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Abstra
t

This thesis has been 
arried out at the Department of Mathemati
s of

the University of Bologna and at the Company HyperLean s.r.l. spin-o� of

the University Polyte
hni
 of Mar
he, as part of a 
ollaborative proje
t on

�Theoreti
al and numeri
al aspe
ts of a hybrid geometri
 modeling system�.

The key observation that motivates the interest in this topi
 is that in dif-

ferent appli
ation 
ontexts you have the need to 
reate virtual solid models

that integrate real data a
quired by 3D s
anning, represented by polygo-

nal meshes, with syntheti
 models, designed by parametri
/analyti
al multi-

pat
hes.

The resear
h topi
 
overed the study of theoreti
al and numeri
al aspe
ts

of solid modeling and the development of suitable solutions as part of a �hy-

brid geometri
 solid modeling system�.

In parti
ular, the involvement as regards the professional side of the proje
t


overed the development of algorithms for the optimization of the 3D geom-

etry of solid obje
ts and boolean operations between polygonal meshes to

improve the LeanCost software (HyperLean's proprietary software).

Con
erning the a
ademi
 side, we investigated many aspe
ts of solid model-

ing, fo
using on the B-Rep models and introdu
ing the new paradigm �Ex-

tended B-Rep� whi
h is able to integrate �mesh-fa
es� as part of a B-rep

model.

To manage the quality of the built model we studied a notion of 
ontinu-

ity and join between parametri
 and dis
rete representations and we pro-

posed a set of methods that guarantee that the models 
an be manipu-

i



ii Abstra
t

lated while maintaining predetermined 
ontinuity 
onstraints among the 
on-

stituent parts.

We generalized the most important tools of solid modeling to the Ex-

tended B-Reps and proposed solutions to extend the geometri
 kernels of

standard solid modeling systems to be able to deal with Extended B-rep

models. The new geometri
 solid modeling kernel has been realized in a

software supported by the OpenCas
ade library.
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Introdu
tion

In di�erent appli
ation �elds, ranging from 
omputer graphi
s to indus-

trial design and 3D modeling, the user is fa
ed with the design and editing of


omplex 3D virtual geometri
 models. Basi
ally 3D models 
an be 
lassi�ed

in two families: the digital models, that represent quite faithfully real obje
ts

or phenomena, and the designed models, whi
h are a virtual representation

of a shape 
on
ept, 
reated by design. Ea
h family has its own modeling

pipeline. Digital models are the result of an a
quisition pro
ess through 3D

s
anners. Oppositely, a designed model is typi
ally 
reated by means of a


onventional 
omputer aided modeling system, where a designer has at dis-

posal a great number of tools to transpose his shape 
on
ept into a 3D model.

Digital models are often represented by polygonal meshes or point 
louds.

Designed models are 
reated by manipulating mathemati
al knowledge, su
h

as Bézier and spline pat
hes or analyti
al surfa
es.

Up to now, only limited resear
h e�orts have been devoted to put together

these two families of models and the only way that gives the possibility to

these two 
ategories to dial is the 
onversion of one into the other.

The 
onversion of di�erent kinds of geometri
 primitives into a 
ommon

form 
learly implies expensive 
omputations and possible loss of information.

Given the 
omplexity of the shapes to be virtualized, 
onverting the digitized

meshes into 
ontinuous designed models is unfeasible. On the other hand,

if one 
hooses to 
onvert 
ontinuous surfa
es into polygonal meshes through

tessellation, editing the model afterwards, if ne
essary, will be harduous.

Moreover, the digital preservation of a
quired pie
es requires that one 
an

1
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always distinguish digital models from the surfa
e pat
h 
reated following a

geometri
 pro
ess.

This proje
t aims at integrating designed models, represented by 
on-

tinuous surfa
es, and digital models, represented by polygonal meshes, in a

unique 3D model in whi
h entities su
h as Non Uniform Rational B-Splines

(NURBS) analyti
al surfa
es and meshes 
oexist. This would delete the gap

existing between designed and digital models and it would simplify many

pro
esses that nowadays require the 
onversion of one representation in the

other.

To support this new modeling paradigm we propose a suitable solid model-

ing system that we name �Extended Solid Modeling System�. It is pointing

out that the proposed term �Extended� instead of Hybrid avoids a possible

misunderstanding. Infa
t, nowadays, what is 
ommonly referred to as hybrid

system is a modeling system in whi
h it is possible to model together solid

obje
ts and surfa
es. The adje
tive Extended is in order to underline the

extension whi
h was made 
ompared to existing systems.

In the proposed Extended Solid Modeling System, whi
h relies on Boundary

Representation (B-Rep) of solid models, the fa
es are des
ribed by di�er-

ent kinds of representations, both 
ontinuous and dis
rete, su
h as NURBS

surfa
es and meshes. Here di�erent forms of representation 
oexist, intera
t

and, sin
e they do not have to be 
onverted into a 
ommon form, they always

keep their shape features and analyti
al properties. The regions of the model

represented by meshes maintain their faithful 
omplian
e to the real data,

while those represented by 
ontinuous models are easily editable.

The possible appli
ations of su
h an Extended System are spread through


ultural heritage, medi
al s
ien
e, passing through industrial design and en-

gineering appli
ations. Every s
enario in whi
h it is ne
essary to build or

rebuild a pie
e or a surfa
e starting from an existing model represented by a

mesh is a possible appli
ation for our proposal.
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In the 
ontext of 
ultural heritage, artwork �ndings are not only frag-

mented, but are often in
omplete. Therefore, to build a virtual model of a

restored obje
t, the digitized data must be supplemented by modeling the

missing parts and assembling them in su
h a way to be 
ompliant with the

real �ndings. Currently available systems address the problem by 
onvert-

ing di�erent representations into a 
ommon form. Unfortunately, in the

virtualization of 
omplex artworks, the 
onversion of detailed meshes into

smooth surfa
es implies una

eptable approximations, while the 
onversion

of smooth surfa
es into meshes makes it di�
ult to operate on the model to

make 
hanges.

Instead, an extended model would allow to 
ombine the expressiveness of

meshes with the easy editability of smooth surfa
es in order to restore the

missing parts. No 
onversion would be required.

An example is illustrated in Fig.1 and Fig.2 where are represented two dif-

(a) (b)

Figure 1: Example of Statue re
onstru
tion, Mars statue is repaired

ferent ruined statues. In Fig.1(a) is illustrated the statue ruined with some

missing pie
es, while in Fig.1(b) the statue has been repaired re
reating miss-
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(a) (b)

Figure 2: Example of statue re
onstru
tion, Caesar's Nose re
reated and

atta
hed

ing parts using NURBS surfa
es.

Another example is shown in Fig.2 whi
h shows how a nose is re
onstru
ted

using a CAD system and then joined to the rest of the statue. In Fig.1 and

Fig.2 from left to right, we 
an see respe
tively the ruined statue and the

repaired one.

A di�erent appli
ation that motivated the resear
h proposed is in the 
on-

text of biomedi
al engineering. In parti
ular the implant design, Plasti


Surgery and Maxillofa
ial Surgery. The extended paradigm 
ould be used to

integrate the digitalized parts of the human patient with parts modeled by a

biomedi
al designer. This would make the design and prototyping pro
esses

qui
ker, 
heaper and more e�
ient.

By the way of illustration we show an example in Fig.3(a) of broken femur.

Fig.3(b) illustrates a possible prosthesis that 
an be modeled with a CAD

system. In this 
ase an extended model 
ould be used to adapt exa
tly the

boundary of the sphere to the boundary of the broken femur in order to have

an a

urate result.
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(a) (b)

Figure 3: Example of femur reparation

To formulate a 
omplete proposal of an Extended Solid Modeling System

we investigated theoreti
al and numeri
al aspe
ts and we developed suitable

software tools. This proje
t has involved two main goals:

a) Study and design of a theory for a new paradigm of extended solid

model reprentation. This will provide the basis for the de�nition of a

new paradigm of an Extended Solid Modeling kernel.

b) Development of tools to extend a 
lassi
 solid modeling system, aimed

at integrating the new primitives and the new paradigm.

a) Sin
e digital models are represented by meshes, while designed models ex-

ploits 
ontinuous surfa
es, the main proposal is the study of a new reprenta-

tion s
heme, named EB-Rep, that extends the 
lassi
 B-Rep, in whi
h meshes

are represented using a new entity 
alled Mesh-Fa
e.

Moreover we study the Boolean Operation between Extended models, in-

vestigating the mesh/NURBS interse
tion algorithm, in order to realize new

mixed models in whi
h NURBS and meshes 
oexist.

Then, to 
ontrol the quality of the model, it is ne
essary to de�ne a notion

of 
ontinuity for Extended models, that we 
all approximate geometri
 
on-

tinuity (AG), and a set of 
onditions to guarantee that extended models be

manipulated keeping pres
ribed 
ontinuity 
onstraints between their 
onsti-

tuting pat
hes. To this aim we investigate how to handle the join between
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mesh and NURBS entities.

b) In parti
ular we ta
kled the de�nition of a new data stru
ture for extended

models and develop algorithms for the join between mesh and NURBS.

Beyond the design of su
h a new Extended Solid Modeling System, we inves-

tigated the instruments to integrate our innovative proposal in a
tual sys-

tems, giving the possibility to enlarge their potentialities without strongly

modify their geometri
 kernel. Although the a
tivities of the proje
t have

been mostly oriented to a fundamental resear
h, some e�orts have been also

addressed to the development of a prototype software, whi
h is an extension

of a 
lassi
 solid modeling system that manages both NURBS surfa
es and

meshes. This system will be used to validate the e�e
tiveness of the proposed

theory and methodologies.

The work of this thesis is organized as follows.

In the �rst 
hapter we introdu
e the basi
 notions ne
essary for our work. In

parti
ular we brie�y dis
uss the representation s
hemes, fo
using on B-Rep

representations. Then we introdu
e parametri
 
urves and surfa
es and, in

parti
ular, NURBS and �nally meshes and their properties.

In the se
ond 
hapter we formalize the innovative 
on
epts of Mesh-Fa
e and

Extended B-Rep model (EB-Rep).

In the third 
hapter we des
ribe methods to e�
iently represent valen
e semi-

regular meshes with NURBS surfa
es in an EB-Rep model.

In the fourth 
hapter we introdu
e methods to e�
iently represent an un-

stru
tured mesh with NURBS surfa
es in an EB-Rep model.

In the �fth 
hapter we introdu
e the most important tools of solid modeling

and show how to adapt them for an Extended B-Rep model. In parti
ular we


onsider Boolean Operations, Cutting Operation and Fa
e-Join for Extended

B-Rep.

In the sixth 
hapter we illustrate in details an example of Finite Element

Analysis applied to an Extended B-Rep solid. In parti
ular we apply the

Finite Cell Method to an Extended B-Rep solid obtained with tools of solid
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modeling introdu
ed in the �fth 
hapter.

In the last 
hapter we illustrate in details the resear
h a
tivity performed at

Hyperlean 
ompany. In parti
ular we des
ribe the tools realized in order to

improve LeanCost software. These tools are a �rst appli
ation of innovative


on
epts introdu
ed in our Extended Solid modeling System.





Chapter 1

Geometri
 Representation of

Solid Obje
ts

A Solid Model is a digital representation of the geometry of an existing or

envisioned physi
al obje
t. Solid models are used in many industries rang-

ing from manufa
turing to health 
are. Solid Modeling is a 
onsistent set

of paradigms and algorithms for the representation and 
onstru
tion of solid

obje
ts.

Prin
iples of geometri
 and solid modeling are the foundation of Computer

Aided Design (CAD) and in general support the 
reation, ex
hange, visual-

ization and interrogation of digital models of physi
al obje
ts. In parti
ular

solid modeling te
hniques allow for the automation of several di�
ult engi-

neering 
al
ulations that are an important part of the design pro
ess. Sim-

ulation, planning and veri�
ation of ma
hining and assembly pro
esses were

one of the main reasons for the development of solid modeling. In addition,

solid modeling te
hniques serve are the basis for rapid prototyping, reverse

engineering and me
hani
al analysis using �nite elements.

A 
entral problem in all these appli
ations is the ability to e�e
tively and

unambiguously represent and manipulate three-dimensional geometry in or-

der to have a representation 
onsistent with the physi
al behavior of real

obje
ts. Solid modeling resear
h and development has e�e
tively addressed

9
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many of these issues, and 
ontinues to be a 
entral fo
us of Computer-Aided

Engineering (CAE). The Solid Modeling te
hnology is implemented in sev-

eral 
ommer
ial solid modeling software systems.

Solid modeling is an interdis
iplinary �eld that involves many areas, from

rigorous mathemati
al theories, 
omputational geometry to expe
ts of 
om-

puter aided geometri
 designer. Moreover the 
omputational aspe
ts of solid

modeling deal with e�
ient data stru
tures and algorithms.

In this 
hapter we introdu
e some basi
 notions on the mathemati
al

representation of solid obje
ts. In parti
ular we introdu
e the de�nitions

of Representation S
hemes, fo
using on B-Rep representations, geometri


notions of parametri
 
urves and surfa
es and, in parti
ular, NURBS. In

the last part another important geometri
 primitive, the polygonal mesh, is

introdu
ed.

1.1 Representation S
heme

Solid modeling relies on the spe
i�
 need for informational 
omplete-

ness in me
hani
al geometri
 modeling systems, in the sense that any digital

model should support all geometri
 queries that may be required about its


orresponding physi
al obje
t. This ne
essity led to the development of the

modeling paradigm that has de�ned the �eld of solid modeling as we know

it today [45℄. These paradigms are based on the Representation S
hemes.

Let's introdu
e some basi
 de�nitions.

De�nition 1.1. A R-set is a subset of 3D Eu
lidean spa
e that is 
losed,

bounded, regular and semianality
.

A physi
al obje
t, modeled mathemati
ally by an R-set, is unambiguously

de�ned by its boundary. All the R-set's properties allow to study these

entities as if they were real solids.

De�nition 1.2. A Synta
ti
ally Corre
t Representation is a �nite symbol



1.1 Representation S
heme 11

stru
ture 
onstru
ted with symbols from an alphabet a

ording to synta
ti
al

rules.

The 
olle
tion of all synta
ti
ally 
orre
t representations is 
alled a Rep-

resentation Spa
e R. The mathemati
al modeling spa
e whose elements are

R-sets (abstra
t solids) is 
alled N.

De�nition 1.3. A representation s
heme is a relation:

rs : N −→ R

Let D be the set of the representable solids in rs and V be the set of

valid representations in R.

All the prin
ipal solid representations 
an be asso
iated with rs and 
an have

the following properties:

. Domain: the set D of representable solids in rs. If the representation

is optimal we have D = N

. Validity: impossibility to 
reate a non-sense representation

. Completeness: all representations are not-ambiguous. This means rs−1

is a fun
tion

. Uniqueness: every solid has a unique representation. This means rs is

a fun
tion

. A

ura
y: it's possible to represent exa
tly a solid

. Simpli
ity: it's easy to 
reate a representation

. E�
ien
y: 
losure, robust algorithms, 
ompa
t storage.

The prin
ipal representation s
hemes used in CAD and CAGD appli
ation

�elds are Constru
tive Solid Geometry (CSG) and Boundary Representations

(B-Rep). Moreover there are other representation s
hemes used for di�erent

appli
ations whi
h are, for example:
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. Voxelization: it is essentially a list of spatial 
ells o

upied by the solid.

. Cell de
omposition: the solid is represented by its de
omposition into

several 
ells.

. Surfa
e Mesh modeling: the boundary of the solid is dis
retized using

a mesh.

. Sweeping: the solid is de�ned by a set moving through spa
e that tra
e

or sweep out volume.

. Impli
it representation: the solid is spe
i�ed by a predi
ate (in/out)

that 
an be evaluated at any point in the spa
e.

The most important CAD systems and solid modeling libraries use CSG

and B-Rep representation s
hemes. In parti
ular, the open sour
e softwares

Blender [2℄, OpenCas
ade [5℄ and CGAL [3℄ use B-Rep data stru
ture.

Constru
tive Solid Geometry CSG is a representation s
heme in whi
h

a solid is des
ribed through basi
 primitives, 
ombined using boolean oper-

ators and rigid motions as shown in the example in Fig.1.1. Often a CSG

model appears visually 
omplex, but is a
tually a 
lever 
ombination or de-


ombination of simple obje
ts 
alled primitives.

Primitives are the simplest solid obje
ts used for the representation. Typi-


ally they are simple shape like 
uboids, 
ylinders, prisms, pyramids, spheres

and 
ones.

This work fo
us on Boundary Representation s
hemes whi
h are dis
ussed

more in details in the next se
tion.

1.2 Boundary Representation (B-Rep)

A B-Rep representation des
ribes a solid using the de
omposition of its

boundary in a 
olle
tion of 
onne
ted surfa
e elements. The boundary of

the solid separates the inner from the outer spa
e. Every point in spa
e 
an
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Figure 1.1: CSG Representation S
heme: Union (∪), Interse
tion (∩) and
Di�eren
e (−) boolean operations used to 
onstru
t a solid obje
t from simple

primitives (sphere, 
one, 
ube)

unambiguously be tested with respe
t to the solid by testing the point with

respe
t to the boundary of the solid. This allows us to test the validity of

the representation. The boundary is des
ribed by a pair of sets: the set of

geometri
 entities and the set of topologi
al information. Geometri
 entities

are surfa
es, 
urves and verti
es. Topologi
al entities are fa
es, edges and

verti
es that are asso
iated with the geometri
 entities. Conne
tions between

topologi
al entities give a detailed des
ription of the shape of the obje
t.

More in detail a B-Rep represents a solid des
ribing the relationship between

geometri
 entities.

De�nition 1.4. A B-Rep s
heme B = (G, T ) 
onsists of

. a set of geometri
 data G = (P,C, S), where P 
ontains points in

R
3
, C 
ontains parametri
 
urves in R

3
and S 
ontains analyti
 and

parametri
 surfa
es R
3
.

