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Abstract— Coordinated Scheduling (CS) is one of the main 

techniques to control inter-cell interference in present (4G) and 

future (5G) cellular networks. We show that coordination of a 

cluster of nodes can be formulated as an optimization problem, 

i.e., placing the Resource Blocks in each node’s subframe with 

the least possible overlapping with neighboring nodes. We pro-

vide a clever formulation, which allow optimal solutions to be 

computed in clusters of ten nodes, and algorithms that compute 

good suboptimal solutions for clusters of several tens of nodes, 

fast enough for a network to respond to traffic changes in real 

time. This allows us to assess the relationship between the scale at 

which CS is performed and its benefits in terms of network ener-

gy efficiency and cell-edge user rate. Our results show that opti-

mal CS allows a significant protection of cell-edge users. Moreo-

ver, this goes hand-in-hand with a significant reduction in the 

number of allocated Resource Blocks, which in turn allows an 

operator to reduce its energy consumption. Both benefits actually 

increase with the size of the clusters. 

Keywords—CoMP-CS, energy-efficiency, scheduling, mobile 

networks, optimization, simulation 

I.  INTRODUCTION 

Inter-cell Interference (ICI) is one of the major causes of 
performance degradation in 4G cellular networks, where all 
neighboring cells share the same spectrum. 5G networks, if an-
ything, will be denser and with higher traffic demands, which 
will only exacerbate the problem. User equipments (UEs) suf-
fering interference from nearby eNodeBs (eNB) will have a 
lower Signal-to-Interference-and-Noise Ratio (SINR), hence a 
lower Channel Quality Indicator (CQI). This means that an 
eNB will employ more robust modulations, carrying fewer bits 
per Resource Blocks (RBs), to serve these UEs. Thus, the net-
work will be able to carry less traffic, and consume more ener-
gy – which is proportional to the number of RB allocated per 
Transmission Time Interval (TTI) – to carry the same traffic. 

A technique used to reduce ICI is Coordinated Scheduling 
(CS), by which neighboring eNBs agree to use different RBs, 
i.e., different frequencies, at the same TTI. CS techniques can 
be either static or dynamic. In static CS schemes (e.g., [2]-[4]), 
resource partitioning among neighboring eNBs is fixed, with a 
long-term perspective. Typical cases are frequency reuse 
schemes. A static partitioning is highly inflexible, especially 
when the traffic varies at a fast pace: in fact, no single cell is 
ever allowed to use the whole spectrum, even if the neighbor-
ing ones are unloaded, which leaves resources underutilized. 
An example is a single UE roaming through unloaded neigh-
boring cells, no one of which is able to allocate it its full band-
width. On the other hand, dynamic CS schemes have been pro-

posed, e.g., [5]-[8]. Some of these are not standard-compliant, 
since they assume that the eNBs know information which is not 
available in the current standards: for example, that UEs can 
report their channel coefficients. Some dynamic schemes (e.g., 
[7],[8]) assume instead that a central entity managing a cluster 
of cells both receives per-UE information (i.e., buffer and CQI) 
and makes per-cell schedules on each TTI. Such schemes can-
not scale with the number of UEs or cells, since the amount of 
information to be conveyed and the algorithm complexity are 
infeasibly high. Under these settings, in fact, achieving an op-
timal result (i.e., a scheme that guarantees the maximum 
throughput on each TTI) is impossible in practice, since the en-
suing optimization problems cannot be solved within a TTI [8].  

