
Politecnico di Torino

Porto Institutional Repository

[Article] Acceleration by Inline Cache for Memory-Intensive Algorithms on
FPGA via High-Level Synthesis

Original Citation:
Ma, Liang; Lavagno, Luciano; Lazarescu, Mihai Teodor; Arif, Arslan (2017). Acceleration by Inline
Cache for Memory-Intensive Algorithms on FPGA via High-Level Synthesis. In: IEEE ACCESS, vol.
5, pp. 18953-18974. - ISSN 2169-3536

Availability:
This version is available at : http://porto.polito.it/2685435/ since: October 2017

Publisher:
IEEE

Published version:
DOI:10.1109/ACCESS.2017.2750923

Terms of use:
This article is made available under terms and conditions applicable to Open Access Policy Article
("Public - All rights reserved") , as described at http://porto.polito.it/terms_and_conditions.
html

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library
and the IT-Services. The aim is to enable open access to all the world. Please share with us how
this access benefits you. Your story matters.

(Article begins on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/86593137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://porto.polito.it/view/publication/IEEE_ACCESS.html
http://porto.polito.it/2685435/
http://dx.doi.org.ezproxy.biblio.polito.it/10.1109/ACCESS.2017.2750923
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/cgi/set_lang?lang=en&referrer=http://porto.polito.it/cgi/share?eprint=2685435

1

Acceleration by Inline Cache for Memory-Intensive
Algorithms on FPGA via High-Level Synthesis

Liang Ma, Student Member, IEEE, Luciano Lavagno, Senior Member, IEEE,
Mihai Teodor Lazarescu, Member, IEEE, and Arslan Arif, Student Member, IEEE

Abstract—Using FPGA-based acceleration of High-
Performance Computing (HPC) applications to reduce
energy and power consumption is becoming an interesting
option, thanks to the availability of High-Level Synthesis (HLS)
tools that enable fast design cycles. However, obtaining good
performance for memory-intensive algorithms, which often
exchange large data arrays with external DRAM, still requires
time-consuming optimization and good knowledge of hardware
design. This article proposes a new design methodology, based
on dedicated application- and data array-specific caches. These
caches provide most of the benefits that can be achieved by
coding optimized DMA-like transfer strategies by hand into the
HPC application code, but require only limited manual tuning
(basically the selection of architecture and size), are neutral
to target HLS tool and technology (FPGA or ASIC), and do
not require changes to application code. We show experimental
results obtained on five common memory-intensive algorithms
from very diverse domains, namely machine learning, data
sorting and computer vision. We test the cost and performance
of our caches against both out-of-the-box code originally
optimized for a GPU, and manually optimized implementations
specifically targeted for FPGAs via HLS. The implementation
using our caches achieved an 8X speedup and 2X energy
reduction on average with respect to out-of-the-box models
using only simple directive-based optimizations (e.g., pipelining).
They also achieved comparable performance with much less
design effort when compared to versions that were manually
optimized to achieve efficient memory transfers specifically for
an FPGA.

Index Terms—Cache, High-level synthesis, Acceleration,
FPGA, Optimization

I. INTRODUCTION

H IGH-PERFORMANCE COMPUTING and data-
intensive applications, such as Machine Learning,

Artificial Intelligence, and big data processing, are becoming
more and more common both in large data centers and on
embedded platforms. Thus, while the processing speed of,
e.g., Neural Network training or database sorting, remains
a primary concern, energy consumption is quickly gaining
importance. In data centers, lower energy allows significant
operational cost savings, while in embedded systems, such as
Automated Driver Assistance Systems, lower energy implies
lower cooling and manufacturing costs. These trends are
witnessed by announcements recently made by companies
such as Microsoft and Baidu, which use FPGAs for their
search and machine learning tasks, or Amazon, which offers

Manuscript received April 19, 2005; revised August 26, 2015.
L. Ma, L. Lavagno, M. T. Lazarescu and A. Arif are with the Department

of Electronics and Telecommunications, Politecnico di Torino, Corso Duca
degli Abruzzi, I-10129 Torino, Italy (e-mail: liang-ma@polito.it).

FPGAs on one of its AWS instance types. They are also
underscored by a string of recent acquisitions performed by
Intel, in particular of the second largest FPGA company,
namely Altera.

This means that homogeneous hardware architectures, e.g.,
multi-core general purpose Xeon processors, no longer meet
the heaviest computation requirements especially from the
point of view of energy efficiency [1]. Thus, heterogeneous
systems that cluster together different types of processors
and hardware, such as CPU-GPU or CPU-FPGA, are able
to achieve the best performance/cost/energy trade-offs for
computationally-intensive parallel algorithms [2].

FPGAs typically consume about an order of magnitude less
power than GPUs or CPUs and provide a comparable raw
computing performance, i.e., FPGAs consume an order of
magnitude less energy per operation. Their adoption as data
center accelerators is enabled by the recent availability of very
user-friendly and extremely powerful synthesis tools, such
as Stratus from Cadence, Catapult from Mentor and Vivado
HLS (formerly Autopilot) from Xilinx, which significantly
contribute to fulfill the FPGA promise of software-like flex-
ibility and design ease with quasi-hardware performance and
efficiency. These tools enable the designers to use high-level
languages as the input to the FPGA design flow, such as C,
C++ or OpenCL, which greatly eases the design and especially
verification, and dramatically reduces the design cycle, even
for FPGAs, with respect to traditional HDL-based flows.

While traditionally HLS had been regarded as a faster
way to achieve worse designs than with the RTL-based flow,
currently this view is changing among designers, due to
several factors. First of all, the design tools are getting better
and they ensure high quality results, generating automatically
RTL with better or similar quality to manual design. Second,
the designers are gaining experience with these tools and
are thus able to steer them towards the best architectural
implementations. Third, faster design cycles and significantly
reduced verification times and costs imply that a much larger
design space can be explored with respect to manual RTL
design, which dramatically increase the chances to find the
“best architecture” (or a broad Pareto set).

However, it is also clear that good code for a CPU or
even a GPU may not be the best for an FPGA or ASIC
implementation, as we will show in the result section of this
article. The reason is that while HLS tools fully automate the
execution of some micro-architectural decisions, e.g., whether
a loop is pipelined or not, or whether a large C array is
partitioned into several smaller on-chip memories, the choice

2

among these options must still be made by a human designer.
Moreover, tasks such as efficiently moving data from large off-
chip DRAMs into on-chip memories must still be implemented
by hand, by writing C or OpenCL code.

Modern FPGAs, such as the Stratix from Altera and the
Virtex, UltraScale families from Xilinx, offer to the designer
millions of Configurable Logic Blocks (CLBs) and Flip-Flops,
megabytes of on-chip the Block RAM (BRAMs), hundreds
of multiply-and-accumulate units (DSPs), and many other
dedicated hardware blocks, including ARM Cortex processors
[3]. Moreover, very recent design flows from both Altera/Intel
and Xilinx promise software-like development for applications
that are entirely written in a high-level language, like C,
C++ or OpenCL, and are then compiled and synthesized for
heterogeneous CPU-FPGA platforms. In particular, parallel
languages that were originally developed to program GPUs,
can now be used to program heterogeneous platforms such as
PCs with FPGA boards, or Zynq platforms which include a
multi-core CPU and a large FPGA [4].

However, the expected performance is typically not achieved
by simply recompiling, via High-Level Synthesis for an FPGA
target, an algorithm that was originally written for execution
on a CPU or GPU. This is because the CPU or GPU archi-
tectures are fixed, hence most compiler decisions are local
and relatively simple, such as intra-basic block scheduling or
peephole optimizations. However, in an FPGA the architecture
is adapted to the application, rather than the application to the
architecture. While this can achieve much better optimization
levels, it also implies that many more high-level decisions must
be made during synthesis. HLS tools are able to automatically
implement these decisions, but even their latest generations
need to be directed to do so by a human or by a (very time-
consuming) Design Space Exploration tool.

While the optimizations performed by a CPU or GPU com-
piler are considered excellent when they speed up execution by
a factor of 2, the following HLS techniques can dramatically
optimize the execution time of algorithms on FPGAs even by
orders of magnitude. Most of them apply to loops, which are
a major source of concurrency in high-level code and some
languages, such as OpenCL, explicitly state that some loops
can be arbitrarily parallelized, because iterations do not depend
on each other:

1) Loop pipelining starts new iterations of a source code
loop before the previous ones are completed. It is one
of the best options for loop optimization in HLS, since
it usually boosts the performance at a very low cost
[5, p. 61]. The number of clock cycles between suc-
cessive loop iteration starts (inverse of the throughput)
is also called the “Initiation Interval” of the pipeline
(in the best case, it can be one clock cycle). It is
fully decoupled from the time it takes to complete one
iteration, the pipeline “latency”. Usually, memory or
data dependencies between successive iterations (“loop-
carried dependencies”) are the bottlenecks that increase
the initiation interval. Several other synthesis techniques,
e.g., array partitioning or loop interchange [6], can be
applied to ameliorate this problem.

2) Loop unrolling creates multiple copies of the loop
body to be executed fully in parallel. In some cases
it can achieve even more performance than by means
of pipelining, but typically at a huge resource (i.e.,
area) cost. A loop can be fully or partially unrolled
and in both cases the maximum performance can be
achieved only by means of array partitioning and may
require arithmetic evaluation restructuring (e.g., adder
tree balancing) [5, p. 51]. In OpenCL (similar to CUDA),
the loop over work groups can be unrolled arbitrarily by
definition. Thus, like on a GPU, the performance on an
FPGA can be increased by instantiating multiple work
groups until the computing or routing resources, or its
memory bandwidth are saturated [4], [7]

3) Exploiting on-chip memory. Most modern FPGAs inte-
grate thousands of independent BRAMs on chip for a to-
tal of many MBs of storage. Accesses to these memories
are both much faster in terms of latency and much more
parallelizable than those to off-chip memories [8]. Many
algorithms, especially the memory-intensive ones that
are addressed in this article, achieve the best acceleration
only by moving frequently-accessed data that reside in
off-chip memories into on-chip BRAMs (or another kind
of FPGA memory called LUTRAMs). As mentioned
above, on-chip memories that are not carefully opti-
mized by using partitioning directives can often become
bottlenecks, because of the limited number of access
ports that they offer. While on a GPU the maximum
number of concurrent accesses to independent addresses
(and the meaning of “independent”) is fixed by the GPU
architect, on an FPGA it must be carefully chosen by
the designer, because more parallelism often implies a
higher cost. Memory partitioning or memory reshaping
according to user directives or to automated analysis of
access patterns of a given algorithm can dramatically
increase the memory bandwidth and achieve a much
higher level of concurrency.

4) Optimizing global memory interfaces. Other methods
to improve performance include instantiating multiple
DRAM access ports or increasing their bit width.
On a GPU, the global memory interface subsystem
receives memory read or write requests from the threads
or work items that are executing on its compute units,
and coalesces these requests whenever possible, in order
to match both the available memory word size and bus
burst transfer capabilities. For example, 16 accesses to
adjacent properly aligned 32-bit integer array elements
can be grouped automatically at runtime into a single
512-bit memory read, or to a burst of 4 128-bit memory
reads, depending on the DRAM interface width.
On an FPGA, these groupings must be performed man-
ually and at compile time, which requires a lot of
design and tool usage expertise. Our caches simplify
and automate all that.

