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Abstract

Synchronous low-frequency oscillation in the regtuman brain has been found to form
networks of functionally associated areas and heaséeen widely used to map the
functional connectivity of the brain using techregusuch as resting-state functional MRI
(rsfMRI). Interestingly, similar resting-state neks can also be detected in the anesthetized
rodent brain, including the default mode-like netkvd@ his opens up opportunities for
understanding the neurophysiological basis of $ffdRR| signal, the behavioral relevance of
the network characteristics, connectomic deficitdiseases and treatment effects on brain
connectivity using rodents, particularly transgemisuse models. In this review, we will
provide an overview on the resting-state netwonkihie rat and mouse brains, the effects of
pharmacological agents, brain stimulation, strdtaonnectivity, genetics on these networks,
neuroplasticity after behavioral training and aggiions in models of neurological disease
and psychiatric disorders. The influence of anesthatrain difference, and physiological
variation on the rsfMRI-based connectivity measmilebe discussed.

Keywords: resting state network, functional MRI, functionahoectivity, brain connectome,
translational research



1. Introduction

Infra-slow (< 0.1Hz) oscillation in the restinggkafree) state reveals several large-
scale resting-state networks (RSNs) that not anplicate the intrinsic functional
organization of the brain but also present netvpdakticity or dysfunction in mental or
pathological processes. However, with the neursisiband function of these RSNs remaining
unclear, it is difficult to associate macroscopservations with underlying
neurophysiological, axonal, synaptic, and neurogatiical changes. Animal models provide
a powerful way to understand the neural basis ahlstructure and function, pathological
mechanisms of disorders, and therapeutic effecdeRs, particularly transgenic mice, are
the major animal models for brain diseases. Thesefmaging RSNs in rodent brains is an
important step in linking the findings of humaneasch to underlying cellular and molecular
mechanisms.

Despite the technical challenge (see (Pan et@l5)for a detailed review) and
differences in neuroanatomical and functional orzgtion between species (van den Heuvel
et al., 2016), it has been demonstrated that simRi&Ns, such as the bilateral connectivity in
sensory and motor networks, can be consistenthtifted in the anesthetized rat (Biswal and
Kannurpatti, 2009; Majeed et al., 2009; Paweld.e2808; Zhao et al., 2008), awake rat
(Becerra et al., 2011; Liang et al., 2011; Upadhstagl., 2011), and, more recently,
anesthetized mouse (Grandjean et al., 2014a; Naseetlal., 2014c; Sforazzini et al., 2014Db).
Particularly, default mode (DMN)-like network hasdm found in both the rat (Lu et al., 2012)
and mouse brain (Sforazzini et al., 2014b), indhcpthe evolutionally preservation of this
large-scale network. Furthermore, RSNs in rodeamsbe detected not only by blood
oxygenation level dependent (BOLD) resting-statefional MRI (rsfMRI) but also by
alternative or invasive methods of varying sigrairse and spatiotemporal resolution, such
as arterial spin labeling perfusion fMRI (Nasralkthal., 2012a, 2012b), contrast enhanced
cerebral blood volume (CBV) fMRI (Sforazzini et,&014Db), optical intrinsic signal imaging
of hemoglobin level (White et al., 2011), functibnfirasound imaging of cerebral blood
flow (Osmanski et al., 2014), laser speckle imagihglood flow and hemoglobin
concentration (Bergonzi et al., 2015), and fluoeese imaging of voltage-sensitive dyes
(Chan et al., 2015) or calcium indicators (Y. Malkt 2016; Matsui et al., 2016). Together
with electrophysiological, histological, geneticdasther techniques for characterizing
cellular and molecular changes, rodent models aftgrificant potential to understand and
validate the neurophysiological mechanisms of #fiéiR1 signal, the behavioral relevance of
the network characteristics, the connectomic sigieatand mechanisms of diseases, and the
effects of treatment on brain connectivity. In treésiew, we will focus on the findings
obtained with rsfMRI and start by highlighting tbeganization of RSNs in the rodent brain
and the influence of different anesthesia. We fuitther discuss the perturbation of networks
by various manipulations, including neuro-pharmdcais, behavior, brain stimulation,
structural connectivity and genetics/strain, aretthnslational relevance of disease models.
Technical considerations regarding animal physiplagd post-processing will also be
discussed.

2. Resting-state network of the rodent brain

2.1 Organization and characteristics

Three kinds of functional connectivity (FC) patteimave been consistently identified in the

sedated, anesthetized and awake rat brain (Figure 1

1) Bilaterally symmetric connectivity within functional modules This includes the
primary and secondary somatosensory, motor, angM®rtices, hippocampus and
subcortical areas, such as the caudate putaméamths, superior colliculus, and



hypothalamus (Hutchison et al., 2010; Majeed e809; Pawela et al., 2008; Zhao et al.,
2008).

2) Anteroposterior connectivity along the midline This is found between the cingulate and
retrosplenial cortices (Hutchison et al., 2010;ckens et al., 2011).

3) Large-scale cross-modular connectivityThe DMN-like connectivity is of this type. It
was initially only detected in the well-habituatedake rat brain, and comprised the
cingulate (homologous to the human anterior cingutartex), retrosplenial (homologous
to the human posterior cingulate cortex) and palriEirtices and hippocampus (Upadhyay
et al., 2011). However, with a more stable anesregimen that combined
medetomidine and light isoflurane, a more extenset®vork consisting of the orbital
cortex (homologous to the human orbital frontakeoy, prelimbic and cingulate cortex,
retrosplenial cortex, posterior parietal cortexitary/temporal associated cortex, and
dorsal hippocampus could be detected (Lu et alL.220

With the success of rsfMRI of the rat brain, attésripave been made to detect similar
RSNs in the mouse brain. However, initial studiely aletected unilateral connectivity
(Jonckers et al., 2011), possibly due to sub-optanasthesia and the physiological state of
the mouse which can be more difficult to maintdimen that of the rat. With improved
anesthetic and physiological control, a few grolu@ge recently succeeded in demonstrating
stereotypic bilateral connectivity in the somatasey, motor, auditory and visual cortices, as
well as in the caudate putamen, thalamus, hippouaarapd cerebellum, and anteroposterior
connectivity in the prefrontal, cingulate and rept@nial cortices, similar to the patterns
reported in the rat brain (Figure 1B) (Grandjeaalgt2014a; Nasrallah et al., 2014c;
Sforazzini et al., 2014b; Zerbi et al., 2015). Rartmore, DMN-like connectivity and another
large-scale network composed of the ventrolatératsm, nucleus accumbens, anterior
insular and cingulate cortex, similar to the saleenetwork in humans, were identified
(Sforazzini et al., 2014b).

Another similar feature of rodent RSNs is theii-&otrelation. Anti-correlated
networks have been reported in humans, particulsetyeen the task-positive network
(including the intraparietal sulci, supplementargtan area, precentral gyrus and insula) and
the task-negative network (e.g., DMN) (Fox et 2005). Earlier studies in rats did not
observe anti-correlation which could be partly tméhe effects of anesthesia (Liang et al.,
2012a). Nonetheless, anti-correlated networks aimil those in humans have recently been
identified in medetomidine-sedated rats (Schwaed.eP013) and in propofol- or halothane-
anesthetized mice (Grandjean et al., 2014a; Sfovezizal., 2014b). Furthermore, another
study reported that aged rats exhibit a changetircarrelation between the retrosplenial
cortex (part of rodent DMN) and the fronto-insutartex that may be related to their
memory performance (Ash et al., 2016).

Overall, apart from the second type of RSN thated-separated in humans (Figure
1C), the other connectivity patterns are highlyikinto those which have been observed in
awake humans, suggesting a conservation of RSNssaspecies and the potential of RSNs
as translatable biomarkers. In particular, this/les the opportunity to use widely available
transgenic models and invasive tools to understamdeurophysiological and pathological
mechanisms and functional roles of RSNs.

2.2 Verification of functional relevance

Given that topological similarity does not necegsamply functional similarity, the
first question to answer is whether the functiohthe rodent RSNs, particularly the DMN-
like network, are similar to those in humans. Thenan DMN is characterized by regions
that are hyperactive at rest but suppressed dattegtion- and goal-oriented tasks. It has



been suggested that the DMN is involved in intepmatesses, such as self-referential tasks
and memory consolidation, and is hampered in deseliise dementia (Raichle, 2015). By
measuring brain oxygenation in awake behavingtratas found that task performance
reduced the FC between nodes in the DMN-like ndtnlaut not between the motor and
somatosensory cortices, showing similar charactiesito those of the human DMN that is
more active at rest but suppressed during coghjitdlemanding tasks (J. Li et al., 2015). In
an attempt to elucidate its involvement in memancpsses, we demonstrated that
connectivity within the rat DMN is increased afteaze learning but decreased one week
later, suggesting that the rodent DMN may be ingdlin early memory consolidation
(Figure 2) (Nasrallah et al., 2016a). Other groupther identified sub-network modules in
the rat DMN that display age- and behavior-relatedine (Ash et al., 2016; Hsu et al.,
2016). Together, these findings support the funetioelevance of the rodent DMN and the
use of rodents as translatable models for studyigiger-order functional changes.

2.3 Functional parcellation and modules of the brai

To understand the functional segregation and orgéion of RSN modules and their
correspondence with the neuroanatomy of the bhanctional parcellation based on rsfMRI
has been extensively studied in humans. Similactianal parcellation of the sedated mouse
brain was explored using independent componenysisgliCA) (Mechling et al., 2014),
voxel-wise correlation (Liska et al., 2015) or whketeébased clustering of spectral dynamics
(Medda et al., 2016). By separating the rsfMRI data 100 independent components, more
than 90 functional parcels that match known coracal subcortical structures could be
identified, which could then be grouped into 5 ta@tally symmetric network modules from
medetomidine sedated mouse brain: basal ganghapsemotor and limbic, anterior
cingulate, visual processing and memory, and hyglathus (Mechling et al., 2014). With
voxel-wise analysis, six highly interconnected medicould be identified in halothane
anesthetized mouse brain: DMN, lateral corticaivoek (including the somatosensory and
motor cortices), hippocampus, basal forebrain,raémidbrain (including the amygdala and
hypothalamus), and thalamus (Liska et al., 2018s(dite the use of different anesthesia and
parcellation methods, similar functional networksild be identified, indicating high
reproducibility. However, no network in the dorsaldbrain and brainstem was differentiated,
likely due to the effect of anesthesia.