. a set T = (V,E, F ) of topologi
al information providing relationships
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among the elements of G, where V are the verti
es, E are the edges

and F are the fa
es.

The entities in G are:

. Points (P ): it 
ontains points Pi in R
3
that are asso
iated with verti
es

in V .

. Curves (C): it 
ontains 
urves Ci in R
3
with their parameterization

p(t) ∈ Ci, t ∈ [t1, t2]. A 
urve is asso
iated with an edge in E.

. Surfa
es (S): it 
ontains parametri
 surfa
es Si in R
3
with their pa-

rameterization p(u, v) ∈ Si. A surfa
e is asso
iated with a fa
e in F .

The entities in T are:

. Verti
es (V ): it 
ontains verti
es Vi that are pointers to the asso
iated

point Pi in R
3
de�ned in G.

. Edges (E): it 
ontains Ei that are pointers to the asso
iated 
urves Ci

de�ned in G.

. Fa
es (F ): it 
ontains Fi that are pointers to the asso
iated surfa
es

Si de�ned in G.

. Loops/Wires (W ): it is an ordered sequen
e of verti
es and edges.

A loop de�nes a not self-interse
ting pie
ewise 
losed spa
e 
urve W

whi
h may be a boundary of a fa
e. A loop 
an be 
onsidered as a

parti
ular 
losed edge.

. Bodies/Shells (B): it is a set of fa
es that bound a single 
onne
ted


losed volume. It's possible to de�ne a Skeletal Body as a solid made

of a unique point. This solid has a fa
e with no boundary.

As shown in the simple example in Fig.1.2, all information about the 
ube

are stored in a Hierar
hi
al Linked Table, shown in Fig.1.2(b), in whi
h ge-

ometri
 information (points, 
urves and surfa
es) are linked by topologi
al
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entities (verti
es, edges and fa
es). The fa
es A,B, . . . , F are delimited by

the edges l1, . . . , l12. For example, a

ording to the linked table, fa
e A is

delimited by edges l1, l2, l3, l4. The edge l1 is delimited by verti
es v1 and

v2.

A more 
omplex example is illustrated in Fig.1.3(
). The topologi
al stru
-

(a) (b)

Figure 1.2: Example of B-Rep S
heme: a) a solid obje
t b) hiear
hi
al linked

table asso
iated with the obje
t

ture of the obje
t is represented in Fig.1.3(a). Fig.1.3(b) shows the geometri


entities asso
iated with every fa
e topologi
al entity whi
h are NURBS sur-

fa
es that bound the solid obje
t. Most B-Rep s
hemes store additional

information to a

elerate the traversal and pro
essing of the boundary.

There are three di�erent B-Rep 
lasses: vertex-based-B-Rep, edge-based-B-

Rep and fa
e-based-B-Rep.

A vertex-based representation is the simplest B-Rep. In this s
heme fa
es are

stored using a 
ounter
lo
kwise ordered list of vertex. Geometri
 information

about verti
es are stored in a linked table.

An edge-based representation has the edge as fundamental geometri
 entity.

Edge-base data stru
tures are the B-Rep s
hemes that allow to store the
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(a) (b) (c)

Figure 1.3: Example of B-Rep Representation S
heme: a) Topologi
al stru
-

ture, b) Geometri
 entities, 
) Model

maximum amount of information about the represented solid.

In a fa
e-based representation a graph is used to represent the 
onne
tions

between the fa
es of a solid obje
t.

In the next two subse
tions we fo
us on two parti
ular edge-based data stru
-

tures used to handle topology of the B-Rep s
hemes: Winged-Edge and Half-

Edge. These are the most frequently used and the most e�
ient due to their


ompa
tness 
apabilites to store all ne
essary pie
es of information in a small

number of elements.

1.2.1 Winged-Edge data stru
ture

A winged-edge data stru
ture represents a parti
ular edge-based B-Rep

in whi
h every edge stores four data:

. Pointers to its two end verti
es
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. Pointers to left and right fa
es (in manifold solids)

. Pointers to pre
eding and next edge in 
lo
kwise order

. Pointers to pre
eding and next edge in 
ounter
lo
kwise order

Figure 1.4: Winged-Edge data stru
ture

An example of winged-edge data stru
ture is illustrated in Fig.1.4. Ea
h

vertex and ea
h fa
e has a pointer to one referen
e edge.

Ea
h edge is oriented: its orientation is given by its originating and termi-

nating verti
es. Clo
kwise and 
ounter
lo
kwise orientations are given with

respe
t to the orientation of the edge.

The winged-edge data stru
ture has been designed to allow e�e
tive lo
al

modi�
ation of the solid topology. It is the oldest B-Rep data stru
ture and

was initially used for representing polygonal meshes. The basi
 winged-edge

data stru
ture assumes that every edge of the model has exa
tly two adja-


ent fa
es. This restri
ts the topology of surfa
es to be 2-manifolds without

boundaries. A manifold model only 
ontains manifold surfa
es. However,

the result of boolean operations on manifold solids 
an lead to a result that
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is manifold with boundaries. An advan
ed winged-edge data stru
ture allows

to represent also solid manifolds with boundary and non-manifolds.

1.2.2 Half-Edge data stru
ture

Modern solid modelers use an advan
ed edge-based B-Rep data stru
ture:

the half-edge data stru
ture. In this representation s
heme an edge is divided

in two 
oin
ident half-edges with the same shape, the same ending verti
es

with opposite orientation. Half-edge is the main geometri
 entity of the

stru
ture and stores �ve information:

. A pointer to the previous half-edge

. A pointer to the starting/ending vertex

. A pointer to the in
ident fa
e

. A pointer to the opposite half-edge

As illustrated in Fig.1.5 ea
h vertex and ea
h fa
e store a pointer to the

asso
iated half-edge. The half-edge asso
iated with a fa
e is 
onsidered the

�rst edge of the fa
e's border loop. This s
heme allows to represent fa
es

orientation.

Figure 1.5: Half Edge data stru
ture
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1.3 Euler's Equation

The Euler's Equation des
ribes the relationship between geometri
 en-

tities and topologi
al properties of the represented solid. More in detail, a

representation of a 2-manifold without boundary is 
onsidered a valid repre-

sentation if it satis�es the following relation:

|F | − |E|+ |V | − |L| = 2(|C| −G) = χ (1.1)

where

. |F | is the number of Solid's Fa
es

. |E| is the number of Solid's Edges

. |V | is the number of Solid's Verti
es

. |C| is the number of Solid's Conne
ted Bodies

. |L| is the number of Inner Loops in every fa
e

. G is the genus of the Solid

The Euler Chara
teristi
 (or Euler Number), denoted by χ, is a topologi
al

invariant, a number that des
ribes a topologi
al shape in the spa
e or a

stru
ture regardless of the way it is bent. In 
ase of 
onne
ted solids it

provides a dire
t link to the topologi
al genus of the obje
t. Eq.(1.1) is

not the 
lassi
al Euler's Equation be
ause it in
ludes also the number C of


onne
ted 
omponents, assuming that the solid 
an have more than a single


onne
ted 
omponent. We refer to [43℄ for details on this equation and on a

more general Euler's Equation that des
ribe Non-Manifold Solids and Solids

Manifold with Boundary.

As a simple example, we apply Euler's Equation to the solid 
ube illustrated

in Fig.1.6, where the 
ube is des
ribed by 6 quadrilateral fa
es (Fig.1.6(a))

and by 12 triangular fa
es (Fig.1.6(b). It is a solid with a single 
onne
ted


omponent and genus 0, and we have:
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(a) (b)

Figure 1.6: Cube represented with 6 quad-fa
es (a) and 12 triangular fa
es

(b)

. 6 Fa
es, 12 Edges, 8 Verti
es in the quadrilateral 
ase

. 12 Fa
es, 18 Edges, 8 Verti
es in the triangular 
ase

A

ording to Euler's Equation (1.1) we have :

6− 12 + 8 = 2(1− 0) = 2

for the quad-
ase and

12− 18 + 8 = 2(1− 0) = 2

for the triangular one. Both representations result in χ = 2 that is both are

valid representations of a 
ube.

Ea
h fa
e of a B-Rep 
an be asso
iated with a geometry whi
h 
hara
terizes

its shape. In parti
ular, standard B-Rep systems use analyti
al surfa
es su
h

as planes, spheres, 
ylinders and spline parametri
 surfa
es.

In the following we brie�y des
ribe the spline parametri
 surfa
es and the
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meshes, that are introdu
ed as a new geometri
 primitive in the proposed

Extended B-Rep system and they de�ne fa
es of the new proposed B-Rep

extension s
heme.

1.4 Parametri
 
urves and surfa
es

Parametri
 
urves and surfa
es are the most used geometri
 entities in a


lassi
al B-Rep s
heme and are asso
iated to edges and fa
es respe
tively.

De�nition 1.5. Let I be an interval of R. A 
urve γ is a 
ontinuous mapping

γ : I → X, where X is a topologi
al spa
e.

. γ is said to be simple, or a Jordan ar
, if it is inje
tive, i.e. if for all

x, y in I, we have γ(x) = γ(y) implies x = y

. If ∃x, y with x 6= y su
h that γ(x) = γ(y) (with x,y di�erent from the

extremities of I), then γ(x) is 
alled a double (or multiple) point of the


urve.

. A 
urve γ is said to be 
losed or a loop if I = [a, b] and if γ(a) = γ(b).

We always 
onsider 
urves in n−dimensional Eu
lidean spa
es, with n ≥

1. In parti
ular we 
onsider plane 
urves (on R
2
) and spa
e 
urves (on R

3
).

De�nition 1.6. A parametri
 
urve c(t) is a geometri
 entity whose equa-

tions express the 
oordinates of points as fun
tion of a variable t, 
alled pa-

rameter:

c : R → R
n

where n = 2, 3.

A

ording to this de�nition, we write c(t) = (x(t), y(t)) if n = 2 or

c(t) = (x(t), y(t), z(t)) if n = 3, where x, y, z are the three 
omponents of the

fun
tion and represent the 
oordinates of the point in R
2
or R

3
asso
iated

with the parameter t.
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In order to de�ne 
ontinuity of 
urves we need to introdu
e di�erentiability

of fun
tions. Let's now 
onsider k a non negative integer and D an open set

on the real line su
h that f is de�ned on that set with real values.

De�nition 1.7. A fun
tion f is said to be of (di�erentiability) 
lass Ck
if

the derivatives f ′
, f ′′

, . . . , f (k)
exist and are 
ontinuous (the 
ontinuity is

implied by di�erentiability for all the derivatives ex
ept for f (k)
).

f is said to be of 
lass C∞
, or smooth, if it has derivatives of all orders.

Continuity of parametri
 
urves is des
ribed by parametri
 
ontinuity as

follow.

De�nition 1.8. A 
urve 
an be said to have Cn

ontinuity if

dnγ

dtn

is 
ontinuous of value throughout the 
urve.

This means that the �rst n derivatives of the fun
tions that des
ribe the 
urve

are 
ontinuous.

A

ording to the de�nition, a 
urve is said to be C0
if the 
urve is 
ontin-

uous, C1
if �rst derivatives are 
ontinuous, C2

if �rst and se
ond derivatives

are 
ontinuous and Cn
if �rst, se
ond, . . . , n−th derivatives are 
ontinuous.

In general, when two joining 
urves des
ribe a 2D/3D shape, the requirement

of Cn

ontinuity at the 
onta
t point 
an be quite restri
tive.

In addition to parametri
 
ontinuity, geometri
 
ontinuity (Gn
) was intro-

du
ed to make the shape des
ription independent on the speed to tra
e out

the 
urve. In parti
ular geometri
 
ontinuity des
ribes 
ontinuity between

two parametrizations q and r of two 
urves joined at an extreme point 
on-

sidering also the equivalent parametrizations of q and r [29℄.

De�nition 1.9. Let q(u), u ∈ [a, b], and q̃(ũ), ũ ∈ [ã, b̃], be two regular Cn

parametrizations. These parametrizations are said to be equivalent, that is,

they des
ribe the same oriented 
urve, if there is a Cn
fun
tion f : [ã, b̃] →

[a, b] su
h that:
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. q̃(ũ) = q(f(u))

. f(ã) = a f(b̃) = b

. f ′ > 0

De�nition 1.10. Let's 
onsider q and r be two Cn
parametri
 
urves meeting

at a point P . They meet with n−th-order geometri
 
ontinuity, denoted by

Gn
, if there exists a parameterization q̃ equivalent to q su
h that q̃ and r meet

with Cn

ontinuity at P .

An example is shown in Fig.1.7. On the left two 
urves join with a G1


onne
tion: the tangent ve
tors have the same dire
tion but di�erent length.

On the right they join with C1

onne
tion: the tangent ve
tors have the same

length and dire
tion.

A

ording to the de�nition, if we 
onsider the tangent ve
tors on both sides

(a) (b)

Figure 1.7: Join between two 
urves represented in Bernstein Basis form with


ontinuity G1
(a) and C1

(b)

of a point on a 
urve, they are G0/C0

onne
ted if the 
urves tou
h at the

join point, G1

onne
ted if the 
urves share a 
ommon tangent dire
tion at

the join point, G2

onne
ted if the 
urves also share a 
ommon 
enter of 
ur-

vature at the join point and Gn

onne
ted if q(n)(t) 6= 0 and q(n)(t) = kg(n)(t),

for a s
alar k > 0.

In general, Gn

ontinuity exists if the 
urves 
an be reparametrized to have

Cn
(Parametri
) 
ontinuity. A reparametrization of the 
urve is geometri-


ally identi
al to the original, only the parameter is a�e
ted.
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We now introdu
e basi
 de�nitions for parametri
 surfa
es.

De�nition 1.11. A surfa
e s is a topologi
al spa
e in whi
h every point has

an open neighbourhood homeomorphi
 to some open subset of the Eu
lidean

plane E2
.

De�nition 1.12. A parametri
 surfa
e is the image of an open subset of the

Eu
lidean plane (typi
ally R
2
) by a 
ontinuous fun
tion in a topologi
al spa
e

that is generally an Eu
lidean spa
e of dimension at least three.

In our work we 
onsider surfa
es s : R2 → R
3
de�ned by ve
tor fun
tions

of two variables u and v, 
alled parameters, as follows:

s(u, v) = (x(u, v), y(u, v), z(u, v)),

where x,y,z are the three 
omponents bivariate fun
tions that represent the


oordinates of the point in R
3
with parametri
 
oordinates (u, v).

The Ja
obian matrix is the matrix of all �rst-order partial derivatives. Ja-


obian matrix of a parametri
 surfa
e is a 3 × 2 matrix. A point p whose

Ja
obian matrix has rank two is said regular, or the parametrization is said

regular at p. A surfa
e has C1

ontinuity if the Ja
obian matrix asso
iated

to the surfa
e has rank 2 for all points throughout the surfa
e itself.

The tangent plane at a regular point p is the unique plane passing through

p, and is generated by the two row ve
tors of the Ja
obian matrix. The nor-

mal line, or simply normal at a point of a surfa
e is the unique line passing

through p and perpendi
ular to the tangent plane. A normal ve
tor is a

ve
tor whi
h is parallel to the normal. A

ording to these notions, surfa
es

are said to be:

. C0
if the result surfa
e is 
ontinuous

. C1
if the tangent plane exists for every internal point of the result

surfa
e.

A

ording to [29℄ we give the following de�nition.
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De�nition 1.13. Let s and r be two Cn
parametri
 surfa
es meeting along

an edge e. They meet with n-th-order geometri
 
ontinuity, denoted Gn
, if

there exists an equivalent reparametrization s̃ of s su
h that, along e, s̃ and

r meet with Cn

ontinuity.

1.5 NURBS Curves and Surfa
es

Non Uniform Rational B-Spline (NURBS) are mathemati
al models used

in geometri
 modeling to generate and represent parametri
 
urves and sur-

fa
es. Their properties allow to have a great �exibility and pre
ision for

handling both analyti
 and free-form shapes. NURBS are 
ommonly used

in CAD, CAM and Computer Aided Engineering (CAE) and they are repre-

sented by the 
ommon standards, su
h as IGES, STEP and others.

In order to de�ne NURBS 
urves and surfa
es we need the following de�ni-

tions. For properties and tools we referred to [28℄ or [50℄.

De�nition 1.14. Let [a, b] be a 
losed and bounded interval and∆ = {xi}i=1,...,k

a set of points (knots) su
h that:

a ≡ x0 < x1 < . . . < xk < xk−1 ≡ b

We denote by ∆ the partition of [a, b] in k + 1 subintervals:

� Ii = [xi, xi+1) i = 0, . . . , k − 1

� Ik = [xk, xk + 1]

Given an integer m > 0, and Pm the spa
e of real polynomials of order at

most m, we de�ne the spa
e of pie
ewise polynomials:

PPm(∆) = {f |∃p0, . . . , pk ∈ Pm s.t f(x) = pi(x) ∀x ∈ Ii, i = 0, . . . , k}

De�nition 1.15. Let [a, b] be a 
losed and bounded interval and∆ = {xi}i=1,...,k

a partition of [a, b]. Let m be a positive integer, M = (m1, m2, . . . , mk)
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a ve
tor of positive integers su
h that 1 ≤ mi ≤ m, ∀i = 1, . . . , k. Let

W = (w1, . . . , wk) be a ve
tor of not negative 
oe�
ients. We de�ne spa
e of

polynomial B-Spline fun
tions of order m with knots x1, . . . , xk of multipli
ity

m1, . . . , mk as follows:

S(Pm,M,∆,W )) = {s(x) | ∃s0(x), . . . , sk(x) ∈ Pm s.t.

s(x) = si(x) x ∈ Ii i = 0, . . . , k

sli−1(xi) = sli(xi) l = 0, . . . , m−mi − 1 i = 1, . . . , k}.