A. Motivation
As argued above, while HLS automates some low-level

labor-intensive transformations from high-level code to RTL,

3

many decisions must still be made by humans, and extensive
code rewriting is sometimes needed in order to get the best
performance with acceptable cost on an FPGA [7]. While au-
tomating design decisions is the domain of Design Space Ex-
ploration techniques [9], this work focuses on totally avoiding,
or, more precisely, hiding from the programmer, all the code
rewritings that optimize the access to large arrays of data. Our
approach totally eliminates the significant verification cost of
these changes, because caches are guaranteed to always deliver
the right data. In the context of algorithms like those targeted
by this research (which have regular access patterns), they
can even “guarantee” good performance, where the guarantee
is as good as the test cases which are used to select the cache
parameters and to verify the performance post-synthesis.

The requirements that we want to satisfy in the scope of this
research on accelerating memory-intensive algorithms are:

1) Enabling significant performance acceleration with re-
spect to code that was not written specifically for FPGA,
and sometimes not even very much optimized for a GPU.

2) Improving execution energy consumption by targeting
an FPGA platform, by reducing off-chip memory ac-
cesses, and by reducing the execution time.

3) Supporting optimized use of external DRAM interfaces
(e.g. DDR3 or DDR4) via advanced on-chip busses (e.g.
AXI).

4) Enabling the use of HLS tools.
5) Keeping the standard HLS-based verification flow.
6) Requiring almost no changes to the original algorithms.
7) Not hampering the standard set of optimizations, archi-

tectural choices, etc. that are offered by the HLS tools.

B. Contribution

Caches have been used for a long time in the domain of
general-purpose CPUs. However, in that case a single cache
is used for all the data that the processor accesses in the main
memory (at most separate caches are used for code and data).
This means that access conflicts between different variables
(or sections of arrays) in the source code may limit the cache
performance, unless sophisticated multi-way or even fully-
associative architectures are used. Even in that case, the “hot
cache” phenomenon [10] hampers several common algorithms.

In this work, we specialize caches for HLS in several
directions:

• we advocate the use of a separate cache for each source
array that is mapped to DRAM, to minimize the conflicts
and to enable the efficient use of direct-mapped caches;

• we design our caches to appear as inlined array access
methods, via the standard C++ [] operator, in order to
require minimal source code changes;

• we support different kinds of caches, e.g., for read-
only or write-only arrays, in order to best optimize their
architecture;

• we automatically adapt each global memory array
mapped via one of our caches to use wide memory
interfaces and/or bus bursts in order to optimize transfer
bandwidth with external DRAM.

• we enable verification of cache performance and correct-
ness using the standard C++-based verification flow sup-
ported by modern HLS tools, in which a C++ testbench
is used to verify the functionality of both the C++ code
to be synthesized and the resulting RTL code;

• we enable the loop optimizations which can be made by
the HLS tools only for the arrays mapped to on-chip
BRAM, and not to off-chip DRAM.

Note that while in this work we use mostly FPGAs as our
target, and hence we mention often FPGA-specific tools such
as Vivado HLS, our caches are fully generic and can be
applied also to ASIC designs which access DRAM data. We
tested our designs with ASIC-oriented HLS tools, such as
Mentor Catapult. Of course, in the ASIC case the cost and
performance optimization requirements may be much more
stringent. Yet, our caches can be used to quickly explore the
memory access design space to find a good starting point for
further manual implementation, converting the cache into a
similarly architected “scratchpad”.

Moreover, design automation support for static or
simulation-based address sequence analysis to identify the best
cache architecture for a given application is left to future
work.

II. RELATED WORK

Modern CPUs generally include up to three levels of cache
in order to reduce both data access time and energy. As the
level increases, both latency and cache size (hence access
power and energy) increase. These caches implement different
access, replacement and coherency strategies to achieve the
best average performance for all kinds of algorithms. Research
on improving general-purpose caches is abundant. To cite
just a few, Jouppi in [11] introduced an improvement to
direct-mapped caches using a small fully-associative cache,
the so-called victim cache or miss cache. In [12], Qureshi
et al. presented a V-way (variable way) cache to reduce the
miss conflicts existing in traditional C-way (constant way)
set-associative caches. The set-balancing cache [13] and the
adaptive hybrid cache [10] were introduced for similar reasons,
targeting unbalanced accesses to main memory. For multi-
processor systems, Matthew et al. [14] designed configurable
L1 caches for the MicroBlaze soft processor implemented on
Xilinx FPGAs and achieved up to 41% speedup by using
a 32KiB 4-way cache with LRU replacement. In the same
setting, Kalokerinos et al. [15] presented an integrated net-
work interface and cache controller, significantly improving
hardware utilization.

Latency of memory-intensive applications is particularly
significant in FPGAs due to off-chip memory bandwidth
limitations. Many researchers addressed this area by exploit-
ing the highly configurable on-chip memory architecture.
For example, Cheng et al. [16] developed a trace analysis
method to detect relations among all memory accesses. Per-
formance was greatly improved by caching independent data
in separate local memories. Adler et al. [17] used BRAMs
as statically-managed scratchpads rather than dynamically-
managed caches, and described a management system for

4

different levels of local storage. Choi et al. [18] implemented
a multi-ported cache based on the so-called live-value table,
aimed at a system architecture where both the host processor
and multiple accelerators are on the same chip. In their ap-
proach, both the processor and the accelerators access the same
off-chip memory via a single custom multi-port cache, which
of course may become a performance bottleneck. Putnam et
al. [19] provided a cache-based solution to simultaneously
increase performance and reduce power consumption, since
external DRAM accesses require much higher power than
on-chip SRAM. In this design methodology, the CHiMPS
HLS tool first compiles the high-level code (written in C)
to an intermediate representation and then the caches are
optimized according to the memory access patterns. Similarly,
Winterstein [20] also used the LLVM intermediate language
to maximize the utilization of BRAMs to accelerate a specific
algorithm (tree reflection).

Our approach is inspired by some of these works, in
particular to reduce access conflicts by using a separate cache,
possibly with a different architecture, for each source code
array mapped to external DRAM.

III. METHODOLOGY

A. Motivation

The key idea of our approach, as mentioned above, is to
exploit the characteristics of many high-performance algo-
rithms, especially those written using the OpenCL language,
in which large data arrays are mapped in DRAM, and these
arrays are either only read or only written by an accelerated
function mapped to hardware. This allows us to implement
separate caches, one for each such array, without worrying
about coherency. This is essentially the use pattern of OpenCL
kernels that we use as the application modeling language, and
it is common to several other applications.

By using a separate cache for each such array, we can
use a different cache organization and architecture (line size,
cache size, associativity) optimized specifically for the access
patterns of each array.

For example, consider a very simple algorithm, namely ma-
trix multiplication. Although simple, it has significant practical
usefulness, since it is at the root of computer vision and
machine learning algorithms. In past research, it has been
accelerated both for GPUs [21] and FPGAs [22]. This requires
the designer to simultaneously solve two different problems:

1) creation of a pair of nested loops, going over a portion
(“block”) of each source matrix, and generating a block
of the destination matrix;

2) transfer of the data from global DRAM to local on-
chip SRAM buffers and correct use of those buffers to
implement one block of multiplication.

While the first part is relatively easy and it can be even
automated under control of high-level synthesis directives, the
second part is much more difficult and can require a significant
coding effort. Our caches can automatically implement both
by exploiting the locality that is exposed by the designer while
solving the first part.

Fig. 1. Host and accelerator system architecture

If the source matrix blocks are rectangular (e.g., M rows of
N elements, or M columns of N elements, where N is often
much larger than M), then different organizations are required
for the two caches. One cache needs to store M lines of N
elements each, while the other cache needs to store N lines
of M elements each, for best performance.

Our approach, based on C++ template classes for the array
types, allows us to keep the original source code largely
unchanged and to ensure that the cache is accessed every time
an element of the original array is read or written in the code.
The template arguments define:

1) the data type of an element of the original array;
2) the number of dimensions and the size along each

dimension;
3) the cache size, line size, associativity, and so on.

The minimal changes to the source code that are required by
our approach can be evaluated by comparing the code shown
in Appendix B.

A direct-mapped cache can be used for each matrix and each
matrix has its own port to the external memory to achieve a
good performance. Since both matrices A and B are read-
only, and matrix C is write-only, special read-only and write-
only caches can be used in order to avoid false loop-carried
dependencies and to reduce the pipeline initiation interval. For
caches with relatively small sizes (e.g., 8 or 32 words), the
innermost loop can also be unrolled to further increase the
performance, since the cache can be implemented as registers.
Since matrix C is not the bottleneck of this algorithm, the
cache for C could also be removed in order to save resources.

In this case, as will be discussed in Section V, the cache-
based approach reached a performance that was within 10% of
the theoretical best, namely the case in which all the matrices
to be multiplied fit in the on-chip BRAM.

B. Hardware architecture

Fig. 1 illustrates the hardware architecture that is considered
in this research and that is supported by the Xilinx tools that
we use to demonstrate it. For the sake of illustration, we use a
concrete instance of a general architecture template, where the
off-chip bus is PCIe, the on-chip bus is AXI, and the DRAM
interface is DDR3. However, our approach is fully general
and is not limited to this specific architecture. In this figure,
the accelerators (called “kernel IPs” following the OpenCL

5

TABLE I
TARGET FPGA AND BOARD

Target Device Name ADM-PCIE-7V3:1ddr:3.0

FPGA Part Xilinx Virtex-7: XC7VX690T-2

Clock Frequency 200MHz

Memory Bandwidth 9.6GB/s

Fig. 2. Design flow in SDAccel

terminology) are connected to the host processor by an off-
chip PCIe bus and the on-chip AXI bus. The host processor
downloads (via the “infrastructure IP”) onto the FPGA the
bitstream to configure the accelerator, and stores the data to
be processed in the external memory, which is connected to
the FPGA fabric via a DDR3 interface and the AXI bus.
The FPGA board that we use for illustration in this article
is the Xilinx ADM-PCIE-7V3, with a Virtex 7 on board. It is
described in TABLE I.

C. Design flow

As mentioned above, we use an HLS flow to implement
both the accelerated algorithm and its dedicated caches. In
this research, we used Xilinx SDAccelTM v2016.2, which in
turn uses VIVADO HLSTM for HLS and VIVADOTM for logic
synthesis, power estimation, etc.

As shown in Fig. 2, the SDAccel design flow starts with
software (SW) emulation, which verifies the functional cor-
rectness of the algorithm using a properly designed testbench.
Both the algorithm and testbench can be modeled in C,
C++ or OpenCL. Then, VIVADO HLSTM synthesizes and
estimates the cost and performance for the kernel IPs. The
resulting report contains information about statically analyzed
latency and throughput, resource utilization and so on. The
designer can use this information to further direct HLS to-
wards the desired solution (e.g., the designer can use the
pipelining iteration interval, which provides a good estimate
of the final throughput). During the following hardware (HW)

Fig. 3. Inline cache

emulation phase (usually called RTL simulation), SDAccelTM

calls VIVADOTM to connect the synthesized kernel IPs with
other infrastructure blocks shown in Fig. 1 and launches a
co-simulation between the RTL and the high-level testbench
(typically written using C/C++ or OpenCL host code). This
simulation is much slower than the SW emulation, but it
also generates a much more accurate report of the system
performance, which in particular includes the effects of off-
chip DRAM accesses.