Recently, using a voxel-wise correlation analysithie awake rat brain, fine-grain
sub-networks was identified that were highly cotesiswith anatomical areas in the
prefrontal, motor, cingulate, somatosensory, otffgGtauditory and visual cortices, as well as
in the amygdala, striatum, hippocampus, thalamysotihalamus, midbrain and brainstem
(Figure 1A) (Z. Ma et al., 2016). These networksengighly symmetric and the
homogeneity of the rsfMRI signal in the functiopalrcel was greater than that in the
anatomical parcel, suggesting that using anatorstcatture to define functional regions for
rsfMRI analysis may not be the optimal approachilar work will be needed in the awake
mouse to define the functional parcels suitablé=foranalysis.

3. Effects of anesthesia on functional networks

Anesthesia has been used in most rodent rsfMRiestud minimize stress and
movement of the animal. Although anesthesia is kntamelicit complicated effects on
neural, metabolic and hemodynamic responses (seeGd., 2016; Masamoto and Kanno,
2012, for review), studies have demonstrated ti&ti&kare highly reproducible and
consistent across different anesthesia regimeogtabal dose. The fact that FC can be
altered by anesthesia also makes rsfMRI a powtr@llto understand the mechanism of
anesthesia (Nallasamy and Tsao, 2011).



The neural effect of anesthesia mainly arises fitoersites of anesthetic action, the
associated downstream neural activities, and tiiems related to unconsciousness and
arousal. For example, as most anesthetics birtetpdmino butyric acid (GABA) receptors,
FC within and between regions of high GABAergicagtor density, such as the thalamus
and caudate putamen, is generally weaker. Thentifwalartical, frontoparietal and DMN
connectivity, which are important for integratiohimformation, attention and consciousness,
are affected under anesthesia (Hudetz, 2012; Mafpsnd Tsao, 2011). Given that some
forms of anesthesia also have an analgesic effectonnectivity in the pain pathway, which
involves regions like somatosensory and cingulatéaes and the thalamus, would also be
affected. Besides the neural effect, anesthesiaaly affects cardiopulmonary and vascular
functions, leading to systemic changes in bloodyexytion, basal cerebral blood flow
(CBF), vascular reactivity and, ultimately, neurssalar coupling (see (Masamoto and
Kanno, 2012) for review). Therefore, these factbrsuld be considered in any experimental
design and interpretation of results. As thesecedfare typically dosage dependent, an
optimized dose will allow measurement of spontasewaural oscillation with minimal
hemodynamic and physiological confounds (Paasohah, €016; Schroeter et al., 2014). In
the following section, the effects of commonly usesthetics for rodent rsfMRI are
summarized and compared with the results obtamedn-anesthetized animals (see the
summary in Table 1).

3.1a-chloralose

a-chloralose has been widely used in rodent fMRI ués minimal impact on
neuro-metabolic coupling (Ueki et al., 1992). Ihqaotentiate GABAergic transmission
without affecting glutamatergic or cholinergic tsamssion (Wang et al., 2008), and allows
measurement of FC with strong strength and goaalil@ation, although the connectivity in
the caudate putamen, where the GABAceptor density is high, is much lower (Paasaien
al., 2016; Williams et al., 20103-chloralose has strong dosage-dependent effecsaked
activation and interhemispheric coherence suchuiteteral BOLD signal correlation and
delta band coherence of local field potential (LBR attenuated at high dose (Lu et al.,
2007). As this anesthesia can cause acidosisrtgrahblood pCQ level could be increased
and alter the CBF and BOLD signal during prolongezhsurement (Low et al., 2016a).
Dissolvinga-chloralose in polyethylene glycol may avoid acid@nd hence may help to
minimize its physiological impact (Jonckers et a014).

3.21soflurane

As isoflurane is a quick, easy and safe way totae&ige animals and ensure good
recovery, it has been an attractive choice in fMRd longitudinal studies. Isoflurane acts on
multiple systems, including the glutamatergic ardBBergic systems, and has a strong
vasodilatory effect that alters CBF and neurovasctupling in a dosage-dependent manner
(Masamoto et al., 2009). At a low dose, such ab¥%]la strong focal connectivity pattern
can be obtained, although with suppressed thalarticaloconnectivity (Bukhari et al., 2017;
Grandjean et al., 2014a; Hutchison et al., 2014r&lmh et al., 2014a). Isoflurane has strong
dosage-dependent effect on RSNs with reduced opletenloss of bilateral FC at high dose
due to its suppression of both spontaneous actwvitysynchrony (Nasrallah et al., 2014a;
Wang et al., 2011). A major complication in termi&R@Ns is that isoflurane could induce
burst-suppression activity across the brain at toibigh dose (e.g., >1.8% in rats) and hence
could lead to a strong global correlation (Kalthetffal., 2013; Liu et al., 2011; Xiao Liu et al.,
2013; Williams et al., 2010). Therefore, the ddseutd be kept to the minimal level. As
physiology and motion are more difficult to contusider a low dose of isoflurane, the use of



mechanical ventilation together with a paralyziggrat would be preferable to minimize the
variation.

3.3Medetomidine/dexmedetomidine

Unlike most anesthesia that acts on GABAergic anglitamatergic systems,
medetomidine is a sedative that specifically agemthex2-adrenergic receptor.
Dexmedetomidine is the active enantiomer of medetim® and has twice the potency;
consequently, the dosage is typically half thanefletomidine. Both agents cause
bradycardia and act as vasoconstrictors that iserbbbod pressure and reduce CBF. Given
that they have less impact on neural activity aewrovascular coupling than other general
anesthetics and are easily reversible by an anistgatipamezole, to allow quick recovery
and facilitate longitudinal studies, they have besately used in task and resting fMRI
studies in rodents (Nasrallah et al., 2014a; Webat., 2006; Williams et al., 2010; Zhao et
al., 2008). Strong and focal RSNs can be detedtkvadose, but the connectivity reduces
dosage- and duration-dependently, particularlyegians with highu2 receptor density, such
as the thalamus, whereas regions with low recejgnsity, such as the caudate putamen,
remain relatively unaffected (Grandjean et al.,Z20Nasrallah et al., 2014a, 2014c, 2012b).
Nonetheless, unlike with isoflurane, the thalamtical connectivity is preserved (Bukhari et
al., 2017). Interestingly, increasing the dosagerimeffect on the neurovascular coupling,
evoked activation or fluctuation amplitude, buheatreduces the synchrony, especiallyythe
oscillation, suggesting that sedation is caused lmgs of functional integration (Nasrallah et
al., 2014a). A limitation of medetomidine is thetrective sedative duration (Nasrallah et al.,
2014c; Weber et al., 2006). Although increasingdbse could extend the duration, the FC
strength changes (Pawela et al., 2009). Prolongssutement could be achieved with a
higher dose, but the FC gradually decreases, plpbak to excess receptor binding
(Nasrallah et al., 2014c), and there is a tendémwgrds epileptic activity after long periods
of sedation (Fukuda et al., 2013). However, conmgimhedetomidine with a very low dose
of isoflurane has proven a reliable way to extdrededation period while avoiding the
neurophysiological impacts (see below).

3.4 Medetomidine + isoflurane

A low level of isoflurane (< 0.5%) together withaav dose of medetomidine infusion
is likely to be the most robust anesthesia foratatg strong bilateral FC, the DMN and even
anti-correlation in the rodent brain (Grandjeanlet2014a; Lu et al., 2012). This
combination has the advantage of suppressing ttenia epileptic effects of long duration
medetomidine without altering the evoked poter(ialkuda et al., 2013). In addition, it may
help to overcome the strain-dependent suscepyilbditnedetomidine and provide more
robust sedation across strains. It also allows areagent of neuronal and hemodynamic
responses over an extended period (~3 hours) ceapauusing medetomidine alone.
Nonetheless, gradually increased respiration radedacreased pG@ventually compromise
the hemodynamic response for experiments longar3hzours (Brynildsen et al., 2017,
Fukuda et al., 2013).

3.5Propofol

Propofol is a GABA receptor agonist that has the advantage of renuting
BOLD activation even at high dose (J. V Liu et a013; Schroeter et al., 2014), indicating
well-preserved neurovascular coupling. It has malivascular effects although CBF could
be reduced at high dose (Xiping Liu et al., 201/®grestingly, propofol can be used to
induce hypnotic sedation through to deep anestli@sgurgery as the dosage increases and
produces strong dosage-dependent changes in R&biefdre, it has proven an attractive



anesthetic for studying the loss of consciousnBasttfeld et al., 2015). With increased dose,
cortical connectivity in the motor cortex and DMBadeases while thalamic and
hypothalamic connectivity, which control arousatldhe conscious state, remains stable; in
some subcortical areas, such as the hippocampusaaddte putamen, connectivity is
reduced but rebounds at a higher dose, likely lscatiincreased burst-suppression activity
(Xiping Liu et al., 2013). Similar to isoflurane dn-chloralose, which also bind to the
GABA receptor, the thalamic connectivity is weak evieveay low doses. Greater anti-
correlation can be observed under propofol comperededetomidine although the
mechanism is not clear (Grandjean et al., 2014a).