We observe that for mi = 1 ∀ i = 1, . . . , k we have the maximum 
onti-

nuity, instead if mi = m ∀ i = 1, . . . , k, S(Pm,M,∆,W ) redu
es to PPm(∆).

The spa
e S(Pm,M,∆,W ) has dimensionm+K, whereK =
∑k

i=1mi. In the

same way we 
an de�ne the spa
e of rational B-Spline fun
tions as follows.

De�nition 1.16. The spa
e of rational B-Spline fun
tions is represented as

R(Pm,M,∆,W )

where M = (m1, m2, . . . , mk) is the multipli
ity ve
tor, W = (w1, . . . , wk) the

ve
tor of weights and m + K, with K =
∑k

i=1mi, is the dimension of the

spa
e.

De�nition 1.17. The set

∆∗ = {ti}i=1,...,2m+K

whereK =
∑k

i=1mi is 
alled Extended Partition asso
iated with R(Pm,M,∆,W )

if and only if:

. t1 ≤ t2 ≤ . . . ≤ t2m+K

. tm ≡ a; tm+K+1 ≡ b

. tm+1, tm+2, . . . , tm+K ≡ (x1, . . . , x1, . . . , xk, . . . , xk) where xi is repeated

mi times ∀i = 1, . . . , k
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A stable base for the spa
e S(Pm,M,∆,W ) is represented by the Nor-

malized B-Spline fun
tions.

De�nition 1.18. Let ∆∗
be the extended partition asso
iated with [a, b]. We

de�ne the set of Normalized B-Spline fun
tions

{Ni,m}i=1,...,m+K

using the re
ursive formula:

Ni,h(x) =







x− ti
ti+h−1 − ti

Ni,h−1(x) +
ti+h − x

ti+h − ti+1

Ni+1,h−1(x) if ti ≤ ti + h

0 otherwise

for h = 2, . . . , m, where:

Ni,1(x) =

{

1 if ti ≤ x ≤ ti+1

0 otherwise

and 
onventionally

0
0
= 0.

De�nition 1.19. Given S(Pm,M,∆,W ) of dimension m +K, we de�ne a

B-Spline fun
tion of order m in S(Pm,M,∆,W ) as:

f(x) =
m+K
∑

i=1

ciNi,m(x), (1.2)

where x ∈ [a, b] and {Ni,m(x)}
m+K
i=1 are the Normalized B-Spline basis fun
-

tions de�ned on ∆∗
.

De�nition 1.20. Given R(Pm,M,∆,W ) of dimension m+K, we de�ne a

Rational B-Spline fun
tion in R(Pm,M,∆,W ) as:

r(x) =

m+K
∑

i=1

ciwiNi,m(x)

m+K
∑

i=1

wiNi,m(x)

, (1.3)
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where x ∈ [a, b], {Ni,m(x)}
m+K
i=1 are the Normalized B-Spline basis fun
tions

de�ned on ∆∗
and wi > 0 ∀i.

In order to modify a B-Spline fun
tion and enlarge the dimension of its

spa
e, we 
an a
t on the knot ve
tor or on the degree. In these 
ase 
oe�-


ients ci of the fun
tion are modi�ed but the fun
tion shape is un
hanged.

We introdu
e the most important tools used to modify the knot ve
tor of

a B-Spline fun
tion. These methods are valid also for Rational B-Spline

fun
tions.

Knot Insertion The Knot Insertion (KI) algorithm modi�es the knot ve
-

tor of a B-Spline fun
tion f(x) adding one or more knots to the extended

partition ∆∗
asso
iated with f(x). Knot Insertion leaves f(x) un
hanged.

Given ∆∗
the extended partition asso
iated with [a, b] and t̂ ∈ [a, b], we insert

a knot t̂ in ∆∗
, where tl < t̂ < tl+1, thus generating a new extended partition

∆̂∗ = {t̂i}i=2m+K+1 where:

t̂i =















ti i ≤ l

t̂ i = l + 1

ti−1 i ≥ l + 2

The new spa
e of fun
tions S(Pm, M̂ , ∆̂, Ŵ ) has dimension m +K + 1 and

is su
h that S(Pm,M,∆,W ) ⊂ S(Pm, M̂ , ∆̂, Ŵ ).

The Normalized B-Spline basis fun
tions are modi�ed a

ording to the fol-

lowing theorem introdu
ed in [15℄.

Theorem 1.5.1. Given∆∗
and ∆̂∗

the two extended partitions de�ned before,

the following relation is valid:

Ni,m(x) =



















N̂i,m(x) i ≤ l −m

t̂− t̂i

t̂i+m − t̂i
N̂i,m(x) +

t̂i+m+1 − t̂

t̂i+m+1 − t̂i+1

N̂i+1,m(x) l −m+ 1 ≤ i ≤ l

N̂i+1,m(x) i ≥ l − 1
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Coe�
ients of the new fun
tion are modi�ed a

ording to the following

rule:

ĉi =















ci i ≤ l −m+ 1

λici + (1− λi)ci−1 l −m+ 2 ≤ i ≤ l

ci−1 i ≥ l + 1

where λi =
t̂− t̂i
ˆti+m − t̂i

.

Degree Elevation The Degree Elevation algorithm represents f(x) of or-

der m as a fun
tion f̄(x) of order m + 1 with the same shape. Coe�
ients

of the new fun
tion are modi�ed a

ording to the following rule:



















c̄0 = c0

c̄i =
ci(n+ 1− i) + ici−1

n+ 1
i = 1, . . . , n

c̄n+1 = cn

A NURBS 
urve in R
n
in parametri
 form is a ve
torial fun
tion with n


omponents that are NURBS fun
tions. In parti
ular:

De�nition 1.21. A NURBS 
urve c(t) ∈ R
n

an be expressed as follows:

c(t) = (c1(t), . . . , cn(t)) =
m+K
∑

i=1

PiRi,m(t) =

m+K
∑

i=1

wiPiNi,m(t)

m+K
∑

j=1

wjNj,m(t)

where the parameter t ∈ [a, b], ci(t) are NURBS fun
tions de�ned in (1.3)

and the Pi ∈ R
n
are 
alled 
ontrol points. The ordered sequen
e of 
ontrol

points forms a 
ontrol polygon.

Let 
onsider Sx = (Pn, N,∆x) and Sy = (Pm,M,∆y) two spa
es of mono-

variates B-Spline fun
tions, de�ned respe
tively on [a, b] and [c, d] of order

m and n, knot partitions ∆x = {xi}i=1...h and ∆y = {yi}i=1...k, multipli
ity
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ve
tors N = (n1, . . . , nh) and M = (m1, . . . , mk) asso
iated with ∆x e ∆y,

Sx and Sy have dimensions n+H and m+K respe
tively, where H =
h

∑

i=1

ni

and K =

k
∑

i=1

mi. The tensor produ
t spa
e of Sx and Sy, denoted by Sx⊗Sy,

with dimension (n +H)(m+K) that 
an be written as

Sx ⊗ Sy = (Pn,m, N,M,∆x ×∆y).

De�nition 1.22. We de�ne a tensor produ
t B-Spline fun
tion asso
iated

with ∆x ×∆y as

s(x, y) =

n+H
∑

i=1

m+K
∑

j=1

cijNi,n(x)Nj,m(y), (1.4)

where Ni,n(x) and Nj,m(y) are the Normalized B-Spline basis fun
tions of Sx

and Sy, asso
iated with the extended partitions ∆∗
u = {ui}i=1...2n+H and

∆∗
v = {vj}j=1...2m+K respe
tively.

De�nition 1.23. A NURBS bivariate fun
tion is de�ned as

r(x, y) =

n+H
∑

i=1

m+K
∑

j=1

ci,jwi,jNi,n(x)Nj,m(y)

n+H
∑

i=1

m+K
∑

j=1

wi,jNi,n(x)Nj,m(y)

(1.5)

where wi,j > 0.

This fun
tion 
an be written in this form:

r(x, y) =
n+H
∑

i=1

m+K
∑

j=1

ci,jRi,n,j,m(x, y)

where Ri,n,j,m(x, y) are the Bivariate Rational B-Spline basis fun
tions de-
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�ned as follows:

Ri,n,j,m(x, y) =
wi,jNi,n(x)Nj,m(y)

n+H
∑

i=1

m+K
∑

j=1

wi,jNi,n(x)Nj,m(y)

.

A NURBS surfa
e 
an be represented using a 3D points grid (ξi, ηj, cij) with

i = 1, . . . , n + H e j = 1, . . . , m + K where ξi and ηj are the Greville's

abs
issas of the knot ve
tors in u and v dire
tion. If the grid is represented

on the plane (ξi, ηj) with i = 1, . . . , n+H and j = 1, . . . , m+K we have the

pre-image of the Control Grid.

De�nition 1.24. A parametri
 NURBS surfa
e is a ve
tor fun
tion s(u, v) ∈

R
3
with 
omponents x(u, v), y(u, v) and z(u, v) whi
h are NURBS fun
tions,

de�ned in (1.5) belonging to the same spa
e. A parametri
 NURBS surfa
e

is written as follows:

s(u, v) =
n+H
∑

i=1

m+K
∑

j=1

Pi,jRi,n,j,m(u, v)

where Pij = (xij , yij, zij) ∈ R
3
are the 
ontrol points.

An example of NURBS surfa
e and its 
ontrol grid is shown in Fig.3.1.

G1
join between NURBS surfa
es Using NURBS surfa
es to 
onstru
t


omplex surfa
e obje
ts requires to 
onsider a smooth 
onne
tion between

the several surfa
es approximating pie
ewise the obje
t. Adja
ent NURBS

surfa
es need to be joined with geometri
 
ontinuity at the same order. A
-


ording to De�nition 1.13 two surfa
es are joined with G1

ontinuity along

an edge e if there exists an equivalent reparametrization of the surfa
es su
h

that, along e, the two surfa
es have the same tangent plane. For bi
ubi
 and

biquarti
 surfa
es, 
onditions for G1
join are introdu
ed in [21℄.

G1
Join between NURBS surfa
es 
an be performed with the algorithm de-

s
ribed in [24℄.
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Figure 1.8: NURBS surfa
e representing a Torus and its 
ontrol mesh

Given two NURBS surfa
es s1 and s2 with 
ontrol points di,j and d̃i,j and

weights wi,j and w̃i,j respe
tively, we suppose to keep s1 inta
t and modify

the �rst and se
ond lines of 
ontrol points along the upper boundary strip

of s2 as follows, while keeping the other 
ontrol points of s2 un
hanged. The

following 
ases show how the new 
ontrol points d̃a,b of s2 are set as 
ombi-

nation of 
ontrol points d of s1. The same is done for weights. Here we give

the general 
onditions, whi
h do not imply that s1 and s2 are joined along

both entire edges.

1 At the lower-left 
orner position of the parametri
 domain of s1, we set

c̃2r−2,0 =
2w0,0c0,0 − w1,0c1,0

2w0,0 − w1,0

w̃2r−2,0 = 2w0,0 − w1,0

c̃2r−2,1 =
2(w0,0c0,0 − w0,1c0,1)− (2w1,0c1,0 − w1,1c1,1)

2(2w0,0 − w0,1)− (2w1,0 − w1,1)

w̃2r−2,1 = 2(2w0,0 − w0,1)− (2w1,0 − w1,1)

2 In the interior 
orresponding m pairs of boundary pat
hes of the para-

metri
 domains of s1 and s2, we set

c̃2r−2+k,0 = ck,0
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w̃2r−2+k,0 = wk,0

c̃2r−2+k,1 =
2(wk,0ck,0 − wk,1ck,1)

2wk,0 − wk,1

w̃2r−2+k,1 = 2wk,0 − wk,1

with k = 1, . . . , 2m.

3 At the lower-right 
orner position of the parametri
 domain of s1, we

set

c̃2(r+m−1),0 =
2w2m+1,0c2m+1,0 − w2m,0c2m,0

2w2m+1,0 − w2m,0

w̃2(r+m−1),0 = 2w2m+1,0 − w2m,0

c̃2(r+m−1),1 =
2(w2m+1,0c2m+1,0 − w2m+1,1c2m+1,1)− (2w2m,0c2m,0 − w2m,1c2m,1)

2(2w2m+1,0 − w2m+1,1)− (2w2m,0 − w2m,1)

w̃2(r+m−1),1 = 2(2w0,0 − w0,1)− (2w1,0 − w1,1)

With these 
onditions s1 and s2 are G
1

onne
ted.

A

ording to literature, there are other algorithms that 
an be applied in

order to solve this problem (i.e. [21℄).

1.6 Polygonal Meshes

Polygonal meshes have a 
entral role in our proposal. Let us introdu
e

some basi
 de�nitions.

De�nition 1.25. A mesh M = (V,E, F ) is a 
olle
tion of verti
es V , edges

E and fa
es F that de�nes a surfa
e or the shape of a polyhedral obje
t in

solid modeling [17℄.

The fa
es of the Mesh usually 
onsist of triangles, quadrilaterals, or other

simple 
onvex polygons, but may also be 
omposed of more general 
on
ave

polygons, or polygons with holes. In our work we do not impose that all the

polygonal fa
es are planar.
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A vertex v ∈ V is a point in the 3D spa
e with asso
iated information su
h

as 
olor, normal ve
tor and texture 
oordinates. An edge is a straight line

that 
onne
ts two di�erent verti
es. A fa
e is a 
losed polygon bounded by

a 
y
le of edges.

An edge is 
alled interior if it belongs to at least two fa
es, otherwise it is

an exterior or a boundary edge.

A vertex is 
alled interior if it doesn't belongs to a boundary edge, otherwise

it is an exterior or a boundary vertex.

A mesh is 
alled 
losed if every edge is interior, otherwise it the mesh is 
alled

open or with boundaries.

Furthermore we distinguish between low,medium and high resolution meshes.

Low resolution meshes have |V | ≤ 100, medium resolution meshes have

100 < |V | < 10000 and high resolution meshes have |V | ≥ 10000.

A triangle mesh is a mesh in whi
h all fa
es are triangles, while a quad mesh

is a mesh in whi
h all fa
es are quadrilaterals. A quad-dominant mesh is a

mesh in whi
h the majority of fa
es are quadrilaterals, while there may be

a small fra
tion of non-quadrilateral fa
es, typi
ally triangles and/or pen-

tagons.

The number of edges in
ident to a vertex is 
alled valen
e or degree of the

vertex.

Every mesh has an ideal valen
e, whi
h is the valen
e of the regular verti
es.

All the verti
es with a valen
e di�erent from the ideal valen
e are 
alled ex-

traordinary verti
es (EV).

For a triangular mesh an EV is an interior vertex with valen
e di�erent from

6. Fig.1.9(b) shows a triangular 
losed mesh with EV 
olored in red and two

of the non-EV in blue. If the triangular mesh is open, a boundary vertex

with valen
e di�erent from 4 is 
onsidered an EV. Fig.1.9(a) shows a quad


losed mesh with EV in red and some of the non-EV in blue.

For a quad mesh the EV is an interior vertex of the mesh with valen
e dif-

ferent from 4. If the quad mesh is open, a boundary vertex with valen
e

di�erent from 3 is 
onsidered an EV.
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A

ording to [17℄, a mesh is said to be regular if the ideal vertex valen
e is

(a) (b)

Figure 1.9: Examples of stru
tured meshes: (a) quad mesh representing the

Fertility statue, (b) triangular mesh representing a dolphin

maintained for all internal verti
es of the model. For a quad mesh, a 
om-

pletely regular mesh is de�ned to be the one where all verti
es have valen
e

4. This 
onstraint is di�
ult, often impossible, to satisfy, as only genus-1

(toroidal) models 
an be des
ribed as a regular mesh.

A mesh is said to be valen
e semi-regular if there is a restri
ted number of

extraordinary verti
es. The EVs de�ne the boundary 
urves of a 
oarse seg-

mentation of the model. Ea
h of the 
oarse regions is des
ribed by a mesh.

Valen
e semi-regular meshes are able to des
ribe surfa
e models of arbitrary

genus, while exhibiting the stru
tural regularity that fa
ilitates many geo-

metri
 pro
essing algorithms.

A mesh is said to be unstru
tured if a large fra
tion of its verti
es have va-

len
e di�erent from the ideal valen
e.

Fig.1.9 shows two examples of valen
e semi-regular meshes representing the

Fertility statue and a dolphin, while Fig.1.10 shows two examples of unstru
-

tured meshes representing a femur and a bunny.

Moreover, we distinguish between 
onforming and non-
onforming meshes.
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(a) (b)

Figure 1.10: Examples of unstru
tured meshes: (a) quad mesh representing

a femur, (b) triangular mesh representing a bunny

Conforming meshes have the property that any two fa
es may share either

a single vertex, or an entire 
ommon edge. Non-
onforming meshes do not

respe
t this property.

T-meshes, are a spe
ial 
ase of non-
onforming meshes: in a T-mesh, there

Figure 1.11: Examples of T-mesh representing the fertility statue

may exists an edge e of a fa
e f that 
oin
ides with a 
hain of edges of two

or more fa
es glued to f along e. All the internal verti
es of su
h a 
hain,

that split e, are 
alled T-jun
tions of the mesh. An example is illustrated in

Fig.1.11.

A mesh 
an be represented in di�erent ways. The minimal data stru
ture re-
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quired is the Fa
e-Vertex mesh whi
h 
onsists of a simple list of verti
es, and

a set of polygons. More sophisti
ated but useful for pro
essing mesh is the

winged-edge data stru
ture, analogous to the winged-edge data stru
ture de-

s
ribed for B-Rep. Winged-edge meshes allow 
onstant time traversal of the

surfa
e, but with higher storage requirements. There exists many di�erent

standard �le formats to store mesh data su
h as .obj,.stl,.ply and .3ds.
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Chapter 2

Extended Solid Modeling System

Our aim is to 
lose the gap between parametri
 and dis
rete geometry for

representing solid obje
ts. We introdu
e a new solid modeling system that

in
ludes a new paradigm to represent and edit solid models. In parti
ular,

we extend a standard B-Rep s
heme in order to make analyti
al surfa
es and

polygonal meshes 
oexist.