In the literature surveyed above, the caches are usually
designed as concurrent HW modules, which execute in parallel
with the kernel IPs [18]. While this strategy offers some
advantages, such as a better decoupling between the external
memory and the IPs, it also has a significant disadvantage: it
requires one to change the accelerated kernel code to access
the caches via dedicated interfaces rather than directly access
the source code arrays. This is incompatible with the strategy
of providing a software-like design environment for FPGA
hardware, and motivated us to create the inline caches that we
introduce in this article.

As shown in Fig. 3, our caches are directly “inlined” in
the algorithms to be accelerated. In this way, the “golden”
code that has been functionally verified by SW emulation does
not need to be changed for high-performance implementation.
Only the top-level module interface (which is typically much
smaller and simpler than its often intricate algorithmic code)
requires some small changes, as illustrated below. In the
resulting RTL, the caches are directly synthesized as part of
the kernel IP.

Since the HLS tools that we currently use for synthesis do
not support classes or templates in OpenCL kernel code, all
our examples below are based on the C++ language. However,
this is only to ease prototyping our flow. The same mechanism
could be implemented also in OpenCL by slightly modifying
the OpenCL HLS front-end.

As mentioned above, the design has to be modified only
slightly in order to insert the inline caches in the interface of
the original kernel. Further changes to the flow will be needed
to analyze the array access patterns and to optimize the cache
architectures. Automation of these new steps is left to future
work. In this paper we perform this task by hand.

As shown in Fig. 4, some analysis of the external memory
access traces is necessary to find the best cache parameters
to maximize the reuse with an acceptable area cost (we will
describe this in more detail below). Note that this access
analysis is needed only for arrays mapped to external (“global”

6

Fig. 4. Design flow with caches

in OpenCL terminology) memory, and not for the local arrays
or scalars. This only requires the designers to make a few
modification to the top-level function interface to replace the
original data types of the global array variables with a template
cache data type.

Fast SW emulation can be used to both trace the array
addresses and to check the achieved hit ratio, which is au-
tomatically captured and printed by our cache models. Then
can be performed the synthesis, followed by HW emulation
or actual FPGA prototyping to obtain more detailed external
memory performance information, which can potentially lead
to further optimizations.

D. Inline Caches

In this work, we propose and describe several kinds of
inline caches, e.g., direct-mapped and set associative, selected
based on the memory-trace pattern of the applications to be
optimized. Remember that in our work a separate cache is
implemented for each array mapped to global memory. This
means that performance is largely independent of the global
memory addresses at which each array is allocated, and that
there are no conflicts between different arrays. Since accel-
erated kernels typically make fairly regular accesses to each
array, this means that real-time performance of our dedicated
caches is much more predictable than that of traditional shared
caches, and can be comparable to that of manually managed
scratchpads.

1) Direct-Mapped Cache: as its name indicates, each ele-
ment of each array in the external memory has a corresponding
fixed position in the cache, according to a fixed bit field of the
address. The line bits in the middle of the address determine
to which line in the cache it is mapped, while the word bits
define the position within the cache line. The tag bits are
used to check whether a given address is contained in the
corresponding line of the cache (“cache hit”) or not (“cache
miss”). In the latter case, the cache fetches the correct data
from external memory and updates the corresponding cache
line and tag.

Each cache line is read with a single AXI bus access,
possibly using a burst (depending on the line and data bus
bit widths), and stored into the cache. The write policy for the
caches that we implemented is write-back, i.e., only the cache
is updated initially, while the external memory is updated only
when the cache needs to be flushed, either due to a write
miss or due to the completion of the accelerator execution. As
mentioned above, in this paper we assume an execution model
similar to that of OpenCL, in which global arrays cannot be
read and written at the same time by the same HW-accelerated
function (kernel). This avoids all kinds of coherency issues
for our caches, and typically enables them to be read-only or
write-only. As usual, we keep valid and dirty bits for each
cache line, to indicate if it contains valid data from memory
or data that needs to be written back to memory.

In this research, the direct-mapped cache was designed in
C++ by using a template class as shown in Appendix A. The
template arguments, as mentioned above, define the type of
one element of the cache and of the corresponding off-chip
memory global array, the line size and the word size. The con-
structor initializes the base address of the corresponding off-
chip memory array (typically the value of a pointer argument
of the OpenCL kernel or C++ top-level function) and other
variables, like the valid and dirty bits. In HLS, the constructor
is typically executed as part of the reset sequence of the HW
block. A C++ namespace is used to choose among a read-only,
write-only or read-write cache.

In the algorithmic code to be implemented via HLS, the ex-
ternal memory is usually accessed by using the operator[]
or the operator* on a pointer passed from the interface.
Hence, we overloaded the operator[] for the cache type,
for uses on both the left hand side (write) and the right hand
side (read) of an assignment1. This allows us to change only
the interface of the function to be synthesized, not its code,
thus dramatically reducing the design time and the likelihood
of coding errors. For instance, we show the modification from
the original code of the matrix multiplication algorithm in
Appendix B.

The interface to external memory can be defined simply
by instantiating the cache type, with the appropriate template
parameters, instead of every source array that is mapped to off-
chip DRAM. The constructor and destructor that we created
for the cache types take care of all the bookkeeping, from
initializing the cache as empty (resetting all valid and dirty
bits), to flushing an output cache and printing the statistics
in a simulation context, when the accelerator completes its
operation.

Note that since the cache access functions (for reading and
writing) are inlined into the high level kernel code, the syn-
thesized kernel takes care of both executing the computation
using the cached data, and reading/writing data from/to the
main memory in case of misses. As we mentioned above,
this somewhat reduces the achievable performance, but it
dramatically simplifies the design flow and is consistent with
OpenCL philosophy, where the work items themselves take

1We managed to overload differently the read and write accesses to call a
different cache access function, by exploiting an inner class as an agent [23].

7

Algorithm 1 Read data from direct-mapped cache

Require: 32-bit addr and Cache with a pointer ptr mem to
external memory

Ensure: data = Cache[addr]
1: tag , line,word ← addr
2: request ← request + 1
3: if tag = Cache.tags[line] and Cache.valid [line] then
4: hit ← hit + 1
5: else
6: if Cache.dirty [line] then
7: location ← Cache.tags[line], line
8: ptr mem[location]← Cache.array [line]
9: Cache.dirty [line]← false

10: end if
11: loc ← addr >> LINE BITS
12: Cache.array [line]← ptr mem[loc]
13: end if
14: Cache.tags[line]← tag
15: Cache.valid [line]← true
16: return data ← Cache.array [line].slice(word)

care of moving the data from global to local memory. As we
will show in Section V, the performance is excellent anyway
and similar to manually optimized memory transfers between
the global and local memory. In future work we are planning
to experiment with the use of separate processes to handle the
caches.

In order to achieve the best performance, the data width of
the AXI interfaces that are used to transfer a line to and from
external DRAM should have the same size as a cache line, so
that a read or write can be completed in one clock cycle (plus
global memory latency in case of reads, of course). If the line
length is larger than the global memory read size, then burst
accesses will automatically be used by our design. This is one
of the key advantages that the designer gets for free by using
our caches.

Algorithm 1 and Algorithm 2 demonstrate how a cache
reads or writes an address of global memory. The pair of
variables request and hit are used as performance counters
to enable cache parameter tuning also when an FPGA is
used as a rapid prototyping platform, and can be accessed
via FPGA-provided debugging mechanisms (e.g., via JTAG).
The valid and dirty arrays have Boolean elements. The tags
array contain unsigned integers of the appropriate length. The
array array is used to store all the lines of data in the cache.

The two algorithms share a similar structure. Lines 1-4
handle cache hits. The address is split into three pieces, namely
tag , line and word , then the value (or values, for the set-
associative case) stored in tags is compared with the tag part
of the address. If it is a hit, the following operation is the read
from (or write to) array , on line 16. In both cases, the actual
location of the data within the line depends on the value of
word . If it is not a hit, then a new read from the external
memory is necessary (after writing back the dirty line in case

Algorithm 2 Write data to direct-mapped cache

Require: 32-bit addr and data and Cache with a pointer
ptr mem to external memory

Ensure: Cache[addr] = data
1: tag , line,word ← addr
2: request ← request + 1
3: if tag = Cache.tags[line] and Cache.valid [line] then
4: hit ← hit + 1
5: else
6: if Cache.dirty [line] then
7: location ← Cache.tags[line], line
8: ptr mem[location]← Cache.array [line]
9: end if

10: loc ← addr >> LINE BITS
11: Cache.array [line]← ptr mem[loc]
12: end if
13: Cache.tags[line]← tag
14: Cache.valid [line]← true
15: Cache.dirty [line]← true
16: Cache.array [line].slice(word)← data

Fig. 5. Diagram of a two-way set-associative cache

of a write or read/write cache).
In many algorithms, and in particular in the most massively

parallel cases written in languages such as OpenCl, the uses
of each array argument of a kernel are either read-only or
write-only. Hence, we designed a special cache for these read-
only and write-only memory accesses in order to speed up the
synthesis, reduce the cost, and improve the performance. For
instance, a read-only cache does not need to check if a line is
dirty. Algorithm 1 and Algorithm 2 show the get() and set()
functions for this case. The C++ code is listed in Appendix A.

2) Set-Associative Cache: in some algorithms (e.g., sorting,
FFT), data read by successive external memory accesses
are not located at contiguous addresses. In the worst case,
accesses with the same stride as the line size would cause the
lowest performance, since all accesses could become misses.
For these applications, using a set-associative cache is the
easiest solution that does not require code changes.

Fig. 5 shows an example of a 2-way set-associative cache.
The data fetched from main memory can be stored in any
cache set. The replace policy that we are using in our example
code is Least Recent Used (LRU), but other algorithms can
be implemented as well. In Fig. 5, the LRU field records
the last time when a cache line has been read or written. In

8

this research, we use as time stamp (i.e., LRU value) the
request counter, which was also used for statistical purposes
in Algorithm 1 and Algorithm 2.

Designers should carefully choose the number of ways
of a set-associative cache when optimizing the performance,
because a large number of ways causes higher resource
utilization. The adaptation of traditional cache simulators to
our methodology, basically by having a separate cache for
each kernel argument, is left to future work.

Just like in the case of direct mapped caches, also for set-
associative caches we have three variants: read-only, write-
only and read-write.

In this work we did not consider fully associative caches
due to the high cost of the Content Addressable Memory.

