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Abstract: Introgression of the dominant allele Anthocyanin fruit (Aft) from Solanum chilense
induces anthocyanin accumulation in the peel of tomato (Solanum lycopersicum L.)
fruit. UV-B radiation can influence plant secondary metabolism regulating the
expression of several genes, among which those involved in flavonoid biosynthesis.
Here, we investigated whether post-harvest UV-B treatment could up-regulate
flavonoid production in tomato fruits and whether the Aft allele could affect flavonoid
biosynthesis under UV-B radiation.
Mature green fruits of an anthocyanin-rich tomato mutant line (SA206) and of its wild
type reference, cv. Roma, were daily subjected to post-harvest UV-B treatment until full
ripening.
Up-regulation of CHS and CHI transcription by UV-B treatment induced flavonoid
accumulation in the peel of cv. Roma. Conversely, UV-B decreased the total flavonoid
content and CHS transcript levels in the SA206 peel. Being SA206 a double mutant
containing also hp-1 allele, we investigated also the behaviour of hp-1 fruit. The
decreased peel flavonoid accumulation and gene transcription in response to UV-B
suggest that hp-1 allele is involved in the marked down-regulation of the flavonoid
biosynthesis observed in SA206 fruit. Interestingly, in SA206, UV-B radiation promoted
the synthesis of delphinidin, petunidin, and malvidin by increasing F3'5'H and DFR
transcription, but it decreased rutin production, suggesting a switch from flavonols to
anthocyanins. Finally, although UV-B radiation does not reach the inner fruit tissues, it
down-regulated flavonoid biosynthesis in the flesh of both genotypes.
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This study provides, for the first time, evidence that the presence of the functional Aft
allele, under UV-B radiation, redirects flavonoid synthesis towards anthocyanin
production and suggests that the hp-1 allele negatively influences the response of
flavonoid biosynthesis to UV-B.
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Reviewers' comments: 

 

Reviewer #2: This generally well-written manuscript provides interesting and potentially useful 

data on the levels of flavonoids and flavonoid-biosynthesis transcripts in tomato fruit after UV-B 

radiation. The authors conclude that the capacity to synthesise anthocyanins in the tomato fruit is 

associated with a reduction in the capacity for the synthesis of colourless flavonoids to be 

upregulated in response to UV-B. The authors used apposite contemporary methodology, they 

appropriately analysed and presented the data, and their conclusions seem compelling in the light of 

their evidence.  I have only a few minor points that the authors may wish to consider in their 

revision of this manuscript. 

 

P6 line 56: It is not really obvious to the reader why this work was done. I suggest that they build a 

stronger justification for the work (e.g. indicating where the gaps in our knowledge are), leading to 

an explicit statement of the hypothesis they are testing. 

A short paragraph was added before the aim of the paper to introduce and better clarify the 

reasons of our research: “Genetic manipulation or traditional breeding are useful 

approaches to induce anthocyanin production in tomato fruit, which could be further 

stimulated by choosing the most adequate light environment. Synthesis of anthocyanins, as 

well as of other flavonoids, is in fact strictly controlled by light intensity and quality, in 

particular by UV-B radiation. However, at the best of our knowledge, no information is 

available on the UV-B influence on anthocyanin synthesis in tomato fruit. To unravel 

whether the effect of UV-B radiation on flavonoid biosynthesis was influenced by the 

presence of the dominant allele Aft....”  

 

P7 line 10: I would remove this last sentence, which is a summary of the key results, from the 

introduction. 

Following the reviewer’ suggestion the sentence was removed 

 

P8 line 34: Were all 18 fruits selected from different plants? Were they located at the same nodes 

on different plants, and at comparable positions within the tomato trusses?  If not, is it not possible 

that the reported differences in flavonoid levels might have resulted from positional effects?  Also, 

why pool the data; wouldn't the composition of individual fruits have provided greater statistical 

strength? 

- Fruits were collected from different plants, placed randomly inside the tunnel and sufficiently 

distant to ensure the most homogeneous light. Healthy fruits of comparable dimension were 

carefully harvested from second-third sunny branches (this information was added to the revised 

manuscript). 

- We agree that composition of individual fruits would provide greater statistical strength but it 

requires analysing a considerable number of individual fruits to be representative. Moreover, 

peel taken from a single fruit was not sufficient to carry on both biochemical and molecular 

analyses. Therefore, we decided to balance the need to have independent samples with the 

necessity to collect sufficient material by pooling together some individual fruits and considering 

such a pool the biological replicate. 

 

P11 line 37: Wouldn't the 'dilution effect' have been avoided if the data were expressed as per unit 

dry weight rather than fresh weight? 



Undoubtedly flesh contains much more water than peel, but differences in phenolic 

concentration between the two tissues are evident also when data are reported on dry weight 

basis. For example, peel and flesh of SA206control fruits contains about 622 and 37 mg/100 g fw 

(ratio peel/flesh being 16.8). When data are expressed on dry weight basis concentrations are 

22.2 and 5.6 mg/g dw phenols, respectively, with ratio peel/flesh = 3.95.  

The same is true for Roma control fruit, that contains 236 and 47 mg/100 g fw in peel and flesh, 

respectively (ratio peel/flesh being 5), while, when reported on dry weight basis, values are 16.5 

and 7.12 mg/g dw phenols (ratio peel/flesh = 2.32).  

Therefore, even if differences between the two tissues are reduced by expressing data on a dry 

weight basis, they are not suppressed. A short comment on this behaviour was added in the 

revised discussion.  

 

P17 line 54: The effects of UV are seen in regions of the fruit that don't receive UV. This has been 

observed previously in other fruit species (e.g. kiwifruit). Perhaps the authors might like to give a 

little more information on the possible" signal transduction pathway" to which they elude? 

Diffusible signals could be involved in transferring information from peel to flesh.  

Ethylene plays a pivotal role during tomato ripening and we previously found that its emission is 

depressed in fruits ripened under UV-B shielding conditions. In that study, the use of tomato 

mutants allowed us to establish that carotenoid synthesis is influenced by UV-B though ethylene-

dependent and ethylene-independent mechanisms (Becatti et al. 2009).  

Application of gibberellic acid was shown to up-regulate CHI and other phenylpropanoid 

biosynthetic genes (Cheng et al. BMC Genomics (2015) 16:128).  

In a very recent paper, Bernula and co-workers (2017 Plant Cell Environment doi: 

10.1111/pce.12904) state that “we found no evidence at the molecular level that UVR8-

signalling initiates signal crosstalk between different tissues. However, it was reported that UV-

B irradiation of certain parts of the plants results in changes of gene expression in shielded 

organs, indicating that UV-B-induced inter-organ signalling can occur in higher plants (Casati 

& Walbot, 2004). Therefore, we hypothesize that inter-tissue signalling, mediated by yet 

unknown mobile compounds, contributes to the manifestation of UVR8-regulated responses. For 

example, it was reported that HY5 regulates auxin signalling under different light treatments 

including UV-B irradiation (Cluis et al., 2004; Sibout et al., 2006; Hayes et al., 2014; 

Vandenbussche et al., 2014). However, to unravel the molecular aspects of UVR8-modulated 

hormone signalling requires the development of new cellular markers.” 