In the �rst part of this 
hapter we des
ribe the main aspe
ts of a solid

modeling system. Then we introdu
e the 
on
ept of Mesh-Fa
e and de�ne the

Extended B-Rep s
heme. These are the basi
 
on
epts of the new Extended

Solid Modeling System that we propose in this thesis. In the se
ond part

of this 
hapter we investigate the mathemati
al foundations ne
essary for

our new system, with parti
ular attention to the smooth 
onne
tion between

Mesh-Fa
es and NURBS or analyti
 surfa
es. In the last part of the 
hapter

we provide a high-level overview of methods realized for our Extended Solid

Modeling System.

2.1 Solid Modeling Systems

A solid modeling system, often 
alled solid modeler, is a 
omputer pro-

gram that provides fa
ilities for storing and manipulating data stru
tures

that represent the geometry of solid obje
ts or assemblies.

39
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Tipi
ally it allows to sele
t and manipulate modeling primitives, su
h as

lines, 
ubes and 
ylinders, and invokes modeling operations to 
ombine these

primitives into more elaborate representations.

The stru
ture of a solid modeling system 
an be subdivided in three se
tions:

the representation data stru
ture, the mathemati
al foundations and the al-

gorithms ne
essary for the appli
ations. The representation data stru
ture is

the s
heme used to represent a physi
al obje
t. In 
hapter 1 we introdu
ed

the most important representation s
hemes that supply to the spe
i�
 need

for informational 
ompleteness in me
hani
al geometri
 modeling systems

[45℄.

The mathemati
al foundations are all those abstra
t 
on
epts that allow to

idealize and approximate a physi
al obje
t. These abstra
tions and idealiza-

tion, whi
h involves geometri
 representation of the shape and approximation

models, allow to 
onsider the obje
t as a perfe
t and homogeneous 3D point

set, ignoring internal stru
tures and boundary imperfe
tions. Moreover 
on-

tinuity between geometri
 representations is 
onsidered in order to join solid

obje
ts. These are the basis for the algorithms ne
essary to model the obje
t.

The algorithms are tools ne
essary to represent, modify and investigate solid

obje
ts.

In our work we 
onsider a solid modeling system with a Boundary Repre-

sentation s
heme (B-Rep) and extend it in order to manage both analyti
al

surfa
es and polygonal meshes. In the next se
tion we introdu
e the new

data stru
ture of our Extended Solid Modeling System: the Mesh-Fa
e.

2.2 Mesh-Fa
e

In Chapter 1 we introdu
ed the main 
hara
teristi
s of a B-Rep s
heme.

We introdu
ed the �fa
e� topologi
al element explaining that the geometri


entity asso
iated with this element 
ould be a plane, an analyti
 surfa
e or a

NURBS surfa
e. The Extended B-Rep exploits all these kinds of primitives



2.2 Mesh-Fa
e 41

Figure 2.1: Example of Mesh-Fa
e representing a hand

as a topologi
al fa
e and furthermore it 
onsiders the new primitive Mesh-

Fa
e.

A Mesh-Fa
e 
onsists in a mesh of polygonal fa
ets with boundaries asso
i-

ated with a single fa
e of a B-Rep representing a solid obje
t. A Mesh-Fa
e


an represent both the boundary of a solid obje
t and just a part of it, that

we 
all submesh.

The proposed s
heme in
ludes both the trivial 
ases, where the solid is de-

s
ribed by only one Mesh-Fa
e, and the more general 
ases, where the Mesh-

Fa
e, delimited by a 
losed polyline, represents one fa
e of the EB-Rep. An

example of Mesh-Fa
e is shown in Fig.2.1 with its boundary polyline 
olored

in red. The Mesh-Fa
e is handled exa
tly as a standard fa
e in a B-Rep

data stru
ture. Therefore the loop of the fa
e is de�ned by the polygonal

boundary of the Mesh-Fa
e.
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2.3 Extended B-Rep

In many situations a solid 
an be more intuitively des
ribed by meshes for

some parts of it and by parametri
 or exa
t surfa
es for other parts. In these


ases, we introdu
e a suitable representation, named Extended B-Rep (EB-

Rep), that aims at 
losing the gap between parametri
 and dis
rete geometry

in the representation of solid obje
ts.

De�nition 2.1 (Extended B-Rep). An Extended B-Rep is a representation

s
heme

Be = (Ge, T )

where the geometry is des
ribed by Ge = (V,E, Fe) and the set of the fa
es

Fe admits also Mesh-Fa
es.

(a) (b) (c)

Figure 2.2: Three examples of Extended B-Rep: (a) femur 
omposed by a

Mesh-Fa
e with a NURBS sphere, (b) Horse represented by Mesh-Fa
es, (
)

Mold model obtained by a point 
loud triangulation 
omposed by a Mesh-

Fa
e and analyti
al surfa
es

This new stru
ture has to maintain the same properties, in parti
ular the

same topology T , and to provide the same tools of the standard B-Rep, while

holding the new potential for Mesh-Fa
e primitives.

Three examples are shown in Fig.2.2. Fig.2.2(a) shows an example of EB-Rep


omposed of two fa
es: a NURBS spheri
al fa
e and a Mesh-Fa
e representing
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a part of a femur. Fig.2.2(b) shows a parti
ular EB-Rep model 
omposed of

multiple Mesh-Fa
es bounded by polylines. Fig.2.2(
) illustrates an example

of a mold where the body is des
ribed by planar, analyti
 and NURBS sur-

fa
es, while the 
avity is a Mesh-Fa
e representing the obje
t to be molded.

A Mesh-fa
e represents the triangulation of the point 
loud of the obje
t.

Mesh-Fa
es and EB-Reps are the basis of our innovative Extended Solid

Modeling System, where meshes and NURBS surfa
es 
oexist.

In order to realize this new system it is ne
essary to handle the intera
tion

between 
lassi
 B-Rep entities and meshes. Most of the tools are dire
tly

inherited from the standard solid modeling systems that use analyti
 and

NURBS entities. Also polylines are handled in 
lassi
 B-Rep systems. In-

stead, the notion of 
ontinuity between Mesh-Fa
e and NURBS entities has

to be investigated, be
ause it is ne
essary to de�ne a new 
on
ept of 
on-

tinuity between smooth and dis
rete entities. Con
erning the tools for the

EB-Rep modeling system the Boolean Operations need parti
ular 
are to be

managed, 
onsidering in parti
ular the surfa
e-to-surfa
e interse
tion prob-

lem. In the next se
tions we investigate and introdu
e possible solutions for

these two problems.

2.4 Continuity for Extended B-Rep

For Extended B-Rep models it is impossible to 
reate an exa
t smooth

join between a Mesh-Fa
e and a NURBS surfa
e. Meshes are pie
ewise linear

approximations, under a given toleran
e, of analyti
 surfa
es, thus it is only

possible to give some less restri
tive 
onditions in order to obtain a join that

is smooth under a given toleran
e.

We present an alternative de�nition of 
ontinuity between dis
rete and 
on-

tinuous entities: the Approximated Geometri
 (AG) 
ontinuity, similarly

introdu
ed in [44℄.
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De�nition 2.2 (AG0

ontinuity). Given a surfa
e s(u, v) with a boundary


urve c(t) and a mesh M with a boundary polyline p, we say that s and M

join with AG0

ontinuity along the boundaries c and p, a

ording to a given

toleran
e tol, if and only if:

δH(p, c) = max(δ̄H(p, c), δ̄H(c, p)) < tol (2.1)

where

δ̄H(A,B) = max
a∈A

min
b∈B

d(a, b) (2.2)

δH(A,B) is 
alled the bivariate Hausdor� distan
e between 
urves, while

δ̄H(A,B) is the univariate Hausdor� distan
e between 
urves and d(a, b) is

the Eu
lidean distan
e.

This de�nition implies that the distan
e between all points of p from c

and the distan
e of all points of c from p has to be < tol. Fig.2.3(a) shows

an example of the des
ribed 
ondition: in this 
ase the p is shorter than c,

so δ̄H(p, c) < tol but δ̄H(c, p) > tol, sin
e d(c0, p) > tol.

Moreover, for every point pi ∈ p there is a point c∗ ∈ c su
h that d(pi, c
∗) =

δ̄H(pi, c) and for every point ci ∈ c there is a point p∗ ∈ p su
h that d(ci, p
∗) =

δ̄H(ci, p). We observe that if c∗ is the nearest point to pi on c, this does not

imply that pi is the nearest point to c∗ on p. Fig.2.3(b) shows an example of

the previous statement in whi
h c∗ is the nearest point to p2, but p2 is not

the nearest point to c∗.

De�nition 2.3 (AG1

ontinuity). Given a surfa
e s(u, v) with a boundary


urve c(t) and a mesh M bounded by a polyline p. Assume M and s join with

AG0

ontinuity along c and p respe
tively. We say that s and M join with

AG1

ontinuity along c and p respe
tively, a

ording to a given toleran
e

tol1, if and only if:

δHα(p, c) = max(δ̄Hα(p, c), δ̄Hα(c, p)) < tol1 (2.3)
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(a) (b)

Figure 2.3: Curve c and polyline p for the de�nition of AG0
Continuity

where

δ̄Hα(A,B) = max
a∈A

~nA|a · ~nB|b∗ with b∗ ∈ B s.t. b∗ = argminb∈Bd(a, b)

(2.4)

where ~nA|a is the normal ve
tor to A in a, δHα(A,B) is the bivariate

angular Hausdor� distan
e and δ̄Hα(A,B) is the univariate angular Hausdor�

distan
e.

This de�nition implies that the angle between the normal ve
tors at two


losest points respe
tively on c and on p is smaller than a given toleran
e.

The univariate angular Hausdor� distan
e is 
omputed 
onsidering for every

point a ∈ A, the nearest point b ∈ B. Considering the previous remark

and Fig.2.3(b), we observe that the 
ouple of points (a, b) used to 
ompute

δ̄Hα(a, B) is not ne
essarily the 
ouple of points used to 
ompute δ̄Hα(b, A).

De�nition 2.4 (G1
-AE 
ontinuity). Let a surfa
e s(u, v) with a boundary


urve c(t) and a mesh M bounded by a polyline p with verti
es p1, . . . , pn be

given. Let M and s be joined C0
along p and c. M and s join with G1

-

Almost Everywhere Continuity along c and p if and only if they are G1


onne
ted along all points of c ex
ept at p1, . . . , pn, where c is possibly not

di�erentiable.
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Figure 2.4: An example of G1
-Almost-Everywhere Continuity

An example of G1
-AE Continuity is illustrated in Fig.2.4 where a NURBS

surfa
e, on the left, and a mesh on the right, join with G1
-AE 
ontinuity.

The surfa
es have C0

ontinuity along the boundary 
urve and G1


ontinuity

everywhere ex
ept at the verti
es of the mesh on the boundary polyline.

These de�nitions allow us to introdu
e less restri
tive 
onne
tion 
onditions

for a join between a Mesh-Fa
e and a NURBS. In parti
ular the de�nitions

of AG0
and AG1


oin
ide with the main idea of numeri
al approximation.

All the main numeri
al algorithms for solid modeling are based on a given

toleran
e, this be
ause the use of �nite numbers introdu
es errors due to the

impossibility to exa
tly represent a real number on a ma
hine with �nite

memory. A lot of appli
ations, involving 3D s
anners for example, determine

the quality of an obje
t 
onsidering the given toleran
e of the 3D s
anner

equipment. Therefore, 
on
epts su
h as AG0
and AG1


ontinuity are 
om-

monly used in all numeri
al algorithms and in all those appli
ations that use

these algorithms.

Instead, the last de�nition is the most intuitive one, also if the result surfa
e

is not di�erentiable on its boundary. In this 
ase the join is smooth ex
ept

for a �nite number of points and in these points the two tangent ve
tors have

a distan
e angle that is related with the dihedral angle between all adia
ent

polygons.
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2.5 Methods

In this se
tion our goal is to provide a high-level overview of typi
al

methods involved in solid modeling whi
h 
an be generalized for our Ex-

tended Solid Modeling System. In parti
ular we fo
us on Boolean Opera-

tions, Cutting and Join Operation. These tools play a fundamental role in

solid modeling. Boolean operations allow to 
reate 
omplex obje
ts from

simple primitives. Cutting operation allows to model a solid obje
t by us-

ing surfa
es. Join operation is a fundamental tool that allows to build a new

model from two or more di�erent models by mat
hing them along boundaries.

2.5.1 Boolean Operation with Extended B-Rep

Boolean Operations (BO) are the basi
 tools used to model a solid ob-

je
t. The 
ombination of Union, Interse
tion and Di�eren
e operations on

primitive obje
ts allow us to 
reate 
omplex obje
ts.

In solid modeling, the set-theoreti
 Boolean Operations are substituted by

the Regularized Boolean Operations (RBO), in whi
h the result is the 
losure

of the BO between the interior of the two solids. This is done in order to

eliminate the remaining lower-dimensional stru
tures. Given two solids A

and B and a BO op, its 
orresponding RBO, denoted by op∗ is de�ned as

A op ∗ B = cl(ıA op ıB) (2.5)

where cl(A) denotes the 
losure of A. An example is illustrated in Fig.2.5 in

whi
h it is possible to see the di�eren
e between a 
lassi
 BO and a RBO.

Fig.2.5(a) shows the two solids A and B, Fig.2.5(b) shows the BO between

A and B that produ
es a non-manifold obje
t with an isolated surfa
e.

Fig.2.5(
-d) show respe
tively the interior of the RBO operation between

A and B and the result of RBO, that prevents the situation illustrated in

Fig.2.5(b) 
reating in every 
ase a manifold solid. In a solid modeling system,

a RBO between two solids A and B is performed determining the boundary
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Figure 2.5: Di�eren
e between Boolean Operation and Regularized Boolean

Operation

♭ of the result solid C. In parti
ular we de�ne:

♭(A ∩B) = (♭A ∩ ıB) ∪ (♭B ∩ ıA) (2.6)

♭(A ∪ B) = (♭A ∩ cB) ∪ (♭B ∩ cA) (2.7)

♭(A \B) = (♭A ∩ cB) ∪ (♭B ∩ ıA) (2.8)

where ıA is the interior of A and cA is the external part of A. The boundary

♭ of the resulting solid is 
omputed applying a surfa
e-surfa
e interse
tion

algorithm that determines all the interse
tions between surfa
es of A and B.

Then an algorithm is applied to 
reate the B-Rep stru
ture of the obje
t.

In an Extended Solid Modeling System in whi
h Mesh-Fa
es are managed it

is ne
essary to distinguish between three possible 
ases:

. NURBS - NURBS interse
tion

. Mesh - Mesh interse
tion

. NURBS - Mesh interse
tion

The �rst 
ase is the 
lassi
 surfa
e-surfa
e interse
tion between two NURBS
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surfa
es. This problem has been investigated sin
e 1987 and two of the most

famous solutions are proposed in [10℄ and [31℄. Given two surfa
es in R
3
, the

interse
tion 
an be either a set of isolated points, a set of 
urves, a set of

overlapping surfa
es or any 
ombination of these 
ases. In [10℄ a mar
hing

method is applied to 
ompute the interse
tion, while in [31℄ a loop dete
tion,

that re
ursively subdivides two surfa
es until no surfa
e pat
hes interse
t in

a 
losed loop, is proposed. Open sour
e libraries as OpenCas
ade [5℄ and

CGAL [3℄ and other CAD systems use a similar algorithm to 
ompute RBO

between solid obje
ts represented with B-Reps.

The Mesh-Mesh interse
tion is a 
ase managed in the solid systems that use

only meshes. As an example, Carve library [1℄ realizes boolean operations

between meshes. The stru
ture of the surfa
e-surfa
e interse
tion algorithm

is analogous to the one des
ribed for NURBS surfa
es. On
e the interse
-

tions are 
omputed, a 
lassi�
ation is performed in order to 
reate the result

mesh. We refer to [23℄ where the boolean operations between meshes in the

system DesignBase are des
ribed in details. On
e the interse
tion lines and

points are 
omputed, the in
luded parts are removed and the two solids are

joined 
reating the �nal mesh.

The NURBS-Mesh interse
tion is the novel 
ase that has to be 
onsidered

in order to perform RBO in an Extended Solid Modeling System. In this


ase interse
tion between two entities is 
omputed 
onsidering the AG0

on-

tinuity. In parti
ular, the interse
tion 
urves between a Mesh-Fa
e M and

a NURBS surfa
e s are respe
tively a polyline p that bounds the Mesh-Fa
e

and a NURBS 
urve c that bounds the NURBS surfa
e. The result surfa
es

are a trimmed NURBS and trimmed Mesh-Fa
e. An example is illustrated

in Fig.2.6 where a NURBS and a triangular mesh are interse
ted. The in-

terse
tion polyline is marked by points in red, where c and p interse
t ea
h

other. The polyline is the boundary polyline of the Mesh-Fa
e illustrated.

As we 
an noti
e, the polyline is C0
with the Mesh-Fa
e, while is AG0

with

the NURBS surfa
e. The pre
ision of the interse
tion polyline respe
ts the

toleran
e used in the surfa
e-surfa
e interse
tion algorithm and depends also
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Figure 2.6: Interse
tion between a NURBS and a mesh

on the toleran
e asso
iated with the AG0

ontinuity.

2.5.2 Cutting Operation

Cutting is an operation between a solid A and a surfa
e s whi
h results

in two distin
t solid 
omponents, At and Ab, that share a 
ommon fa
e s.