3) Cache-dependent HLS Optimizations: using the in-
line caches described in this work, programmers usu-
ally achieve better performance compared to original algo-
rithms. Algorithm- and cache-dependent optimizations may be
needed, though, in order to achieve the best performance. As
discussed above, the designed caches are compatible with HLS
optimization methods. Application-specific post-optimizations
include, e.g., pipelining or unrolling a loop, and providing
memory directives. For instance, a memory dependency is
assumed to exist, if there is an array that is both read and
written. Often, HLS may not be able to detect automatically
if this memory dependency is true or not, and directives are
required to optimize memory accesses by using knowledge
coming from the programmer.

Another very useful optimization can be used when the
designer knows that some array accesses in the code will
be always hits (e.g., the access to array element i + 1 after
accessing element i, if i is even and the line size is at least 2).
When the address analysis performed by the HLS synthesis
tool is not powerful enough to detect this situation due to
complex address computations, this can be done manually
by using two dedicated member functions provided by our
cache class. The methods retrieve() and modify() can be used
instead of the convenient operator “[]” to directly read or
write respectively an element of the array by assuming that it
is already in cache. These functions can dramatically improve
the throughput by reducing the initiation interval of pipelined
inner loops, like a convolution operation, which accesses the
same array multiple times in the innermost loops.

It is also possible, in some cases, to further optimize the
accesses by using, e.g., two separate read-only and write-only
caches for an array that is both read and written, and for which
the programmer knows that the read and written portions by
a given kernel call never overlap.

As shown in Fig. 4, a SW or HW emulation must follow
every optimization that changes the source code, e.g., by using
retrieve() and modify(), in order to guarantee its correctness.

IV. TEST CASES

In this work we demonstrate the usefulness of our proposed
inline caches by using some memory-intensive highly parallel
algorithms from various fields, for which we already had
optimized manual implementations from past research.

To each algorithm, we applied also some specific optimiza-
tions that are limited to the use of synthesis directives, hence
which should be correct by construction.

We classify them into three groups. The first class includes
only basic optimizations (e.g., pipelining) of the innermost
loop and multiple memory ports. In this case, all the input
and output data to and from a kernel are stored externally.

Second, the best known optimizations of each algorithm
from the literature were implemented. In this case, in order
to illustrate the best theoretical performance, all data was also
stored in on-chip BRAMs. Although this is not realistic for
large data sizes, it provides an upper bound to the achievable
performance.

Third, our proposed flow is used to include our inline
caches in each design, and to perform some further code
optimizations, as detailed below. In this case, all the input
and output data are stored in the external memory, as well as
inside the caches.

Each class may contain various options for each application.
Since loop unrolling for the loops with read or write to a port
is not beneficial for the first class of optimizations, we ignored
this optimization in our experiments in order to provide a fair
comparison. But it can be used and would result in further
advantages of our approach.

We recorded for each implementation the execution time
(considering the clock frequency after synthesis, placement
and routing), the power consumption and resource utilization,
in order to compare the effects of the acceleration provided
by the inline cache.

1) K-Nearest Neighbors (KNN): the algorithm is used to
classify data in machine learning and statistics applications.
As its name indicates, the algorithm aims to find the first
k nearest neighbors to a given “test” point among a set of
“training” points. In past work, where we manually optimized
the algorithm [24], we separated the algorithm in two parts:
one computes the distances between the test point to all
training points, and the other searches for the k smallest among
those distances. Both parts are memory intensive. Due to the
fact that the first part contains only one loop which reads all
the data, it can be very easily optimized simply by accessing
the data in bursts (e.g., using our proposed caches in the most
straightforward manner). Hence, in this work we focused only
on the second part, which is shown in Algorithm 3.

Algorithm 3 contains two loops, with one memory access
and a few operations in each iteration. The first implementation
pipelines the innermost loop. The second implementation
also assumes that all distances are already stored in on-chip
memories, and thus provides the best achievable speedup.
The third implementation uses our read-only and write-only
direct-mapped inline caches, with various configurations, to
accelerate the algorithm. Due to algorithm simplicity, we did
not use post-optimizations.

2) Bitonic Sorting: sorting algorithms are among the most
essential and fundamental algorithms in computer science.
Various sorting schemes have been implemented in software
or hardware for a large variety of applications. Bitonic sorting
offers an excellent level of parallelism and it can be modified,
as discussed in [25], into several phases, each of which

9

Algorithm 3 K-Nearest Neighbors (KNN) algorithm

Require: dist the array of distances and number of records
num and k

Ensure: d[0] = dist [v0] ≤ d[1] = dist [v1] · · · ≤ d[k − 1] =
dist [vk−1] ≤ dist [i] ∀i /∈ {v0, v1, . . . vk−1}

1: dlast ← 0
2: for i = 1 to k do
3: dmin ←∞
4: for s = 0 to num − 1 do
5: dis ← dist [s]
6: if dis < dmin and dis > dlast then
7: dmin ← dis
8: end if
9: end for

10: d[i]← dmin

11: dlast ← dmin

12: end for

Algorithm 4 Bitonic sorting algorithm

Require: a the array to be sorted and array size N = 2n and
sorting direction dir

Ensure: ai ≥ aj∀i ≥ j for dir = true or ai ≤ aj∀i ≥ j for
dir = false

1: for b = 1 to n do
2: for s = i− 1 to 0 do
3: for i = 0 to N/2− 1 do
4: dir0 ← (i/2b−1)&1
5: dir0 ← dir0 or dir
6: step ← 2s

7: pos ← 2× i− (i&(s− 1))
8: a[pos], a[pos + step] ← order(a[pos], a[pos +

step], dir0) {swap two values if they are not in
correct order}

9: end for
10: end for
11: end for

using read-only and write-only arrays. Hence, it has also been
accelerated both on FPGAs [7] and on GPUs [25].

Algorithm 4 contains three nested loops. Each iteration in
the outermost loop sorts blocks of size 2b into the bitonic
sequences (i.e., sequences that are first increasing, then de-
creasing, then possibly increasing once more). The middle
loop is over stride sizes s and is used to merge two adjacent
bitonic sequences into a large sequence. The innermost loop
has a constant number of iterations, and swaps the values of
two data items at a distance of 2s if they are not in the correct
order. This algorithm, like KNN, is very memory intensive.

Also in this case, the first implementation pipelines the
innermost loop. Since that loop performs two read operations
and two write operations to the same array in each iteration, a
loop-carried dependency causes a large initiation interval, i.e.,

a slow pipeline throughput.
The second implementation, which is discussed, for exam-

ple, in [25], divides the algorithm into two parts. The first one
splits the global array into multiple arrays, each with the size
equal to the on-chip memory size, and then it uses Algorithm 4
to sort these small arrays into bitonic sequences. The second
part merges these bitonic sequences into the fully sorted array.

The third implementation assumes that the array to be sorted
can fit in local memory, and then uses Algorithm 4 to sort it.
Of course this is unrealistic for large arrays, but it has been
included to show the best achievable performance.

Our cache-based implementations, due to the read and write
stride accesses to external memory shown in Algorithm 4,
require 2-way set-associative caches to achieve the best perfor-
mance. Note that if the stride size is relatively small (smaller
than the cache line size), one can easily prove 2 that the two
values are stored in the same cache line after one fetching.
Even if the stride size is large, the two values will be mapped
to different cache lines in the same set. This guarantees the
two write operations to hit.

The two read and two write operations in the innermost
loop would still create a loop-carried dependency, as discussed
above, and require a large pipeline initiation interval. However,
one can easily note that the two write operations can never
be misses because they access the same array addresses
as the read operations. Thus, in this case we can use the
modify() method to significantly reduce the initiation interval
and dramatically improve the performance.

In order to further remove the dependency created when
the two accesses conflict with each other, we can consider
one more optimization. We exploit the fact that the iterations
in the innermost loop are independent, hence the loop can
be unrolled. Memory traces showed that once the 2-way set
associative cache fetched the new data into the cache line, a
number of following iterations would never miss. The number
depends on the cache line size, but if this number of iterations
is grouped together via partial loop unrolling, then only one
initial access would need to go through the miss check, while
the following unrolled iterations can just use the retrieve()
and modify() methods to improve performance.

3) Smith-Waterman Algorithm: was originally proposed to
align two sequences with partial matches [26], as is performed
by the UNIX diff command. A similar algorithm, called
Needleman-Wunsch, implements a global searching technique
[27]. Due to their efficiency, both algorithms have been widely
used in the field of bioinformatics, e.g., to compare gene
sequences [28]. Hence, many research works have focused on
their acceleration, e.g., on FPGAs [27] and on GPUs [29].

The Smith-Waterman algorithm contains two parts. The first
part constructs a score matrix and is the most expensive. The
second part, called traceback, traverses the matrix to align the
two sequences. In this research, we considered only the first
part, shown in Algorithm 5, and we can see that the score
matrix is accessed multiple times in one iteration.

2Considering that the sequence starts from position 0 and that both the
stride size and cache line size are the powers of 2.

10

Algorithm 5 Score matrix construction part of the Smith-
Waterman algorithm

Require: two sequences seq0 and seq1 with length N and
N > 0

Ensure: a score matrix M = {mij}(N+1)×(N+1) and a
direction matrix D = {dij}(N+1)×(N+1)

1: gap ← −1
2: mij ← 0,∀i, j
3: for i = 1 to N do
4: {Loop along the rows.}
5: for j = 1 to N do
6: {Loop along the columns.}
7: if seq0[i] 6= seq1[j] then
8: match ← 2
9: else

10: match ← −1
11: end if
12: val0 ← m[i− 1][j − 1] + match {Up left entry.}
13: val1 ← m[i− 1][j] + gap {Up entry.}
14: val2 ← m[i][j − 1] + gap {Left entry.}
15: m[i][j]← max(val0, val1, val2)
16: d[i][j] ← 0, 1, 2 {Correspond index of maximum

value.}
17: end for
18: end for

The first implementation of this algorithm again pipelines
the loop, and uses four separate external memory ports to
access the four arrays.

The second implementation is based on the example code
that is distributed with SDAccelTM from Xilinx Inc. Its first
optimization was to use burst reads and burst writes to transfer
both input sequences and both matrices (score and direction)
between the external memory and the on-chip memory. As
can be seen in Algorithm 5, the computed score in each
iteration is the left value for the next iteration, which implies
a loop-carried dependency. Similarly, the up value for each
iteration is the up left value for the next iteration. Hence,
the second optimization is to replace memory accesses to the
left entry and up left entry by two local variables in order
to eliminate some loop-carried dependencies involving slow
memory accesses. These optimizations achieved a very good
acceleration of the original algorithm.

In the third implementation uses again our inline caches,
e.g., direct-mapped ones and read-only direct-mapped ones.
The read-only direct-mapped caches were used for the two
input sequences. The score matrix is both read and written,
hence this optimization could not be applied, and a read/write
cache had to be used. We noted that the synthesis tool detected
many false loop-carried dependencies. Hence, in a post-cache
manual optimization, we used directives to instruct it to ignore
those dependencies in order to reduce the initiation interval.