Similarly, in our research, in the absence of specifically targeted study, we can only speculate on 

the possible signals that mediate flavonoid synthesis in the flesh in response to UV-B. 

Accordingly, we prefer to avoid reference to a specific signal and we added only the generic 

sentence: “Specifically targeted studies are needed to elucidate the nature of signals that 

mediate flavonoid synthesis in response to UV-B in the flesh.” 

 

P15 paragraph 3: In my opinion, one of the most intriguing features of the data has been 

overlooked from this discussion. The transcript levels of CHS, CHI, F3H and F3'H are all lower in 

SA206 peels than in Roma peels, and are further attenuated in SA206 after irradiation with UVB. 

Presumably, then, the levels of dihydrokaempferol would be lower in SA206 than in Roma, and 

even lower following irradiation. Since dihydrokaempferol is the essential substrate for DFR, ANS, 

and UFGT activities, wouldn't we expect lower concentrations of anthocyanins after UV, rather 

than higher? I think that this observation can be explained, and it should be discussed here. 

The lower transcription of the genes upstream dihydrokaempferol in UVB-treated peel of SA206 

fruits leads to a lower total flavonoid concentration. The finding of an increased anthocyanin 

production, supported by the enhanced F3’5’H and DFR expression level, suggests that 

dihydrokaempferol is preferentially converted to dihydroquercetin and then dihydromyricetin 

which is then used to drive the synthesis of anthocyanins rather than flavonols. It is known that 

http://onlinelibrary.wiley.com/doi/10.1111/pce.12904/full#pce12904-bib-0011
http://onlinelibrary.wiley.com/doi/10.1111/pce.12904/full#pce12904-bib-0013
http://onlinelibrary.wiley.com/doi/10.1111/pce.12904/full#pce12904-bib-0049
http://onlinelibrary.wiley.com/doi/10.1111/pce.12904/full#pce12904-bib-0021
http://onlinelibrary.wiley.com/doi/10.1111/pce.12904/full#pce12904-bib-0054


in Solanaceous species, the DFR enzyme is specific for dihydromyricetin and does not accept 

dihydrokaempferol as a substrate (Bovy et al, Plant Cell 14:2509–2526). Furthermore, it should 

be noted that the anthocyanin amount is very low as compared to total flavonoids, and 

accordingly, it does not alter the general trend to decrease shown by total flavonoids. 

A comment on this was added in the revised manuscript: “The lower transcription of F3H and 

F3’H in SA206 peel after irradiation with UV-B suggests that levels of dihydroflavonols would 

be lower as well and a minor concentration of anthocyanins would be expected. Interestingly, 

UV-B radiation instead led to increased anthocyanin synthesis, while decreasing flavonol 

production, suggesting that UV-B radiation by enhancing F3’5’H promotes the conversion of 

dihydrokaempferol to dihydromyricetin, which is then specifically used by the tomato DFR 

enzyme to drive the synthesis of anthocyanins. In Solanaceous species, the DFR enzyme is in fact 

specific for dihydromyricetin and does not accept dihydrokaempferol as a substrate (Bovy et al. 

2002)”  

 

 

  



Reviewer #3: The manuscript entitled 'The dominant allele Aft induces a shift from flavonol to 

anthocyanin production in response to UV-B radiation in tomato fruit' by Catola et al describes the 

effects of two previously identified loci on the amounts of various flavonoids in the peel and flesh 

of tomato fruits following UV treatment. Major findings were that Aft increased anthocyanin 

accumulation in response to UV in the peel whereas hp-1 decreased flavonoid accumulation in this 

tissue. The manuscript should be considered for publication in Planta after addressing only minor 

issues.  

 

 

Abstract:  

was confusing because the authors state that SA206 mutant had decreased flavonoid accumulation 

but then state that it had increased anthocyanin accumulation. While it is possible to have both, 

anthocyanins are a type of flavonoid and the abstract would benefit from clarification that 

'flavonoids' refers to total flavonols and anthocyanins. 

The Abstract was revised adding the word “total” before flavonoid (line 38 of the old manuscript), 

and changing the word “anthocyanin” with “delphinidin, petunidin, and malvidin” and “flavonol” 

with “rutin” (lines 50-52, old manuscript) as follows:“.. in SA206, UV-B radiation promoted the 

synthesis of delphinidin, petunidin, and malvidin by increasing F3’5’H and DFR transcription, but 

it decreased rutin production…”.  

Moreover, in the first sentence of the revised introduction, we inserted that anthocyanins are a class 

of flavonoids. 

 

Introduction: 
The comment 'Pollinators attraction… are the most important functions of anthocyanins in plants' 

should be stated less strongly since the role of anthocyanins in all of these functions has not been 

firmly established and is still a question of ongoing research. Further, the role of anthocyanins in 

defense against UV-B solar radiation damage is highly questionable since anthocyanins absorb 

much less UV compared to flavonols and are likely to act as antioxidants in that respect. 

Following the reviewer’ suggestion, the statement was made less direct: “Pollinators attraction … 

have been proposed as important functions of anthocyanins in plants” 

 

Methods:  

Since flavonoids are polyphenols, it should be clarified what exactly is being measured by the 

Folin-Ciocalteau colorimetric method. 

Likewise, I looked in Kim et al. (2003), and the article it cited, to determine how total flavonoids 

were being measured. I didn't find information indicating exactly what compounds this method is 

measuring. Is it measuring flavonoids exclusively and not polyphenols?  

Specify more clearly how each of these methods works and what they measure.  

 

The chemical reactions at the basis of the two assays are quite different. Folin-Ciocalteau assay, 

which is used to measure total phenolics, is based on phenol oxidation by two strong inorganic 

oxidants (phosphotungstic and phosphomolibdic acids) in alkaline medium.  

The aluminium chloride (AlCl3) colorimetric method is based on the metal-chelating property of 

flavonoids. The complex formation is carried out in the presence of NaNO2 and is based on the 

nitration of any aromatic ring with hydroxyl groups at three or four positions unsubstituted or not 

sterically blocked. After addition of AlCl3, a (yellow) complex is formed which immediately after 

NaOH addition becomes red. 

A short explanation of the chemical basis of the two assays was added in the revised manuscript. 

 

Results section: 

 



Discussion section:  

The paragraph beginning with 'Downstream naringenin' should be corrected to state 'Downstream 

from naringenin'. 

The sentence was corrected following the reviewer’s comment. 

 

The discussion would benefit from explaining more about how UV regulation of flavonoids occurs 

in the model plant Arabidopsis, and how Aft and hp-1 are suspected to fit into the mechanism if at 

all. 

- Following the reviewer’ suggestion, a paragraph on the mechanism of UV-B regulation of 

flavonoid synthesis in Arabidopsis was added: “In the model plant Arabidopsis the flavonoid 

pathway is activated by two different sets of transcription factors, controlling the early (i.e. 