A

ording to the normal of the surfa
e, At or Ab is 
hosen. This tool plays

a fundamental role in �Hybrid Solid Modeling Systems�, whi
h are systems

that allow to 
reate a solid obje
t, with a freeform surfa
e as boundary, mod-

eling it with surfa
es.

A
tually all the most important industrial CAD system su
h as Inventor,

SolidWorks and Catia use 
utting operation in order to e�
iently model a

solid obje
t. An example of multiple 
utting operation is shown in Fig.2.7.

Fig.2.7(a) shows the solid and the surfa
es for 
utting, Fig.2.7(b) illustrates

how the solid is bounded by the surfa
es, Fig.2.7(
) shows the �nal solid

obtained. The solid is originally delimited by NURBS surfa
es and is 
ut by

NURBS surfa
es.
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(a) (b) (c)

Figure 2.7: Example of Cutting operations with a 
lassi
 B-Rep model and

NURBS surfa
es

In an Extended Solid Modeling System this tool allows to 
ut EB-Reps with

both NURBS surfa
es and Mesh-Fa
es. Result of this tool is an EB-Rep. In

this 
ase, similarly to the Boolean Operations introdu
ed before, the surfa
e-

surfa
e interse
tion between Mesh-Fa
es and NURBS surfa
es has to be man-

aged.

2.5.3 Join Operation

The Join Operation atta
hes two entities 
hanging one or both entities.

The possibility of modifying the entities makes this tool di�er from Boolean

Operation, in whi
h both entities are �xed. We distinguish between 1-1

Fa
e-Join operation, 1-n Fa
e-Join and n-m Fa
e-Join of open solids. 1-1

Fa
e-Join mat
hes two surfa
es along an edge, 
reating a 
onne
ted surfa
e.

1-n Fa
e-Join 
loses the hole of an open solid with a surfa
e. n-m Fa
e-Join

of open solids mat
hes two open solids 
losing a hole on both entities.

When a Join operation is performed it is ne
essary to spe
ify a level of reg-

ularity along the boundary edges whi
h determines the smoothness of the

resulting surfa
e or solid. It is possible to have C0
or Gn

regularity, with

n = 1, 2, . . .. In our work we 
onsider only the C0
and the G1


ases.

In 
ase of C0

ontinuity, the join produ
es an obje
t C that has points around

the joining area in whi
h is not di�erentiable, or rather that there exist points
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that have two distin
t tangent planes. Surfa
es that are G1
joined are di�er-

entiable with derivatives until �rst order along the joining boundary.

In an Extended Solid Modeling System these tools allow to join NURBS

surfa
es and Mesh-Fa
es. Results are EB-Rep solids. In this 
ase it is impor-

tant to manage the smooth joining between NURBS surfa
es and Mesh-Fa
es

a

ording to the de�nitions of AG1
and G1

-AE 
ontinuity.

2.6 A new I/O format to manage Extended B-

Rep

The Extended Solid Modeling System introdu
ed in this 
hapter manages

both Mesh and NURBS entities and represents solids obtained by modeling

these entities using an Extended B-Rep s
heme. In order to import or to

export this new kind of solids in whi
h NURBS and meshes 
oexist it is

ne
essary to realize an extension of the standard ex
hange format �STEP �

(STandard for the Ex
hange of Produ
t model data) [6℄. That new format,


alled �Extended-STEP� allows to save an entire mesh in a Mesh-Fa
e stru
-

ture. In parti
ular there are two new entities 
alled �MESH_FACE� and

�POLYGON_FACE� respe
tively stored in this format:

#l = MESH_FACE(nFaces,#nf1,#nf2, . . . ,#nfn)

#nf1 = POLYGON_FACE(nV ertices,#nv1,#nv2, . . . ,#nvn)

#nv1 = CARTESIAN_POINT (′ ′, (x, y, z))

Introdu
ing these new entities in the STEP format it is possible to represent

Mesh-Fa
es and manage import and export of EB-Reps.
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EB-Rep form of a Valen
e

Semi-Regular Mesh

An Extended B-Rep paradigm 
an be realized as a new data stru
ture

in an Extended Solid Modeling System. However, a most typi
al s
enario


ould require the integration of the Mesh-Fa
e primitive into an existing

Solid Modeling System based on a 
lassi
al B-Rep paradigm. In this 
ase

the data stru
ture 
an not be modi�ed and thus �nding an alternative way

to represent a mesh in a standard B-Rep data stru
ture be
omes ne
essary.

In our work we realized su
h a system, based on B-Rep data stru
ture, whi
h

manages both meshes and NURBS surfa
es.

A

ording to the literature, the most intuitive way to represent a mesh surfa
e

is to asso
iate a plane with every fa
e. This approa
h is implemented in all

the 
ommon CAD systems in order to represent a solid model given a mesh

representing its boundary. Alternatively, if the mesh is a quad mesh, we 
an

asso
iate a NURBS bilinear surfa
e with every fa
e. Both these methods

allow us to realize the reverse pro
ess, returning to the original mesh after

a given B-Rep pro
essing, without losing any pie
e of information, but they

require a number of B-Rep fa
es equal to the number of fa
es in the original

mesh. Considering that, usually, the meshes are de�ned by milions of fa
ets,

both these methods would lead to an ine�
ient implementation of an EB-

53
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Rep s
heme in a standard Solid Modeling System.

In this 
hapter we propose a new approa
h, suitable for valen
e semi-regular

quad meshes. In the se
ond part of the 
hapter we extend this method

to triangular valen
e semi-regular meshes. The representation of general

unstru
tured meshes as EB-Rep is dis
ussed in 
hapter 4.

All the methods proposed in this work have been implemented in our system,

based on OpenCas
ade library, in order to verify the validity of our proposals

and provide examples. Images illustrated in this 
hapter and in the following

are realized with our OpenCas
ade system. Note that a EB-Rep fa
e is

graphi
ally represented with a 3 × 3 grid of 
urves (3 × 3g
) as shown in

Fig.3.1. The boundary 
urves of the grid 
orrespond exa
tly to the boundary


urves of the geometry asso
iated with the topologi
al fa
e, while the inside


urves are added for visualization purposes.

(a) (b)

Figure 3.1: a) NURBS surfa
e b) NURBS surfa
e represented with our Open-

Cas
ade system

3.1 Quadrilateral mesh de
omposition in re
t-

angular pat
hes

Our approa
h des
ribes a quad mesh, representing the boundary of a

solid obje
t, by an EB-Rep with fa
es des
ribed by a low number of NURBS

surfa
es, without losing any information.
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In the simplest 
ase in whi
h the mesh is regular, then it 
an be represented by

a unique NURBS bilinear surfa
e whose 
ontrol points are the mesh verti
es.

In the more general 
ase, �rst we need to subdivide the mesh into submeshes

with re
tangular topology and then to asso
iate a bilinear NURBS surfa
e

with ea
h submesh.

Assuming to have a valen
e semi-regular mesh, we realized two methods for

the mesh de
omposition step:

. Quad Mesh Pat
hing(QMP): Create re
tangular pat
hes without T

jun
tions. More in detail, the result B-Rep stru
ture has only fa
es

delimited by four edges and four verti
es. Every vertex is a 
orner

vertex for every fa
e that 
ontains it.

. Quad Mesh T-Pat
hing(QMTP): Create re
tangular pat
hes with T

jun
tions.

Given a quadrilateral mesh M = (V,E, F ) with or without boundary, the

methods 
reate an EB-Rep Be = (Ge, T ), T = (VT , ET , FT ) where:

. VT ⊂ V

. ET = {ẽ ∈ ET | ẽ =
⋃

eIj , eIj ∈ E, Ij ∈ {1, . . . , |E|}}

. FT = {f̃ ∈ FT | f̃ =
⋃

fIj , fIj ∈ F, Ij ∈ {1, . . . , |F |}}

The EB-Rep topologi
al stru
ture T has verti
es that are verti
es of the mesh

M and edges that are obtained gluing edges in E of the original mesh M .

With any new fa
e in FT is asso
iated a submesh with re
tangular topology

formed by adja
ent fa
es in F . Be is the B-Rep des
ription of the original

mesh M . In order to better des
ribe the methods we re
all the following

de�nitions:

. EV ⊂ V the set of extraordinary verti
es of V. These are all internal

verti
es with valen
e di�erent from 4 and all boundary verti
es with

valen
e di�erent from 3.
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. BV ⊂ V the set of boundary verti
es of V that are not in EV .

. NV = V \ (EV ∪BV ) the set of inner, non-extraordinary verti
es.

Both the QMP and QMTP methods 
an be subdivided in the following steps:

Step 1: Sele
t the set of extraordinary verti
es EV .

Step 2: Create the set of edges ET .

Step 3: Create the set of fa
es FT from verti
es and edges of the new

mesh T .

Step 1. Colle
t all the extraordinary verti
es evi ∈ EV of the original

mesh M . If M has all extraordinary verti
es (NV ≡ {∅}) the method is

stopped be
ause there is no possibility to de
rease the number of fa
es, that

is |FT | = |F |. A NURBS pat
h is asso
iated with every fa
e of FT . If no

extraordinary vertex is found (EV ∪BV ≡ {∅}), the mesh is represented with

a single re
tangular bilinear NURBS pat
h. In this 
ase the vertex 
hosen as

origin of the pat
h is freely 
hosen.

Step 2. From every edge e ∈ E starting from every extraordinary vertex

evi ∈ EV a polyline p̃ is tra
ed 
omposed of edges in E. p̃ is 
alled straight

edge and it is built as follows:

. p̃ starts from evi ∈ EV and ends when either another extraordinary

vertex evj ∈ EV , or a boundary vertex bv ∈ BV or ẽi ∈ ET are

en
ountered. In the last two 
ases, bv and vk ∈ V su
h that vk = p̃∩ ẽi

are added to VT and marked as 'visited'.

. p̃ is built following a straight line determined from vi ∈ V . In parti
ular,

when an ordinary vertex vi ∈ V is visited, the list of edges in
ident this

vertex is read and the algorithm pro
eeds in the straight dire
tion.

That is the new edge of the straight line and is determined as the

se
ond edge of the list after the edge 
onsidered.
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Figure 3.2: Result of the Step 2 for the de
omposition of the �A� quad-mesh.

. If p̃ arrives at a visited inner vertex vk ∈ V it means that ∃ ẽi su
h

that p̃ ∩ ẽi 6= ∅. In this situation we have two possibilities:

1 for QMTP a new T-vertex vt = vk is 
reated and vt is added to

VT , ẽi is split, a new edge ẽj delimited by vt and evi is 
reated and

the algorithm goes to the next step.

2 for QMP a vk is added to VT , ẽi is split, a new edge ẽj delimited

by vt and evi is 
reated and a new edge ẽk, that has vk as starting

vertex is 
reated.

. If p̃ arrives at a visited vertex on the boundary, we have two possibili-

ties:

1 If this vertex is 
ontained in a boundary edge of the new mesh T ,

the edge is split.

2 If this vertex does not belong to any edge of the new mesh T , the

vertex is added to the list of the extraordinary verti
es.

An example is illustrated in Fig.3.2 where the �A� quad-mesh is de
omposed

by applying the QMP method. The extraordinary verti
es in EV are 
olored

in red and the straight line tra
ed from the extraordinary verti
es are 
olored
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in blue. The initial �A� mesh M = (512, 1024, 512) is represented with an

EB-Rep whose topologi
al stru
ture is T = (24, 48, 24).

Step 3. The NURBS fa
es are 
reated in the last step of both the methods.

Starting from VT and ET this step �rst determines the verti
es for ea
h

re
tangular fa
e f̃ ∈ FT and then builds the new NURBS surfa
e 
onsidering

these verti
es as 
ontrol points. In parti
ular:

. Determine the boundary edges for ea
h fa
e in FT . For every new vertex

ṽ ∈ VT all the new in
ident edges ẽ ∈ ET are 
onsidered and saved using

a 
ounter
lo
kwise order. Every 
ouple of 
onse
utive edges (ẽi,ẽj)

represent a 
orner of new fa
e f̃ (with the ex
eption of T-jun
tions),

thus determinating the �rst three 
orner verti
es of f̃ . Let us denote

by ẽi = (x, xi) and ẽj = (x, xj). Then a sear
hing algorithm is used to


ompare the other 
ouples of 
onse
utive edges in
ident to xi and xj to

�nd the 
ommon vertex, that is the fourth 
orner vertex. Finally the

fa
e boundary is built.

. NURBS pat
hing. The bilinear NURBS surfa
e is de�ned by building

the grid of 
ontrol points from the verti
es of M following the 'straight

edges' and the mesh stru
ture. The 
ontrol points of the NURBS pat
h

are determined 
onsidering the regular stru
ture of the sub-meshes.

Considering the de
omposition of the �A� mesh, in Fig.3.2, a new NURBS

fa
e, overimposed in yellow, is 
reated. The 
ontrol points of the NURBS

bilinear surfa
e are the 
ontrol points of the boundary 
urves and the verti
es

of M , marked in green.

Examples We tested the QMP and QMTP methods by implementing the

two algorithms in our OpenCas
ade platform. In Fig.3.3 some examples of


losed valen
e semi-regular quad meshes e�
iently represented as an EB-Rep

with bilinear NURBS surfa
e pat
hing are shown.
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We also tested some open meshes, represented in Fig.3.4. The results ob-

tained are reported in Table 3.1 and Table 3.2, respe
tively.

Observing both sets of examples, from Tables 3.1 and 3.2 we noti
e that

Mesh |F | |V | |EV | |FT | |VT | |FT | |VT |
QMP QMP QMTP QMTP

A 512 512 16 24 24 18 20

H Cube 80 66 26 72 58 64 58

Human 806 808 100 344 346 160 203

Tooth 1132 1134 16 30 32 28 32

Fertility 3357 3351 48 2271 2265 132 191

Table 3.1: EB-Rep form of Quadrilateral Meshes (for meshes illustrated in

Fig.3.3). From left to right: Mesh Name, number of fa
es, verti
es, Extraor-

dinary Verti
es of M ; number of fa
es in T by QMP, number of verti
es in T

by QMP, number of fa
es in T by QMTP, number of verti
es in T by QMTP

Mesh |F | |V | |EV | |FT | |VT | |FT | |VT |
QMP QMP QMTP QMTP

Pawn 148 154 5 5 9 5 9

Ro
ker Arm 161 172 22 75 85 44 63

Tube 240 263 5 15 20 15 20

Table 3.2: EB-Rep form of Quadrilateral Meshes (for meshes illustrated in

Fig.3.4). From left to right: Mesh Name, number of fa
es, verti
es, Extraor-

dinary Verti
es of M ; number of fa
es in T by QMP, number of verti
es in T

by QMP, number of fa
es in T by QMTP, number of verti
es in T by QMTP

the method QMTP, whi
h admits T jun
tions, is obviously more e�
ient

than QMP in terms of number of fa
ettes required. Moreover, the number

of fa
es and verti
es of the EB-Rep depends on the number of extraordinary

verti
es EV in the mesh M . The smaller is the number of extraordinary

verti
es, the fewer is the number of NURBS pat
hes ne
essary to give an

e�
ient representation of the mesh. The two 
losed meshes representing the

�A� (|F | = 512) and the tooth (|F | = 1132) have a small number of extraor-

dinary verti
es (|EV | = 16). Their EB-Rep form needs a small number of
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Figure 3.3: First Column: Initial Meshes M , Se
ond Column: EB-Reps

obtained by QMP, Third Column: EB-Reps obtained by QMTP. Fa
es are

plotted with 3× 3g
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Figure 3.4: First Column: Initial open meshes M , Se
ond Column: EB-Reps

obtained by QMP, Third Column: EB-Reps obtained by QMTP. Fa
es are

plotted with 3× 3g
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NURBS pat
hes, respe
tively 18 and 28 by QMTP. However, if the number

of extraordinary verti
es is higher the gain is lower.

3.2 Triangular to Quadrilateral mesh 
onver-

sion

The QMP and QMTP methods introdu
ed require a valen
e semi-regular

quad mesh as input, thus if we need an e�
ient B-Rep des
ription of a valen
e

semi-regular triangular mesh we need �rst to 
onvert it into a quadrilateral

mesh without losing original information about the geometry of the mesh.

To this aim, we 
onsidered and modi�ed the method introdu
ed in [47℄, whi
h

takes as input a triangular mesh and gives as output a quadrilateral mesh.

The algorithm 
onsists of four di�erent steps:

Step 1: uni�
ation of 4-valen
e verti
es

Step 2: mat
hing of 
ouples of triangles

Step 3: mat
hing analysis

Step 4: quads subdivision of remaining triangles

We modi�ed Step 2 by introdu
ing a new 
ondition to mat
h 
ouples of

triangles in order to minimize the number of extraordinary verti
es in the

resulting quad mesh.

Step 1. The �rst step requires to determine all 4-valen
e internal verti
es

in the input triangular mesh. For every vertex vi in V the 4 triangles sharing

vi are uni�ed and subdivided into 4 quads. Fig.3.5 shows how Step 1 is

performed. Verti
es of the new quads are the middle points of the boundary

edges and the verti
es of the 4 triangles.
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Figure 3.5: Step 1: Transformation of 4 triangles into 4 quads

Step 2: The se
ond step uni�es the biggest number of triangles in the mesh.

For every triangle T , all the adja
ent triangles Ti, if not already analyzed,

are 
onsidered and the best quad, formed by T and Tj , is determined by

analyzing the displa
ement G of the four quad 
orners with respe
t to a 90

degree angle.

In parti
ular, for every 
ouple of adja
ent triangles T and Ti, the displa
ement

Gi is 
omputed by

Gi =
4

∑

j=1

|(αj − 90◦)| (3.1)

where αj are the angles of the quadrilateral obtained from T and Ti.

T is mat
hed with the fa
e Ti with the minimum Gi value.