Between the two extremes of a static approach and a per-
TTI centralized multicell scheduling lies a largely unexplored 
middle ground, where CS can still be run dynamically, but at 
longer periods than the TTI. The outcome of CS will thus con-
strain the scheduling decisions for a whole period. This is the 
approach pursued in this paper, designed and prototyped within 
the framework of the Flex5Gware EU-5GPPP project [1]. A 
global scheduler, coordinating a cluster of nodes, runs CS on 
every period of 100-1000s TTIs. The outcome of CS is an allo-
cation mask, i.e. a list of RBs where each node in the cluster 
can schedule its UEs. That list is compiled so that UEs within a 
cell are protected from their highest interferers as much as pos-
sible. Single nodes are still in charge of per-TTI scheduling, 
keeping the complexity manageable, and they periodically rec-
ord and send to the global scheduler the number of RBs that 
they need to carry all their traffic. A period in the range of 100-
1000s TTIs is small enough for a network to be responsive to 
traffic changes. However, it is also large enough for the CS 
problem to be formulated as an optimization problem and 
solved at optimality, at fairly large scales (up to several tens of 
nodes). While the natural way to formulate a CS problem 
would be as a Quadratic Assignment Problem (QAP), which is  
inefficient,  we  devise instead a non-intuitive pattern-based 
formulation. The ensuing Mixed-Integer Linear Program 
(MIILP) can be solved at optimality in hundreds of millisec-
onds at scales of up to ten nodes. Larger scales can be reached 
by adopting heuristic techniques, such as price-and-branch, 
where column generation can be handled in different ways, 
e.g., brute-force enumeration or using a general-purpose solver.  

The benefits of our optimal dynamic CS are twofold: on 
one hand, cell-edge UEs are protected from the interference of 
nearby cells. We show that their SINR increases remarkably 
when CS is activated. On the other hand, protecting cell-edge 
UEs actually frees a considerable amount of RBs at the nodes, 
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namely those that would otherwise be employed to serve UEs 
with poorer channel conditions. This, in turn, increases the 
number of bits per RB in the whole network, making it more 
energy-efficient, and leading to reduced power consumption. 
We are thus able to assess the above benefits at scales at which, 
to the best of our knowledge, they have not been assessed so 
far. Both benefits actually increase with the coordination scale, 
all the way up to the maximum allowed by our algorithms. This 
calls for further research in the direction of increasing the CS 
scale. The above benefits are evident when the system is com-
pared to both an uncoordinated cellular network and one with a 
static coordination, e.g. a frequency reuse of three or seven.  

The rest of the paper is organized as follows: Section II de-
scribes the system model and states the problem. In Section III 
we describe our CS models, and in Section IV we evaluate 
their performance. Section V concludes the paper. 

II. SYSTEM MODEL AND PROBLEM STATEMENT 

Transmissions in a cellular network are arranged in time 
slots called Transmission Time Intervals, (TTIs), whose dura-
tion is 1ms in the current LTE standard. We only consider the 
downlink (DL) direction, the most critical from the point of 
view of both carried load and infrastructure power consump-
tion. In a TTI, nodes allocate subframes (SFs), i.e. vectors of 
RBs to its associated UEs. Each RB carries a fixed number of 
symbols, which translate to different amounts of bits depending 
on the quality of the air channel, i.e. on the SINR that UEs per-
ceive. This varies over both time and frequency, hence UEs 
report a quantized indication of their SINR (called a Channel 
Quality Indicator, CQI) to the eNBs periodically. UEs are as-
sociated to one eNB at a time, and their association lasts longer 
than CS periods (minutes or more). In the DL, all the nodes 
share the same spectrum, hence interfere with each other.  

We consider a large-scale multicell cellular network, a por-
tion of which is shown in Figure 1. Cells are represented as 
hexagons for simplicity, and they host a node that covers them. 
UEs associate to the node from which they perceive the highest 
SINR. Figure 2 shows the power consumed by an active node, 
which is an affine function of the number of allocated RBs on 
each TTI, i.e., 

basep P nρ= + ⋅ , where 
baseP  is a baseline pow-

er, and n M≤  is the number of RBs. offP  is the power con-
sumed by a switched-off node. Work [15] shows that, while the 
above parameters have changed and will be changing their val-
ues over the years, due to technology improvements and the 
onset of 5G, the shape of the power model has not changed so 
far, and it is unlikely that it will.  