AtMYB11/12/111) or the late (i.e. the MYB-bHLH-WD40 complex) biosynthetic genes (Petroni and 

Tonelli, 2011; Stracke et al., 2010). The major effector of UVR8-mediated gene expression is the 

ELONGATED HYPOCOTYL 5 (HY5) transcription factor, that controls many of the downstream 

target genes, among which MYB12 (Stracke et al., 2010), the negative regulator of 

phenylpropanoids MYB4 (Hemm et al. 2001), and PAP1, one of four R2R3 MYB activators involved 

in anthocyanin biosynthesis (Shin et al. 2013)” 

- A short paragraph on the role played and hp-1 was introduced as reported below:  

“Tomato plants carrying hp1 mutation are characterized by exaggerated light responsiveness and 

photomorphogenic response. HP1 gene encodes the tomato homologue of DDB1, a light signal 

transduction proteins that in Arabidopsis participates to the formation of the complex CUL4–

DDB1–COP1–SPA, a CUL4–DDB1–based E3 ubiquitin ligases that suppresses the 

photomorphogenic program by targeting the transcription factor HY5 for degradation (Huang et 

al., 2013). In tomato, HP1/SlDDB1 is an essential component of CUL4-based E3 ligase complex 

(Wang et al., 2008). Since under UV-B radiation, UVR8 monomer sequesters COP1 from DDB1, 

causing physical dissociation and consequent loss of function of the complex, a role for 

HP1/SlDDB1 in the response to UV-B radiation cannot be excluded.” 

- A possible involvement of Aft in the mechanism of UV-B control of flavonoid synthesis cannot be 

excluded, being Aft a transcription factors belonging to the R2R3-MYB family just like MYB12, 

known to be transcribed under the control of the UVR8-mediated HY5 transcription factor. A short 

sentence on this possibility was added in the revised discussion: “In the light of the possible role of 

the Aft gene product as a transcription factors belonging to the R2R3-MYB family (Schreiber et al. 

2012; Boches and Myers 2007), an involvement of Aft in the mechanism of UV-B control of 

flavonoid synthesis cannot be excluded. MYB12, a member of the R2R3-MYB family, is in fact 

known to be transcribed under the control of the UVR8-mediated HY5 transcription factor (Stracke 

et al. 2010).” 
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Abstract 

Main conclusion 

The introgression of the Aft allele into domesticated tomato induced a shift from flavonol to 

anthocyanin production in response to UV-B radiation, while the hp-1 allele negatively 

influenced the response of flavonoid biosynthesis to UV-B. 

 

Introgression of the dominant allele Anthocyanin fruit (Aft) from Solanum chilense induces 

anthocyanin accumulation in the peel of tomato (Solanum lycopersicum L.) fruit. UV-B radiation 

can influence plant secondary metabolism regulating the expression of several genes, among which 

those involved in flavonoid biosynthesis. 

Here, we investigated whether post-harvest UV-B treatment could up-regulate flavonoid production 

in tomato fruits and whether the Aft allele could affect flavonoid biosynthesis under UV-B 

radiation. 

Mature green fruits of an anthocyanin-rich tomato mutant line (SA206) and of its wild type 

reference, cv. Roma, were daily subjected to post-harvest UV-B treatment until full ripening.  

Up-regulation of CHS and CHI transcription by UV-B treatment induced flavonoid accumulation in 

the peel of cv. Roma. Conversely, UV-B decreased the total flavonoid content and CHS transcript 

levels in the SA206 peel. Being SA206 a double mutant containing also hp-1 allele, we investigated 

also the behaviour of hp-1 fruit. The decreased peel flavonoid accumulation and gene transcription 

in response to UV-B suggest that hp-1 allele is involved in the marked down-regulation of the 

flavonoid biosynthesis observed in SA206 fruit. Interestingly, in SA206, UV-B radiation promoted 

the synthesis of delphinidin, petunidin, and malvidin by increasing F3’5’H and DFR transcription, 

but it decreased rutin production, suggesting a switch from flavonols to anthocyanins. Finally, 

although UV-B radiation does not reach the inner fruit tissues, it down-regulated flavonoid 

biosynthesis in the flesh of both genotypes.  
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This study provides, for the first time, evidence that the presence of the functional Aft allele, under 

UV-B radiation, redirects flavonoid synthesis towards anthocyanin production and suggests that the 

hp-1 allele negatively influences the response of flavonoid biosynthesis to UV-B. 

 

Keywords 

Anthocyanins, Flavonols, Secondary metabolism, Solanum lycopersicum L., UV-B radiation 

 

Abbreviations 

Aft  Anthocyanin fruit  

ANS anthocyanidin synthase 

CHI  chalcone isomerase  

CHS  chalcone synthase  

COP1 CONSTITUTIVE PHOTOMORPHOGENIC 1  

DFR  dihydroflavonol 4-reductase 

F3H  flavanone 3-hydroxylase  

F3’H  flavonoid 3’-hydroxylase 

F3’5’H flavonoid 3’5’-hydroxylase  

hp-1 high pigment-1  

UVR8 UV RESISTANCE LOCUS8  
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Introduction 

Anthocyanins, a class of flavonoids, are water-soluble pigments responsible for the color of flowers 

and fruits (Grotewold 2006; Petroni and Tonelli 2011). Pollinators attraction (Shang et al. 2011), 

defense against UV-B solar radiation damage (Guo et al. 2008) and oxidative stress (Gould 2004) 

have been proposed as important functions of anthocyanins in plants. Many studies underline that 

anthocyanins may exert a positive effect on human health (Pojer et al. 2013). In epidemiological 

and preclinical studies, anthocyanins were shown to have a relevant preventing effect against cancer 

(Butelli et al. 2008; Wang and Stoner 2008), cardiovascular diseases (Toufektsian et al. 2008; 

Wallace 2011), obesity (Titta et al. 2010), diabetes (Liu et al. 2014) and degenerative pathologies, 

such as Alzheimer (Gutierres et al. 2014). Hidalgo et al. (2012) reported a stimulating effect of 

anthocyanins on the growth of Bifidobacterium spp. and Lactobacillus-Enterococcus spp., 

suggesting that anthocyanins and their metabolites may positively modulate the human gut 

microbiome.  

For these reasons, foods rich in anthocyanins and other antioxidant compounds (vitamins, 

polyphenols, minerals) are considered “functional foods”, i.e. foods that may provide a health 

benefit in addition to their nutrients supply (Ross 2000). Tomato (Solanum lycopersicum L.) fruits 

contain different antioxidant compounds (mainly lycopene), minerals, vitamins and flavonoids, but 

not anthocyanins (Torres et al. 2005). In tomato, anthocyanins (mainly delphinidin, malvidin and 

petunidin) have been found only in vegetative tissues (Bovy et al. 2002; Mes et al. 2008). However, 

anthocyanin synthesis can be induced in tomato fruit by using different approaches. Butelli et al. 

(2008) overexpressed in tomato two transcription factors (Delila, Rosea1) from the “snapdragon” 

flower Antirrhinum majus L. These transcription factors up-regulated biosynthetic genes as 

phenylalanine ammonia lyase (PAL), chalcone isomerase (CHI) and flavonoid 3’5’-hydroxylase 

(F3’5’H), this latter redirecting the biosynthetic pathway towards anthocyanin production. 

Traditional breeding between tomato and related wild species rich of anthocyanins, such as S. 

chilense, allowed the transfer of the dominant allele Anthocyanin fruit (Aft) (Mes et al. 2008; Jones 
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et al. 2003), responsible for fruit anthocyanin pigmentation. Similarly, the Aubergine allele (Abg) 

from S. lycopersicoides Dunal was observed to induce pigmentation in tomato peel (Mes et al. 