Fig.3.6 shows the appli
ation of Step 2. Fig.3.6(a) illustrates the set of

triangles Ti, i = 1, 2, 3 that 
an mat
h with triangle T . A

ording to the Gi

values, the triangles T and T1 are uni�ed. The result of the mat
h is shown

in Fig.3.6(b).

Step 3. The main goal of this step is to determine if there is a di�erent


ombination of triangles su
h that the number of non-mat
hed triangles is

minimized. In order to understand better this step we 
an 
onsider the

example in Fig.3.7. In Fig.3.7(a) we have two new quadruplet of quads, the

green and the yellow one, bounded by non-mat
hed triangles, respe
tively
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(a) (b)

Figure 3.6: Step 2: Transformation of 2 triangles T and T1 into 4 quads

the blue and the red ones.

If we apply the quadrilateral subdivision of remaining triangles we obtain the

quads shown in Fig.3.7(b) and thus 
reating four new extraordinary verti
es

of valen
e 3. A more e�
ient quadrilateral subdivision 
an be obtained by

mat
hing the two quadruplets of triangles thus obtaining two sets of 8 quads

without introdu
ing any extraordinary vertex, as illustrated in Fig.3.7(
).

Step 4. The last step 
onsiders the remaining triangles and subdivides

them into 3 quads introdu
ing the middle point of every edge and the 
entroid

of the triangle, as illustrated in Fig.3.8. In this 
ase an extraordinary vertex

of valen
e 3 is introdu
ed.

The method previously des
ribed 
omputes a quadrilateral mesh minimiz-

ing the number of triangles to be subdivided by the Step 4. This idea initially

seems to be perfe
t be
ause it minimizes the number of extraordinary ver-

ti
es that are obtained during the de
omposition. However we noti
ed that

it is not enough, be
ause there is no rule on the order in whi
h triangles to

be mat
hed in 
ouple are analyzed. This may produ
e a result in whi
h two

triangles A and B are mat
hed be
ause, analyzing A, B is the best mat
hing

for A. We improved this method by introdu
ing two iterations in Step 2. In
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(a) (b) (c)

Figure 3.7: Step 3: Analysis of the remaining non-mat
hed triangles

Figure 3.8: Step 4: Triangle subdivision into 3 quads

the �rst iteration, we mat
h only 
ouples of triangles su
h that Gi < tol,

where Gi is de�ned in (3.1) and tol is a small angle (for example tol = 10◦).

This 
ondition allows us to 
reate quadrilaterals that are almost re
tangles.

Then, in the se
ond iteration, we allow all the 
ouple mat
hing of the re-

maining triangles. In this way we obtain a better de
omposition and the

number of extraordinary verti
es 
reated by the subdivision is minimized.

After the 
onversion from triangular to quadrilateral mesh, we 
an optimize

the global stru
ture of the mesh in order to improve the quality of the quads

in the quadrilateral mesh following for example the method des
ribed in [16℄.
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Figure 3.9: First Column: Triangular Meshes representing solid obje
ts, Se
-

ond Column: Extended B-Rep obtained by QMP, Third Column: Extended

B-Rep obtained by QMTP. Fa
es are plotted with 3× 3g
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Mesh |F | |V | |EV | |FT | |VT | |FT | |VT |
QMP QMP QMTP QMTP

Hand 1220 612 133 1534 1536 264 306

Vase 8832 4416 4 65 65 10 15

Dolphin 5360 2682 719 9480 9482 1453 2048

Table 3.3: EB-Rep form of Triangular Meshes (for meshes illustrated in

Fig.3.9). From left to right: Mesh Name, number of fa
es, verti
es, Extraor-

dinary Verti
es of M ; number of fa
es in T by QMP, number of verti
es in T

by QMP, number of fa
es in T by QMTP, number of verti
es in T by QMTP

Examples We tested the proposed method by implementing it in our

OpenCas
ade platform. In Fig.3.9 we illustrate some examples of triangular

meshes transformed into quadrilateral meshes and then e�
iently represented

by EB-Reps with bilinear NURBS surfa
es using the QMP and QMTP algo-

rithms presented. The results are reported in Table 3.3.

In this 
ase the number of extraordinary verti
es |EV | is 
omputed 
onsid-

ering the quadrilateral mesh obtained as the result of the 
onversion. For

triangular meshes we noti
e that only the QMTP algorithm gives an e�-


ient representation of the triangular mesh with EB-Rep. The reason is that

the tri-to-quad transformation in
reases the number of fa
es and sometimes

produ
es an e�
ient representation without T jun
tions that has more fa
es

than the original mesh.

These algorithms to obtain an e�
ient mesh representation by EB-Rep using

NURBS surfa
es solve problems 
onne
ted to the representation of valen
e

semi-regular meshes in standard B-Rep s
hemes. Moreover, if we want to


ompute a Boolean Operation between two Extended B-Rep solids we are

for
ed to analyze geometri
ally both solid representations in order to �nd

interse
tions between solids. In this situation, in order not to 
ontrol all

the plane fa
es of every mesh-fa
e we 
ould bene�t of this e�
ient way to

represent a mesh-fa
e.

The general 
ase of unstru
tured meshes is 
onsidered in 
hapter 4, where

we introdu
e a new method to represent an unstru
tured triangular mesh as
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an EB-Rep.



Chapter 4

EB-Rep form of an Unstru
tured

Mesh

The fa
es of an EB-Rep 
an be mesh-fa
es, analyti
al surfa
es and NURBS

surfa
es as desired. In our work we realized a geometri
 kernel, using the

OpenCas
ade library, that extends a 
lassi
 solid modeling system based on

B-Rep in order to manage both meshes and NURBS fa
es.

In this 
hapter we fa
e the problem to 
onstru
t an EB-Rep with pat
hing

NURBS from an unstru
tured mesh representing the boundary of a solid

obje
t or part of it. This allows us to handle the mesh, des
ribed as an EB-

Rep, in both a new Extended Solid modeling system and in our extension of

a 
lassi
 system. It is really important to observe that the EB-Rep allows us

to manage separately the di�erent parts of the solid. Some parts will be 
on-

sidered as Mesh-Fa
es and left un
hanged, while others will be represented

with NURBS pat
hes and 
an be modi�ed.

This problem arises for example in reverse engineering when a physi
al ob-

je
t is a
quired by a 3D s
anner system and re
onstru
ted as unstru
tured

mesh, subsequent CAD pro
ess that has to be performed on it will work on

the asso
iated B-Rep model.

In the literature there are a lot of methods to re
onstru
t a surfa
e starting

from an unstru
tured mesh or from a point 
loud that is triangulated.

69
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Most of the re
onstru
tion methods used in reverse engineering subdivide

the mesh into sub-meshes, then extra
t primitives that better �t the data

and �nally dete
t topology and boundaries of the obje
t. In [11℄ a �rst ap-

proa
h that follows this pipeline is proposed for meshes and point 
louds. An

evolution of this approa
h is introdu
ed in [36℄, where the authors propose

a pro
ess to re
onstru
t a B-Rep model from a 3D point 
loud. The �rst

step 
onsists of triangulating the point 
loud. Then the authors propose to

segment the mesh by using border edge dete
tion and 
ompute the primi-

tive parameters for ea
h sub-mesh with a method based on surfa
e normal

estimation. Topology is determined as in [11℄. Re
ently in [20℄, the authors

proposed a review of reverse engineering methods observing existent CAD

systems.

Other methods analyze individually the extra
tion of primitives and the de-

te
tion of topology and boundaries, often using RANSAC algorithm [30℄.

A re
ent method that realizes all the pipeline to re
onstru
t a B-Rep model


omposed of planes, spheres, 
ylinders and 
ones from a 3D mesh whose

vertex 
oordinates are 
onsidered exa
t is introdu
ed in [14℄. The �rst sem-

inal proposal for pat
hing NURBS are [32℄ and [35℄, where Hoppe proposed

a method for Unorganized Points. This method is a surfa
e re
onstru
tion

method that triangulates the point 
loud by means of energy minimization

produ
ing an unstru
tured triangular mesh. The 
omplexity of this method

is dire
tly related to the arbitrary topology of the obje
t represented.

Our method 
reates an EB-Rep with NURBS fa
es approximating an

unstru
tured triangular mesh with arbitrary topology. It 
an be applied to

obtain a valen
e semi-regular mesh from an unstru
tured one.

The method is subdivided in the following steps:

. Step 1: 
reate a simpli�ed quadrilateral mesh Mq by approximating

the original unstru
tured mesh M

. Step 2: 
ompute a parametrization for every set of points
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. Step 3: apply LSPIA algorithm adapted to approximate points in order

to 
reate a Catmull-Clark surfa
e approximating the original points.

. Step 4: 
onvert the Catmull-Clark surfa
e to NURBS pat
hes.

In the next se
tions we des
ribe in more details the required steps.

4.1 Step 1: From a Triangular Mesh to a sim-

pli�ed quad-mesh

Given a triangular unstru
tured mesh M , the method des
ribed in [38℄ is

applied to obtain a quad dominant simpli�ed mesh. The algorithm, 
alled In-

stant Field-aligned Mesh, 
omputes a mesh Mqd that is globally aligned with

a dire
tion �eld using lo
al orientation-�eld and lo
al position-�eld smooth-

ing operators. The mesh is then extra
ted from the �elds and optionally

post-pro
essed. The number of fa
es of Mqd is de
reased signi�
antly 
om-

pared to the initial number of triangle fa
es in M . The topology of the

surfa
e is preserved.

Fig.4.1 shows an example of simpli�
ation of a mesh representing a se
tion

of an Artery obtained using a 3D s
anner. Fig.4.1(a) shows the original ver-

ti
es of the mesh, Fig.4.1(b) illustrates the triangulation obtained from the

verti
es. The simpli�ed mesh is shown in Fig4.1(
) and, overimposed, the

verti
es of M (Fig4.1(d)).

By observing the obtained mesh we noti
e that the remeshing algorithm

produ
es a few triangular and pentagonal fa
es.

The simpli�ed quad dominant meshMqd is transformed into a quadrilateral

mesh Mq a

ording to the following rules ne
essary to apply the step 2:

. If a fa
e has an extraordinary vertex, it has to be stored as the �rst

vertex of the fa
e.

. Quad fa
es obtained from a non-quadrilateral fa
e have to be stored in


ounter
lo
kwise order starting from the �rst vertex.
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(a) (b)

(c) (d)

Figure 4.1: Artery Point Cloud and Artery Triangulation

In order to satisfy these 
onditions, we transform every non-quadrilateral

fa
e Fi, subdividing it into quads. Generally, for a polygonal fa
e Fi with n

edges, the 
entroid ci of Fi is 
onne
ted to the middle pointsmi1, mi2, . . . , min

of every edge. Therefore n quadrilateral fa
es are obtained. Fig.4.2 shows

how both pentagonal and triangular fa
es are transformed into quadrilateral

fa
es.

Result is a non-
onformal mesh that is used to asso
iate a quadrilateral fa
e

with every point. Step 3, whi
h performs the LSPIA algorithm, will re
eive

as input Mqd and other informations about 
onne
tion between Mqd, Mq and

the verti
es of M .

In the last part of Step 1, the order of the verti
es in every fa
e is modi�ed
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(a) (b)

Figure 4.2: Examples of subdivision of a polygonal fa
e in quads: a) pentag-

onal fa
e, b) triangular fa
e

keeping orientation and ordering verti
es su
h that the �rst vertex of the fa
e

is an extraordinary vertex, if it exists.

Fig.4.3 shows an example of the transformation of the mesh M into the

quadrilateral mesh Mqd. As we 
an noti
e we obtain a non-
onformal mesh

in whi
h new edges, 
reated subdividing triangular and pentagonal fa
es, de-

limitate a quadrilateral fa
e.

This new non-
onformal stru
ture allows us to keep the original quad domi-

(a) (b)

Figure 4.3: Fertility mesh with quadrilateral fa
es: a) Mq mesh, b) a zoomed

detail

nant mesh and to know exa
tly whi
h new quadrilateral fa
es are asso
iated
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with an old non-quadrilateral fa
e. This does not 
reate any problem for the

asso
iation of points with a fa
e, be
ause in this 
ase only the new quadri-

lateral fa
es are 
onsidered.

4.2 Step 2: Parametrization

The 
reated 
oarse quadrilateral mesh Mq is a non-
onformal quadrilat-

eral mesh approximating M . We asso
iate with every fa
e f̌i of Mq a 
loud

of points Pf̌i
, subset of the verti
es of M . This is performed asso
iating with

every point the nearest fa
e interse
ted by its normal ve
tor.

For every fa
e f̌i with internal points Pf̌i
and verti
es v1, . . . , v4 the parametriza-

tion asso
iates the verti
es with the 
orners of the planar domain [0, 1]2, su
h

that verti
es have parametri
 
oordinates (u, v) respe
tively (0, 0), (0, 1),

(1, 1), (1, 0) and internal points have 
oordinates (u, v) with 0 ≤ u, v ≤ 1.

In Fig.4.4 an example of asso
iation between points and fa
es is illustrated.

(a) (b)

Figure 4.4: Points asso
iated with a fa
e of Artery
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Fig.4.4(a) shows the 
oarse mesh Mq and a group of points asso
iated with

a given fa
e. Fig.4.4(b) illustrates a detail of the given fa
e and all points

asso
iated with it, with a line 
onne
ting every point with the 
orresponding

point on the fa
e.

4.3 Step 3: Appli
ation of LSPIA Approximat-

ing Algorithm

In [42℄ a Progressive Iterative Approximation algorithm (PIA) for 
urves

and Loop subdivision surfa
es is introdu
ed with the aim of 
onstru
ting ef-

�
iently smooth interpolations of a set of points. Then, in [22℄ the PIA pro-

posal is extended for interpolating a set of points with a Catmull-Clark sur-

fa
e. In [39℄ a PIA algorithm is introdu
ed in order to interpolate/approximate

a B-Spline surfa
e with re
tangular topology. Finally, in [25℄ the PIA algo-

rithm is extended to a Least Squares Approximating algorithm (LSPIA) for

NURBS surfa
es.

We extended LSPIA algorithm to obtain a Catmull-Clark surfa
e [19℄ ap-

proximating with good a

ura
y the original mesh M .

Given a mesh M , a quad dominant mesh Mqd extra
ted by M , with nv + 1

verti
es and nf + 1 fa
es, and the asso
iated quadrilateral 
oarse mesh Mq,

with mv + 1 verti
es and mf + 1 fa
es. For every point Qi in the set V of

verti
es of M , we have a 
orresponding fa
e f̌j j = 0, . . . , mf in Mq and

fl l = 0, . . . , nf in Mqd and parametri
 
oordinates (ui, vi) asso
iated with

Qi on f̌j. Fig.4.5 shows the di�eren
e between fa
es of Mqd (on the left) and

Mq (on the right). In parti
ular f̌j is a quadrilateral fa
e of Mq obtained

subdividing a pentagonal polygon, while fl is a fa
e of Mqd. We noti
e that

ea
h fa
e f̌j of Mq has a 
orresponding fa
e fl of Mqd. LSPIA iteratively


onstru
ts the approximating surfa
e as a Catmull-Clark Surfa
e. Let be

given an ordered point set {Qi}
mv

i=0 to be �tted and {(ui, vi)}
mv

i=0 the asso
i-

ated parameters, with (ui, vi) ∈ Ωj j = 0, . . . , mf ; Ωj is the parametri


domain [0, 1]2 asso
iated with f̌j in Mq. At the starting iteration we de�ne
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(a) (b)

Figure 4.5: a) Fa
es of Mqd b) Fa
es of Mq

{P 0
h}

nv

h=0 that are the verti
es of Mqd as the 
ontrol points of the blending

Catmull-Clark surfa
e P
0
i.e.,

P
0(u, v) =

nv
∑

h=0

Bh(u, v)P
0
h (u, v) ∈ Ω Ω = ∪

mf

i=0Ωj

where Bh(u, v) are the blending basis fun
tions of the Catmull-Clark surfa
e

in a spa
e of dimension nv + 1. Then the displa
ement with respe
t to the

original points is 
omputed as follows

δ0i = Qi −P
0(ui, vi) i = 0, . . . , mv. (4.1)

The adjusting ve
tor is de�ned as

∆0
h = µ

mv
∑

i=0

Bh(ui, vi)δ
0
i h = 0, . . . , nv (4.2)

where µ is a 
onstant satisfying the 
ondition

0 < µ <
2

λ0

(4.3)
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with λ0 the largest eigenvalue of matrix ATA, where A, is the 
ollo
ation

matrix de�ned as:

A =















B0(u0, v0) B1(u0, v0) . . . Bn(u0, v0)

B0(u1, v1) B1(u1, v1) . . . Bn(u1, v1)
.

.

.

.

.

.

.

.

.

.

.

.

B0(um, vm) B1(um, vm) . . . Bn(um, vm)















The new 
ontrol points at the next iteration are

P 1
h = P 0

h +∆0
h h = 0, . . . , nv (4.4)

and the new �tting surfa
e is de�ned as

P
1(u, v) =

nv
∑

h=0

Bh(u, v)P
1
h (u, v) ∈ Ω (4.5)

In general, at the k-th iteration, starting from the surfa
e P
k(u, v), we 
om-

pute

δki = Qi −P
k(ui, vi) i = 0, . . . , mv,

∆k
h = µ

mv
∑

i=0

Bh(ui, vi)δ
k
i h = 0, . . . , nv,

P k+1
h = P k

h +∆k
h h = 0, . . . , nv.

Then the surfa
e at the (k + 1)-th iteration

P
k+1(u, v) =

nv
∑

h=0

Bh(u, v)P
k+1
h (u, v) ∈ Ω

In our algorithm, at the �rst step, it is ne
essary to apply Stam's algorithm

[48℄ in order to evaluate the basis fun
tions in the matrix A.