A UE u  requests a certain data rate uD  from its serving 
node e . The number and data rates of UEs can be inferred 
from load curves, detailing how these two values evolve over 

time in each cell, with a time resolution of minutes or more. A 
method is required to infer the average RB occupancy per TTI 
(which in turn determines the power consumption) from the 
required data rate and SINR of a UE. The RBs allocated per 
UE are computed as follows. The data rate per RB achievable 
by u  is a function of its average SINR, ( )e

u
F SINR , repre-

sented in Figure 3. 
MAXη  is the maximum data rate that can be 

achieved for values of SINR equal or above 
MAXSINR . UEs 

whose SINR is below 
minSINR  are considered out of range. 

Again, parameters 
MAXη , 

MAXSINR  and 
minSINR  will probably 

change with the onset of 5G cellular technologies, but the 
shape of the curve is likely to remain the same [15]. Thus, the 
average number of RBs that satisfy u ’s demand are: 

 ( )e

u u u
RB = D F SINR . (1) 

Note that 
uRB  may not be integer. This is not a problem, 

since 
uRB  is an average value, and – as we will see later on – 

the time span of a CS period is large enough (hundreds of TTIs 
at least) as to allow a fluid approximation. For instance, an al-
location of 2.5uRB =  RBs per TTI can be enforced in practice 
by reserving two RBs on even TTIs and three on odd ones, etc. 

In order to compute e

uSINR , we need to quantify the signal 
received by u  from node e  and the interference from nodes 

x e≠ . Call 
en  and 

xn  the number of RBs allocated by node e  
and x  respectively, and call ,e x∆  the number of overlapping 
RBs in the two allocations. This quantity depends on the allo-
cation scheme employed at each node. For instance: 

− First fit (FF): all nodes allocate RBs starting from the first 
position. This way, the overlapping RBs are the maximum 
possible, i.e. ( ), min ,e x x en n∆ = . Despite this being the 
most inefficient strategy from an interference standpoint, it 
is what happens in practice in several cases. For instance, 
OpenAirInterface nodes [11] actually do this. 

− Random (R): a node selects its RBs at random. This way, 
after some straightforward computations, ,e x x en n M∆ = ⋅ , 
i.e., smaller than with FF, especially at low network loads.  

The probability that x  will interfere on a RB allocated by 
e  is ,e x en∆ . Call 

,x uP  the power received by u  from node x  
(which depends on the distance and angle between them, the 
propagation model and the transmitting power of x ). Assum-
ing that the scheduler at node e  selects the RBs to be allocated 
to u  randomly among its 

en  RBs, u ’s average SINR is: 

 ,

, ,

e ue

u

G x u e x ex e

P
SINR

N P n
≠

=
+ ⋅∆∑

, (1) 

where GN  is the Gaussian noise. Expression (1) implies that 
each UE has the same probability of using any of the RBs allo-
cated by its node, which is reasonable given the long timespan. 

 
Figure 1 – Nodes in a hexa-

gon tessellation. 
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Figure 3 - Data rate vs. SINR. 
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Figure 4 – Allocation masks (columns) 

and ownership vectors (rows) 
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Figure 2 - Node power model. 



The aim of CS, of course, is to reduce ,e x∆  for couples of 
nodes that generate a high interference on each other’s UEs.  

Based on the above discussion, the obvious approach to CS 
would be to maximize the sum of the average SINR across all 
UEs. Besides the non-trivial scalability problem (nodes may 
handle hundreds of UEs in practical cases), and modeling diffi-
culties (formula (1) is nonlinear and nonconvex in variables 

,e x∆  and 
en ), there is a stronger, practical impediment: UEs do 

not report the necessary information, i.e. the received powers 

,x uP . Their reporting is limited to the CQI value, without any 
indication of how that number was obtained. Thus, (1) cannot 
be computed, except at the UEs themselves. 

