In both cases, the transverse load was applied cyclically, and with an increasing amplitude. The 
envelope curve of each test was taken into consideration in order to compare the monotonic 
experimental behavior with the numerical behaviour. It was also assumed that phenomena such as 
low cycle fatigue do not influence the response of the column, given the low values of the imposed 
displacements (the maximum value of interest is around 5 cm). 

4.2. Comparison of Numerical and Experimental Results 

The cracks pattern recorded by Lehman and Moehle [26] and Calderone and Lehman [27] 
allowed a preliminary validation of the mean crack distance value given by Equation (11). Table 3 
shows the comparison between the numerical and experimental results. Considering that the 
identification of “cracks” is characterized by high uncertainty, and that their actual interaxis is 
strongly influenced by the actual mechanical characteristics of the component materials, Table 3 
shows a good mean agreement between the numerical and experimental results. 

Table 3. Comparison between the experimental and numerical values of the mean crack distance. 

Colum
n ID 

Experimental 
Mean Crack 
Distance * 

(mm) 

Mean Cracks 
Distance 

Evaluated by 
Equation (12)  

(mm) 

Column 
ID 

Experimental 
Mean Crack 
Distance * 

(mm) 

Mean Cracks 
Distance 

Evaluated by 
Equation (12)  

(mm) 
407 167 204 328 78 74 
415 93 112 328T 77 74 
430 114 79 828 114 74 
815 147 112 1028 84 74 
1015 102 112 - - - 

* Evaluated in correspondence of the first meter starting from the column base. 

Using the bending moment profile M(z) along the column calculated at each loading step, the 
corresponding deflections were obtained by adopting the procedure described in the previous 
paragraphs. The numerical curves were evaluated up to the point corresponding to the peak stress 
in the concrete in compression. The focus of this research is, indeed, to evaluate the influence of 
tension stiffening on flexural stiffness. So, the behavior of the r.c. elements with circular sections 
beyond this point was not investigated within this research. The comparison between the 
experimental and numerical results, as shown in Figures 11 and 12, testifies to the optimal capacity 
of the proposed model in evaluating the flexural stiffness of the circular cross section columns. The 
figures show also the equivalent force-displacement curve obtained, not considering the 
contribution of the concrete in tension. For the comparison among the proposed method’s curves 
(considering also tension stiffening effects), the numerical curve obtained—ignoring tension 
stiffening and the experimental results—showed that: 

− for column 407, not considering tension stiffening can lead to a sensible error in evaluating the 
element’s stiffness; 

− for more slender columns (828 and 1028), tension stiffening effects are more evident than for 
shorter ones (328 and 328T). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 11. Comparison between the experimental results of Lehman and Moehle [26] and the 
numerical ones in terms of initial stiffness: Column IDs (a) 407, (b) 415, (c) 430, (d) 815 and (e) 1015 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 12. Comparison between the experimental results of Calderone and Lehman [27] and the 
numerical ones in terms of initial stiffness: Column IDs (a) 328, (b) 328T, (c) 828 and (d) 1028 

5. Parametric Analysis 

To study the influence of tension stiffening on global behavior, in this section a parametric 
analysis was performed for different cross sections, varying: the diameter, the longitudinal 
reinforcing ratio, and the compressive force. The cases considered in the parametric analysis are 
summarized in Table 4. Three different diameters, with values typical of pile foundations (60 cm, 100 
cm, and 150 cm), and three longitudinal reinforcing bar ratios (1%, 2%, and 3%) were considered. For 
each of these sections, the influence of four levels of external compressive force was studied. These 
force levels correspond to 5%, 10%, 25%, and 35% of the ultimate axial resistance of the section (Nu), 
evaluated with the expression: Nu = fcAc. 

Table 4. Circular reinforced concrete sections used for the parametric study. 