3.6 Urethane

Urethane acts on multiple neurotransmitter systemegjding the GABA and N-
methyl-D-aspartate (NMDA) receptors (Hara and Ha2D02). It has been widely used in
rodent fMRI and electrophysiology studies due saiiinimal impact on systemic
hemodynamics and the cardiovascular system (Jaessen 2004). In the resting state,
urethane shows dosage-dependent depression @railabnnectivity and loss of spatial
specificity (Grandjean et al., 2014a; Jonckerd.e@14). Most interestingly, urethane can
induce sleep-like states, including rapid eye maseinffast wave) and non-rapid eye
movement (slow wave) states, and hence exhibitsrdiit FC strengths/patterns that depend
on the sleep state (Wilson et al., 2011; Zhurakayalet al., 2016). Therefore, it could be
used to investigate RSN dynamics in sleep. Asttite shanges dynamically under the same
anesthesia dose, electroencephalogram recordidf@matively, respiration rate is needed
to determine the exact brain state for which th&lRSmeasured (Wilson et al., 2011). It
should be noted that urethane could have a vasetitat with broad and slow hemodynamic
oscillation that does not correlate with local éximry neural oscillation in the resting state
(Y. Ma et al., 2016).

3.7Awake

A few studies have explored the RSN in awake resdarodents. As the neural and
hemodynamic activities are not attenuated by aes&ththe spontaneous activity amplitude
and FC strength are generally greater. Furthernmooee long-range connections can be
detected in awake compared to isoflurane-anesttetets, particularly in the striatum,
pallidum, thalamus, and cortex, while the FC ingogampus, amygdala, and hypothalamus
are reduced in awake rats (Chang et al., 2016 gléaml., 2012b, 2011). In particular,
thalamocortical connectivity, which is difficult tietect under isoflurane, can be better
resolved in awake rodents (Z. Liang et al., 20A8}i-correlation, which is occasionally
reported in anesthetized rodents, can also betddteasily in awake rodents (Liang et al.,
2012a). Awake mouse rsfMRI has proven more chaitgntipan that in rats, with recent
attempts showing weak bilateral connectivity (Beagm et al., 2016; Jonckers et al., 2014).
As mice generally become stressed more easilyrdtar{Ellenbroek and Youn, 2016),
improved restraint design (Chang et al., 2016hatsr restrained period and more days for
acclimation (Harris et al., 2015) would be needettdin them. Although acclimation to
restraint inside the MRI scanner has been showedioce movement and stress, chronic
stress may be induced after prolonged restraintaottl result in elevated FC in certain
networks, such as the somatosensory and visuate®dnd the DMN (Henckens et al.,
2015). In addition, the restraint training may dksad to a reduced response to pain (Low et
al., 2016b), which could confound the RSN detedBhstantly received strong sensory
inputs from the MRI scanner environment and theléey to escape may also alter the
spontaneous activity and RSN in awake condition.



3.8 Practical consideration

FC strength, network organization and the numbetyomic states could change not
only with the anesthesia dose but also based orotlie and timing of delivery (Hutchison et
al., 2014; Liang et al., 2014b). In particular,ngsa single bolus injection rather than
continuous delivery could lead to a variable deythnesthesia, physiological state and FC
depending on the pharmacokinetics and pharmacodgaarhthe anesthetic. In a study
comparing several anesthetics, stable FC overautihterval was only observed under
continuously delivered anesthesia (Paasonen @(lg). Another study on the transition
from deep to light anesthesia found drasticallyeased FC in the latter case (Bettinardi et
al., 2015). Therefore, continuous delivery, whicbyides a more stable depth of anesthesia,
is preferable to ensure more consistent and repioldu-C measurements, particularly over
long periods for data averaging or to detect diftects (Paasonen et al., 2016). Furthermore,
FC strength could be affected by the duration ugeeeral anesthesia (typically isoflurane)
(Matthew Evan Magnuson et al., 2014). Therefore piteparation duration should be
minimized and standardized.

Anesthesia may affect the spectral distributiospaintaneous activity. Whereas most
human studies focus on a frequency range belowd, several rodent studies have shown
that resting-state activity could peak at higheqgtrencies depending on the type of
anesthesia. For example, the resting BOLD signdéumedetomidine and its mixture with
isoflurane presents high spectral power betweei® 2 Hz whereas the BOLD signal under
isoflurane is mostly below 0.1 Hz (Grandjean et2014a; Pan et al., 2013). The spectral
component could also change with the duration ektresia. For example, high frequency
peaks start to emerge after a long period of medieiine sedation (Matthew Evan
Magnuson et al., 2014). Given that the high fregyesscillation could contain more
dynamic characteristics of the FC or even diseakded features, as shown by recent studies
in human patients (Calhoun et al., 2012), morerags investigations incorporating high
temporo-spectral information are needed.

Finally, it should be noted that the anesthetieaftould be animal species, strain,
gender, age and disease state dependent. For &dhganesthetic dose is generally lower
in neonatal and aged animals (Chemali et al., 2CGbfgnnese et al., 2008). It has been
shown that the duration of anesthesia in albin® isaggenerally longer than that in the
pigmented ones (Avsaroglu et al., 2007). BALB/c #hdJ mice have lower depth of
anesthesia than C57BL/6 mice under isoflurane, kvbauld affect the quantitative measure
of evoked and resting BOLD amplitudes (Schroeted.eR017). Whereas medetomidine can
sedate C57BL/6 mice well, it is not as effectivéBinBR T+tf/J or CD1 mice, which may
reflect strain differences in the affinity and diénsf a2-adrenergic receptors (Petrinovic et
al., 2016). Our preliminary data have also shovert VB mice cannot be sedated using
medetomidine, even at very high doses. Sprague &aavid Wistar rats are more sensitive
to medetomidine than C57BL/6 mice, with bilater@l &bolished at 0.3mg/kg/h in rats
compared to > 0.6mg/kg/h in mice (Nasrallah et2fl14c, 2012b; Pawela et al., 2009).
Therefore, the equivalent dose should be determwieth comparing across ages, between a
disease model and its wild-type control, or betwsteains.

4. Pharmacological effects on functional networks

Pharmacological MRI (phMRI) has been used to mam#ural activation induced by
a drug challenge in order to understand the phaythemmics in the brain (see (Jonckers et
al., 2015) for review). Similarly, a change in F@utd also be a pharamcodynamic readout
for evaluating the efficacy of drug treatment. Rertnore, using drugs that target specific
receptors could help to delineate the neural cateedf FC in relation to the underlying
neurotransmission, receptor system, pathway ottifumed deficit. Various studies have



shown that rsfMRI is sensitive enough to detecgdnodulation of RSNs. In the following
section, the effect of drugs that target the magaurotransmission systems are discussed.
Although RSNs detected under drug infusion aretstrno longer resting state, the same
term will be used in the following discussion fansistency. In addition, most studies are
conducted with acute injection of drugs. Studie®ining chronic or sub-chronic drug
delivery are highlighted.

4.1 Glutamatergic

Glutamate is the primary excitatory neural transgniand has been implicated in a
broad range of neurological and psychiatric disdeglost studies have focused on the
effects of NMDA receptor antagonists, such as ketarand memantine, on prefrontal-
hippocampal connections in psychosis and memorytedinjection of ketamine induces a
dosage-dependent increase in FC in the prefroattdxcand its connectivity with the
hippocampus, supporting its role on disinhibiti@aés et al., 2014b). On the other hand,
sub-chronic injection of memantine for 5 days restuBOLD activation and the prefrontal-
hippocampal FC, consistent with the reduction foumsichizophrenia (Sekar et al., 2013).
Our preliminary study with chronic low-dose memaattreatment over 6 months also found
a decrease in FC and the amplitude of low frequdéncyuation without affecting BOLD
activation. This difference may be due to time- dode-dependent effects or actions on
other neurotransmitter systems by NMDA ligands tbelres at high dose (Kapur and
Seeman, 2002). For example, FC among the prefroottx, hippocampus and other
cortical areas is increased at very low dose batedsed at higher doses of phencyclidine
(PCP), a NMDA antagonist, together with impairediabinteraction similar to that observed
in schizophrenia (Paasonen et al., 2017). A pakoatinfound in these studies is the
interaction with anesthesia because several aresthguch as halothane and isoflurane, also
act on NMDA receptors (Gozzi et al., 2008; Hodkimsb al., 2012). To eliminate this
confound, a study using oxygen amperometry in yre@ving rats found that ketamine
induces an increase in FC between the medial priafroortex and striatum, consistent with
the rsfMRI results obtained in anesthetized rodéhtki et al., 2014). Cerebrovascular
effects could also play a role. A comparison betwd®& DA anda-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptotagonistic effects on the BOLD signal
and electrophysiological activation revealed thttcaigh both forms of antagonism reduced
evoked activity, the NMDA receptor mediated a sfgemvascular response (Gsell et al.,
2006).

4.2 GABAergic

GABA is the major inhibitory neurotransmitter arsdnvolved in wakefulness,
neuroplasticity, neurological and mental disordard therapeutics. Several human studies
have shown that the GABA level correlates with easblctivation and FC strength (Hu et al.,
2013; Muthukumaraswamy et al., 2009; Northoff et2007). Although the effects of
specific GABAergic ligands on RSNs have been lagkme recently showed that
antagonizing the GABAreceptor with bicuculline induced significant wigeead
enhancement of FC across the brain, in particatarinetwork connectivity; however, this
change in FC did not correlate with receptor distiion and hence may reflect downstream
excitatory transmission (Nasrallah et al., 201 He €ffects of GABAergic activity could also
be derived from anesthetics that potentiate the S&&Bic system, such as propofol,
although propofol also acts on the endocannabisystem. Isoflurane, the commonly used
anesthetic for drug studies, also positively mothddhe GABA receptor while suppressing
glutamatergic transmission. Therefore, the drugatffinder anesthesia could involve other
systems. Furthermore, GABA interneurons can contstular tone independent of the
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evoked potential and neurovascular coupling (Cetudil., 2004; Fergus and Lee, 1997) and
hence may complicate the BOLD signal readout.