III. OPTIMIZATION APPROACH TO COORDINATED SCHEDULING 

The approach followed within Flex5Gware [1] adopts a dif-
ferent perspective, which does away with all the above prob-
lems. The basic philosophy is that per-UE scheduling (i.e., un-
derstanding which RBs should be allocated to which UE) in a 
cell should be done by the cell node itself. The latter communi-
cates with a Global Scheduler (GS), that coordinates schedul-
ing in a cluster of cells. Nodes in a cluster send Scheduling Re-
quests (SR) to the GS, which state the number of RBs required 
to clear the node’s backlog, averaged over a period of T TTIs 
(e.g., hundreds or more). In turn, the GS sends back to each 
node i  an Allocation Mask (AM) on each period. This, shown 
in Figure 4, is a binary M-vector, 

iR , where [ ] 1i x =R  means 
that node i can use RB x to schedule its UEs, and must not use 
it otherwise. The minimum period, determined by the time that 
the GS employs to compute AMs for its cluster, will depend on 
the size of the cluster. Hereafter, we describe several solutions, 
which achieve different tradeoffs between optimality and scale. 

A. Optimal Coordinated Scheduling 

The GS runs an algorithm with the objective of minimizing 
the global interference in the cluster. The latter is computed as 
the sum of the overlapping RBs between all pairs of cells i,j, 
weighted by the respective interference coefficients (ICs) ,i jα . 
These coefficients can be derived from live measurements of 
existing deployments, or possibly from ray-tracing-based simu-
lations. IC ,i jα  measures the interference that an average UE 
of cell j will hear from cell i. ICs form a cluster-wide interfer-
ence matrix { },i j

α=α . Note that α  is not symmetric, since 
cells are anisotropic. Call C  the cluster, with C = C , and let 
A  be the C-vector including the SRs for cell i. A simple, but 
inefficient formulation of the CS problem is the following:  

 [ ] [ ] ( )

[ ] { } ( )

,,

1

min ,

. . ,

0,1 , ,1

i j i ji j

M

ix

i

s t x i i i

x i x M ii

α

=

⋅

≥ ∈

∈ ∈ ≤ ≤

∑

∑

R R

R A C

R C

 (2) 

The objective function minimizes the number of overlap-
ping RBs, with the ICs acting as weights. Notation ,

i j
R R  

represents the inner product of AMs 
iR  and jR . Constraint (i) 

forces the sum of RBs allocated to cell i to be at least equal to 
its SR 

iA . Note that equality will hold in (i) at the optimum in 
any case, since this is a minimization problem. Coupled with 
the fact that problem variables are binary (constraint (ii)), this 
makes problem (2) a slight variant of the Quadratic Semi-
Assignment Problem (QSAP) [16], which is notoriously hard 

to solve at optimality, in large part due to its nonlinear objec-
tive function. It can be linearized by introducing overlap vec-
tors ,i jO , i.e. binary vectors such that 

[ ] [ ] [ ],  AND i j i jx x x=O R R , as follows:  

[ ]

[ ] [ ] [ ]

, ,, 1

,

min

. .

1 , , ,1 ( ')

...

M

i j i ji j x

i j i j

x

s t

x x x i j j i x M i

α
=

⋅

≥ + − ∈ ≠ ≤ ≤

∑ ∑ O

O R R C

 

Constraint (i’) linearizes the logical AND between [ ]i xR  
and [ ]j xR , and the rest stays as in (2). Introducing overlap 
vectors, however, brings the problem size to ( )2O M C⋅ : a 
cluster of 10C =  cells, each one using 100M =  RBs, gener-
ates a problem with 10

4
 binary variables. Beside the size, an-

other major disadvantage is symmetry: any permutation of the 
rows of the matrix in Figure 4 yields the same objective, which 
makes it much harder to solve the model at optimality. A better 
formulation can be found by acknowledging that it is the own-
ership of an RB that matters – i.e., which cells are allocating it 
– rather than its position in a SF. In fact, only the former de-
termines inter-cell interference.  