2008). These two genetic variants, which may be allelic according to their map position, up-

regulated the biosynthetic pathway of anthocyanins, including the expression of the anthocyanin 

synthase (ans) gene (Boches and Myers 2007).  

UV-B radiation represents the highest-energy portion of the solar spectrum (280 – 315 nm) that 

reaches the Earth’s surface. Some years have passed since a UV-B-induced pathway, which leads to 

the activation of several UV-B protection and repair systems, was revealed. Kliebenstein et al. 

(2002) discovered an Arabidopsis thaliana mutant of UV RESISTANCE LOCUS8 (UVR8) 

particularly sensitive to UV-B radiation, and only a few years later it was observed that UVR8 acts 

as UV-B photoreceptor (Rizzini et al. 2011). Different studies showed that UVR8, which is 

constitutively expressed as a dimer within the cells (Kaiserli and Jenkins 2007), can monomerize 

following UV-B exposure and move into the nucleus (Jenkins 2014). Once there, UVR8 monomer 

associates with CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), and the UVR8-COP1 

complex regulates the expression of several genes and transcription factors associated to UV-B 

acclimatization and UV-B tolerance, such as genes involved in the phenylpropanoid pathway.  

Different post-harvest treatments were applied to assess their effectiveness in improving the 

nutraceutical value of foods and, among these, UV-B irradiation was shown to have a strong and 

positive effect in stimulating plant secondary metabolism (Schreiner et al. 2012). Liu et al. (2011) 

demonstrated that UV-B treatment can affect sensorial quality and antioxidant capacity of tomato 

fruit when applied at a moderate dose (20-40 kJ m-2). Similarly, it was observed that a daily low 

dose (6.08 kJ m-2 d-1) of UV-B radiation influences secondary metabolism of tomato (Castagna et al. 

2013, 2014) and peach (Scattino et al. 2014).  

Genetic manipulation or traditional breeding are useful approaches to induce anthocyanin 

production in tomato fruit, which could be further stimulated by choosing the most adequate light 

environment. Synthesis of anthocyanins, as well as of other flavonoids, is in fact strictly controlled 
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by light intensity and quality, in particular by UV-B radiation. However, at the best of our 

knowledge, no information is available on the UV-B influence on anthocyanin synthesis in tomato 

fruit. To unravel whether the effect of UV-B radiation on flavonoid biosynthesis was influenced by 

the presence of the dominant allele Aft, fruits of the anthocyanin-rich tomato mutant SA206 and its 

wild type reference, cv. Roma, harvested at mature green stage, were daily subjected to post-harvest 

UV-B treatment until full ripening. Since SA206 also contains the high-pigment-1 (hp-1) allele, 

fruits of the photomorphogenic mutant hp-1 were also tested. 

Flavonoid quantification and expression analysis of the main flavonoid and anthocyanin 

biosynthetic genes were carried out in peel and flesh separately to detect possible tissue-specific 

effects of the UV-B radiation.  

 

Materials and methods 

Chemicals 

All reagents were of analytical or HPLC grade. Organic solvents were purchased from Mallinckrodt 

Baker (Milan, Italy), anthocyanidin standards from Extrasynthese (Lyon, France) and all other 

reagents from Sigma Aldrich SRL (Milan, Italy). Water used as HPLC mobile phase was Milli-Q 

(Millipore, Bedford, MA, USA) purified water. 

 

Plant material and post-harvest UV-B treatment of tomato fruits  

Seeds of a tomato line homozygous for the Aft allele (referred to as Aft) were obtained from the 

C.M. Rick Tomato Genetics Resource Center (TGRC, http://tgrc.ucdavis.edu, accession LA1996). 

Seeds of the line homozygous for high-pigment-1 (referred to as hp-1) were from the collection held 

by the authors at the University of Tuscia. A breeding scheme to combine Aft with hp-1 in a 

processing tomato genetic background was set up with a three-way cross involving the two mutants 

and cv Roma. A fixed line combining Aft, hp-1 and the main traits typical for processing tomato 
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varieties was finally selected (referred to as SA206). Due to the ideotype followed in this breeding 

scheme, cv Roma was chosen as the WT reference genotype for comparison with SA206. 

Seeds were germinated inside Petri dishes between two wet paper sheets. After germination, the 

plants were transplanted in 12 cm diameter pots filled with a peat/pumice/commercial soil mixture 

(1:1:1), fertilized with 2 g/L of 28N-8P-16K controlled release fertilizer. Subsequently, the plants 

were transplanted in the field under a UV-B transparent tunnel (Supplemental Fig. S1a, b). Ten 

plants per genotype were placed randomly inside the tunnel and sufficiently distant to ensure the 

most homogeneous light conditions. Tunnel (20 m long, 5 m wide and 2.5 m high) was located at 

San Piero a Grado (Pisa, 43°40’N, 10°21’E).) and its longest side was oriented along the west-east 

direction to allow for uniform exposure of plants to sunlight. The tunnel was covered with a plastic 

film, produced by Agriplast S.r.l. (Vittoria, Ragusa, Italy), whose irradiance spectrum is shown in 

Supplemental Fig. S1c. Healthy and sun-exposed fruits were harvested from second-third branches 

of different plants at the mature green stage (MG, 35-40 days post anthesis, DPA) and treated with 

UV-B radiation as described (Castagna et al. 2013). Briefly, fruits were randomly placed inside two 

different climatic chambers (0.48 m3, temperature 20±1°C, RH 80%), equipped with three UV-B 

lamp tubes (Philips Ultraviolet B, TL 20W-12RS, Koninklijke Philips Electronics, Eindhoven, The 

Netherlands) providing 1.69 W/m2 at an approximate distance of 45 cm under the lamps. Irradiation 

was carried out daily (1 h, 6.08 kJ m-2d-1) as long as the fruits reached the red ripe (RR) stage. 

Control fruits received the same treatment, but UV-B radiation was screened with a benzophenone-

treated polyethylene film. Fruits were carefully peeled using a scalpel and seeds were removed from 

the flesh samples. For each genotype and treatment, 18 fruits (average size 40-50 g per fruit) were 

divided into three replicates of six fruits each and used to prepare a representative pool of peel and 

flesh samples. Samples were frozen in liquid nitrogen, freeze-dried (model 1700, Edwards Alto 

Vuoto, Milano, Italy) and stored at -80°C until further analyses.  

 

Extraction and quantification of total phenolics and flavonoids  
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Total phenolics were extracted in triplicate according to the method of Becatti et al. (2010), with a 

few modifications. Flesh (0.5 g) and peel (0.1 g) samples were finely ground with liquid N2 and 

extracted twice with 80% methanol aqueous solution. The liquid extract was separated through 

centrifugation (10000 g, 15 min, 4°C), and the final volume was reduced to 5 ml with a Rotavapor. 

Total phenolics were quantified with the Folin-Ciocalteau colorimetric method (Alonso Borbalán et 

al. 2003), based on phenol oxidation by two strong inorganic oxidants (phosphotungstic and 

phosphomolibdic acids) in alkaline medium Total phenolic content was expressed as mg of gallic 

acid/100 g FW. 