Note that several such dependencies were also automatically
eliminated by using both a read-only and a write-only direct-

Algorithm 6 Lucas-Kanade algorithm

Require: two frames of images image0 and image1 and
other coefficients

Ensure: vopt
1: for j = 0 to HEIGHT − 1 do
2: for i = 0 to WIDTH − 1 do
3: G2×2 ← 0
4: b2×1 ← 0
5: for wj = −wy to wy do
6: for wi = −wx to wx do
7: center ← Pos(i+ wi, j + wj)
8: left ← Pos(i+ wi − 1, j + wj)
9: right ← Pos(i+ wi + 1, j + wj)

10: up ← Pos(i+ wi, j + wj − 1)
11: down ← Pos(i+ wi, j + wj + 1)
12: im0

val ← image0[center]
13: im1

val ← image1[center]
14: δI ← d(im0

val, im
1
val)

15: im0
left ← image0[left]

16: im0
right ← image0[right]

17: Ix ← (im0
right − im0

left)/2

18: im0
up ← image0[up]

19: im0
down ← image0[down]

20: Iy ← (im0
down − im0

up)/2
21: G← G+ g2×2(Ix, Iy)
22: b← b+ f2×1(δI, Ix, Iy)
23: end for
24: end for
25: G← inverse(G)
26: vopt[j][i]← G× b
27: end for
28: end for

mapped cache to access non-overlapping sections of the score
matrix. In addition, special cache methods that access the
cache more efficiently if successive addresses are guaranteed
to be contiguous could also be used in this case.

4) Lucas-Kanade Algorithm: was first introduced in [30]
and has been widely adopted in the computer vision domain,
especially for optical flow estimation. In the optical flow
application, two images taken close in time are analyzed to
find small (thanks to time proximity) pixel displacements due
to movements of various objects. J.Y. Bouguet [31] also used
it to solve the feature tracking problem. This algorithm is used
to compute partial derivatives of images as shown in (1) and
(2):

Ix(x, y) =
∂Im(x, y)

∂x
=
Im(x+ 1, y)− Im(x− 1, y)

2
, (1)

Iy(x, y) =
∂Im(x, y)

∂y
=
Im(x, y + 1)− Im(x, y − 1)

2
. (2)

Algorithm 6 illustrates a simplified version of the Lucas-
Kanade algorithm. The operations omitted have almost no

11

impact on performance. The implementation that we use in
this article is mainly based on (3), (4) and (5),

G
.
= Σpx+wx

x=px−wx
Σ

py+wy

y=py−wy

[
I2x IxIy
IxIy I2y

]
, (3)

b
.
= Σpx+wx

x=px−wx
Σ

py+wy

y=py−wy

[
δIIx
δIIy

]
, (4)

vopt = G−1b, (5)

which compute the optimum optical flow vector [31]. The
function Pos() is used to ensure that a pixel is located in
the image frame.

The algorithm contains four loops. The first two are over
all the pixels of the images and the last two are over the com-
putation window. The bottlenecks are located in the innermost
loop and are due to the five accesses to external memory.

As usual, the “External memory” implementation simply
pipelines the innermost loop and uses separate memory ports
for different input and output arrays.

In the Algorithm 6, the five pixels of image0 accessed by the
innermost loop include the center pixel (defined by i, j, wi, wj)
and four other pixels around the center pixel. When focusing
only on the innermost loop, the center pixel and the right pixel
can easily be reused in the following iteration. In this case,
the number of accesses to external memory reduces to three
instead of five.

If the next outer loop is also considered, then one or two
lines can be reused by exploiting a structure known as a “line
buffer”, which contains two rows of the current image. Loop
unrolling could also be used in this case to further improve
speed. If the next outer loop is also considered, a large buffer
can be exploited to store even more lines of the image in the
on-chip memory.

For simplicity, we adopted two combined optimizations in
the “On-chip memory” (unrealistically fast) implementation.
The first one was to copy all the pixel data to the on-chip
BRAMs in order to maximize reuse. The second one was
to use two variables to store the center and right pixels as
described above, in order to reduce the initiation interval of
the innermost loop.

In this case, our cache implementation was based on read-
only caches, which were very helpful to accelerate the algo-
rithm.

Further acceleration could also be obtained by manual post-
optimizations to improve the innermost loop initiation interval,
below the initial value of 5 selected by the synthesis tool. It
required moving a prefetching operation before the innermost
loop, and then using the direct retrieve() method to access
the data inside the loop. Then, the initiation interval could be
reduced to 1. In this case, a large enough cache behaves pretty
much like a line buffer.

V. RESULTS

In this section we discuss the performance and cost of
our caches using the test cases described in the previ-
ous section. Throughout the section, performance was es-
timated using the so-called “hardware emulation” capabil-
ity of SDAccelTM v2016.2, which in fact is RTL simu-
lation. The DDDR3 DRAM interface is also simulated at

TABLE II
PERFORMANCE AND RESOURCE UTILIZATION FOR VARIOUS

IMPLEMENTATIONS OF MATRIX MULTIPLICATION (16X16 MATRICES).

Implementation Ext. Mem. On-chip Mem. Cache

Loop flatten Yes Yes No Yes

Exec. time (ms) 0.241 0.027 0.058 0.031
Power (W) 0.507 0.471 1.345 1.201

Energy (mJ) 0.122 0.013 0.078 0.037
BRAM 3 2 38 31

DSP 3 3 3 3

LUT 1792 1462 6588 5699

FF 3051 2237 16186 17794

the cycle-accurate level. In addition, both device power
and resource utilization are estimated after logic synthesis,
placement and routing by VivadoTM v2016.3. The codes
of the various types of caches and the implementations of
these applications are available in the repository at this link,
https://github.com/HLSpolito/Cache Application.

A. Matrix Multiplication

As mentioned above, we report three classes of implemen-
tations for each algorithm, namely one with all data in external
memory (lower bound on performance), one with all data
initially transferred to on-chip memory (upper bound), and one
with the best architecture that we found for our caches. We
used two direct-mapped read-only caches for input matrices
A and B, and a direct-mapped write-only cache for output
matrix C.

Note that due to a limitation of the HLS tool that we used
(namely Vivado HLSTM) we had to slightly modify the code
of the “On-chip mem.” and “With caches” implementations, in
order to make the loop nest perfect – we incorporated the out-
put matrix assignment into the last iteration of the innermost
loop. This manual code change almost doubles the overall
performance. Note that the change is required regardless of
our caches, and we applied it to all the implementations for a
fair comparison.

TABLE II compares performance, power consumption and
resource utilization of all implementations using 16x16 matri-
ces. The caches for matrices A and C contained one 16-word
line each (i.e., one row of the matrix). The cache for matrix
B contained 16 16-word lines, which was also the size of
matrix B. Note how the cache-based implementation with
loop flattening achieves essentially the same performance as
the “ideal” implementation, where all data fits in the on-chip
memory. Of course, the caches have a significant resource cost,
which becomes particularly noticeable for computationally-
simple algorithms like matrix multiplication. Moreover, the
energy consumption of the best cache implementation is only
30% of that of the external memory implementation. This
is without considering the energy consumed by the external
memory itself, which would make the cache-based implemen-
tations even more efficient, due to the low miss ratio.

More complete results, for a broad range of matrix and
numbers of lines, are reported in Fig. 6 and Fig. 7. As shown

12

Fig. 6. Miss ratios for different numbers of lines, data sizes and line sizes for matrix A of matrix multiplication (log scale).

Fig. 7. Miss ratios for different numbers of lines, data sizes and line sizes for matrix B of matrix multiplication (log scale).

in Fig. 6, the hit ratio of the caches applied to matrix A is
highly dependent on the line size and is not affected by the
number of lines in the cache until the cache can hold all the
data in the matrix, when the miss ratio can be reduced to
0.02%.

The caches applied to matrix B have a different behavior, as
discussed above. The miss ratio can be small only when the
cache size is the same the matrix size as shown in Fig. 7,
thus making caches useful for matrix B only in order to
automatically perform burst accesses to global memory.

B. K-Nearest Neighbors

We tested the KNN algorithm using a set of data containing
2048 locations of a series of hurricanes [7], each represented as
a pair of floating point numbers for latitude and longitude. The
host code of this OpenCL design computes all the distances
from a given reference point to all the points in the data set,
then sends the distances to an OpenCL kernel that finds the k
smallest distances, where k = 5.

For each value of k, we tested four kernel implementations
belonging to the usual three classes. The “Ext. mem.” one
kept all computed distances in external memory. The “On-
chip mem.” one copied all data to the on-chip memories at
the beginning of the program, to maximize reuse. As usual,
this is realistic only for small matrices. The “With caches”
one used a read-only direct-mapped cache to store the input
array dist (see Algorithm 3), with two cache configurations.

TABLE III
PERFORMANCE AND RESOURCE UTILIZATION FOR VARIOUS

IMPLEMENTATIONS OF KNN WITH k = 5.

Implementation Ext. Mem. On-chip Mem. Cache

Cache size (byte) — — 128 8K

Exec. time (ms) 0.107 0.116 0.162 0.117
Power (W) 0.7 0.53 0.777 1.114

Energy (mJ) 0.075 0.061 0.126 0.13

BRAM 2 8 16 16

DSP 4 4 4 4

LUT 8015 2454 4271 25596

FF 9620 3766 10026 77979

The first configuration used a very small cache, with one line
of 256 bytes. The second configuration used a larger cache,
with 32 lines of 256 bytes (the size of the entire dist array).

For KNN with k = 5, the performance and resource
utilization are listed in TABLE III. We can see that there
is no performance advantage from our caches in this case,
because each distance is used exactly once by the kernel in
the inner most loop, and because the HLS tool managed to
understand the very simple access pattern and created a burst
access to the external memory the same way as our cache
does it. Note that this design is a worst-case example for our
cache methodology, since input data reuse is trivial except
for caches that are at least as large as the datasets. However,

13

it demonstrates that the performance overhead of our caches
(8KB) is minimal (about 9%).

The execution time of the external memory implementation
is about 8% faster than both the on-chip memory and the best
cache implementation. Note that an overly small cache (128B)
has a significant performance penalty (about 50%) in this case.
This shows that cache type and size must be carefully selected
for each target application. The miss ratio for various data sizes
and cache configurations, obtained via functional simulation in
C++, are reported in Fig. 8. As shown, the number of lines
in the cache has no effect on the miss ratio till the cache can
hold the entire dataset. The miss ratio is inversely proportional
to the line size.

C. Bitonic Sorting Algorithm
Like KNN, also this algorithm is memory-dominated and

with limited data reuse. Nevertheless, without requiring almost
any source code change our caches improved the performance,
mostly by accessing the memory in bursts.

We performed RTL simulation of six total implementations,
each sorting arrays with 128, 1024 and 4096 words filled
with random integers. The three implementations without
caches were discussed in Section IV-2. For the “Limited on-
chip mem.” implementation, which uses the limited on-chip
memories to sort sub-arrays, we considered the maximum on-
chip RAM sizes to be Lmax = 128 bytes and 256 bytes.
Note that we have to use these small sizes, because the RTL
simulation is very slow. As usual, we also report results on
miss ratios for larger arrays and caches in Figure 9. The
last three “With caches” implementations were accelerated
using various cache types and configurations. The first cache
implementation was 2-way set-associative, with 128 total bytes
and a line of 64 bytes. The second cache implementation
used the same configuration but with a post-cache manual
optimization, namely we replaced some write accesses with
calls to the member function that assumes that the data to
be written are already in cache and does not cause a flush.
The third cache implementation added a manual prefetch loop
before the array access code in the original implementation,
thus avoiding the external memory loop latency in the main
pipelined loop. Two configurations of the 2-way set-associative
caches were implemented in order to test the effects of cache
sizes on performance. One implemented a 128-byte 2-way set
associative cache with a line size of 64 bytes, and the other
one implemented a cache with a size of 256 bytes and a line
size of 128 bytes.