Define the ownership of a generic RB as a C-vector of bi-
naries: for instance [ ]0,1,1,0,...,0,1  means that this RB is allo-
cated simultaneously in the AMs of cells 2, 3, and C. In Figure 
4, where AMs are columns, rows – or patterns – are ownership 
vectors. Call P  the set of possible patterns, hence 2CP= =P
. For a ∈p P , call 0x ≥p  the integer variable that counts its 
occurrences in an AM. The interference cost of increasing x

p  
by one can be computed statically as: 

 
[ ] [ ]( ) ,,

T

i ji j
c i jα

∈ ×
= ⋅ ⋅ = ⋅ ⋅∑p C C

p p p α p
.  

Given costs cp , the model can be rewritten as follows:  

 
[ ] [ ]

min

. . ( )

( )

( )

c x

s t i x i i i

x M ii

x iii

∈

∈

∈

⋅

⋅ ≥ ∈

≤

∈ ∈

∑

∑

∑

p pp P

pp P

pp P

p

p A C

p Pℕ

  (3) 

The objective, though formulated differently, is equal to the 
previous problem’s. Constraint (i) states that the number of 
RBs in the AM to a node must not fall below its SR, whereas 
constraint (ii) caps the number of allocated RBs to the maxi-
mum M. The variables are xp , are integer, and there are 2

C
 of 

them, hence this is an Integer Linear Program (ILP). This ILP 
is solvable at optimality by a general-purpose solver (such as 
CPLEX, [9]) in split-second times for clusters up to 10 cells, 
i.e. 102 1024=  patterns. Once (3) is solved, the AMs can be 
found by placing xp  instances of each row p in any order. 
While (3) is considerably faster than (2) (or its linearized ver-
sion) at medium scales (e.g., ~10 nodes), it goes without saying 
that its size is still ( )2CO , hence solving times become pro-
hibitive at larger scales. Thus, we now discuss other algorithms 
which trade a little optimality for an increase in scale. 

B. Trading optimality for scalability  

ILP (3) can be solved to optimality in split-second times for 
small clusters. The standard solution algorithms for ILPs is 



branch-and-bound, which consists in iteratively solving the 
continuous relaxation, i.e., the model obtained by relaxing in-
tegrality constraints (iii) on variables xp , so as to compute 
bounds, and then branching. However, solving an LP with an 
exponential number of variables several times is too costly.  

A well-known technique to solve LPs where the number of 
variables is too large is column generation (a.k.a. variable pric-
ing) [13]. The idea is simple: one starts considering a model 
with a  small subset of the variables, called restricted master 
problem, and generates the other variables only “if needed” in 
terms of optimality. More precisely, in a minimization prob-
lem, a column is needed if it has a negative reduced cost, be-
cause it can lead to an improvement in the objective function 
value. Let λ  and µ  be the dual variables associated to con-
straints (i) and (ii) in (3). The dual problem reads as follows: 

max

. . ( )

0, 0 ( )

T

T

M

s t c i

m ii

µ

µ

+ ⋅

+ ≤ ∈

≥ ≤

p

λ A

λ p p P

λ

 

Given a dual solution ( )* *,µλ , the reduced cost of varia-
bles xp  is given by 

* *Tc µ− −
p

λ p . In order to find the pattern 
xp  with minimum negative reduced cost, or prove that none 
exist, we seek for a pattern ∈p P  that minimizes 

*Tc −
p

λ p  (
*µ  being a constant). The problem of finding one or more col-

umns with negative reduced cost is called pricing problem. Our 
pricing problem for variables xp  has the following form: 

 { }*min :T ⋅ − ∈⋅⋅p α p λ p p P , (4) 

We start by observing that the interference matrix α  is non 
negative, therefore pricing problem (4) could be solved in pol-
ynomial time as a minimum cut problem, were it not for the 
linear term 

*− ⋅λ p . However, we can incorporate that term into 
the matrix as a diagonal term, since diagonal terms in α  are 
null by definition, and since [ ] { }0,1i ∈p  implies [ ] [ ]

2
i i=p p . 