4.3 Adrenergic

The adrenergic system, a major neuromodulatorgsyshat regulates arousal,
attention, mood, learning, memory, and stress resgdas been a drug target for diseases
such as ADHD (Cinnamon Bidwell et al., 2010). Thiéuence of thei2-adrenergic system
on RSNs has been studied using its agonist and@mtd. Then2 agonist can increase FC
whereas the antagonist has the opposite effechdepeon the dosage and regional receptor
density (Nasrallah et al., 2014b, 2012b). Undewstdusion ofa2 agonist, regions with high
receptor density show a decrease in FC much earigémore significantly than regions with
low receptor density. Furthermore, W2 system modulates neural synchrony in particular
without affecting neural activation, which has beeggested as a mechanism of the sedative
effect of the agonist (Nasrallah et al., 2014ajhéligh adrenergic drugs are highly receptor
specific, drug-anesthetic interactions could sittur as the adrenergic system modulates
glutamatergic and GABAergic neurons (Bennett et1&l98).

4.4 Cholinergic

Cholinergic signaling arises from several nuclartigularly the striatum and nucleus
accumbens in the basal forebrain, can modulateahexcitability, synaptic plasticity and
coordinated activity, and is involved in attentitegrning and memory (Picciotto et al., 2012).
Due to the prevalent use of acetylcholinesterasibiiors, such as donepezil, in the treatment
of Alzheimer’s disease (AD), the influence of thmlinergic system on FC and cognitive
functions have been studied in elderly humans atiémqts but not in young healthy subjects
(Li et al., 2012). Injection of scopolamine, a marsgic acetylcholine receptor (MAChR)
antagonist, results in dosage-dependent reductiB®aD signal intensity and FC within the
DMN (Shah et al., 2016a). Furthermore, a broadctolu in inter-regional FC in the cortex,
hippocampus and thalamus was found to correspoimipaired learning performance,
which can be partially reversed by an agonist, méine (Shah et al., 2015). Consistent with
this, our preliminary study on enhancing cholinetgansmission with sub-chronic treatment
with donepezil showed that striatal and hippocank@alvere increased and corresponded
with better performance in a water maze. As chogjiteneurons innervate cerebral blood
vessels and regulate CBF, the BOLD signal and #éwebehavioral performance may be
changed by the vasoconstrictive effect of cholireeagtagonist (Kocsis et al., 2014).
Another mAChR antagonist, methyl-scopolamine, widoks not cross the blood-brain
barrier was used to show that FC change is notauascular effects (Shah et al., 2015).

4.5 Dopaminergic

Dopamine is involved in reward, aversion, cognitteatrol and motor function. The
nigrostriatal dopamine pathway that projects from substantia nigra is crucial for motor
function, and the mesolimbic and mesocortical dapamathways which arise from the
ventral tegmental area are important for motivatldanction (Wise, 2004). Injection of
haloperidol, a widely used antipsychotic and dopenid2 antagonist, induces broad
modulation of the downstream circuits, includindueed FC between the substantia nigra
and regions in the ascending dopaminergic projestand increased FC between the
habenula, an important relay center for the midbnaiclei, and the striatum, which is
consistent with the dyskinetic side effects (Gdsd.2013). Due to its important role in
psychosis, dopaminergic blockade has been usesb&ssithe effects of other psychosis-
inducing drugs, such as ketamine, on the dopanysters (Colon-Perez et al., 2016; J. Li et
al., 2014).
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4.6 Serotoninergic

Serotonin (5-HT), which is produced in the rapheleuand distributed across the
brain, regulates mood, appetite and sleep anddeswidely used as a drug target for the
treatment of depression (Berger et al., 2009). Baing serotonin transmission with a 5-
HT.a agonist increases FC with respect to the hippoaarapd amygdala, an effect
decreased in the 5-HA receptor knock-out mouse (Razoux et al., 2013iibiting serotonin
transmission with a 5-HJk antagonist leads to a broad reduction in FC withafrontal
cortex, somatosensory cortex, thalamus, striatmeh ZMN, consistent with the high
receptor distribution in these areas (Razoux eR@ll3; Shah et al., 2016a). Given that
serotonin regulates CBF and blood pressure, anistgufrthe 5-HTg/1p receptors that causes
vasoconstriction was investigated, revealing theiN>connectivity was not affected (Shah et
al., 2016a). To understand the influence of dowaion of the serotonin transporter,
which has been implicated in depression, the F&adtonin transporter knockout rats was
examined and found to be similar to that of wilgdyrats despite an increased serotonin level
and cocaine hyper-responsivity (van der Marel e28&l13). This is different from human
studies which showed that FC correlated with a iepelymorphism that encodes the
expression of the serotonin transporter (Wigginasl.e2012). This difference may be due to
the complete knockout rather than down-regulatiotne animal model.

4.7 Potential confounds

Two major confounds need to be considered in a sudy: peripheral/vascular
effects and interaction with anesthesia. A druga&mduce central and peripheral effects by
binding to the receptors in the periphery or viadmlation of the autonomous system that
regulates cardiopulmonary functions. Thereforejtaathl measures such as CBF, cerebral
blood volume (CBV) and electrophysiology, or comgan with drugs that do not cross
blood-brain barrier should be obtained for propéerpretation of the FC measures. It is also
important to compare drug dosage and anesthett ¢e\even to use another anesthetic that
acts on a different system to determine the drigstesia interactions and to identify the
proper challenge dose for preclinical phMRI.

5. Behavior-induced network change

Intensive learning has been found to alter FC énrésting human brain (Guerra-
Carrillo et al., 2014; Lewis et al., 2009; Tambgtial., 2010). Similarly, sensory stimulation
in rodents can induce enhancement of FC acutdhleisomatosensory cortex as well as in
regions associated with vigilance, such as theitirabd insular cortices (C. Li et al., 2014).
Furthermore, the performance of a cued reward-sgedkisk can reduce the FC between
nodes in the DMN-like network (J. Li et al., 201%hese studies indicate that both passive
and active task performance can alter RSNs.

To understand whether training can lead to longrgglasticity of the large-scale
RSN, rats were trained in a Morris water maze for & days after which the RSN was
assessed at 1 day and 1 week after finishing éiv@ing (Nasrallah et al., 2016a). The change
in the RSN was training duration dependent, lastaetral days and reorganized over time
towards the cortex, which is consistent with therent theory of memory consolidation
(Figure 2A). Furthermore, the connectivity in thMRN-like network increased 1 day after
the training but returned to baseline at 1 weeggesting the early involvement of the DMN
in memory consolidation (Figure 2B). Although inagipost-learning RSNs 1 day after
training using medetomidine did not affect the megn(dlasrallah et al., 2016b), one should
be cautious when using this sedative immediategr ééarning asi2-adrenergic agonists can
affect memory consolidation (Ferry and McGaugh,800
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Another study examined FC following exposure tauanonditioned fear stimulus
from a predator’s (cat) odor and found that thewitBin the amygdala and medial prefrontal
cortex was reduced even 1 week after the traure&perience (Liang et al., 2014a).
Together, these studies indicate the existencersigiing neural oscillations at least a week
after learning and the potential of rsfMRI to trestkch processes in vivo. These behavior-
dependent changes also suggest that variationShNsRnay arise from differences in
behavioral manipulation and environmental enrichtmen

6. Manipulation of networks by brain stimulation

Brain stimulation techniques, such as deep brammusation or transcranial
current/magnetic stimulation, have become popuwlalstfor improving motor or cognitive
function or alleviating the symptoms of variousadders, although how they modulate
network function is still not clear. Rodent modptsvide a good way to elucidate the
mechanisms involved and to optimize the stimulataovget and paradigm. Using deep brain
stimulation, it has been shown that high frequgd®&pHz) stimulation in the external globus
pallidus, substantia nigra or nucleus accumbengraasiently modulate brain-wide FC,
particularly in downstream regions not directlyiaated by the stimulation (Albaugh et al.,
2016; Van Den Berge et al., 2017). This indicated high frequency neural oscillation could
alter RSNs and the potential roles of those suladmuclei in shaping RSN activity. As the
frequency used in deep brain stimulation is typycaduch higher than that seen in the RSN,
how it affects the infra-slow activity of remotesas requires further investigation. Whether
very low frequency stimulation can modulate RSN® aemains to be elucidated.

In rodents, optogenetics and chemogenetics prandgpie alternatives for
controlling neural activity with high spatial arehtporal precision. By expressing light-
sensitive ion channels, such as channelrhodogaingurons or astrocytes, optogenetic
stimulation can be used to pinpoint the role o&dipular neural pathway through cell-
specific activation or inhibition (Lee et al., 2QHhang et al., 2007). For example, by
expressing channelrhodopsins in the thalamocomicatatory neurons in the ventral
posteromedial thalamus, which projects to the sosegisory cortex, both the visually
evoked activation (an area without direct projattiand the bilateral connectivity in most of
the sensory cortices at the resting state coukhbanced by low frequency (1Hz) but not
high frequency (5-40Hz) optogenetic stimulationreaéter the stimulation ceased (Figure 3)
(Leong et al., 2016). Similarly, low frequency stilation of the dorsal dentate gyrus
increased brain-wide interhemispheric FC and isfoav coherence of LFP, which were
reduced by injecting tetrodotoxin that suppressegatory activity (Chan et al., 2017).
These together suggest that low frequency actoatyd propagate through broad cortical
areas via polysynaptic pathways to modulate sergairyand strengthen FC. They also
indicate a role of the thalamus and hippocampuesgnlating cortical connectivity and
behavior.

Chemogenetics expresses Designer Receptors Exallugigtivated by Designer
Drugs (DREADDS) in specific cell types in a simil@ay to optogenetics but
activates/deactivates the receptors by injectingx@agenous chemical, such as clozapine-N-
oxide (CNO), without the need to implant any stiating device (Urban and Roth, 2015). As
CNO has slow pharmacokinetics, the effect canddetv hours for behavioral or imaging
experiments. Using this technology, Grayson el@nonstrated that deactivating the
amygdala suppressed amygdalocortical communicatidncorticocortical FC in monkeys
(Grayson et al., 2016). In rodents, selective atiim of mesolimbic or mesocortical
projections from the ventral tegmental area tontheleus accumbens or medial prefrontal
cortex, respectively, has been shown to allow theeovation of responses in the downstream
areas despite the fact that the FC among these ameins unchanged (Roelofs et al., 2017).
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Although chemogenetics cannot control the preamsmg of excitation/inhibition in the
same way as optogenetics, it maintains excitatidigition without interfering with the
timing of spontaneous activity and hence may p@wdmplementary information.