TABLE IV shows the performance of the implementations
discussed above, sorting arrays with different lengths. As
expected, the implementation with all data stored in external
memory is the slowest. Transferring all data to very large on-
chip memories has the best performance, about 20x faster. The
other local memory implementation, with a limited maximum
size (Lmax = 128 and 256 bytes) is much less effective and
achieves a speedup of about 2x. The speedup achieved by a
2-way set-associative cache without any post optimization is
about 1.5x. With the first optimization scheme, the speedup
can reach 2.5x. Finally, prefetching achieves 8x speedup and
saves about 40% energy consumption.

Power, resource utilization and data transfer statistics for
the array with size N = 210 are shown in TABLE V.

The “Ext. mem.” implementation keeps all data in external
memory. It consumes the least power due to its simple
architecture. It performed 85k data transfers, each reading or
writing only 4 bytes, since in this case the HLS tool was not
able to automatically infer burst accesses.

The “On-chip mem.” implementation is much faster and
achieves most of its performance gains by making only 128
data transfers of 64 bytes each, in burst mode.

The caches are also able to similarly reduce the total number
of transfers and increase the burst size of each access. As
mentioned above, the bitonic sorting kernels from which we
started had no data reuse, so the caches help only by coalescing
accesses in bursts. The implementation with the 2-way set-
associative cache only required 7k memory transfers, each
containing 128 bytes. The bottleneck for this implementation
is the initiation interval of the innermost loop, which is 2.5x
larger than in the “Ext. mem.” implementation and 12.5x
larger than in the “On-chip mem.” and the best “With caches”
implementations. There are two main reasons for this long
initiation interval. First, there are two read operations and
two write operations in each iteration. Even though the write
operations never miss, the synthesis tool is not able to ignore
the false dependencies between the writeback of a dirty line
and the read which updates the line, in case of a read miss.
Hence, the first optimization decreases the initiation interval by
around 2x, while keeping the number of transfers essentially
identical, thus improving performance by about 2x.

The second optimization used twice the total cache size,
halved the number of transfers and managed to achieve an
initiation interval of 3 by prefetching the data, and hence
preventing the false memory access dependencies in the main
loop.

TABLE VI shows the execution time and device power
required by the implementations with different line sizes for
the two arrays respectively. Doubling the number of lines
improves performance by about 1.5x, but also increases device
power by the same factor. I.e., it improves performance and
increases resource cost, but keeps total energy consumption
essentially the same. As Fig. 9 shown, the miss ratio is
dramatically reduced with a 2-way associative cache instead
of a direct-mapped one. More than 2 ways or more than 1 set
have no effect on the miss ratio.

D. Smith-Waterman Algorithm
The source code for the Smith-Waterman algorithm was

based on the example code that is distributed with Xilinx
SDAccelTM. The host code generates two genome sequences
with a length N = 84, then it sends them to the kernel
and retrieves the score matrix and the direction matrix. Using
these two matrices, the host code produces and verifies the
alignment of the two genomes. We tested a total of seven
implementations, belonging to the usual three classes. The
“Ext. mem.” and “On-chip mem.” implementation, as usual,
kept all the arrays and matrices in external and on-chip
memory respectively. The “With caches” one used two 128-
byte read-only direct-mapped caches for the two sequences

14

Fig. 8. Miss ratios for different numbers of lines, data sizes and line sizes for KNN (log scale).

Fig. 9. Miss ratios for different numbers of lines, data sizes and line sizes for bitonic sorting (log scale).

TABLE IV
PERFORMANCE FOR VARIOUS IMPLEMENTATIONS OF BITONIC SORTING APPLIED TO ARRAYS WITH DIFFERENT SIZES N , AND USING A CACHE LINE SIZE

OF 64 BYTES. Lmax , IN BYTES, IS THE MAXIMUM ON-CHIP MEMORY USED (WHEN LIMITED).

Array size N = 27 N = 210 N = 212

External Mem. 0.702 11.03 62.98

Limited on-chip Mem. 0.333
(Lmax = 128)

6.353
(Lmax = 256)

46.13
(Lmax = 256)

Full on-chip Mem. 0.04 0.577 3.241

Set-assoc. cache 0.494 7.571 42.93

1st opt. set-assoc. cache 0.287 4.473 25.36

2nd opt. set-assoc. cache 0.0815 1.388 7.865

and a 1 KiB read/write direct-mapped cache for the score
matrix and direction matrix. The cache for the score matrix
is the bottleneck of this algorithm, because it can be both
read and written. The memory access dependencies discussed
in the bitonic sorting case also affect the performance of
this algorithm, due to the read and write operations in one
loop iteration, with the resulting miss read after a dirty line
writeback. In this case, some dependencies are true and some
are false. As a first optimization, we used a directive to instruct
the synthesis tool to ignore a false loop-carried dependency
among memory accesses within the innermost loop.

As a second optimization, we replaced the writeback oper-
ation to the score matrix with a cache member function which

can be used when the designer knows (or a data access analysis
tool can infer) that the write operations access consecutive
addresses, in order to boost performance.

As discussed, a write-only cache for the write operation at
the current position of the score matrix and a read-only cache
for the two reads from the previous line of the score matrix
can reduce dramatically the initiation interval. Hence, the third
implementation used a read-only direct-mapped cache and a
write-only direct-mapped cache for the score matrix, instead of
the unified cache used in the previous optimization. Of course,
it can be used only for long sequences (i.e. when the sequence
size is larger than the cache size) with a large score matrix,
where the contents of the two caches can never overlap.

15

TABLE V
PERFORMANCE AND RESOURCE UTILIZATION OF VARIOUS OPTIMIZATIONS ON BITONIC SORTING APPLIED TO ARRAYS WITH SIZE N = 210 .

Implementation Ext. Mem.
On-chip Mem. Set-associative cache

Lmax = 256 Full Orig. 1st opt. 2nd opt.

Initiation interval 20 4 50 28 3

Exec. time (ms) 11.03 6.353 0.577 7.571 4.473 1.388
Number of transfers 84136 488414 128 7040 7040 3520
Average size per transfer (byte) 4 4.16 64 64 64 128
Power (W) 0.451 0.683 0.465 1.534 1.179 2.155

Energy (mJ) 4.975 4.339 0.268 11.61 5.274 2.991
BRAM 1 1 2 16 16 31

LUT 1575 11633 1441 12546 8843 22142

FF 2045 10585 1971 22669 16882 31101

DSP 0

TABLE VI
EFFECT OF CACHE SIZES ON THE PERFORMANCE OF BITONIC SORTING

Array size N = 27 N = 212

Cache line size (byte) 64 128 64 128

Cache size (byte) 128 256 128 256

2nd opt. set-assoc.

Exec. time (ms)
0.1288 0.0815 11.28 7.865

Device power (W)
1.263 2.041 1.253 2.146

Energy consumption (mJ)
0.163 0.166 14.13 16.88

The last one used again the member function that assumes
consecutive addresses when writing the 128-byte write-only
cache (as in the second optimization).

TABLE VII presents the performance and resource utiliza-
tion of the seven implementations. As usual, keeping all the
data on-chip achieves the best performance.

The use of the direct-mapped caches significantly reduced
the external memory accesses. However, we see that the
performance did not improve much due to the false loop-
carried dependencies that were not ignored by the Vivado HLS
synthesis tool, and that added up to a large initiation interval.

However, we eliminated these dependencies either using
synthesis tool directives, or by separating the read/write array
(and its cache) into one read-only and one write-only. Ignoring
the dependencies using a directive reduced the initiation inter-
val by 1.3x and improved the performance by the same factor,
while splitting the arrays and caches improved the performance
by 2x.

Finally, the last implementation reduced the initiation inter-
val to 3 (and increased the performance accordingly), which
is essentially the same as the “ideal” implementation, which
uses only on-chip memories. Caches have a higher resource
utilization, of course, but it is never as high as storing all data
on-chip. Note also that energy consumption of the best cache
implementation is only 1/3 the energy needed to access all data
in off-chip memory, again not considering the energy required
by the off-chip memory itself, which would be much smaller
in the cache case.

The miss ratios for larger sequences are reported in Fig. 10
and Fig. 11. As shown in Fig. 10, the performance of the
direct-mapped cache is acceptable only when the cache size
is twice the sequence size (i.e. it contains two rows of the score
matrix). The miss ratios of the split read and write caches only
depend on the line size rather than on the number of lines, as
shown in Fig. 11.

E. Lucas-Kanade Algorithm

While real-life algorithm applications compute the optical
flow on relatively large images (up to several megapixels), in
this section we report RTL simulation results for small images,
of 64x36 pixels, each pixel represented on 8 bits. We also
report miss ratios for more realistic image and cache sizes,
from functional simulation in C++.

As before, the “Ext. mem.” and the “On-chip mem.” imple-
mentations used only off-chip and on-chip memories.

We then developed several optimized “With caches” im-
plementations. The first one used a 64-byte one-line write-
only direct-mapped cache for the output vector, a 64-byte
one-line read-only direct-mapped cache for the second image
(which is read once in each innermost loop iteration), and a
256-byte four-line read-only direct-mapped cache for the first
image (which is read five times in each iteration). The size
of the read-only direct-mapped cache used for the first image
is sufficient to store three lines of the image. Hence, it acts
essentially as a line buffer, but without, as usual, requiring any
manual code change.

The second one doubled the line size of the two read-
only direct-mapped caches with respect to the first one, thus
doubling both the burst size and the cache size.

The third one used a post optimization that assumes access
to consecutive addresses, as described in the previous section,
with the goal to reduce the initiation interval. Note that its
effectiveness, as before, is reduced by a limitation of the
Vivado HLS tool, which is unable to flatten a loop inside a
pipelined loop (as in the matrix multiplication case).

The performance and resource utilization of the four im-
plementations are listed in TABLE VIII. The “Ext. mem.”
implementation, which keeps all the images in the external
memory, has a very long execution time because it accesses

16

TABLE VII
PERFORMANCE AND RESOURCE UTILIZATION OF VARIOUS OPTIMIZATIONS APPLIED TO THE SMITH-WATERMAN ALGORITHM WITH N = 84.

Implementation Ext. Mem. Full on-chip Mem.
Direct-mapped cache R/W-only cache

Original Opt. directives Opt. func. Original Opt.

Init. interval 7 2 46 36 37 20 3
Exec. time (ms) 1.759 0.1556 1.714 1.353 1.389 0.8558 0.1976
Power (W) 0.58 0.513 4.297 2.507 3.754 2.364 1.598

Energy (mJ) 1.02 0.0798 7.365 3.392 5.214 2.023 0.3158
BRAM 3 6 60 60 60 60 60

DSP 0 1 0 0 0 0 1

LUT 3347 1900 90434 47283 75243 17288 10800

FF 4783 2672 121936 47993 121776 41471 28096

Fig. 10. Miss ratios for different unified cache numbers of lines, data sizes and line sizes for the score matrix of Smith-Waterman (log scale).