Flavonoid concentration was determined according to Kim et al. (2003), and expressed as mg of 

catechin/100 g FW. The method is based on the metal-chelating property of flavonoids. The 

complex formation is carried out in the presence of NaNO2 and relies on the nitration of any 

aromatic ring with hydroxyl groups at three or four positions unsubstituted or not sterically blocked. 

Addition of AlCl3 determines the formation of a (yellow) complex which immediately after NaOH 

addition becomes red. Briefly, 60 μL of 5%NaNO2, 40 μL of 10% AlCl3, 400 μL of 1M NaOH, 200 

μL of distilled water and 100 μL of extract were mixed and the absorbance was recorded at 510 nm.  

 

Identification and quantification of flavonoids by HPLC-DAD 

Extracts were filtered with 0.45 μm Minisart filters (Sartorius Stedim Biotech, Goettingen, 

Germany) and analysed by a Spectra System P4000 HPLC equipped with a UV 6000 LP 

photodiode array detector (Thermo Fisher Scientific, Waltham, MA, USA) using a Phenomenex 

Prodigy LC-18 RP column (5 µm particle size, 250 x 4.6 mm, Phenomenex Italia, Castel Maggiore, 

Bologna, Italy). Flavonoids were eluted at a flow-rate of 1 ml min-1. 

Water acidified to pH 2.7 with formic acid served as solvent A and 100% methanol as solvent B, 

according to the following gradient: solvent B: 10% (0–5 min), 10-30% (5-20 min), 30–90% (20–

28 min), 90-10% (28-35 min), 10% (35–40 min), followed by 5 min re-equilibration in the initial 

condition before the next injection. Commercial standards of quercetin, rutin, naringenin, 
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delphinidin chloride, cyanidin chloride and pethunidin chloride were used for external calibration 

curves. Rutin and quercetin were detected at 350 nm, naringenin at 280 nm and the three 

anthocyanidins at 520 nm. 

 

RNA isolation and real time RT-PCR analyses 

RNA was isolated from samples of 3g of peel and flesh from wild-type cv Roma and SA206 mutant 

fruits, as previously described (Calvenzani et al, 2010). First strand cDNA synthesis was obtained 

from about 5 μg of total RNA using the RT SuperscriptTM II (Invitrogen, Carlsbad, CA, USA) and 

an oligo dT, as previously described (Procissi et al. 1997). 

To verify whether flavonoid biosynthetic genes from Roma and SA206 were different from the 

Money-Maker reference genome, partial cDNA sequences of CHS, CHI, F3H, F3’H, F3’5’H, DFR, 

ANS biosynthetic genes and EF1 reference gene were isolated from peel of SA206 mutant using 

Phusion High Fidelity DNA polymerase (New England Biolabs, Ipswich, MA, USA) and 

oligonucleotides designed on cv Money-Maker indicated in Table 1. After purification, PCR 

products were cloned in PCR4 Blunt TOPO vector (Invitrogen) and sequenced. Primers used for 

real time RT-PCR analysis were designed on sequences obtained and are indicated in Table 2. 

Sequences from SA206 were identical to those of cv Roma. 

Quantitative real time RT-PCR analysis was performed with the Cfx96™BioRad Real Time system 

in a final volume of 20 μL containing 5 μL of 50-fold diluted cDNA, 0.2−0.4 μM of each primer, 

and 10 μL of 2X iQ SYBR Green Supermix (BioRad Laboratories, Hercules, CA, USA). As a 

reference for normalization, we used the LeEF1 gene, encoding the tomato ELONGATION 

FACTOR 1-α, because of its high and stable expression in mature tomato fruit (Bartley and Ishida 

2003) by using primers LeEF1-F4 and LeEF1-R3 (Table 2). Relative quantification was analysed 

using Cfx Manager Software version 1.6 (BioRad Laboratories). 

The protocol used was as follows: 95 °C for 2 min, 55 cycles of 95 °C for 15 s, and 60 °C for 30 s. 

A melt curve analysis was performed following every run to ensure a single amplified product for 
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each reaction. Relative quantification of the target RNA expression level was performed using the 

comparative Ct method (UserBulletin 2, ABI PRISM7700 Sequence Detection System, Dec 1997; 

Perkin- Elmer Applied Biosystems) in which the differences in the Ct (threshold cycle) for the 

target RNA and endogenous control RNA, called ΔCt, were calculated to normalize for the 

differences in the total amount of cDNA present in each reaction and the efficiency of the reverse 

transcription. Finally, the target RNA expression level was obtained from the equation 2−ΔΔCt and 

expressed relative to a calibrator. Standard errors of Ct values were obtained from measurements 

performed in triplicate. 

 

Statistical analysis 

Statistical analysis was carried out with the NCSS 2000 (NCSS Statistical Software, Kaysville, 

Utah, USA) statistical software. Data were analysed by one-way ANOVA followed by Tukey–

Kramer post hoc test at the significance level P ≤ 0.05, to evaluate the effect of UV-B irradiation on 

each genotype and tissue separately. Data reported in the figures represent the mean of three 

biological replications ± SE. 

 

Results 

UV-B radiation induces an opposite effect on phenolic and flavonoid accumulation in peel and 

flesh of cv Roma and negatively affects their content in both tissues of the SA206 mutant  

Differences between the two genotypes in the constitutive levels of phenolics and flavonoids were 

evident. SA206 peel was richer than Roma in phenolics (+164%) and flavonoids (+247%), while the 

opposite trend was evident in the flesh (-21% and -38%, phenolics and flavonoids, respectively; Fig 

1). In both genotypes, phenolics and flavonoids were more concentrated in the peel. Differences 

were particularly evident in SA206 fruit, which showed about 16-fold and 38-fold higher levels of 

phenolics and flavonoids in the peel. In cv Roma peel, phenolics and flavonoids were about 4-fold 

and 6-fold more concentrated than in the flesh, respectively. Even if differences between peel and 
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flesh are reduced by expressing data on a dry weight basis (data not shown), they are not 

suppressed. Flesh is composed by multiple tissues (pericarp, columella, placenta, locular and 

vascular tissues), characterized by different flavonoid and phenolic content and composition. This 

could result in a dilution effect by poorly concentrated tissues.  

UV-B post-harvest treatment induced an increased accumulation of phenolics (47%) and flavonoids 

(67%) in the peel of cv Roma (Fig. 1a, e). The positive effect played by UV-B radiation was evident 

starting from the early stages of the biosynthetic pathway, leading to a marked accumulation of 

naringenin, whose concentration was more than 4.5-fold higher than in control (Fig. 2a). Similarly, 

quercetin and rutin were more abundant in the peel of UV-B-treated fruit (about 210% and 140%, 

respectively; Fig. 2e, i). 

Differently from what occurred in the peel, UV-B radiation led to a slight, though significant, 

reduction in phenolic and flavonoid concentration in the flesh (-18% and -24%, respectively, Fig. 1 

b, f). Naringenin was unaffected by the UV-B treatment, while quercetin and rutin levels were 

considerably lower (-70% and -78%, respectively, Fig. 2b, f, j).  

Following post-harvest UV-B irradiation, SA206 fruits showed a lower concentration of total 

phenolics and flavonoids compared to the control, both in peel (-37% and -38%, respectively, Fig. 

1c, g) and flesh (-30% and -24%, respectively, Fig. 1d, h).  