Overall, these techniques allow the manipulationiwiuit activity so that the
functional role of a specific pathway or cell tyipebehavior can be determined. Although
RSNs have been associated with various behaviarsliaorders, the causal relationship
remains unclear. It will be useful to apply theBmalation techniques to manipulate the
RSN involved in a behavior in order to validate thiectional involvement of a particular
network and to explore the potential of manipulatd network activity in order to improve
functional performance. For example, a recent stietgonstrated that silencing highly
connected network hubs in a fear-conditioning @k disrupt memory consolidation, and
hence confirmed the importance of network hubseimavior (Vetere et al., 2017).
Translating similar manipulation using non-invasbrain stimulation in humans may
provide new avenues for the treatment of neurobd@ind psychiatric disorders.

7. Structural connectivity affect network organization

The structural connectivity between nodes in an R&dlbeen inferred from fiber
tracking using diffusion MRI (Greicius et al., 200Ripel et al., 2010). However, diffusion
imaging cannot differentiate unmyelinated fibensthe directionality, density and number of
synapses crossed. Therefore, how axonal propeaffes FC is still not clear. In the animal
brain, anterograde (or retrograde) and monosynéagpiit tracers can be used to determine the
direction and density of axonal tracts betweenrbregions to reveal the circuitry of the brain
(Oh et al., 2014; Zingg et al., 2014). Comparedhliese axonal connectivity atlases, good
correspondence between regions with strong direpeqtion and FC strength have been
found in the DMN (Stafford et al., 2014) and caatinetworks (Bergmann et al., 2016;
Grandjean et al., 2017). As current analyses haea bmited to unidirectional monosynaptic
projections, further examination of bidirectionaldéor polysynaptic projections between
functionally connected regions will be importanetacidate the structural basis of the RSN.
Using graph theory analysis, a recent study shahatdcortical FC is mostly associated with
monosynaptic projections whereas subcortical F@d¢a depend on polysynaptic
projections (Grandjean et al., 2017).

Experimental models of axonal damage, agenestseafdrpus callosum or
callosotomy provide another way to understand theetural-functional interaction.
Cuprizone, a toxin that damages oligodendrocytas deen used as a model of
demyelination and remyelination. With cuprizonetindd demyelination, FC strength
decreases globally, with several connections irDlN becoming negative and the
correlation between white matter fractional anispyrand FC strength disappearing (Hiubner
et al., 2017). Mouse models lacking a corpus caffgssuch as I/LnJ or BTBR T+tpr3tf/J
(BTBR) mice, allow investigation of the role of pais callosum on the bilateral FC. Partially
disrupted inter-hemispheric connectivity is foundhe I/LnJ (Schroeter et al., 2017) and
BTBR mice (Sforazzini et al., 2014a), indicatingrqmensation by polysynaptic projections
in the intact networks. The disrupted fronto-thalaand striatal FC in the BTBR mice is
also consistent with their autism-like behaviorof@kzini et al., 2014a). On the other hand,
complete callosotomy leads to fully disrupted latat FC and reduced propagation of
cortical activity, which supports the role of thargus callosum in the formation of bilateral
FC (Matthew E Magnuson et al., 2014; Zhou et &114). Interestingly, the bilateral
connectivity gradually recovered in animals withiti@d callosotomy, indicating a plasticity
that may be mediated by remaining projections (Z&ioai., 2014). These findings highlight
the importance of axonal connectivity that subsethe RSN topology and activity, and the
potential plasticity that may occur to maintain tlegworks and their associated functions.
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Further study will be needed to elucidate the $peprojections or pathways that underly
network topology, function and behavior.

8. Genetic and strain effects on network changes

Combining genomics and neuroimaging, recent stuthes identified an association
between genetic variations and brain structurefanction in humans (Richiardi et al., 2015;
Thompson et al., 2013). Similar exploration cardbee in the mouse brain using gene
expression and axonal connectivity atlases (Leal.eR007; Oh et al., 2014). The covariate
of gene expression profiles between axonally caiegeegions was found to be highly
coupled in regions with bidirectional connectivagd between network hubs, with genes
related to the regulation of synaptic connectivibypnogenesis and metabolism, indicating
the molecular and energetic demands of maintainéwgal communication (Fulcher and
Fornito, 2016). The correlated expression of ioanttel-related genes in the cortex also
shows high similarity with the axonal connectiviilythe mouse brain (Richiardi et al., 2015).

As well as revealing associations between connigcand genes, transgenic mouse
models provide a powerful tool for discovery antldation. The role of specific genes on
the brain connectome can be examined using knook4mockout animals. For example,
single gene deletion of the mu-opioid receptor g&m@mm1l) leads to extensive changes in
FC, particularly in the motivational and aversi@tated networks, despite minimal changes
in structural connectivity (Mechling et al., 2018&he pathological effect of the TOR1A gene
in early-onset generalized torsion dystonia (Dy#h) autosomal dominant movement
disorder, was evaluated in (DyRI3AG heterozygous knock-in mice, revealing incredsed
across the striatum, thalamus, and somatosensdexcand reduced FC in the motor and
cerebellar cortices (DeSimone et al., 2016).

Genetic difference in rodent strains has also lieend to affect FC. A study
comparing the thalamocortical network of Brown Naywats and Dahl salt-sensitive rats
found that the former have a larger somatosensaoitezl response to electrical forepaw
stimulation and more extensive but weaker FC utiteresting state (Li et al., 2013).
Another study compared the DMN-like connectivityifistar Kyoto rats and spontaneously
hypertensive rats, an inbred strain originated feehected Wistar rats that have high blood
pressure, and found that the former have stronmamectivity with the hippocampus whereas
the hypertensive rats have stronger connectivitia tie caudate putamen, which may be
related to their hyperactivity (Huang et al., 2Q183ing similar strains but imaging in awake
condition, another study compared adolescent speatssly hypertensive rats with two
common rat strains (Wistar and Sprague Dawley)fandd that the functional networks
were mostly similar except for the striatal andugisnetworks in the hypertensive rats that
may indicate their attention-deficit/hyperactivitisorder (ADHD)-like phenotype (Poirier et
al., 2017).

In the case of mice, a study comparing C57BL/6, BAL. and SJL mice found that
the connectivity strength in both albino strain&[B/C and SJL mice) were generally
stronger than that in the C57BL/6 black mouse (SHall., 2016b). Part of the FC difference
between strains could be due to the structural @cinnty difference. In a study comparing
C57BL/6 and BALB/C with a mouse model of corpudasim agenesis, I/LnJ, bilateral FC
strength did not correlate with vascular reactiwity with corpus callosum integrity
measured by fractional anisotropy using diffusiemsor imaging. This was true even for the
two normal mouse strains (Schroeter et al., 2017).

These studies demonstrate that rsfMRI could bensitbee way to detect differences
in genetic background and relevant behavioral ptygeo The use of genetic manipulation
together with RSN mapping will be a powerful way tmderstanding the causal relationship
between genetic variation, the functional conneetoamd behavior.
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9. Disease-dependent network changes

Deficits in and reorganization of RSNs have beaygsated as potential biomarkers
for disease progression and the evaluation ofrtreat. Given that the actual causes of the
altered RSNs in human disorders are not clear,R$fikl rodent models of these diseases
provides a translatable way to understand the nmesimag underlying pathologies and
treatment outcomes. The recent application of sadant models of neurological,
neurodegenerative and psychiatric disorders areritbes belwo:

9.1 Brain, spinal cord and peripheral nerve injury

Human studies of traumatic brain injury (TBI) hadlentified various forms of
dysfunction in connectivity including aberrant FCthe DMN and the salience network
(Sharp et al., 2014). To date, only a few studeagehapplied rsfMRI in rodent models of TBI,
based on either a diffuse or focal injury modektAdy using the lateral fluid-percussion
injury rat model, which can create injury in braaeas, identified reduced FC to the injured
cortex 4 months after the injury (Mishra et al.12)) Moreover, the animal became
susceptible to epilepsy after the injury. Anotheidy using the unilateral controlled cortical
impact injury, which creates a more focal injurguihd that FC is dramatically increased,
rather than decreased, throughout the brain excdpbse areas connected to the injury site
(Harris et al., 2016). The hyper-connectivity graldjureduces over 4 weeks indicating a
transition from acute to chronic stage. As brajaorycould damage blood vessels, or alter
metabolism and other aspects of physiology depgnalinthe severity and site of the injury,
the BOLD signal could be confounded by changingoeascular coupling during disease
progression. 7and T* may also be changed by hemorrhage and edemaarty near the
injury site, and hence affect the BOLD measurement.

One study measured FC in the somatosensory pattoawying injury of the
spinothalamic tract in rats (Seminowicz et al.,201Increased FC could be seen within the
thalamus and somatosensory cortex up to 2 weedsthé spinal cord injury. In particular,
there was a strong negative correlation betweethédamus and the cortex acutely at 7 days
after the injury, which coincided with the develogmh of hypersensitivity.

Studies on peripheral nerve injury have demonstredetical plasticity, particularly
bilateral activation when the healthy limb is stlatad (Pawela et al., 2010; Pelled et al.,
2009, 2007). Nonetheless, the FC of the somatosgrgstem in the brain is generally
reduced (Pawela et al., 2010). Interestingly, aitfothe connectivity in the visual system is
not affected, regions involved in visual-motor gri@ion do show an effect. Another study
using sciatic nerve ligation as a model for neutioiggpain reported little disruption of the
RSN at 5 days after the injury but a significarieef at 28 days, particularly in the limbic
system and those between the limbic and nocicepteas (Baliki et al., 2014).