Fig. 11. Miss ratios for different split read and write cache numbers of lines, data sizes and line sizes for the score matrix of Smith-Waterman (log scale).

the external memory 1.6M times. However, this algorithm (like
most computer vision, machine learning and artificial intelli-
gence algorithms) exhibits very high levels of data reuse. In
particular, each pixel of the first image is accessed many times
by this algorithm. Hence, the “On-chip mem.” implementation
that stores all data in the on-chip memory maximizes data
reuse and requires only 4.7k transfers from/to the external
memory. In addition, the on-chip memory can be accessed
using two ports, so the initiation interval is reduced from 5 to
3. In summary, this implementation improves performance by
about 8.5x.

Two factors improve significantly the performance of the

optimizations using our caches. First of all, as in the case of
bitonic sorting, the caches use bursts to increase the data size
of each transfer. Second, the caches exploit the very significant
amount of data reuse of this algorithm. As shown in the table,
even a very small cache (comparable in size to a line buffer,
which is a standard implementation for this kind of algorithms)
speeds up kernel execution by 3.6x while consuming only 60%
of the energy.

The miss ratio of the most frequently accessed array is only
0.02% and it required only 50k data transfers of about 64 bytes
each (the ideal lower bound is about 5k transfers). The larger
cache doubles the transfer size and halves the miss ratio to

17

TABLE VIII
PERFORMANCE AND RESOURCE UTILIZATION FOR VARIOUS IMPLEMENTATIONS OF THE LUCAS-KANADE ALGORITHM.

Frame size 64x36, window size = 5

Implementation Ext. Mem. Full on-chip Mem. Small caches Large caches Opt. caches
Hit ratio (%) — — 99.98 99.99 99.7

Execution time (ms) 43.78 5.636 12.01 11.7 9.2
Initiation interval 5 3 5 5 1

Number of transfers 1677312 4680 51136 23990 23702
Average size per transfer (byte) 4 4.9 64 126.5 127
Power (W) 0.689 0.693 1.588 1.759 1.737

Energy (mJ) 30.16 3.906 18.58 20.58 15.98
BRAM 2 4 31 45 37

DSP 21 21 21 21 21

LUT 5888 5669 27631 45366 35254

FF 7846 7604 35376 56140 46383

0.01%. The initiation interval is reduced to 1 clock cycle for
the last implementation.

The last optimization accelerates the algorithm by 4.8x and
reduces energy consumption by 2x compared to the “Ext.
mem.” implementation. Although both cache sizes are Pareto-
optimal, the smaller cache probably offers the most effective
cost-performance trade-off. The miss ratios for various frame
sizes, window sizes and cache configurations are reported in
Fig. 12. The lowest miss ratio can be 0.000015, leading to
excellent data reuse. Even for large frames and large windows,
relatively small caches can obtain a low miss ratio (around
0.1%).

F. Summary

For all five algorithms considered, each drawn from a very
different application domain, we summarize in TABLE IX and
Fig. 13 the execution time and energy consumption for the
best implementations, with and without caching. Except for
KNN, which has no data reuse and has very simple addressing
patterns that allow Vivado HLS to infer external memory
burst accesses, the best implementations with caches improve
execution speed by up to 8x and reduce energy by about 2x.

Fig. 14 shows the performance of our caches with respect to
the ideal lower bound represented by the transfer of all data to
a hypothetical very large on-chip memory. Except for KNN,
for the reason that was already mentioned, our caches obtained
very similar performance with a realistic memory occupation.
Manual optimization of off-chip and on-chip memory, which
typically requires extensive code restructuring, can achieve
comparable or better performance using the same amount of
local memory as our caches, but it requires a large amount of
manual optimization work.

VI. CONCLUSION

This article introduces a new methodology for optimizing
the memory-intensive algorithms by using inline caches that
are synthesized from a C++ model onto an FPGA. These
caches are designed using a synthesizable style supported by
most high-level synthesis tools, not just the Vivado HLS tool
that was used to implement several design examples in this

work. These caches can be easily used by designers, since they
follow traditional cache design concepts and categories, e.g.,
direct-mapped or set-associative. We provide several variants
that can be adapted to different use contexts (e.g., read-only,
write-only, etc.). They also include design aids (e.g., memory
access tracing capabilities, miss ratio reporting) that can be
used to ease cache size and architecture optimization. Note that
since the caches are modeled in C++, both their functionality
and any manual optimizations aimed at further improving
performance can be fully verified in C/C++, without requiring
synthesis or RTL simulation.

The new methodology was then applied to five algorithms
from very different application areas such as machine learning,
data sorting, genomics and computer vision. The original algo-
rithms with a few basic optimizations, such as loop pipelining,
were used as a performance, resource usage and energy
consumption reference. We also considered an ideal “best
case” implementation, in which all data could fit on-chip. We
then showed how using our caches, with different parameters
and some further optimizations, could significantly improve
performance without requiring the extensive code changes that
are typically required to manually optimize on-chip memory
usage. In order to fairly compare these implementations, all of
them keep the same computation architecture (loop pipelining,
unrolling, etc.), only changing the memory architecture.

From the performance comparison results, we can conclude
that the use of our inline caches can accelerate most memory-
intensive algorithms, except for those which do not exhibit
a significant amount of data reuse, and for which high-level
synthesis tools cannot automatically infer memory access
bursts. In summary, our cache implementations improved
performance by up to 8x energy by about 2x, achieving
comparable results to the best available manual optimizations
of the on-chip memory architecture, while requiring a much
shorter design time.

Currently a designer needs to manually choose the types and
the sizes of the caches and the specific member functions used
to access the cache, in order to achieve the best performances
for their applications. Our future work will focus on automat-
ing both application profiling, in order to select the best cache

18

Fig. 12. Miss ratios for different numbers of lines, data sizes and line sizes for the input image of Lucas-Kanade (log scale) .

TABLE IX
SUMMARY OF THE PERFORMANCE OF THE FIVE ALGORITHMS WITH AND WITHOUT CACHES.

Matrix multiplication K-Nearest Neighbors Bitonic sorting Smith-Waterman Lucas-Kanade

Exec. time of Ext. Mem. (ms) 0.241 0.107 11.03 1.759 43.78

Energy of Ext. Mem. (mJ) 0.122 0.075 4.975 1.02 30.16

Exec. time of the cache (ms) 0.031 0.117 1.388 0.1976 9.2

Energy of the cache (mJ) 0.037 0.13 2.991 0.3158 15.98

Exec. time ratio of the cache 0.129 1.093 0.126 0.112 0.21
Energy ratio of the cache 0.303 1.733 0.601 0.310 0.53

Fig. 13. Summary of the performance improvements achieved by the caches (log scale).

architecture for each DRAM array, and static address analysis,
in order to infer which accesses are always “hits”.

APPENDIX A
CODE OF THE INLINE DIRECT-MAPPED CACHE

This appendix shows the most significant fragments of the
code of the template class of the inline direct-mapped cache.
The operator[] method is overloaded and an inner class
is used to differentiate between the methods to be called when
the operator is used in a left-hand-side or right-hand-side
context.

template<typename T , i n t SET BITS , i n t LINE BITS>
c l a s s Cache {

p r i v a t e :

s t a t i c c o n s t i n t CACHE SETS = 1 << SET BITS ;
s t a t i c c o n s t i n t LINE SIZE = 1 <<LINE BITS ;
s t a t i c c o n s t i n t DATA BITS = s i z e o f (T) ∗ 8 ;
t y p e d e f a p u i n t<DATA BITS> LocalType ;

c l a s s i n n e r {
p u b l i c :
i n n e r (Cache ∗ cache , c o n s t i n t add r) :

cache (cache) , add r (add r) {}
operator T () c o n s t {

re turn cache−>g e t (add r) ;
}
void operator = (T d a t a){

cache−>s e t (addr , d a t a) ;

19

Fig. 14. Ratios of execution time of two kinds of optimizations. (log scale).

}
p r i v a t e :
Cache ∗ cache ;
c o n s t i n t add r ;

} ;

p u b l i c :

t y p e d e f a p u i n t<DATA BITS∗LINE SIZE> DataType ;
Cache (DataType ∗ mem) : ptr mem (mem) { . . . }
i n n e r operator [] (c o n s t i n t add r) {

re turn i n n e r (t h i s , add r) ;
}
˜ Cache () { /∗ w r i t e b a c k code ∗ / . . . }

p r i v a t e :

i n t r e q u e s t s , h i t s ;
DataType ∗ c o n s t ptr mem ;
DataType a r r a y [CACHE SETS] ;
a p u i n t <32−SET BITS−LINE BITS>

t a g s [CACHE SETS] ;
bool v a l i d [CACHE SETS] , d i r t y [CACHE SETS] ;

T g e t (c o n s t i n t add r) {
c o n s t a p u i n t <32 − SET BITS−LINE BITS> t a g

= add r >> (SET BITS+LINE BITS) ;
c o n s t a p u i n t<SET BITS> s e t i

= (add r >> LINE BITS) ;
c o n s t a p u i n t<LINE BITS> b l o c k = add r ;
r e q u e s t s ++;
bool match = t a g s [s e t i] == t a g ;

DataType d t ;
i f (v a l i d [s e t i] && match) {

h i t s ++;
d t = a r r a y [s e t i] ;

} e l s e {
d t = ptr mem [add r >> LINE BITS] ;
a r r a y [s e t i] = d t ;

}
t a g s [s e t i] = t a g ;

v a l i d [s e t i] = t rue ;
LocalType d a t a = lm da ta : : GetData<DATA BITS ,

DATA BITS ∗ LINE SIZE ,

LINE BITS > : : g e t (d t , b l o c k) ;
re turn ∗ (T∗)& d a t a ;

}

void s e t (c o n s t i n t addr , c o n s t T& d a t a) {
c o n s t a p u i n t <32 − SET BITS−LINE BITS> t a g =

add r >> (SET BITS+LINE BITS) ;
c o n s t a p u i n t<SET BITS> s e t i =

(add r >> LINE BITS) ;
c o n s t a p u i n t<LINE BITS> b l o c k = add r ;

r e q u e s t s ++;

bool match = t a g s [s e t i] == t a g ;
i f (v a l i d [s e t i] && match) {

h i t s ++;
} e l s e {

i f (d i r t y [s e t i]) {
a p u i n t <32> paddr = t a g s [s e t i] ;
ptr mem [paddr<<SET BITS | s e t i] = a r r a y [s e t i] ;

}
a r r a y [s e t i] = ptr mem [add r >> LINE BITS] ;

}

LocalType l d a t a = ∗ (LocalType∗)& d a t a ;

a r r a y [s e t i] = lm da ta : : Se tData<DATA BITS ,
DATA BITS ∗ LINE SIZE ,
LINE BITS > : :
s e t (a r r a y [s e t i] , l d a t a , b l o c k) ;

t a g s [s e t i] = t a g ;
v a l i d [s e t i] = t rue ;
d i r t y [s e t i] = t rue ;

}
} ;

APPENDIX B
ORIGINAL AND MODIFIED CODE OF MATRIX

MULTIPLICATION

The basic matrix multiplication code contains three nested
loops over rows, columns and inner product iteration. The
innermost loop can be pipelined or unrolled as desired, by
setting tool-specific directives.