Among flavonoids, rutin was negatively affected by UV-B irradiation in the peel (-28%, Fig. 2k), 

while naringenin and quercetin concentration did not vary significantly (Fig. 2 c, g). Similarly to 

what observed in the peel, no UV-B-induced difference was observed in naringenin concentration 

also in SA206 flesh, while quercetin and rutin levels significantly decreased following UV-B 

treatment (-82%, and -73%, respectively; Fig. 2d, h, l). 

 

Expression of flavonoid biosynthetic genes was differently influenced by UV-B radiation in 

peel and flesh of cv Roma and negatively affected by UV-B treatment in the SA206 mutant 
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In accordance with the positive effect of UV-B radiation on flavonoid accumulation, CHS and CHI 

were significantly more expressed in the peel of UV-B irradiated fruit of cv Roma (30% and about 

19-fold, respectively; Fig. 3a, e). However, in this tissue, F3H and F3’H were unaffected by the 

treatment (Fig. 3i, m).  

Differently to what observed in the peel, UV-B radiation determined a lower transcript level of CHS 

and CHI in the flesh of cv Roma fruit (-78% and -52%, respectively, Fig. 3b, f), in agreement with 

the reduction of total flavonoid concentration. UV-B radiation exerted a positive effect on F3H and 

F3’H, whose transcript levels were about 5.7- and 8.4-fold higher than in control flesh (Fig. 3j, n). 

In SA206 fruit, UV-B treatment reduced transcript level of flavonoid biosynthetic genes similarly in 

both tissues, in agreement with the reduced content of flavonoids. More in details, in the peel, all 

genes investigated were down-regulated by UV-B radiation (Fig. 3c, g, k, o), with the decrease in 

the transcript levels ranging from -35% (CHI) up to -99% (F3H). Similarly, in the flesh, UV-B 

radiation induced a significant decrease in the expression of flavonoid biosynthetic genes. The 

lowest transcript level was observed for CHS and CHI (-94% and -90%, respectively, Fig. 3d, h), 

followed by F3’H (-57%) and F3H (-56%, Fig. 3l, p). 

 

UV-B radiation increases anthocyanin accumulation in the peel of the SA206 mutant  

The mutant fruit is able to synthesise anthocyanins, which accumulate in the peel as purple spots 

(Fig. 4b). HPLC analysis revealed the presence of delphinidin, petunidin and malvidin glycosides, 

which were quantified as anthocyanidin after acidic hydrolysis. Malvidin and delphinidin were the 

main anthocyanidins in the control peel (41% and 37%, respectively). No anthocyanins were 

detected in the flesh of SA206 mutant, as well as in both tissues of cv Roma (not shown). 

UV-B treatment induced a significant increase in the accumulation of all the anthocyanidins 

detected. Petunidin showed the highest increase (about 3.4-fold), followed by malvidin (2.3-fold) 

and delphinidin (1.4-fold; Fig. 5a-c). A parallel increase in the transcript levels of F3’5’H and DFR 
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genes was observed in UV-B-treaded samples (about 12- and 3.4-fold, respectively; Fig. 5d, e), 

while ANS expression level was unaffected (Fig. 5f).  

 

UV-B radiation down-regulates flavonoid biosynthesis in hp-1 peel  

Marked differences were observed between the two tissues, phenolics and flavonoids being 

respectively 7-fold and 37-fold more concentrated in the peel than in the flesh (Fig. 6a-d).  

Phenolic and flavonoid concentration was unaffected by UV-B treatment in hp-1 flesh (Fig. 7b, d), 

while it underwent a significant decrease in the peel (-28% and -41%, for phenolics and flavonoids, 

respectively; Fig. 6a, c). A marked decrease in all flavonoids investigated was detected in hp-1 peel 

following UV-B treatment (Fig. 6e, g, k), ranging from -33% (quercetin) to -49% (naringenin). 

Conversely, UV-B irradiation induced naringenin (+90%) and quercetin (+56%) accumulation in 

the flesh (Fig. 6f, h). 

A marked reduction in the transcript levels of all genes tested was observed in hp-1 peel following 

UV-B treatment, ranging from -29% (F3’H) to -69% (CHS) (Fig. 6m, o, q, s), in accordance with 

the lower flavonoid concentration detected in this genotype. Gene transcription in the flesh was 

extremely low and differentially influenced by UV-B radiation (Fig. 6n, p, r, t), since CHS and 

F3’H were more transcribed in control fruit while CHI transcription was enhanced in UV-B-treated 

sample. 

 

Discussion 

The present work aimed to investigate the effect of post-harvest UV-B radiation on flavonoid 

biosynthesis in tomato fruit and to understand whether and how this response was influenced by the 

presence of the dominant allele Aft, responsible for anthocyanin production in fruit.  

Gene expression analysis revealed that the UV-B-induced accumulation of flavonoids in the peel of 

cv Roma tomatoes resulted from an increased transcription of the genes involved in the early stages 
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of the flavonoid biosynthetic pathway, namely CHS and, even more, CHI. The positive effect of 

UV-B radiation on the flavonoid level has been previously reported in different fruits. Hagen et al. 

(2007) found that the supplementation of UV-B radiation determined an accumulation of total 

flavonoids, in particular of quercetin glycosides and anthocyanins in apple fruit. Post-harvest UV-B 

irradiation was effective also on European pear fruits (P. communis, Qian et al. 2013) and Chinese 

sand pear fruits (P. pyrifolia, Sun et al. 2014).  

In Arabidopsis, the flavonoid pathway is activated by two different sets of transcription factors, 

controlling the early (i.e. AtMYB11/12/111) or the late (i.e. the MYB-bHLH-WD40 complex) 

biosynthetic genes (Stracke et al. 2010; Petroni and Tonelli 2011). The major effector of UVR8-

mediated gene expression is the ELONGATED HYPOCOTYL 5 (HY5) transcription factor, that 

controls many of the downstream target genes, among which MYB12 (Stracke et al. 2010), the 

negative regulator of phenylpropanoids MYB4 (Hemm et al. 2001), and PAP1, one of four R2R3 

MYB activators involved in anthocyanin biosynthesis (Shin et al. 2013). 

According to Ravaglia et al. (2013), transcription of PpFLS1 increased in nectarines (cv. Stark Red 

Gold), suggesting an accumulation of flavonols after 72 h of UV-B treatment, possibly due to the 

involvement of the transcription factor PpMYB10, particularly sensitive to UV-B. It is possible that, 

also in tomato, transcription factors belonging to the MYB family, as SlMYB12, that controls the 

flavonol synthesis by predominantly activating the early biosynthetic genes (Adato et al. 2009; 

Ballester et al. 2010), are strongly responsive to UV-B radiation, causing an overall up-regulation of 

the flavonoid biosynthetic pathway and, in turn, flavonoid accumulation. 

Whereas the UV-B treatment increased the flavonoid level in the peel of the cv Roma, it decreased 

it in SA206 mutant. A genotype-dependent effect of UV-B radiation on flavonoid accumulation and 

expression of related genes was previously observed in tomato fruits of commercial cultivars 

(Giuntini et al. 2008). Similarly, the photoresponsive tomato mutant (hp-1) and its wild type, 

ripened in planta under photoselective films, exhibited an opposite response in UV-B-depleted 

conditions (Calvenzani et al. 2010). In particular, while flavonoids were severely affected in UV-B-
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depleted peel of wild type fruit, in the hp-1 mutant UV-B depletion did not greatly alter flavonoid 

concentration in the peel but significantly increased it in the flesh. Marked genotype-related 

differences were described also by Scattino et al. (2014), who treated peaches (cv. Suncrest and cv. 