Overall, these studies indicate highly dynamigéascale, multi-system plasticity
following an injury and the potential of rsfMRI track this reorganization longitudinally.
However, more studies are needed to determinestatanship between network plasticity,
structural connectivity, and recovery from injury.

9.2 Stroke

Using transient middle cerebral artery occlusioa asodel of ischemic stroke, a
dramatic reduction in interhemispheric FC in theatosensory, motor and visual cortices
can be detected 1 day after stroke. The FC gradieadbvers over several weeks, correlating
with the recovery of sensorimotor function (MauftsA. van Meer et al., 2010). Increased
thalamocortical connectivity with functional recoyevas also observed (Shim et al., 2017).
The FC at the acute stage also negatively coreelaith the infarct volume and motor
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function (Bauer et al., 2014). To understand thecstiral connectivity change, the same
group further used manganese as a tract tracetedjénto the contralesional motor cortex
and found significantly reduced manganese trangpdhe ipsilesional sensorimotor cortex
and increased uptake at the injection site, intigahcreased local activity and reduced
remote connectivity (Maurits P A van Meer et al1@). Furthermore, the normalization of
the affected bilateral connectivity back to baseliorrelated with the recovery of structural
connectivity in the corticospinal tract, althoudpe structural connectivity during the acute
stage had better predictive value of recovery ntfional performance (van Meer et al.,
2012). As stroke significantly affects vasculardtion and metabolism, the hemodynamic
response could become slower near the infarct aneapost-processing such as global signal
regression could also create artifacts in the edatgral cortex when the infarct area is large
(Bauer et al., 2014).

9.3 Alzheimer’s disease

Alzheimer’s disease is a neurodegenerative digbaséas been shown to affect
RSNSs, in particular the DMN and salience netwankhiimans. However, how the
pathological process disrupts the connectivitytilsrsot clear. Using transgenic mice that
express human amyloid precursor protein (hAPPtiag in the development of one of the
major pathological hallmarks of the disease, tha-tenyloid plaques, an early study
identified that the bilateral connectivity strengthyoung mice, measured by the optical
intrinsic signal from hemoglobin, correlates witle tregional amyloid plague load in aged
mice, suggesting that FC may detect regions tleav@nerable to amyloid toxicity (Bero et
al., 2012). Similarly, a rsfMRI study on the sameuse model showed decreased bilateral
FC (Shah et al., 2013). Reduced FC was also ol$@nanother type of hAPP transgenic
mouse even before the onset of amyloid depositiohthere was no correlation between
plaque density and FC (Grandjean et al., 2014bxh@®mther hand, hyperconnectivity was
found before the onset of amyloid deposition in ttloer strains of transgenic mice that
express hAPP, an effect that was ameliorated byaamgloid antibody treatment (Shah et al.,
2016c). Therefore, there appear to be mutation-eapdession-dependent phenotypes. By
comparing three different kinds of mice expressingyloid plaques either intracellularly, in
the parenchyma, or in both tissue and blood vessetcent study found that the FC change
is more significant in mice which develop plagueshe parenchyma (Grandjean et al.,
2016b).

Besides amyloid plaques, the influence of gen&lcfactors, such as the
apolipoprotein (apoE4 allele, in the brain can be assessed by rsfMRIig$ been found that
the FC in transgenic mice expressing human agdo& reduced in both mid-age and old
mice, although perfusion deficits and reduced postgtic density are only seen in old mice.
Therefore it is still not clear what contributeshe reduced FC in the mid-age mice (Zerbi et
al., 2014). Given that apoE is involved in amylaghregation and clearance, it could be a
drug target. One study applied anti-apoE immunaibyeto the cortical surface and found
that it reduced the density of amyloid plaquesiacceased the bilateral FC (Liao et al.,
2014). Overall, however, whether and how amyloiddity affects FC needs further
investigation. It should be noted that a commonlaidypathology, cerebral amyloid
angiopathy, which occurs concomitant with Alzheilmelisease can affect the hemodynamic
response and hence confound the FC measures (Mueggll., 2002).

9.4 Stress and depression

Human studies of depression have found alteredemtivity with the DMN,
amygdala, and visual cortex (Greicius et al., 2005€r et al., 2010; Zeng et al., 2012). Using
the Wistar Kyoto More Immobile strain which exhgbdepressive-like behavior, both
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increased and decreased connectivity with the lti@mpus was found (Williams et al.,
2014). In a rat model of depression caused by pakstess, the FC between regions
associated with the dopamine system were foun@ thanged, although this effect was
reversed by the treatment with ladostigil, a biseétective monoamine oxidase inhibitor
(Goelman et al., 2014). A recent study which exauidepression caused by chronic
psychosocial stress after daily exposure to an@pgressive mouse strain found increased
FC within the somatosensory, visual and cingulatiiaes and between the prefrontal cortex,
cingulate cortex, and amygdala (Grandjean et @lL.68). This is similar to the elevated FC in
the somatosensory and visual cortices and DMN w@bdan a chronic stress model induced
by prolonged (10 days) immobilization (Henckenalgt2015). Another study investigated
rats exposed to early life social stress induced hgvel male intruder revealing altered FC
with the prefrontal cortex, nucleus accumbens, dgampus, and somatosensory cortex
(Nephew et al., 2017). Stress-related genetic &sfime FC were examined in a mouse model
with heterozygous knockout of a key neurodevelogaiagene, Ahil, which leads to a
stress-resilient phenotype. The amygdala connéctiwithe Ahil knockout mice was
reduced and the brain networks were highly assdmeéess hierarchical (Lotan et al., 2017,
2014). To understand treatment-resistant depresammiher study investigated a genetic rat
model with congenital learned helplessness anddf@ugeneral enhancement of FC,
particularly in relation to serotonergic projecsgisuch as those between the dorsal raphe
nucleus and forebrain and in the hippocampal-pnedlanetwork (Gass et al., 2014a). The
identification of similar networks to those in humsandicates that these models may have
translational potential.

9.5 Autism spectrum disorder (ASD)

Human studies on ASD have found decreased FC iDlthid and with respect to the
medial prefrontal cortex, amygdala, fusiform gyamsl insula (Nielsen et al., 2013; Sandi
and Haller, 2015). Due to the multiple causes obA%arious animal models have been
explored. One study examined the Fmrl-/y mouse haideagile X syndrome, which is a
major contributor to ASD, and found reduced cottazad hippocampal connectivity (Haberl
et al., 2015). Given that human subjects with cemallosum agenesis show ASD-like
symptoms, a mouse model of this deficit — the BTiB&se — has been studied as an
idiopathic model of autism, revealing reduced F@veen the frontal cortex, thalamus and
striatum (Sforazzini et al., 2014a). The influentgenetic risk for ASD in the CNTNAP2
gene was assess in the CNTNAP2 knockout mousehwhiowed reduced long-range FC
with the cingulate cortex and hypoconnectivity bedw the anterior and posterior hubs of the
DMN, which correlated with the observed behavialicit (Liska et al., 2017). To
understand whether deficient neuron-microglia diggacould contribute to ASD, another
study used a mouse model lacking the chemokingt@c€x3crl, which results in a deficit
in synaptic pruning and behavior phenotype of A& found broad reduction of inter-
regional FC, particularly between the prefrontatew and hippocampus (Zhan et al., 2014).
Recently, a mechanism linking immune dysfunctiod bahavioral impairment such as those
observed in ASD has been found, with immune-deitiSCID mice exhibiting
hyperconnectivity between multiple frontal and ilasuegions (Filiano et al., 2016). The
influence of prenatal exposure to toxins, for exEngmmoic acid, has also been studied in
the mouse revealing increased connectivity in titereor part of the DMN but a decrease in
the posterior part, as well as increased local ectivity (Mills et al., 2016). These studies
demonstrate the value of connectivity imaging idenat models in elucidating ASD
associated mechanisms. As ASD is a developmerstatdir, future study on the developing
rodent brain are needed to further elucidate tlhiecgoand progression of dys-connectivity.
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9.6 Schizophrenia

Human studies on schizophrenia have found reducedgsh but increased diversity
of FC across the brain, particularly with respedthie prefrontal cortex and between the
frontal and temporal cortices (Fornito et al., 200yhall et al., 2010). Owing to the
dysfunction of glutamate transmission in schizoplagerodent studies usually use NMDA
receptor antagonists, such as PCP or ketaminedt@e schizophrenia-like phenotypes (see
section 5.1 on glutamatergic effects on FC). Stidfealternative models can be summarized
as follows. A study using the D-aspartate oxidasackout mouse, which has increased D-
aspartate that agonizes the NMDA receptor and slatt@suated schizophrenic behavior,
found enhanced hippocampal-sensorimotor connegtiviit may underscore the reduced
hippocampal-temporal connectivity observed in sghimenia patients; however, no
prefrontal dys-connectivity was observed (Erricalet2015). In a rat model of
schizophrenia that involved prenatal exposurettixan, methylazoxymethanol acetate, a
broad reduction in orbitofrontal connectivity but imcrease in visual connectivity was found,
in line with the altered metabolism and glutamdtéagnine cycling in these areas (Kaneko
et al., 2017). Recently, the genetic effect of IH§Imicrodeletion copy number variation in
schizophrenia was studied in a mouse model (Gaads €016). The FC was found to be
generally increased in this mouse. As part of #reegencodes nicotinic acetylcholine alpha 7
receptors, the FC could be restored to normal Isjtipely modulating the receptor.