Thus, define the modified interference matrix ɶ �{ },i jα=α , 
where � , ,i j i jα α=  if i j≠  and �

*
,i i i

α λ= − , and rewrite (4) as: 

 ɶ{ }min :T ⋅ ∈⋅p α pp P , (5) 

Problem (5) is an Unconstrained Boolean Quadratic Prob-
lem (UBQP) [12], and it is known to be NP-hard. In order to 
solve a continuous relaxation of (3), we need to solve (5). For 
this, we have two options: 
- A brute-force enumeration of all the patterns in P . This is 

fairly easy, because the UBQP is unconstrained, so the fea-
sible set is simply given by all the vectors in P . Moreover, 
the quadratic objective function for a given p can be evalu-
ated in linear time if vectors are enumerated so that the 
Hamming distance of consecutive vectors is one, i.e., they 
only differ by one bit. Indeed, if the Hamming distance is 
one, to evaluate the cost of p with respect to the previous 
pattern, we only need to consider the entries in ɶα  corre-
sponding to the one bit that has changed, which clearly are 

( )O C , so the cost update can be done in linear time, de-
spite the objective function being quadratic. 

- Rely on standard solvers like CPLEX, which can solve 0-1 
quadratic programs (QPs).  

The brute-force method will generally be fast enough up to 20 

variables or so. From that scale onward, solving the QP will 
generally be faster.  

Once we establish that the LP relaxation of our ILP can be 
solved using column generation, if we then wanted to solve the 
original ILP to proven optimality, we would have to start 
branching and pricing at each node of the branch-and-bound 
tree, just in case more columns of negative reduced cost can be 
found. This method, called branch-and-price, is exact and 
guarantees to find an optimal solution. However, its computing 
time is too large, hence we prefer to use a heuristic algorithm 
called price-and-branch (PB). PB is considerably faster, since 
it only involves pricing at the root node, rather than at each 
node of the branching tree. The final integer solutions that we 
find may not be optimal. However, we still get a lower bound 
to the optimum of (3) (obtained by solving its linear relaxation 
at optimality at the root node), hence we are able to bound from 
below the optimality gap of our heuristic solutions. 

Figure 5 shows the average solving time of (3) and the two 
heuristics based on column generation, with an increasing clus-
ter size. Reported values are the average of measurements ob-
tained running the CPLEX solver  on ten network instances, on 
a machine equipped with an Intel(R) Core(TM) i7 CPU at 3.60 
GHz, with 16 GB of RAM and a Linux Kubuntu 12.04 operat-
ing system. Assuming that CS must be run at periods below 1s, 
(3) can be solved at optimality for cluster sizes of up to 15 
cells. Larger clusters can be coordinated using the heuristics. In 
particular, it is possible to scale up to 20 and 25 nodes using 
the brute-force and PB approaches, respectively. 

Given that autonomous CS instances are run at each cluster, 
cluster borders are subject to uncoordinated interference, hence 
cluster-border UEs will still have a worse SINR. The alert 
reader will have noticed that a pattern-based modeling of CS 
leaves open the problem of placing RBs within a SF. In theory, 
the xp  instances of p  in a solution can be placed at any of the 
M positions in the SFs of the nodes in a cluster. This can be 
leveraged to improve conditions at cluster borders. We do this 
by leveraging a heuristic proposed in [8], which formulates the 
problem as a (polynomial) Linear Assignment Problem, that 
can be solved in few ms. using the Hungarian algorithm [14]. 