Babygold 7) and nectarines (cv. Big Top) with up to 36 h of UV-B radiation. A higher 

accumulation of flavonol-glycosydes and anthocyanins was observed in treated fruits of cv. Big Top 

and cv. Suncrest, while the fruits of cv. Babygold responded to the UV-B irradiation by decreasing 

the levels of anthocyanins and flavonols.  

Downstream from naringenin, the flavonoid biosynthetic pathway diverges into several branches. 

F3H drives the production of dihydroflavonols, catalyzing the stereospecific 3-hydroxylation of 

(2S)-flavanone. The hydroxylation pattern is a major determinant of the anthocyanin color. 

Hydroxylation of the B ring by F3’H and F3’5’H leads to production of red di-hydroxylated and 

blue tri-hydroxylated anthocyanins, respectively. Transcription of F3’5’H gene seems to be 

necessary to activate anthocyanin production in tomato (Bovy et al. 2002), as indicated by the 

presence of only delphinidin-derived anthocyanins. In accordance with this report, in the peel of the 

SA206 mutant only delphinidin, malvidin and petunidin glycosides were detected.  

The lower transcription of F3H and F3’H in SA206 peel after irradiation with UV-B suggests that 

levels of dihydroflavonols would be lower as well and a minor concentration of anthocyanins would 

be expected. Interestingly, UV-B radiation instead led to increased anthocyanin synthesis, while 

decreasing flavonol production, suggesting that UV-B radiation by enhancing F3’5’H could 

promote the conversion of dihydrokaempferol to dihydromyricetin, which is then used by the 

tomato DFR enzyme to drive the synthesis of anthocyanins. In Solanaceous species, the DFR 

enzyme is in fact specific for dihydromyricetin and does not accept dihydrokaempferol as a 

substrate (Bovy et al. 2002). 

Despite the ANS gene was unaffected by the UV-B treatment, a higher F3’5’H and DFR expression 

was indeed observed in SA206 UV-B-treated samples, that may explain the increased production of 

anthocyanins in the UV-B treated fruit. It therefore seems that, compared with cv Roma, in the 
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anthocyanin-rich mutant post-harvest UV-B irradiation plays an opposite role on anthocyanin and 

flavonol accumulation, probably acting on different sets of regulatory factors. Recently, Kiferle et 

al. (2015) carried out a molecular and functional characterization of two genes encoding tomato 

transcription factors belonging to the R2R3-MYB family, Anthocyanin1 (SlANT1) and 

Anthocyanin2 (SlAN2), both involved in activation of anthocyanin synthesis (Mathews et al. 2003; 

Schreiber et al. 2012; Meng et al. 2015). However, only SlAN2 was found to positively regulate 

anthocyanin synthesis in response to high light in vegetative tissues (Kiferle et al. 2015). 

Interestingly, the Aft gene probably encodes Anthocyanin1 (SlANT1; Schreiber et al. 2012) or 

SlAN2 (Boches and Myers 2007). 

Although the absolute levels of anthocyanidins of SA2016 tomato peel are very low as compared to 

other purple fruits, such as black grape or blueberry, UV-B treatment increased by 2.4-fold their 

content. This increases the nutraceutical value of Aft hp-1 tomatoes compared to commercial 

varieties, also considering that tomato is largely consumed in the Mediterranean region. Because the 

content of anthocyanins in the fruit peel is in turn increased in genotypes combining Aft with the 

recessive variant atroviolaceum (atv) (Mazzucato et al. 2013), it will be of great interest to evaluate 

the effect of UV-B irradiation on fruits from purple tomato lines.  

In accordance with our data, Ravaglia et al. (2013) and Scattino et al. (2014) found an up-regulation 

of the anthocyanin metabolism after post-harvest UV-B exposure in the skin of peach and 

nectarines. Similarly, UV-B radiation was able to increase the content of anthocyanins in apple fruit 

(Hagen et al. 2007). Recent studies confirmed the positive effect of UV-B exposure on the 

anthocyanin levels in apple skin, probably due to a higher expression of MdMYBA (Ban et al. 2007; 

Peng et al. 2013).  

In the light of the possible role of the Aft gene product as a transcription factors belonging to the 

R2R3-MYB family (Boches and Myers 2007; Schreiber et al. 2012), an involvement of Aft in the 

mechanism of UV-B control of flavonoid synthesis cannot be excluded. MYB12, a member of the 
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R2R3-MYB family, is in fact known to be transcribed under the control of the UVR8-mediated 

HY5 transcription factor (Stracke et al. 2010). The increased anthocyanin synthesis accompanied by 

a decreased flavonoid accumulation suggests that the presence of Aft negatively influences the 

response of the flavonoid biosynthetic pathway to UV-B radiation. However, since SA206 is a 

double mutant containing both the Aft and the hp-1 alleles, we tested the hypothesis that the 

negative effect on flavonoid pathway could be imposed by hp-1 rather than by Aft, by studying the 

response to UV-B of the tomato mutant hp-1. Indeed, lower transcript levels of the assayed 

flavonoid biosynthetic genes were detected in the peel of hp-1 UV-B treated fruit, accompanied by 

a significant decrease in the content of individual and total flavonoids. Such a negative response to 

UV-B radiation suggests that hp-1 is involved in the marked down-regulation of the flavonoid 

biosynthesis in SA206 peel. Tomato plants carrying hp1 mutation are characterized by exaggerated 

light responsiveness and photomorphogenic response. HP1 gene encodes the tomato homologue of 

DDB1, a light signal transduction proteins that in Arabidopsis participates to the formation of the 

complex CUL4–DDB1–COP1–SPA, a CUL4–DDB1–based E3 ubiquitin ligase that suppresses the 

photomorphogenic program by targeting the transcription factor HY5 for degradation (Huang et al. 

2013). In tomato, HP1/SlDDB1 is an essential component of CUL4-based E3 ligase complex 

(Wang et al. 2008). Since under UV-B radiation, UVR8 monomer sequesters COP1 from DDB1, 

causing physical dissociation and consequent loss of function of the complex, a role for 

HP1/SlDDB1 in the response to UV-B radiation cannot be excluded. 

In our study, UV-B effects were not only genotype-dependent, but also tissue-dependent. In cv. 

Roma, UV-B irradiation positively stimulated the whole flavonoid pathway in the peel, while 

decreasing total flavonoids as well as the CHS and the CHI transcript levels in the flesh. Similarly, a 

lower flavonoid accumulation and related gene transcription occurred also in the flesh of the SA206 

mutant. A similar finding has been already observed in the flesh of tomato fruits ripened under UV-

B-depleted conditions that generally showed a flavonoid concentration and gene expression level 

higher than controls (Calvenzani et al. 2010), indicating a negative influence played by UV-B 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



19 
 

radiation in this tissue. Differences between peel and flesh were also detected in hp-1 fruit, where 

total phenolics and flavonoids were unaffected by UV-B radiation in the flesh but decreased in the 

peel. At gene expression level, CHI behaved in the opposite way between peel and flesh, leading to 

decreased or increased naringenin level, respectively. Light transmittance across tomato peel is very 

low (below 10%) and dramatically falls in the UV region (about 0.5%; Åke Strid, personal 

communication). However, despite UV-B is unlikely to directly reach the inner fruit tissues, our 

results demonstrate that this radiation can affect flesh flavonoid biosynthesis probably mediated by 

a signal transmission pathway. Specifically targeted studies are needed to elucidate the nature of 

signals that mediate flavonoid synthesis in response to UV-B in the flesh. 