20

void mat mul t (i n t ∗a , i n t ∗b , i n t ∗c) {
f o r (i n t row =0; row<r ank ; row ++){

f o r (i n t c o l =0; co l<r ank ; c o l ++){
i n t tmp =0;
f o r (i n t i n d e x =0; index<r ank ; i n d e x ++) {

#pragma HLS p i p e l i n e
i n t a In de x = row∗ r ank + i n d e x ;
i n t bIndex = i n d e x ∗ r ank + c o l ;
tmp += a [a I nd ex] ∗ b [bIndex] ;

}
c [row∗ r ank + c o l] = tmp ;

}
}

}

t y p e d e f Cache<i n t , 0 , a0> CacheTypeA ;
t y p e d e f Cache<i n t , b0 , b1> CacheTypeB ;
t y p e d e f Cache<i n t , 0 , c0> CacheTypeC ;

void mat mul t (CacheTypeA : : DataType ∗ a o r i g ,
CacheTypeB : : DataType ∗ b or ig ,
CacheTypeC : : DataType ∗ c o r i g) {
CacheTypeA a (a o r i g) ;
CacheTypeB b (b o r i g) ;
CacheTypeC c (c o r i g) ;

f o r (i n t row =0; row<r ank ; row ++){
f o r (i n t c o l =0; co l<r ank ; c o l ++){

i n t tmp = 0 ;
f o r (i n t i n d e x =0; index<r ank ; i n d e x ++) {

#pragma HLS PIPELINE
i n t a In de x = row∗ r ank + i n d e x ;
i n t bIndex = i n d e x ∗ r ank + c o l ;
tmp += a [a I nd ex] ∗ b [bIndex] ;

}
c [row∗ r ank + c o l] = tmp ;

}
}

}

ACKNOWLEDGMENT

This work was supported in part by Xilinx Inc., and in part
by the European Commission through the ECOSCALE project
(H2020-ICT-671632).

REFERENCES

[1] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2014 IEEE International. IEEE, 2014, pp. 10–14.

[2] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
transactions on parallel and distributed systems, vol. 13, no. 3, pp. 260–
274, 2002.

[3] D. Xie, J. Lai, and J. Tong, “A high utilization rate routing algorithm for
modern fpga,” in Solid-State and Integrated-Circuit Technology, 2008.
ICSICT 2008. 9th International Conference on. IEEE, 2008, pp. 2333–
2336.

[4] SDAccel Environment Optimization Guide, Xilinx Inc.
[5] M. Fingeroff, High-level synthesis: blue book. Xlibris Corporation,

2010.
[6] L. Ma, F. B. Muslim, and L. Lavagno, “High performance and low power

monte carlo methods to option pricing models via high level design and
synthesis,” in European Modelling Symposium EMS2016 (EMS2016),
Pisa, Italy, Nov. 2016.

[7] F. B. Muslim, L. Ma, M. Roozmeh, and L. Lavagno, “Efficient fpga
implementation of opencl high-performance computing applications via
high-level synthesis,” IEEE Access, vol. 5, pp. 2747–2762, 2017.

[8] F. Winterstein, K. Fleming, H.-J. Yang, S. Bayliss, and G. Constan-
tinides, “Matchup: memory abstractions for heap manipulating pro-
grams,” in Proceedings of the 2015 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays. ACM, 2015, pp. 136–145.

[9] J. Keinert, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt, J. Te-
ich, M. Meredith et al., “Systemcodesigneran automatic esl synthesis
approach by design space exploration and behavioral synthesis for
streaming applications,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 14, no. 1, p. 1, 2009.

[10] J. Cong, K. Gururaj, H. Huang, C. Liu, G. Reinman, and Y. Zou, “An
energy-efficient adaptive hybrid cache,” in Low Power Electronics and
Design (ISLPED) 2011 International Symposium on. IEEE, 2011, pp.
67–72.

[11] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” in
Computer Architecture, 1990. Proceedings., 17th Annual International
Symposium on. IEEE, 1990, pp. 364–373.

[12] M. K. Qureshi, D. Thompson, and Y. N. Patt, “The v-way cache:
demand-based associativity via global replacement,” in Computer Ar-
chitecture, 2005. ISCA’05. Proceedings. 32nd International Symposium
on. IEEE, 2005, pp. 544–555.

[13] D. Rolán, B. B. Fraguela, and R. Doallo, “Adaptive line placement with
the set balancing cache,” in Microarchitecture, 2009. MICRO-42. 42nd
Annual IEEE/ACM International Symposium on. IEEE, 2009, pp. 529–
540.

[14] E. Matthews, N. C. Doyle, and L. Shannon, “Design space
exploration of l1 data caches for fpga-based multiprocessor systems,” in
Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ser. FPGA ’15. New
York, NY, USA: ACM, 2015, pp. 156–159. [Online]. Available:
http://doi.acm.org/10.1145/2684746.2689083

[15] G. Kalokerinos, V. Papaefstathiou, G. Nikiforos, S. Kavadias, M. Kat-
evenis, D. Pnevmatikatos, and X. Yang, “Fpga implementation of a
configurable cache/scratchpad memory with virtualized user-level rdma
capability,” in Systems, Architectures, Modeling, and Simulation, 2009.
SAMOS’09. International Symposium on. IEEE, 2009, pp. 149–156.

[16] S. Cheng, M. Lin, H. J. Liu, S. Scott, and J. Wawrzynek, “Exploit-
ing memory-level parallelism in reconfigurable accelerators,” in Field-
Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th
Annual International Symposium on. IEEE, 2012, pp. 157–160.

[17] M. Adler, K. E. Fleming, A. Parashar, M. Pellauer, and J. Emer, “Leap
scratchpads: automatic memory and cache management for reconfig-
urable logic,” in Proceedings of the 19th ACM/SIGDA international
symposium on Field programmable gate arrays. ACM, 2011, pp. 25–
28.

[18] J. Choi, K. Nam, A. Canis, J. Anderson, S. Brown, and T. Cza-
jkowski, “Impact of cache architecture and interface on performance
and area of fpga-based processor/parallel-accelerator systems,” in Field-
Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th
Annual International Symposium on. IEEE, 2012, pp. 17–24.

[19] A. Putnam, S. Eggers, D. Bennett, E. Dellinger, J. Mason, H. Styles,
P. Sundararajan, and R. Wittig, “Performance and power of cache-based
reconfigurable computing,” in ACM SIGARCH Computer Architecture
News, vol. 37, no. 3. ACM, 2009, pp. 395–405.

[20] F. Winterstein, K. Fleming, H.-J. Yang, J. Wickerson, and G. Constan-
tinides, “Custom-sized caches in application-specific memory hierar-
chies,” in Field Programmable Technology (FPT), 2015 International
Conference on. IEEE, 2015, pp. 144–151.

[21] K. Fatahalian, J. Sugerman, and P. Hanrahan, “Understanding the effi-
ciency of gpu algorithms for matrix-matrix multiplication,” in Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware. ACM, 2004, pp. 133–137.

[22] Y. Dou, S. Vassiliadis, G. K. Kuzmanov, and G. N. Gaydadjiev, “64-
bit floating-point fpga matrix multiplication,” in Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-programmable gate
arrays. ACM, 2005, pp. 86–95.

[23] Yu. (2014, Nov) Overload the brackets operator to perform complex
operations. [Online]. Available: https://argcv.com/articles/3228.c

[24] F. B. Muslim, A. Demian, L. Ma, L. Lavagno, and A. Qamar, “Energy-
efficient fpga implementation of the k-nearest neighbors algorithm using
opencl,” ANNALS OF COMPUTER SCIENCE AND INFORMATION
SYSTEMS, vol. 9, pp. 141–145, 2016.

[25] N. Satish, M. Harris, and M. Garland, “Designing efficient sorting
algorithms for manycore gpus,” in Parallel & Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on. IEEE, 2009,
pp. 1–10.

21

[26] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of molecular biology, vol. 147, no. 1, pp. 195–
197, 1981.

[27] A. G. Seliem, W. A. El-Wafa, A. Galal, and H. F. Hamed, “Parallel
smith-waterman algorithm hardware implementation for ancestors and
offspring gene tracer,” in Computer Applications & Research (WSCAR),
2016 World Symposium on. IEEE, 2016, pp. 116–121.

[28] B. Harris, A. C. Jacob, J. M. Lancaster, J. Buhler, and R. D. Chamber-
lain, “A banded smith-waterman fpga accelerator for mercury blastp,”
in Field Programmable Logic and Applications, 2007. FPL 2007.
International Conference on. IEEE, 2007, pp. 765–769.

[29] L. Ligowski and W. Rudnicki, “An efficient implementation of smith
waterman algorithm on gpu using cuda, for massively parallel scanning
of sequence databases,” in Parallel & Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on. IEEE, 2009, pp. 1–8.

[30] B. D. Lucas, T. Kanade et al., “An iterative image registration technique
with an application to stereo vision,” 1981.

[31] J.-Y. Bouguet, “Pyramidal implementation of the affine lucas kanade
feature tracker description of the algorithm,” Intel Corporation, vol. 5,
no. 1-10, p. 4, 2001.

Liang Ma received the M.S. degree (with Hons.)
from Politecnico di Torino, Italy, where he is cur-
rently pursuing the Ph.D. degree with the Depart-
ment of Electronics and Telecommunications under
the supervision of Prof. L. Lavagno. His research in-
terests focus on high-level synthesis, electronic sys-
tem level design and low-power high-performance
computing.

Luciano Lavagno received his Ph.D. in EECS from
U.C.Berkeley in 1992. He co-authored four books
and over 200 scientific papers. He was the architect
of the POLIS HW/SW co-design tool. Between
2003 and 2014 he was an architect of the Cadence
CtoSilicon high-level synthesis tool. Since 1993 he
is a professor with Politecnico di Torino, Italy. His
research interests include synthesis of asynchronous
circuits, HW/SW co-design, high-level synthesis,
and design tools for wireless sensor networks.

Mihai Teodor Lazarescu received his Ph.D. from
Politecnico di Torino (Italy) in 1998. He was Senior
Engineer at Cadence Design Systems, founded sev-
eral startups and serves now as Assistant Professor
at Politecnico di Torino. He co-authored more than
40 scientific publications and several books. His
research interests include sensors for indoor local-
ization, reusable WSN platforms, high-level hard-
ware/software co-design and high-level synthesis of
WSN applications.

Arslan Arif has done his masters from NUST
Pakistan. Currently he is pursuing his PhD degree
with Department of Electronics and Telecommuni-
cation (DET) Politecnico Di Torino, Italy. His cur-
rent research interests include high-level synthesis
(HLS), computation accelerators (FPGA & GPU)
and internet of things (IoT)