IV. PERFORMANCE EVALUATION 

Macro nodes are placed on the vertices of hexagons (e.g., 
as shown in Figure 1) in a 2D floorplan and transmit at 36 dBm 
with an anisotropic pattern, whose attenuation is defined as 

( ) ( ){ }min 12 70 ,25A θ θ= ⋅ �
, where θ  is the angle between 

the macro and the receiving UE. ICs ,i jα  are computed by 
measuring the average power received by (non-serving) cell j 
at three different locations in cell i (100m of distance from the 
serving antenna, and an angle of -30°, 0° and 30° respectively). 
30 UEs per hexagon are dropped uniformly in the floorplan and 
are associated sequentially, i.e., one by one, to the node serving 
that hexagon. The mean SINR of each UE is computed through 
(1). Note that there is a circular dependence between a UE’s 
SINR and the RBs allocated to it: when a UE is associated to a 
node e and is allocated some RBs, in fact, ,e x∆

 
may increase, 

thus increasing the interference of UEs attached to x and reduc-
ing their SINR. This in turn increases their RB demand, and so 
on. This means that the average SINR must be computed itera-



tively, factoring in the increasing interference of nearby cells 
every time, until convergence is reached. We repeat the proce-
dure for up to 

maxN
 
iterations or until convergence is reached, 

allowing a UE to change its serving node for the first 
maxN N<  

iterations. Convergence is assumed when the total interference 
over two successive iterations is below a configurable thresh-
old δ . For CS, clusters of any size can be enforced by specify-
ing the cluster-head hexagon and the number of hexagons in 
the cluster. We compare our CS approach against the FF and R 
baselines described in Section II, and against static CS schemes 
with frequency reuse factors of three and seven. With reference 
to (1), CS implies that , ,e x e x∆ = R R , where R  is the AM 
when a solution to the CS problem has been obtained. The ver-
sion of the CS that we use depends on the scale of the cluster. 
We vary the rate required by the UEs, and measure their SINR, 
and the number of allocated RBs and the power consumption 
of the network. Each measure is the average of 10 snapshots 
(i.e., random drops of UEs in the floorplan). 

Simulation parameters are summarized in Table 1. The 
power model of Figure 2 is parametrized using the values re-
ported in Table 2 [15], representing the power consumption for 
a 10MHz-bandwidth system for the years 2012, 2016 and 
2020, respectively. As far as data rate curves (Figure 3) are 
concerned, we consider 

min 10SINR dB= −  and 
30MAXSINR dB= , whereas 

MAXη  is reported in Table 3 for 
three different technologies. This way, we reflect the progres-
sive shift towards more efficient modulations and transmission 
schemes, projecting our results towards a 5G scenario. Since 
results are qualitatively similar, hereafter we show only those 
for LTE-A Pro data-rate curves. 

First, we provide a network-wide representation of the ef-
fects of CS. Figure 6(a-e) show the distribution of SINR over 
the network area, obtained with an offered load of 96 Mbps per 
cell. With no coordination, only UEs close to their serving node 
perceive a high SINR, especially when using FF. Figure 6c 
shows the SINR when coordinating clusters of size three, i.e. 
coordinating cells located at the same site. Intra-cluster cell bor-

ders become greener, although large areas of the cells have a 
low SINR, since interference from neighboring, uncoordinated 
cells is still strong. The improvement when scaling CS to 21 
cells, shown in Figure 6d is remarkable. However, cluster-
border UEs still have a low SINR. Their conditions improve by 
adding inter-cluster coordination, as shown in Figure 6e. 

The improvements to the UEs’ channel quality is shown in 
Figure 7 and 8, which report the average and the 5

