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Introduction 
The launcher market is changing quickly, many new launchers will enter on the market in the coming 
years: 
• Ariane 6, H3, Falcon Heavy, Vulcan, New Glenn, GSLV Mk. III, … 
 
New solutions have to be implemented to guarantee competitiveness: reusability or new propellant 
could be some of them 
 
DLR is performing a systematic analysis of different first stage return systems: 
• Fly Back 
• In Air capturing 
• Return to Launch Site 
• Down-range Landing 

 
Propellant combinations considered:  LOx/LH2, LOx/LCH4, LOx/LC3H8 and sub-cooling 
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Overview 

• Assumptions 
 

• Trajectory overview 
 

• Validation 
 

• Preliminary design (iterations 1 and 2) 
 

• Aerothermal analysis and structure temperature evaluation 
 

• Conclusions 

www.DLR.de  •  Chart 3 > Etienne Dumont > IAC-17 – D2.4.3 > 2017_09_27 



C
op

yr
ig

ht
  b

y 
D

LR
. 

Assumptions 

• Launch from CSG 

• Sizing mission: 7 tons into GTO (+ 500 kg project margins) 

• TSTO architecture (generic launcher) 

• Same engine in both stages (longer nozzle for the upper stage) 

• Three stagings determined by fixed ∆V (6.6 km/s, 7.0 km/s and 7.6 km/s) of the upper stage 

• Return to launch site (RTLS) and down range landing (DRL) considered 

• Dry mass:  

• 1st iteration pre-assumed  structural index 
• 2nd iteration structural preliminary sizing + margins 
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RTLS and DRL 
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Examples of RTLS (return to launch site) and DRL (down range landing) trajectories  
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Validation: Falcon 9 flight simulations 
• Example of the SES-10 and the NROL-76 flights 
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Preliminary design 
• Propellants 

• LC3H8 has a large densification potential 
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• Engines 
• 1st stage nozzle extension chosen to avoid 

flow separation at landing at low thrust 
level  
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Preliminary design: 1st iteration 
• Main results 

• RTLS: all solutions require very large 
stages, not very interesting for TSTO 
flying into GTO 

• DRL: optimum engine number strongly 
dependent on propellant 

• DRL: lower stage size is not decreasing 
with increasing upper stage ∆V  

• DRL: LC3H8 launchers have some 
advantages over LCH4   

 

www.DLR.de  •  Chart 8 > Etienne Dumont > IAC-17 – D2.4.3 > 2017_09_27 

M
as

s [
M

g]

1st stage 2nd stage Payload

LOx/ LC3H8LOx/ LH2 SCLOx/ LH2 GGLOx/ LCH4 GG



C
op

yr
ig

ht
  b

y 
D

LR
. 

Preliminary design: 2nd iteration (DRL) 
• Main results 

• Strong mass decrease due to light upper stage 
• LCH4 configuration slightly larger than the LH2 one in 

volume and double in mass 
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Aerothermal analysis 
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• Aerothermal database 
• Several RANS calculations at different 

trajectory points and fixed uniform wall 
temperatures were performed. 
 

• Numerical domain and boundary conditions 
• Exhaust gas composition was determined 

from equilibrium and held frozen. 
• Zero angle of attack 
• Uniform wall temperatures (300 and 400 K) 
• Internal nozzle wall temperature set to 

1000 K 
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Aerothermal database 

• Plume flow development 
• Plume extension is strongly dependent on altitude. 
• Full immersion of vehicle at the beginning of retro-

propulsion. Partial immersion at the end of the 
maneuver. 

• After retro-propulsion heat flux peaks on lower skirt and 
nozzle region. 
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After retro-propulsion 

End of retro-propulsion 
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Surface temperature evolution 
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• Aerothermal database and wall temperature estimation: 
• Wall temperature at t = 0 s is estimated at 300 K 
• Lumped mass, 0D heat transfer model (wall thickness non 

uniform along the streamwise axis) 
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Conclusions 
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• RTLS 
• TSTO vehicles able to launch 7 tons to GTO have a low economic relevance 

 
• DRL 

• TSTO performing GTO missions have reasonable sizes and masses 
• LOx/LH2 versions are twice as light as LOx/hydrocarbon versions 
• The LOx/LCH4 versions are the bulkiest of all, the LOx/LC3H8 is the less bulky 
• Densification has a large potential for improvement, especially for propane 
• Larger upper stage ∆V leads to larger lower stage 
• Most heat loads on the sidewall are taking place during the retro-propulsion, the temperature 

increase can get high in low thickness structures place in the bottom of the vehicle 
 

• Main goal is to compare costs but it is tricky due to a lack of knowledge of the operational costs. 
• Demonstrators are required 
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