Stam's algorithm requires one or two steps of re�nement of the mesh Mqd,

that 
an be either lo
al or global. In our implementation we used a lo
al

re�nement that signi�
antly improves performan
es and saves memory spa
e.
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This allows us to de�ne Catmull-Clark surfa
es on Ωj asso
iated with f̌j in

Mq as follows:

S(u, v)|(u,v)∈Ωj
=

K
∑

i=1

P̆ 0
hbi(u, v) (4.6)

where K = 2N + 8 and N is the valen
e of the EV of f̌j. If N = 4, P̆ 0
h

are exa
tly the verti
es P 0
h of Mqd, otherwise they are a �rst or a se
ond

lo
al Catmull-Clark re�nement of the verti
es P 0
h . Fig.4.6 shows a lo
al �rst

re�nement of Mqd to obtain the verti
es P̆ 0
h . Verti
es in blue are the 2N + 8

verti
es ne
essary to evaluate the surfa
e in Ωj 
orresponding to the fa
e

in blue. In this 
ase N = 5, thus we have 18 verti
es. We 
ompute every

Figure 4.6: First re�nement of a fa
e with an extraordinary vertex

basis fun
tion Bh(u, v) by using (4.6). In parti
ular for ea
h h = 0, . . . , nv

we de�ne

qj =

{

0 if j 6= h

1 if j = h

and

Bh(u, v) =

K
∑

i=1

q̆ibi(u, v) (u, v) ∈ Ω

where q̆i are a �rst or a se
ond lo
al Catmull-Clark re�nement of the s
alar


oe�
ients qj.

To avoid the 
omputation of the eigenvalues of ATA, in [25℄ an alternative
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method to determine the weight µ is proposed. A is a (m + 1) × (n + 1)

matrix. Let ATA = {ai,j}
m,n
0,0 where ai,j =

m
∑

k=0

Bi(uk, vk)Bj(uk, vk).

Together with

n
∑

j=0

Bi(uk, vk) = 1 we have

n
∑

j=0

ai,j =
n

∑

j=0

[

m
∑

k=0

Bi(uk, vk)Bj(uk, vk)

]

=

m
∑

k=0

Bi(uk, vk)

[

n
∑

j=0

Bj(uk, vk)

]

=

m
∑

k=0

Bi(uk, vk) =: ci

It means that ci is the sum of the i-th row elements of ATA.

Therefore, λ0 ≤ maxi ci := C, i = 0, . . . , n and

2

C
<

2

λ0
, so we de�ne

µ =
2

C
.

Theorem 4.3.1. If A is non-singular, the introdu
ed LSPIA method is 
on-

vergent.

Proof. As result of the iterative method introdu
ed above, a sequen
e

P k(u, v) k = 0, 1, . . . is generated. To show its 
onvergen
e, let

P k = {P k
0 , P

k
1 , . . . , P

k
n , }

T

and

Q = {Q0, P1, . . . , Pm, }
T

A

ording to (4.4) we have

P k+1
i = P k

i + µ

m
∑

j=0

Bi(uj, vj)(Qj − P k(uj, vj))

= P k
i + µ

m
∑

j=0

Bi(uj, vj)

[

Qj −
n

∑

l=0

Bl(uj, vj)P
k
l

]
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then, we get,

P k+1 = P k + µAT (Q− AP k) (4.7)

where A is the 
ollo
ation matrix.

Letting I be the n+ 1 identity matrix and D = I − µATA, by (4.7) we have

P k+1 − (ATA)−1ATQ = (I − µATA)[P k − (ATA)−1ATQ]

= (I − µATA)2[P k−1 − (ATA)−1ATQ]

= . . .

= Dk+1[P 0 − (ATA)−1ATQ]

Supposing {λi(D)}ni=0 are the eigenvalues ofD sorted in non-de
reasing order,

we get λi(D) = 1 − µλi where {λi}
n
i=0 are the eigenvalues of A

TA sorted in

non-de
reasing order.

We supposed that A is non-singular and ATA is positive de�nite so, noting

0 < µ <
2

λ0

, we have 0 < µλi < 2 and −1 < {λi(D)} < 1(i = 0, 1, . . . , n).

It leads to 0 < ρ(D) < 1, where ρ(D) is the spe
tral radius of D, and the


onvergen
e 
ondition is satis�ed.

If A is singular, ATA is not positive de�nite and we do not have a theo-

reti
al proof of the 
onvergen
e. However it should be pointed out that we

have made lots of experiments with this method and all of them 
onverged

also in the 
ase of singular 
ollo
ation matrix.

Given a toleran
e tol and de�ned dist(k) = ‖P k(ui, vi)− Qi‖2, the iterative

pro
edure is stopped when one of the following 
onditions is met:

|dist(k + 1)− dist(k)| < tol

dist(k + 1) < tol.

In our implementation we used tol = 1 × 10−4
. A Catmull-Clark surfa
e is

obtained as result.
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4.4 Step 4: Pat
hing NURBS

As known in literature, Catmull-Clark surfa
es have problems of 
onti-

nuity and 
urvature around the EV . In order to solve this problem, many

pat
hing te
hniques have been proposed. A �rst approa
h for the 
orre
tion

of the surfa
e 
onsists in blending the surfa
e in order to obtain the desired

regularity. A se
ond approa
h repla
es the Catmull-Clark surfa
e around

EV with a pat
h that preserves 
ontinuity and improves 
urvature. Other

di�erent solutions for this problem are proposed and 
ited in [9℄.

In our work we use a Gregory pat
h to repla
e Catmull-Clark pat
h [9℄. In

parti
ular, a Catmull-Clark pat
h with an extraordinary point is repla
ed

by a bi
ubi
 Gregory pat
h that interpolates the boundary of the pat
h it-

self and joins with G1

ontinuity with the adja
ent pat
hes. This pro
ess is

explained in details in [9℄ and involves the 
omputation of �rst derivatives

of the verti
es. The bi
ubi
 pat
h is 
reated by modifying a 
lassi
 bi
ubi


Figure 4.7: Control Points in a Bi
ubi
 Gregory pat
h

Bézier pat
h. In parti
ular, as shown in Fig.4.7, the four 
onstant internal


ontrol points are modi�ed by inserting four 
ontrol points that are a 
onvex


ombination of 2 assigned points obtained by imposing G1
-
ontinuity 
on-

ditions at the boundaries. In this way the bi
ubi
 pat
h is de�ned by 20


ontrol points, while the 
lassi
 bi
ubi
 Bézier pat
h is de�ned by 16 
ontrol

points. The internal 
ontrol points are P1,1,i, P1,2,i, P2,1,i, P2,2,i with i = 0, 1.
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All adja
ent pat
hes around the EV are 
reated in a similar way in order to

have a G1

onne
tion.

In parti
ular a bi
ubi
 Gregory pat
h has the following formula:

S(u, v) =
3

∑

i=0

3
∑

j=0

B3
i (u)B

3
j (v)Pi,j(u, v) (4.8)

where:

Bn
i (u) =

n!

i!(n− i)!
ui(1− u)n−i

is the usual basis of the Bernstein polynomials and the internal 
ontrol points

are given by

. P1,1 =
uP1,1,0 + vP1,1,1

u+ v

. P1,2 =
uP1,2,0 + (1− v)P1,3,1

u+ (1− v)

. P2,1 =
(1− u)P2,1,0 + vP2,1,1

(1− u) + v

. P2,2 =
(1− u)P2,2,0 + (1− v)P2,3,1

(1− u) + (1− v)

Obtained result is a pat
hing in whi
h all regular boundaries have a C2

on-

ne
tion, while pat
hes that share an extraordinary vertex are G1
joined.

Finally, a Gregory pat
h 
an be represented as a rational NURBS pat
h [49℄.

The pat
h (4.8) 
an be des
ribed using a rational Bézier pat
h of degree 7 in

u and v.

To sum up, the steps des
ribed above allow us to obtain a NURBS represen-

tation of a Catmull-Clark surfa
e approximating an unstru
tured polygonal

mesh.

4.5 Examples

We report the results of our algorithm when applied to two di�erents un-

stru
tured meshes �Artery� and �Fertility�. The �rst mesh represent an open
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se
tion of an artery, while the se
ond one a 
losed mesh of a statue.

Fig.4.8 shows the algorithm applied to the mesh that represents a se
tion of

an artery. Fig.4.8(a) shows the set of verti
es V and the open quad-dominant

mesh Mqd 
reated by Instant Field-aligned algorithm.

Fig.4.8(b) shows a zoom of Fig.4.8(a) in whi
h it is possible to observe ve
-

tors 
onne
ting verti
es and the 
orresponding points on the asso
iated fa
e.

Fig.4.8(
) shows the set of verti
es V and the Catmull-Clark result surfa
e

grid, that allows us to see all the extraordinary verti
es of the approximating

surfa
e. Finally, Fig.4.8(d) shows the NURBS pat
hes in whi
h the Catmull-

Clark surfa
e is subdivided in order to obtain an approximating EB-Rep with

NURBS surfa
es.

In order to obtain this result, LSPIA algorithm has been applied on a mesh

Mq with 127 fa
es, setting the value µ de�ned in (4.3), µartery = 9.8× 10−2
.

Result has been obtained in 24 iterations, with a residual toleran
e of 1×10−4

and approximates the original mesh with a residual r = 1.462× 10−1
.

Fig.4.9 shows the algorithm applied to the mesh that represents the Fer-

tility statue. Fig.4.9(a) shows the set of verti
es V and the open quad-

dominant mesh Mq 
reated by Instant Field-aligned. Fig.4.9(b) shows a

zoom of Fig.4.9(a) in whi
h it is possible to observe ve
tors 
onne
ting ver-

ti
es and the 
orresponding points on the asso
iated fa
e.

Fig.4.9(
) shows the verti
es V and the Catmull-Clark resulting pat
hing,

that allows us to see all the extraordinary verti
es of the approximating sur-

fa
e. In Fig.4.9(d) the NURBS pat
hes in whi
h the Catmull-Clark surfa
e

is subdivided in order to obtain an approximating B-Rep with NURBS sur-

fa
es are illustrated. In order to obtain this result, LSPIA algorithm has

been applied on a mesh Mq with 1090 fa
es, setting the value µ de�ned in

4.3, µartery = 2.14× 10−2
.

Result has been obtained in 53 iterations, with a residual toleran
e of 1×10−4

and approximates the original mesh with a residual r = 2.68× 10−1
.
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(a) (b)

(c) (d)

Figure 4.8: Artery: a) Verti
es and Coarse Quadrilateral Mesh, b) Zoom that

shows ve
tors 
onne
ting Verti
es and 
orresponding points on asso
iated

fa
es, 
) Verti
es and Catmull-Clark result surfa
e grid, d) NURBS pat
hes

partially visualized in order to show the shape and the position
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4.6 A proposal of a Surfa
e Re
onstru
tion Method

Surfa
e re
onstru
tion methods 
reate a 3D model from a dense 
loud of

points representing a solid obje
t. In the literature there are a lot of meth-

ods to re
onstru
t a surfa
e starting from a point 
loud. Several approa
hes

are based on 
ombinatorial stru
tures, su
h as Delaunay triangulations [40℄,

alpha shapes [13℄, or Voronoi diagrams [8℄. These s
hemes 
reate a triangle

mesh that interpolates all or most of the points of the original point 
loud.

Other methods dire
tly re
onstru
t an approximating surfa
e, typi
ally rep-

resented in impli
it form. These methods 
an be subdivided in global and

lo
al methods. Global methods 
ommonly de�ne the impli
it fun
tion as the

sum of radial basis fun
tions (RBF) [18℄. Lo
al methods 
onsider subsets of

nearby points at a time.

A

ording to a re
ent state of the art report [12℄, almost all surfa
e re
on-

stru
tion methods produ
e as output an impli
it representation or a tri-

angular mesh. One of the few methods that 
reates NURBS pat
hing is

the Hoppe's method for Unorganized Points, introdu
ed in [32℄ and in [35℄.

Another interesting method that �ts a triangular mesh with G1
smoothly

stit
hing bi-quinti
 Bézier pat
hes is introdu
ed in [41℄.

Our method 
an be 
onsidered as a variant of Hoppe's surfa
e re
onstru
tion

method whi
h works on an unstru
tured mesh obtained by a pre-pro
essing

of the original point 
loud. In Hoppe's work a triangular mesh is obtained

from a point 
loud applying a method that de�nes an impli
it signed dis-

tan
e fun
tion asso
iating an oriented plane with ea
h of the points. Then

the mesh is obtained applying a 
ontouring algorithm. Finally an optimiza-

tion algorithm is applied in order to redu
e the number of verti
es and to �t

well the point 
loud. Details of this method are des
ribed in [34℄ and in [33℄.

Another possibility is to apply the Co
one algorithm that re
onstru
ts a

mesh from sample points. This method was introdu
ed in [7℄. The input


onsists of the 
oordinates of the point 
loud and output is a pie
ewise lin-

ear approximation of the surfa
e whi
h is made of Delaunay triangles with

verti
es at the input points only. Other versions of the algorithm have been
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realized in order to manage noisy point 
louds or large sets of points.
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(a) (b)

(c) (d)

Figure 4.9: Fertility Statue: a) Verti
es and Coarse Quadrilateral Mesh, b)

Zoom that shows ve
tors 
onne
ting Verti
es and 
orresponding points on

asso
iated fa
es, 
) Verti
es and Catmull-Clark result surfa
e grid, d) NURBS

pat
hes partially visualized in order to show the shape and the position
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Chapter 5

Solid Modeling tools for Extended

B-rep

We introdu
ed Extended B-Rep s
hemes and des
ribed some methods

to provide an e�
ient representation of both valen
e semi-regular and un-

stru
tured meshes as EB-Reps. We want now to extend the most important

tools for solid modeling to manipulate EB-Rep solids. Although examples

illustrated in this 
hapter are realized using our geometri
 kernel, that is an

extension of a 
lassi
 system based on B-Rep data stru
ture, they allow us

to understand how these tools 
ould be applied to EB-Rep solids in a new

Extended Solid Modeling System.

In the �rst part of this 
hapter, we des
ribe the prin
ipal tools of solid mod-

eling: Boolean Operations and Cutting Operation. In the se
ond part we

analyze the Join between EB-Rep models, providing some basi
 notions and

examples.

Generally the 
onstru
tion of solid obje
ts requires a long sequen
e of

simple editing operations whi
h are the fundamental tools for Solid Modeling.

The following tools have been 
onsidered and realized in our Extended Solid

Modeling System:

89
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. A�ne transformations: rotation, s
aling and translation

. Boolean Operations

. Cutting Operation

. Join

A�ne transformations, su
h as rotation, s
aling and translation, are imme-

diatly applied to the EB-Rep s
hemes be
ause the topologi
al stru
ture of

the EB-Rep solid is un
hanged and the geometry entities asso
iated follow

the same rules used for standard B-Rep solids [43℄. The other operations are


onsidered in the rest of this 
hapter.

5.1 Boolean Operations between EB-Reps

In 
hapter 2 we overviewed Boolean Operations, that are the most impor-

tant tools used to model a solid obje
t. The 
ombination of Union, Interse
-

tion and Di�eren
e operations on simple shapes allow us to 
reate 
omplex

obje
ts.

In order to 
ompute Boolean Operations between EB-Reps the same rules

used for standard Boolean Operations between B-Reps 
an be applied. How-

ever, as explained in 
hapter 2, the introdu
tion of the Mesh-Fa
e primitive

implies new di�
ulties both in performing the interse
tion between a Mesh-

Fa
e and a NURBS or analyti
al fa
e and in interse
ting Mesh-Fa
es.

We realized Boolean Operations between EB-Rep solids in the Extended

Solid Modeling System. We report a few examples of Boolean Operations

between a solid represented by NURBS surfa
es and a solid des
ribed by

Mesh-Fa
es. Fig.5.1(a-b) show a B-Rep 
ylinder built with NURBS surfa
es

and a Mesh-Fa
e representing a tooth. Fig.5.1(
) shows the EB-Rep result

of the Boolean Union between the 
ylinder and the tooth whi
h is 
omposed

of NURBS surfa
es and Mesh-Fa
es. Observing the result, we noti
e that

both NURBS surfa
es and Mesh-Fa
es are trimmed. The interse
tion 
urves
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are trimmed NURBS 
urves, if they delimit two NURBS surfa
es; otherwise,

they are polylines that have AG0

ontinuity with both the NURBS surfa
e

and the Mesh-Fa
e.

In this example the new EB-Rep s
heme Be = (Ge, T ) has the geomet-

ri
 set Ge made of points, 
urves, surfa
es and meshes. Here 
urves are

trimmed NURBS and polylines involving points on both NURBS surfa
es

and Mesh-Fa
es, surfa
es are trimmed NURBS, while the set of meshes 
on-

tains trimmed Mesh-Fa
es. A further example is illustrated in Fig.5.2, where

(a) (b) (c)

Figure 5.1: Example of Boolean operation: a) B-Rep (NURBS) 
ylinder, b)

EB-Rep (Mesh-Fa
e) representing a tooth. 
) Union result. Fa
es are plotted

with 3× 3g


a NURBS 
ylinder, a Mesh-Fa
e representing a tooth and a NURBS 
ube

are used to 
reate a prosthesis for a dental implant. Fig.5.2(a) shows the

three obje
ts. Fig.5.2(b) shows the result of the Boolean Di�eren
e between

the tooth and the 
ube. In this 
ase the new EB-Rep obtained is bounded

by a trimmed Mesh-Fa
e and a trimmed NURBS representing a plane. The

interse
tion 
urve is a 
losed polyline that has AG0

ontinuity with both the

NURBS and the Mesh-Fa
e surfa
es.

Fig.5.2(
) shows the result of the di�eren
e between EB-Rep obtained in

Fig.5.2(b) and a NURBS 
ylinder. The 
ylindri
 fa
e in the result is a

trimmed NURBS, while the interse
tion 
urve is a 
losed NURBS 
urve.