th
 percentile 

of the SINR, respectively, with an increasing offered load. We 
note that, at low loads, coordinating larger clusters improves 
the SINR of cell-edge UEs. Adding inter-cluster coordination 
achieves better results since it enhances SINR also for cluster-
borders UEs. At high loads, the number of RBs required to sat-
isfy the traffic increases and there is less space for coordina-
tion, i.e. it becomes hard to accommodate nodes’ allocation so 
as to minimize interference. In fact, CS cannot perform better 
than uncoordinated schemes when saturation approaches. On 
the other hand, SINR values obtained with frequency reuse 
schemes are insensitive to the offered load, and the resulting 
SINR is even better than the one with CS at high loads. How-
ever, static reuse schemes cannot satisfy the requested traffic 
even at low loads, since they are restricted to use only a limited 
portion of the available bandwidth. This is shown in Figure 9, 
which reports the average number of overloaded RBs per cell, 
i.e. the number of additional RBs that would be necessary to a 
node to accommodate its load. As the figure shows, both static 
reuse schemes saturate much sooner than the others. Figure 10 
reports the cumulative distribution function of the SINR for an 
offered load of 48Mbps. Comparing CS against FF and R 
scheme, improvements are evident. Moreover, it can be noted 
that curves of CS shift to the right when increasing the cluster 
size, whereas adding inter-cluster coordination provides further 
enhancements in the channel quality of all UEs. Having better 
SINR means allocating fewer RBs to satisfy the same amount 
of traffic. This clearly reflects on the average power consump-
tion, which is reported in Figure 11. In particular, the figure 
refers only to the power contribution due to the allocation of 
RBs, hence without considering the 

baseP  terms, which only 

Table 1 - Main simulation parameters 

Parameter Value 

Inter-site distance  500 m 

Carrier frequency 2 GHz 

Bandwidth 10 MHz (M=50 RBs) 

Path loss model ITU Urban Macro [10] 

Macro Node Tx Power 36 dBm 

Antenna gain 18 dBm (Macro), 0 dBm 

(UE) Noise figure 5 dBm 

Cable loss 2 dBm 

 

Table 3 - Max. spectral efficiency params. 

Technology 
MAXη   

LTE 1.5 Mbps 

LTE-A 4.5 Mbps 

LTE-A Pro 12 Mbps 

 

 
Figure 5 - Average solving times vs. cluster size 

 

     
a)   FF              b)    Random             c)  CS, cluster size=3      d)  CS, cluster size=21  e) Inter-cluster coordination 

 Figure 6 - SINR distribution, offered load=96Mbps 

Table 2 - Power models parameters 

Parameter 2012  2016 2020 

offP  [W] 465 141 101 

baseP  [W] 590 279 200 

ρ  [W] 9.42 15.08 16.66 

 



adds a constant offset to the values. It is shown that CS con-
sumes less power than the baselines. Figure 12 compares the 
depleted power that derives from the three different power 
models of Table 2. It is shown that moving towards 5G implies 
more power consumption. In fact, according to the power mod-
els, newer technologies require more power per RB, although 
the constant offset 

baseP  is smaller. This implies that employing 
CS in the next years will allow operators to increase the power 
saving. As per Figure 12, CS with inter-cluster coordination 
saves about 100 W with respect to a FF scheme, using a power 
model of year 2012. On the other hand, with the year-2020 
power model, the saving approaches 200 W. 

V. CONCLUSIONS 

In this paper, we have investigated how coordinated sched-
uling (CS) improves network performance, i.e. it allows it to 
carry the same traffic employing fewer resources, and protects 
cell-edge users from excessive interference. To show this, we 
have first devised optimization models that can be solved at 
scales of tens of nodes in a sufficiently short time as to match 
the dynamics of current and future cellular networks. Then, us-
ing a large-scale fluid simulator, we have shown that the 
above-mentioned benefits of CS actually increase with the 
scale of coordination, up to the maximum allowed by our mod-
els. Moreover, the energy-efficiency benefits will be even more 
tangible in the near future, when next-generation base stations 
will be available, whose power consumption depends more on 
the number of allocated RBs.  
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Figure 10 - CDF of SINR, offered load=48Mbps 

 
Figure 11 - Power consumption 

 
Figure 8 – 5th percentile of SINR 

 
Figure 9 - Overloaded RBs 

 
Figure 12 - Comparison of power models 

Figure 7 - Average SINR 



 