In conclusion, it clearly emerges that UV-B radiation influences flavonoid accumulation 

differentially in the peel of the different genotypes tested, acting as a positive regulator of flavonoid 

synthesis in cv. Roma while down-regulating it in SA206 and hp-1 mutants. The introgression of the 

Aft allele into domesticated tomato, and the consequent ability to produce anthocyanins in the fruit, 

apparently negatively influences the capacity to react to UV-B radiation by the flavonoid 

biosynthetic pathway. However, this behavior is likely due to the hp-1 allele, being SA206 a double 

mutant containing both hp-1 and the Aft alleles.   

On the other hand, UV-B treatment exerted a significant positive effect on the anthocyanins 

synthesis in the peel of the SA206 mutant, leading to a more than double increase in malvidin, 

delphinidin and petunidin concentration. Although ANS did not show any change in the expression 

fold, F3’5’H and DFR were considerably up-regulated by UV-B, indicating a shift from flavonol to 

anthocyanin production induced by the UV-B treatment. This study provides, for the first time, 

evidence that the hp-1 allele negatively affects flavonoid biosynthesis under UV-B radiation while 

the presence of functional Aft allele redirects it towards anthocyanin production. 
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Table 1 Primers used for cloning and sequencing 

Gene Primer name Sequence (5’- 3’) 

CHS CHScF ATACATGGCACCTTCCCTTG 

 CHScR AGCAGCAACACTGTGAAGGA 

CHI CHIcF2 TCAACAAAGGCATTTTGAATCTC 

 CHIcR2 AGAGTGCTATTCCATTTCTAGCTGAT 

F3H F3HcF GCTTGTGAAGATTGGGGAGT 

 F3HcR GAATTTCCTCAATGGGCTTG 

F3’H F3’HcF AAGGAACAGGGGGATTTGTT 

 F3’HcR AAAGTCAGCCCAAATGCTTC 

F3’5’H F3’5’HcF2 CATTTTTCAAGAATCTGCCACA 

 F3’5’HcR2 GGAACCTCTCGGGAGTGAAC 

DFR DFRcF AGAAGGCTGCAATGGAAGAA 

 DFRcR GATACGCGAGAGCCTTCAGT 

ANS ANScF GTCCAAGGCTATGGAAGCAA 

 ANScR TTTGAGCTCAGCAACTGCAT 

LeEF1 EF1cF CCAAGAGGCCATCAGACAAG 

 EF1cR ACAAACCAAGGCACCTCAAC 
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Table 2 Primers used in real time RT-PCR 

Gene Primer name Sequence (5’- 3’) 

CHS LeCHSF1 AAACTCTTGTCCCCGATAGC 

 LeCHSR1mod ACCTAGAGGTTGAAATGCTTC 

CHI CHI_TOM_F GTTTTTCACAAACCAACAGTTCTGAT 

 CHI_TOM_R GAAGCAGTGCTCGATTCCATAAT 

F3H LeF3HF2 CATGGATCACTGTTCAGCCCG 

 LeF3HR2 TGCTGGATTCTGGAATGTGGC 

F3’H LeF3’HF1 AGGCTTCATCCATCAACACC 

 LeF3’HR1 TCAACTTTGGGCTTTTCACC 

F3’5’H LeF3’5’HF3 GCACAACAAGAAATGGACCAAGT 

 LeF3’5’HR3 TGGCTCGCTCGATACCCTAG 

DFR LeDFRF2 CATTGAGACTTGCCGACAGA 

 LeDFRR2 AGCAGCCATCAAGAACCAAG 

ANS LeANSF3 ATGCCAAGCAGATCAGGAAC 

 LeANSR3 TGGGGACATTTGGGGTAGTA 

LeEF1 LeEF1F4 GTTGGTCGTGTTGAAATGG 

 LeEF1R3 AACATTGTCACCAGGGAGTG 
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Figure Captions 

 

Fig. 1 Effect of UV-B radiation on phenolic and flavonoid concentration in peel and flesh of tomato 

fruits of cv. Roma and of the anthocyanin-rich mutant SA206. White and black columns represent 

control and UV-B-treated fruits, respectively. Data are mean ± SE of three biological replicates. 

Different letters correspond to statistically significant differences according to one-way ANOVA 

followed by Tukey–Kramer post hoc test (P ≤ 0.05) 

 

Fig. 2 Effect of UV-B radiation on naringenin, quercetin and rutin concentration in peel and flesh of 

tomato fruits of cv. Roma and SA206. White and black columns represent control and UV-B-treated 

fruits, respectively. Data are mean ± SE of three biological replicates. Different letters correspond 

to statistically significant differences according to one-way ANOVA followed by Tukey–Kramer 

post hoc test (P ≤ 0.05) 

 

Fig. 3 Effect of UV-B radiation on expression levels of CHS, CHI, F3H, F3’H in peel and flesh of 

tomato fruits of cv. Roma and SA206. White and black columns represent control and UV-B-treated 

fruits, respectively. The transcript amount in the flesh of cv Roma under UV-B treatment was 

arbitrarily set to 1 and served as calibrator for relative expression levels in each transcript. Data are 

mean ± SE of three biological replicates. Different letters correspond to statistically significant 

differences according to one-way ANOVA followed by Tukey–Kramer post hoc test (P ≤ 0.05) 

 

Fig. 4 Fruits of cv. Roma (a) and SA206 (b). Purple spots due to the Aft allele are evident on the 

surface of SA206 fruits 

 

Fig. 5 Effect of UV-B radiation on delphinidin, petunidin and malvidin concentration and 

expression levels of F3’5’H, DRF and ANS in the peel of tomato fruits of SA206 mutant. The 
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transcript amount in the peel of SA206 under control conditions was arbitrarily set to 1 and it served 

as calibrator for relative expression levels in each transcript. White and black columns represent 

control and UV-B-treated fruits, respectively. Data are mean ± SE of three biological replicates. 

Different letters correspond to statistically significant differences according to one-way ANOVA 

followed by Tukey–Kramer post hoc test (P ≤ 0.05) 

 

Fig. 6 Effect of UV-B radiation on phenolic, flavonoid naringenin, quercetin and rutin 

concentration and expression levels of CHS, CHI, F3H, F3’H in peel and flesh of tomato fruits of 

mutant hp-1. The transcript amount in the peel of hp-1 under UV-B treatment was arbitrarily set to 

1 and served as calibrator for relative expression levels in each transcript. White and black columns 

represent control and UV-B-treated fruits, respectively. Data are mean ± SE of three biological 

replicates. Different letters correspond to statistically significant differences according to one-way 

ANOVA followed by Tukey–Kramer post hoc test (P ≤ 0.05) 
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