10. Physiological considerations during experiments

A major challenge of rsfMRI is the rejection of is&d variations of non-neural origin,
such as system instability, motion and physioldgactfacts (see (Keilholz et al., 2016; Liu,
2016) for review). Physiological variations coufteat hemodynamic-based FC measures in
two ways: temporal modulation of the BOLD signalaachange of baseline neural activity
and BOLD signal due to an altered basal physioklgitate. The baseline physiology
difference could come from between-group differsnoecardiopulmonary and vascular
functions due to aging, disease or various intd¢rgas. Although many methods have been
proposed to account for these, some of them, péatly the baseline difference, can not be
easily removed. Given that physiology can be cdlelanore tightly in animals than in
humans, these confounds could potentially be mirechi The major physiological factors are
discussed below.

10.1 Respiratory and cardiac artifacts

Cardiac pulsation and respiration are the most-reelbgnized sources of
physiological variation in the BOLD signal. Theyeadt the BOLD signal via physiological
changes in partial pressure of (9O;) and CQ (pCQ,), CBF, intracranial pressure and
cerebrospinal fluid (CSF) flow, but also througtygical modulation of the magnetic field
due to the susceptibility change caused by chebmdresting-state BOLD signal has been
found to covariate with respiratory cycle/depth aadliac cycle (Chuang and Chen, 2001),
the slow fluctuation in the heart rate (Shmueklet2007), and breathing volume (Birn et al.,
2006; Chang and Glover, 2009).

In the rodent brain, cardiac artifacts tend to liaeanear large blood vessels, the
sagittal sinus and brain base, whereas respirattifgcts are more widespread and stronger,
with affected regions extending further around vielgs (Kalthoff et al., 2011; Majeed et al.,
2009). The respiration-induced magnetic field vawiacan lead to image shifting along the
phase encoding direction of the echo-planar imaffiR)) at ultrahigh magnetic field
(Kalthoff et al., 2011). As the heart rate (200-@&@@ts per minute) and respiration rate (50-
120 breaths per minute) in anesthetized rodentmach faster than the typical imaging rate
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(repetition time= 1s), these artifacts can be aliased to anywhetenitthe Nyquist frequency,
and hence cannot be removed simply by low-passifily.

These confounds can be reduced by post-procestiveg based on the recorded
cardiac pulsation and respiration (Glover et &1Q®, or by estimating such nuisance signal
regressors from the fMRI data using ICA (Griffagtial., 2014) or from the white matter and
CSF using principal component analysis (Behzadl.eR007). However, if the respiratory or
heart rate differs between groups, these correctioay not be able to account for systemic
differences. However, using intubation with meclkahventilation to minimize variation in
the respiratory rate and volume can mitigate pliti@ difference.

10.2 Variation in body temperature

Fluctuations in the body temperature of anestheét@emals can alter the BOLD
signal globally even when the temperature changetisn the physiological range
(Vanhoutte et al., 2006). It has been shown tr@aB@OLD signal negatively correlates with
body temperature, whereby a temperature increa8ofan lead to ~6% BOLD signal
decrease at 7T (Vanhoutte et al., 2006)e BOLD signal change is partly due to the
temperature-dependent change is the apparent énsesielaxation time ¢T) and partly due
to changes in spontaneous neural activity (Rea.e2010). Consequentlys effect can not
be easily corrected. It is therefore important &ntain a constant body temperature during
any fMRI study.

10.3 Baseline difference in blood C@and O,

Arterial blood CQ and Q levels reflect the balance between metabolic deiman
ventilation and vascular regulation. They have guofl effects on both the evoked and
resting-state BOLD signals via their vasodilatong aasoconstrictive effects, respectively,
together with changes in vascular reactivity arabtloxygenation. The influence of
temporal variation in blood CGn FC has been associated with respiratory atsif&iven
that the ventilation and vascular responses coaityg depending on the experimental setup,
disease or intervention, the resultant baselirferdihce in blood C®and Q could lead to
another confound. In humans, the resting end-@dal level is associated with a difference
in vascular reactivity which in turn changes F@sgth (Golestani et al., 2016). By
maintaining animals under mild hypercapnia, inceelaSBF and a slower and smaller BOLD
response can be observed, whereas decreased CBHastdr and larger BOLD response
can be seen under hypocapnia (Cohen et al., 2088nK and Posse, 2001). Such
hemodynamic differences may lead to changes iarniaitude and frequency of the resting-
state BOLD signal. By altering the steady-state p@al pQ in the blood, we have shown
that hyperoxia can increase the overall conneygtstitength and fluctuation amplitude,
whereas changing pG@lone and keeping p@onstant has a marginal effect, suggesting
that pQ has stronger effect on the BOLD signal (Nasradiahl., 2015). Furthermore, the
oscillating frequency distribution changes withreesing blood C@level, correlating with
increased coherence of LFP, particularly in the manband. These results indicate that
neural synchrony, not just the hemodynamic respaméd change under systemic
physiological baseline changes. Therefore, it igartant to maintain normal p@nd pCQ
by careful ventilation control and monitoring. Kaggpanimals under 100%:0Owhich leads
to hyperoxia, is not a desirable condition for fMRI

10.4 Baseline difference in blood pressure

Blood pressure is a major vascular factor thatater both the resting and evoked
BOLD signals. Cerebrovascular autoregulation maistaonstant CBF despite a change in
arterial blood pressure. In anesthetized rodeimésCBF does not change with blood pressure
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variations within 40 to 130 mmHg (Dalkara et aP9%; Gozzi et al., 2007). However, as a
drug challenge could cause the blood pressuredeegikthat range, the CBF could change
proportionally and induce a distributed BOLD sigohaénge (Gozzi et al., 2007; Luo et al.,
2003). Milder blood pressure changes (e.g., witlimmHg) induced by sensory stimulation
could also elicit a BOLD signal change (Wang et2006), and a change induced by pain
stimulation could even alter the neurovascular toggUchida et al., 2017), which would
complicate the evoked and resting fMRI measuregusdch pathological conditions. More
importantly, fluctuations in blood pressure andrheste have been reported to explain nearly
half of the variance in the spontaneous hemodyn#oatuation even with normal blood
pressure (Katura et al., 2006). Therefore, blo@dgure variations could confound resting
BOLD connectivity measures, similar to cardiacfactis.

In addition to the temporal variation, the baseaéleof blood pressure could modulate
the BOLD signal oscillation. Based on exsanguimatind reinfusion of blood in rats, the
drop in blood pressure has been shown to incréasew-frequency BOLD signal
amplitudes and inter-regional correlation througttbe brain, with the largest increase being
observed in the cortex (Biswal and Kannurpatti,0The concomitant blood pressure
change induced by a drug could also confound theBf@sponse to the drug. For example,
when a peripheral vasoconstrictor, phenylephrirees used to control blood pressure, the
BOLD signal change induced by a dopamine recegoniat, apomorphine, became positive
rather than negative (Kalisch et al., 2005). Althlothe effect of chronic blood pressure
changes in disease models with spontaneous hypemeor altered vascular function, such
as stroke, is not clear, controlling blood pressinrauld be considered important to rule out
this physiological confound.

10.5 Baseline differences in CBF or CBV

The baseline CBF or CBV serves as an indicatoastular function and metabolic
activity. The BOLD activation amplitude has beeunrfd to correlate with baseline CBF or
CBYV, suggesting that vascular differences couldesponsible for individual BOLD signal
variations in human subjects (Liau and Liu, 200%8J an mice (Schroeter et al., 2017). The
regional CBF has been shown to correlate with F€hgth and long-range connectivity in
humans, which may be related to higher metabolmsad® in functional hubs that integrating
long-range information (X. Liang et al., 2013). there could be a larger baseline CBF/CBV
difference due to age, disease stage and inteove(guch as exercise or diet), this
physiological information should be recorded to ioye the interpretation of observed FC
differences.

11. Technical considerations in data processing

Most rodent rsfMRI studies follow similar procedsite those designed for humans.
However, due to the very different brain size, €hapd tissue proportions, there are several
aspects related to post-processing and analysisdlea to be considered.

11.1 Susceptibility artifacts

The magnetic field distortion at the air-tissueerfdce is generally far more severe in
rodents than in humans due to the much smallercdittes brain and higher field strength
used in rodent imaging. This leads to geometritodien and signal void in EPI, particularly
in the olfactory bulb and cerebellum (due to post@mming away from the center), around
the perirhinal cortex and amygdala (due to thecaaal) and on top of the neocortex (due to
the proximity to air). Such effects severely hintter measurement of whole-brain FC and
the localization accuracy. As the geometric digdarteads to dispersion/compression of
spins to/from different locations, the intensitgtdrtion cannot be corrected by nonlinear

21



registration even if this could undistort the shéifgeng et al., 2015). Susceptibility artifacts
can be reduced by applying susceptibility matcimragerials, such as gel, on top of the brain
(Adamczak et al., 2010) or injecting fomblin inteetinner ear (R. Li et al., 2015). Spin-echo
acquisition could be used but with a trade-off dDLB sensitivity (Harris et al., 2015;
Nasrallah et al., 2012b). Post-processing usireyarsed-phase EPI data can effectively
reduce geometric and intensity distortion but ngnal void (Hong et al., 2015). Its efficacy
for gradient-echo EPI is also inferior to that pfrsecho. Multi-echo EPI could compensate
part of the signal void by acquiring data at skatio time (Kundu et al., 2014). Combining
multi-echo acquisition and reversed phase corneatiould improve the mapping of the
whole brain.

11.2 Motion artifacts

Motion correction is typically applied to rsfMRI @& As most rodent imaging is
conducted under anesthesia with the head sectietiebd motion is expected to be minimal.
The motion correction algorithm is more likely &flect the signal variation from other
sources, such as a respiration-induced shift ippki@se encoding direction (Kalthoff et al.,
2011). Therefore, unless there is movement inrttege, correcting pseudo-motion may
introduce an artifact into the signal.