Diameter (m) Longitudinal Bars As/Ac N/Nu (1) N/Nu (2) N/Nu (3) N/Nu (4) 
0.60 14 ϕ16 1% 0.05 0.10 0.25 0.35 
0.60 18 ϕ20 2% 0.05 0.10 0.25 0.35 
0.60 22 ϕ22 3% 0.05 0.10 0.25 0.35 
1.00 30 ϕ18 1% 0.05 0.10 0.25 0.35 
1.00 42 ϕ22 2% 0.05 0.10 0.25 0.35 
1.00 44 ϕ26 3% 0.05 0.10 0.25 0.35 
1.50 40 ϕ24 1% 0.05 0.10 0.25 0.35 
1.50 44 ϕ32 2% 0.05 0.10 0.25 0.35 
1.50 66 ϕ32 3% 0.05 0.10 0.25 0.35 
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The results presented herein were obtained in two ways: one by taking into account the 
influence of the tension stiffening, and adopting the model proposed in the previous paragraphs; the 
other by neglecting it. It was so possible to point out how tension stiffening can affect the 
performance of a reinforced concrete element with a circular section. 

Assuming that the concrete elastic modulus remains constant, the influence of tension stiffening 
was evaluated in terms of an equivalent moment of inertia. For every diameter considered and listed 
in Table 4, two plots were presented, the first referring to a normalized moment of inertia defined as 
the ratio between the secant flexural rigidity (EI)sec at the first steel bar yielding and the intact 
flexural rigidity of the section (EcI = EcπD4/64), and the second referring to a normalized moment of 
inertia defined as the ratio between the secant flexural rigidity evaluated when the concrete reaches 
peak stress in compression and the intact flexural stiffness. 

Figures 13–15 show that the influence of tension stiffening is: 

− less evident on the secant stiffness at the first bar yielding than on that evaluated at the 
maximum bending moment; 

− increasing as the reinforcement ratio decreases; 
− not so much influenced by the axial force, except for low values of the reinforcement 

ratio; and 
− higher for smaller diameters. 

 
Figure 13. Diameter 60 cm: normalized secant stiffness at first steel bar yielding (left) and at peak 
stress in compression (right). 

 
Figure 14. Diameter 100 cm: normalized secant stiffness at first steel bar yielding (left) and at peak 
stress in compression (right). 
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Figure 15. Diameter 150 cm: normalized secant stiffness at first steel bar yielding (left) and at peak 
stress in compression (right). 

6. Conclusions 

Within this paper, the influence of tension stiffening on the global behavior of elements with a 
circular cross section and subjected to the combined axial–flexural action was studied. A preliminary 
analysis of the modeling approach adopted by Salvatore et al. [8] was carried out; it was then slightly 
modified in order to avoid problems in the formal definition of the elasticity modulus in tension Ect. 

The comparison of numerical results, obtained with the enhanced model, and the experimental 
ones, provided by the studies of Lehman and Moehle [26] and Calderone and Lehman [27], 
highlighted the capacity of the model to foresee the flexural behavior of r.c. elements characterized 
by a circular section, especially from a stiffness point of view. A lack of precision was noted in the 
evaluation of the flexural resistance, but this aspect is practically independent from the tension 
stiffening phenomenon, and it can be mainly ascribed to the lack of information about the actual 
mechanical behaviour of the constituent materials. The analysis of the results also highlighted the 
importance of tension stiffening in the evaluation of flexural stiffness, especially for slender 
columns. 

The parametric analysis carried out using the enhanced model, and varying the values of the 
axial force and reinforcement ratio, highlighted that the influence of tension stiffening: 

− is less evident on the yield stiffness than that of the one evaluated at the moment 
corresponding to the reaching of peak stress in compression in concrete; 

− increases as the reinforcement ratio decreases; 
− is not so much influenced by the axial force, except for low values of the reinforcement ratio; 

and 
− is higher for smaller section diameters. 

These results suggests that for r.c. elements characterized by a circular section with a diameter 
larger than 1 m and with a reinforcement ratio higher than 1%, such as usual bridge piers, the 
influence of tension stiffening can be neglected. 

The influence of tension stiffening becomes sensible for low diameters (around 60 cm, such as 
some foundation piles) and low values of the reinforcement ratio (lower than 1%). However, in 
general, in the case of foundation piles, it can be easily assumed that the influence of tension 
stiffening on global behavior is absorbed by the uncertainties in the definition of the soil’s 
mechanical properties. 
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