11.3 Physiological artifacts

Although various methods for correcting respiratangl cardiac artifacts in rsfMRI
have been proposed, some approaches may not beabfur rodents. For example, the CSF
and white matter in the rodent brain are much smalhd were difficult to segment from
low-resolution rsfMRI data without the partial vate with the gray matter. The muscle
around the head, which is not seen in humans, maysed to capture the relatively global
respiratory artifacts. As physiological artifactautd lead to fluctuations with both positive
and negative correlation (Kalthoff et al., 201hgependent or principal component-based
methods would be more suitable than using the geeraignal as a nuisance regressor
(Behzadi et al., 2007). Another source of physimalgartifacts could be movement of the
jaw and tongue, which can result in intensity vi@mias or even geometric distortion. These
can be minimized by the use of padding to redusen@vement.

11.4 Global signal regression

Global signal regression/normalization has beed usseveral rsfMRI studies in
humans to reduce global variation and improve laatibn. As the majority of the rodent
brain is gray matter as opposed to the human lrhaere the majority is white matter, this
processing can remove certain large-scale neutigltgcsuch as the burst-suppression
activity (Liu et al., 2011). Furthermore, it camdeto increased negative correlation in
rodents (Kalthoff et al., 2013), similar to whasHhzeen shown in humans (Murphy et al.,
2009), or even the removal of connectivity entif@grgmann et al., 2016). Recently, a
globally propagating wave of neuronal®activity has been found to underlie the global
hemodynamic wave and the co-activation of the REAtgui et al., 2016), indicating an
important role of global neural activity. Therefptiee use of global signal regression should
be carefully evaluated and validated.

11.5 Filter bandwidth

Due to the slow hemodynamic response, most rsfNiRliss only use signal
fluctuations < 0.1 Hz to measure FC. As highlightethe section on anesthesia effects,
certain anesthetics may shift the activity to hbigfrequency. In addition, oscillations at
even higher frequency (>0.5Hz) have been showmesent similar network organization
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and may provide additional information on the dyr@of RSNs (Chan et al., 2015; Lee et
al., 2013). Therefore, a wider bandwidth would beded to avoid removing critical
information.

11.6 Seed-based analysis vs ICA

The connectivity detected by ICA is typically cardd within a functional area (e.g.,
somatosensory cortex or hippocampus; see Figureilli®r bilaterally, unilaterally or along
the anteroposterior axis (e.g., cingulate corteather than cross-functional areas (Jonckers et
al., 2011; Liang et al., 2011; Mechling et al., 20Zerbi et al., 2015). Therefore it may not
be sensitive enough to detect highly distributelsvoeks such as the DMN (Sforazzini et al.,
2014b) without considerable data averaging (LU.e2@12). On the other hand, seed-based
analysis, besides being more sensitive in detettied®MN, could also reveal more detailed
connectivity among associated areas in a systgmatbway, such as the lateral genicular
nucleus, superior colliculus and visual cortex wttihe visual pathway (Pawela et al., 2008).
It could also differentiate sub-regional connedtyivsuch as thalamocortical connections of
each area in the thalamus (Z. Liang et al., 2048);regional connections in the striatum
(Grandjean et al., 2017) or even layer-specificga@erns (Baek et al., 2016). Therefore, the
method of choice will depend on the hypothesis dpé&sted.

12. Conclusion

RSNs in the rodent brain not only show similar fogg to those of human, but their
changes in response to manipulations and in digeadels indicate tremendous translational
potential. With the same technique, rsfMRI, that ba applied to both humans and animal
models, observations in humans can be validatedimal models and new
hypotheses/interventions can be evaluated/optimizadimal models before applying them
to humans. The application of invasive tools, sagmeurophysiology, axonal tracing and
histopathology, and comparison of disease modelamdus pathogenic mechanisms will
help to elucidate the neural and pathological batédse RSNs observed in human. The
availability of genetic tools in rodents, such asogenetics, chemogenetics and transgenic
animals, further allows the identification of thiéeets of a specific protein, receptor, cell
type, or neuronal pathway on the RSN. This wilbailresearchers to tease out the role of a
particular neuronal oscillation, brain region, padly or network on the behavior or disorder.
However, considering the variability that occurg do methodology, efforts should be made
to standardize the anesthesia protocol, physiabgintrol, data processing, quality control
and brain template to facilitate the comparison @mabination of data across laboratories.
For example, measuring sensory evoked activatiaridMee a good way to evaluate the
physiological condition and data quality, but sdelta is usually not acquired. An alternative
is to assess the consistency in detecting theodygieal connectivity patterns described in
the section 2.1. Similar approach has been uskdrran studies to evaluate denoising
methods for rsfMRI (Pruim et al., 2015). As thisuk could provide information not only on
the data quality but also the baseline conditiothefexperiment, it should be reported in
addition to network changes under manipulation.
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Table

Table 1. Summary of anesthesia effects.

Anesthesia/ | Neural effect = Vascular effect Functional Species and
Sedative connectivity Reference
a-chloralose |« GABAergic | Minimal but * Reduces bilateral + Rat (Lu et al.,
increases CBF FC dose 2007; Williams
due to acidosis | dependently et al., 2010)
Mouse
(Jonckers et al.,
2014)
Isoflurane  Glutamatergic Vasodilation * Increases FC at Rat (Bukhari et

mid dose due to

al., 2017;

, GABAergic
* Burst-
suppression
activity .
Medetomidine « Adrenergic | Vasoconstriction e
» Sedative without
- Potential affecting
epileptic neurovascular
effect coupling
Medetomidine « Stable Decreases pCQO e
+ isoflurane sedation after a long
* Suppresses | period
potential
epileptic
effect
Propofol « GABAergic | Minimal but .
 Hypnotic at | reduces CBF at

burst-suppression  Hutchison et al.,

activity.
Abolishes FC at
high dose.

Reduces bilateral '«

FC dose, region
and time
dependently

Stable FC for up
to 3h

Cortical FC

2014; Kalthoff
et al., 2013; Liu
et al., 2011;
Xiao Liu et al.,
2013; Nasrallah
et al., 2014a;
Williams et al.,
2010)

Mouse
(Grandjean et
al., 2014a;
Jonckers et al.,
2014)

Rat (Nasrallah
et al., 2014a,
2012b; Pawela
et al., 2008;
Williams et al.,
2010; Zhao et
al., 2008)
Mouse
(Grandjean et
al., 2014a;
Nasrallah et al.,
2014c)

Rat (Brynildsen
et al., 2017,
Fukuda et al.,
2013; Lu et al.,
2012)

Mouse
(Grandjean et
al., 2014a)

Rat (Xiping Liu

reduced with dose et al., 2013)

40



Urethane

Awake

low dose and ' high dose
deep

anesthesia at

high dose

Glutamatergic Minimal but
, GABAergic | could induce
Induces sleep- slow

like states hemodynamic
oscillation

Potential Minimal

chronic stress

Pain

sensitivity

Regions related to «

arousal do not

change with dose

Reduces bilateral '«

FC with dose

FC dependent on
fast or slow wave

State

Generally stronger

FC
Stronger anti-
correlation

Mouse
(Grandjean et
al., 2014a)

Rat (Wilson et
al., 2011;
Zhurakovskaya
et al., 2016)
Mouse
(Grandjean et
al., 2014a;
Jonckers et al.,
2014)

Rat (Becerra et
al., 2011; Liang
et al., 2012a,
2011)

Mouse
(Jonckers et al.,
2014)
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Figure caption

Figure 1. RSNs of the rodent and human brain(A) 40 functional parcels in the awake rat
brain with adjacent parcels having different col@dapted from Ma, et al. 2016R)(17
functional networks in the anesthetized mouse diifierent colors representing different
networks (adapted and replotted from Zerbi, e2@l5). C) 17 functional parcels in the
human cerebral cortex (adapted from Yeo, et al1R00he labels indicate similar networks
that can be identified among species. ACC: anteirgyulate (equivalent to Cg in rodents);
Amg: amygdala; Au: auditory cortex; Cg: cingulatetex (equivalent to ACC in humans);
dHC: dorsal hippocampus; dSt: dorsal striatumijrisular cortex; ISt: lateral striatum; mPFC:
medial prefrontal cortex; MC: motor cortex; PCCsgaior cingulate (equivalent to RSC in
rodents); Pir: piriform cortex; RSC: retrosplergaltex (equivalent to PCC in humans);
SS1,2,3: somatosensory area 1,2,3; VC: visualxorteC: ventral hippocampus. From top
to bottom: posterior to anterior.

Figure 2. Learning induces long-lasting plasticityn the RSN To determine the RSN
changes caused by learning, two groups of rateraithderwent 5 days of spatial learning to
locate a hidden platform in a Morris water mazewam for the same period of time without
the hidden platform. One day and 7 days aftertiguisthe training, rsfMRI was conducted
under medetomidine sedation. Seed-based correlatialysis was performed and the
network difference between the maze learning gangthe swim control group was tested
by two-tailed t-test (p < 0.01, FDR corrected)) Extensively enhanced connectivity with
the hippocampal CA3 region was observed after § dayraining in a Morris water maze.
The connectivity was sustained 1 week after thaitrg but reorganized toward cortical
areas.B) The DMN-like network showed transiently increasednectivity but returned to
baseline after a week. Adapted from Nasrallah.2Gl6.

Figure 3. Low-frequency stimulation enhances functinal connectivity. (A) Low
frequency (e.g., 1Hz) but not high frequency (e1@HKz) optogenetic stimulation to the
ventral posteromedial (VPM) thalamo-cortical eximityt neurons can enhance bilateral
connectivity in cortical areas that receive a difeag., barrel field) or indirect (e.g., primary
visual cortex (V1)) projectionB) Connectivity is enhanced during (OG-On) and af@G-
Off) the stimulation. Baseline: before stimulati@¢-On: during optogenetic (OG)
stimulation; OG-Off: after stimulation. *** P < 00Q; ** P < 0.01; * P < 0.05; n.s., not
significant. Adapted from Leong et al. 2016 withrmpéession.
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Highlights

* Resting-state network in rodent brain has high similarity to that in human

* RSN change by manipulations on receptor, neural area, behavior, and gene
* RSN in disease models provide understanding of mechanisms

* Imaging RSN in rodent brain is a powerful translational tool
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