Boundary 
urves are two trimmed NURBS and a polyline involving points

on the NURBS plane surfa
e and the Mesh-Fa
e. The set of surfa
es is made
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of three trimmed NURBS, while the set of meshes 
ontains a trimmed Mesh-

Fa
e.

The last and more general example is illustrated in Fig.5.3, where the lower

(a) (b) (c)

Figure 5.2: Example of Boolean operation: a) a B-Rep (NURBS) 
ylinder,

an EB-Rep (Mesh-Fa
e) tooth and a NURBS 
ube, b) di�eren
e between

tooth and 
ube. 
) di�eren
e between result of operation in b) and 
ylinder.

Fa
es are plotted with 3× 3g


part of a shoe is 
reated using boolean operations between EB-Reps with

both Mesh-Fa
es and NURBS surfa
es. In parti
ular Fig.5.3(a-b-
) show

respe
tively a B-Rep solid, bounded by NURBS surfa
es, representing the

�Air Jordan logo�, a Mesh-Fa
e representing the lower part of a sole and a

B-Rep solid made of NURBS surfa
es that represents the insole of the shoe.

Fig.5.3(d-e) show the result of Boolean Union between the sole and the in-

sole. In this 
ase the new EB-Rep obtained is bounded by both a trimmed

Mesh-Fa
e and a trimmed NURBS. The interse
tion 
urve is a 
losed polyline

that has AG0

ontinuity with both the NURBS and the Mesh-Fa
e surfa
es.

Fig.5.3(f-g) show the result of Boolean Di�eren
e between the EB-Rep ob-

tained at the previous step and the �Air Jordan logo�. As we 
an noti
e

observing the detail in Fig.5.3(g), in the new EB-Rep the Mesh-Fa
e and the

NURBS solid are trimmed and the interse
tion polyline has AG0

ontinuity

with both the NURBS and the Mesh-Fa
e surfa
es.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 5.3: Example of Boolean operation: a) a B-Rep (NURBS) solid rep-

resenting the �Air Jordan logo�, b) an EB-Rep (Mesh-Fa
e) representing a

sole, 
) a NURBS insole, d-e) union between insole and sole, f) di�eren
e

between result of operation in d) and �Air Jordan logo�, g) Detail of boolean

operation in f).

5.2 Cutting Operation

In 
hapter 2 we introdu
ed Cutting operation as a fundamental tool of

�Hybrid Solid Modeling Systems�. In parti
ular 
utting involves a solid A

that is 
ut by a surfa
e s. Result of the operation are two distin
t solid


omponents that share the 
ommon fa
e s. A

ording to the outward normal

of the surfa
e, one of the two solids is 
hosen. We extended 
utting operation

to allow also EB-Rep solids and Mesh-Fa
es as input. An EB-Rep solid 
an

be 
ut both by a NURBS fa
e and a Mesh-Fa
e. Result is always an EB-Rep

solid. Fig.5.4 shows an example of Cutting with Extended B-Rep models. In
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(a) (b)

(c) (d) (e)

Figure 5.4: Example of Cutting operations with Extended B-Rep. First

row: a)NURBS surfa
e, b) Mesh-Fa
e representing a tooth. Se
ond row: a)

surfa
e and Mesh-Fa
e b) inferior solid obtained by 
utting 
) superior solid

obtained by 
utting. Fa
es are plotted with 3× 3g


parti
ular, Fig.5.4(a-b) show the 
utting surfa
e (a) and the solid to be 
ut

(b). The solid is an EB-Rep des
ription of a mesh representing a tooth, while

the surfa
e is a NURBS surfa
e. We pla
ed the two obje
ts as displayed

in Fig.5.4(
) su
h that the surfa
e subdivide the solid into two separated


omponents. The resulting solids shown in Fig.5.4(d) and Fig.5.4(e) are two

Extended B-Rep with NURBS fa
es and mesh-Fa
es. As we 
an noti
e, both

the EB-Rep s
hemes Be = (Ge, T ) asso
iated with the two resulting solids


ontain a trimmed Mesh-Fa
e, a trimmed NURBS surfa
e and a polyline

having AG0

ontinuity with both the surfa
es as boundary 
urve.



5.3 1-1 Fa
e-Join Operation 95

In the next se
tions we analyze in detail the Fa
e-Join operation. In par-

ti
ular we introdu
e the 1-1 Fa
e-Join operation, the 1-n Fa
e-Join operation

and �nally the n-m Fa
e-Join.

5.3 1-1 Fa
e-Join Operation

The 1-1 Fa
e-Join operation is the basi
 tool to de�ne the 1-n Fa
e-Join

and the n-m Fa
e-Join.

Joining two surfa
es produ
es a 
onne
ted surfa
e where the two identi�ed

edges are adapted and 
onne
ted. Often, when the Fa
e-Join is applied, one

surfa
e is �xed and one is modi�ed.

Let's de�ne the Fa
e-Join operation in a 
lassi
 environment between B-Rep

fa
es.

De�nition 5.1 (1-1 Fa
e-Join operation). Given two 
ouples (A, eA) and

(B, eB) where A and B are two surfa
es delimited by 
losed boundaries WA

and WB, respe
tively, and eA and eB are two edges of WA and WB. A

1-1 Fa
e-Join operation between A and B along eA and eB (
alled shared

edge) 
reates a 
onne
ted surfa
e C where one of the following three 
ases is

veri�ed:

. Case I: A is �xed and B is modi�ed su
h that eB is atta
hed to eA

. Case II: B is �xed and A is modi�ed su
h that eA is atta
hed to eB

. Case III: a new edge eC is de�ned, both B and A are modi�ed in order

to atta
h both eB and eA to eC.

Fig.5.5(a) illustrates an example of 1-1 Fa
e-Join where the �rst surfa
e,

on the right side, is �xed and the other is modi�ed. Otherwise, if both

surfa
es are modi�ed, a 
ommon edge is 
hosen and then both surfa
es are

adapted to the 
hosen edge, thus we 
an 
onsider the third 
ase as a parti
-

ular 
ase of the �rst two 
ases.

When a 1-1 Fa
e-Join operation is performed it is ne
essary to spe
ify a
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(a) (b) (c)

Figure 5.5: Example of join operation: a) surfa
es, b) C0 1-1 Fa
e-Join, 
)

G1 1-1 Fa
e-Join. Fa
es are plotted with 3× 3g


level of regularity along the shared edge, that is C0
or Gn


ontinuity, with

n = 1, 2, . . .. The regularity of the joining determines the smoothness of the

resulting surfa
e. In our work we 
onsider only C0
and G1


ontinuity joins.

In 
ase of C0

ontinuity, the join gives as result a surfa
e C with points along

the shared edge that have two distin
t tangent planes. Fig.5.5(b) illustrates

an example of two NURBS surfa
es joined with C0
regularity. As we 
an

noti
e, points on the shared edge have two distin
t tangent planes, so the

resulting surfa
e is not di�erentiable everywhere.

Surfa
es that are G1
joined will have tangent ve
tors with the same dire
tion

but with di�erent lengths along the shared edge. Fig.5.5(
) illustrates an ex-

ample of two NURBS surfa
es joined with G1
regularity. As we 
an noti
e,

the tangent plane is well-de�ned for all points of the shared edge.

5.4 1-1 Fa
e-Join for EB-Reps

In order to realize the Fa
e-Join between EB-Reps it is ne
essary to de�ne

the join between a NURBS surfa
e s and a surfa
e des
ribed by a Mesh-Fa
e

M . The three 
ases introdu
ed in the previous se
tion are still valid and are

formulated in the following form:

. Case I: M is �xed, s is modi�ed,



5.4 1-1 Fa
e-Join for EB-Reps 97

. Case II: s is �xed, M is modi�ed,

. Case III: both s and M 
an be modi�ed.

Similarly to the 
lassi
 
ase, Fa
e-Join between EB-Rep 
an be performed as

a sharp joint or a smooth one. A sharp joint modi�es a surfa
e, the one that

is not �xed, so that the fa
es join with C0

ontinuity, adapting the free fa
e

to the �xed one.

Instead, a smooth join between EB-Reps requires that the resulting surfa
e

is AG1
or G1

-AE along the shared edge.

In the next subse
tions we analyze all the 
ases introdu
ed distinguishing

between sharp and smooth join.

5.4.1 1-1 Fa
e-Join C0

Let's analyze the simplest 
ase: joining a NURBS surfa
e and a Mesh-

Fa
e with C0

ontinuity. Fa
e-Join C0

is realized joining two edges respe
-

tively on the two surfa
es and modifying one or both the surfa
es.

To introdu
e our methods, we assume to have a Mesh-Fa
e M = (V,E, F )

and to sele
t a polyline p, de�ned by m edges of E, delimited by two di�erent

verti
es (v0,v1 ∈ V ) on the boundary of M . Moreover we assume to have a

NURBS surfa
e s with a NURBS boundary 
urve c of degree g, de�ned by b


ontrol points and delimited by two 
ontrol points ṽ0 e ṽ1.

Generally p and c do not have the same number of verti
es and 
ontrol points.

Our methods 
onne
t the �rst/last verti
es (v0,v1 ∈ V ) of the Mesh-Fa
e with

the �rst/last points of the NURBS 
urve (ṽ0, ṽ1). It is possible to generalize

the methods to 
onsider the join along only a pie
e of p or c.

Case I: Mesh-Fa
e �xed. GivenM and s, the NURBS s and its boundary


urve c are adapted to join exa
tly M along p. In parti
ular we apply the

�Adapt NURBS to Mesh� (ANTM) algorithm that 
onsists in the following

steps:
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. Multiple knot insertions are applied in order to subdivide c in a pie
e-

wise 
urve with m linear pie
es.

. The 
ontrol points of c are moved in order to mat
h polyline p. In

parti
ular 
ontrol points that are exa
tly on c are mat
hed with the


orrespondent verti
es of p, while the 
ontrol points that are not on c are

moved onto the 
orrespondent segment delimited by two 
onse
utive

verti
es of p. Thus c is 
ompletely mat
hed with p.

(a) (b) (c)

Figure 5.6: ANTM algorithm: a) 
urve c and polyline p, b) multiple knot

insertions applied to c, 
) 
ontrol points of c are atta
hed to points on p.

The steps of the algorithm are illustrated in Fig.5.6. In Fig.5.6(a) the polyline

p and the NURBS 
urve c, with its 
ontrol points, are illustrated. Fig.5.6(b)

shows the result of the �rst step of ANTM algorithm. Fig.5.6(
) shows

how the new 
ontrol points are mat
hed with the 
orrespondent verti
es and

points on p. In parti
ular the 
ontrol points on c (red) are atta
hed to the

verti
es of p (blue), while the 
ontrol points that are not on c (green) are

atta
hed to points on the segments of p (yellow) a

ording to the se
ond

step of the ANTM algorithm. An example of 1-1 Fa
e-Join with the Mesh-

Fa
e �xed is illustrated in Fig.5.7 where the NURBS boundary is adapted

to the Mesh-Fa
e verti
es. As we 
an noti
e, the Mesh-Fa
e on the left is

un
hanged. On the 
ontrary the 
ontrol point grid asso
iated to s has been

modi�ed and the �rst row has been adapted to the verti
es of p.
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(a) (b)

Figure 5.7: Example of Join C0
, Case I: a) Mesh-Fa
e (top) and NURBS

surfa
e (bottom), b) result of C0
join. Fa
es are plotted with 3× 3g


Case II: NURBS �xed. Given M and s as above, in order to join the

Mesh-Fa
e and the NURBS surfa
e a blending surfa
e sM is 
reated. In

parti
ular our method 
reates a blending NURBS surfa
e su
h that:

. one boundary 
oin
ides with c,

. the opposite boundary mat
hes the polyline p of M ,

. the degree is the degree of c in one dire
tion and 1 in the other dire
tion.

sM 
onne
ts all the points v1, . . . , vn on the Mesh-Fa
e to the 
orrespondent

ṽ1, . . . , ṽn 
ontrol points on the NURBS surfa
e.

Finally a tessellation algorithm is applied to the blending surfa
e in order to


reate an extension of the mesh M . This tessellation is performed in order

to perfe
tly mat
h p and to mat
h c with AG0

ontinuity. An example is

illustrated in Fig.5.8. As we 
an noti
e, the blending NURBS surfa
e, repre-

sented in yellow, is added in order to 
onne
t the two surfa
es thus forming a

watertight C0

onne
tion. sM has a stru
ture 
ompatible with both s andM .

Remark 1. The proposed C0
join methods produ
e good results in 
ase the

Mesh-Fa
e is a low or medium resolution Mesh-Fa
e. However, in 
ase M is a
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(a) (b)

Figure 5.8: Example of 1-1 Fa
e-Join C0
Case II: a) NURBS surfa
e (bottom)

and Mesh-Fa
e (top), b) result of 1-1 Fa
e-Join C0
. Fa
es are plotted with

3× 3g


high resolution Mesh-Fa
e the C0
join methods 
ould be extremely expensive

in terms of knot insertions to modify s.

A possible solution is to join s with a low resolution approximation of p.

A 1-1 Fa
e-Join of M with s, 
onsidering pm as the new boundary of M ,

produ
es a result that is not C0
or watertight. The subset ofm verti
es 
an be


hosen in order to approximate the mesh with AG0

ontinuity a

ording to a

given toleran
e. This kind of joining is really interesting for some engineering

appli
ations.

5.4.2 1-1 Fa
e-Join G1
Almost Everywhere (G1

-AE)

1-1 Fa
e-Join G1
-AE joins a NURBS surfa
e s and a Mesh-Fa
e M with

G1
-AE 
ontinuity de�ned in 
hapter 2. We propose a method to solve Case

I where the NURBS s is modi�ed in order to join with G1
-AE 
ontinuity the

�xed Mesh-Fa
e M .

Case I: Mesh-Fa
e �xed. Given s and M as illustrated in Fig.5.9(a), and

a 
urve c and a polyline p, respe
tively on s and M , along whi
h the surfa
es

are joined, the Fa
e-Join G1
-AE method follows these steps:
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(a) (b)

(c)

Figure 5.9: Example of join G1
-AE. a) NURBS surfa
e (left) and Mesh-Fa
e

(right), b) NURBS stru
ture is adapted to Mesh-Fa
e adding 
ontrol points,


) Result of join G1
-AE.

. ANTM algorithm is applied to the 
ontrol points of s as shown in

Fig.5.9(b),

. internal 
ontrol points of s are modi�ed a

ording to G1

onne
tion


onditions.

In Fig.5.9(
) the result of join is illustrated. Moreover we noti
e that NURBS

points p1, . . . , pn are only 
onne
ted with the verti
es of the Mesh-Fa
e but

they are not G1

onne
ted be
ause they have two distin
t tangent planes

asso
iated. Ve
tors in blue show the distin
t tangent planes asso
iated with

points p1, . . . , pn.
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5.4.3 1-1 Fa
e-Join AG1

1-1 Fa
e-Join AG1
joins a NURBS surfa
e s and a Mesh-Fa
e M with

AG1

ontinuity. Also in this 
ase we distinguish between Case I and Case II.

Case I: Mesh-Fa
e �xed. In this 
ase the proposed methods 
reate a strip

surfa
e s∗ that approximates with AG1

ontinuity the Mesh-Fa
e. Then s∗

is joined G1
with s. In parti
ular, given p, a boundary polyline of M , and c,

a boundary 
urve of s, the Fa
e-Join AG1
methods follow these steps:

. the verti
es ne
essary to 
reate the strip surfa
e starting from the

boundary of M are determined.

. a strip surfa
e s∗ that approximates the boundary of M is 
reated.

. s∗ and s are joined with G1

ontinuity using the standard methods for

G1
NURBS join.

s∗ is 
hara
terized by:

. u degree of s∗ is the degree of c,

. v degree is free,

. s∗ in u dire
tion is 
ompatible with both boundaries c and p.

In a 1-1 Fa
e-Join it is often ne
essary to join only a part of the boundary

of the Mesh-Fa
e, thus the strip surfa
e is 
reated 
onsidering only verti
es

near to the interested boundaries. If instead the join involves the entire 
losed

boundary of the Mesh-Fa
e, the strip surfa
e is 
reated as a periodi
 surfa
e.

The a

ura
y of the 1-1 Fa
e-JoinAG1
methods depends on how s∗ is 
reated.

We propose two di�erent methods to 
reate the s∗ stru
ture:

1) A Least Square Strip Surfa
e

2) An AG1
Approximating Strip Surfa
e
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1) Least Square Strip Surfa
e The �rst and most intuitive method to


reate s∗ approximating the mesh boundary is to sele
t m sets V1, . . . , Vm of

adja
ent verti
es of M , with m > 1 and 
onstru
t m least square approxi-

mating NURBS 
urves c1, . . . , cm.

The most 
riti
al step to be performed is the sele
tion of the m sets of points.

In order to explain how to 
reate these sets we need the following de�nition.

De�nition 5.2. Given a mesh M with boundary W and boundary verti
es

v1, . . . , vn, a vertex v is said to be at distan
e d from the boundary if the

shortest path between v and a vertex on W passes throught d edges.

Verti
es on the boundary of the mesh are the �rst set of points V1. Then,

the se
ond set V2 is 
reated 
onsidering and ordering all verti
es with distan
e

1 from the boundary.

All sets of verti
es Vi, i = 3, . . . , m are 
reated similarly as V2.

When the sets of verti
es are 
reated, the least square approximating NURBS


urves are 
omputed. Degree g, and knots ve
tor K of the 
urves are �xed

when the �rst 
urve c1 is 
reated 
onsidering the set of boundary points. All

other 
urves ci, i > 1 are 
reated with the same stru
ture, approximating

the asso
iated set of verti
es Vi.

The number of 
ontrol points that determines the number of elements in K

is 
hosen in order to have an AG1
join between s∗ and M . The parametri


points for the Least Square method are 
omputed using the following formula:

τ1 = 0

τi = τi−1 + disti ∀i = 1 . . . n

where disti = ||vi − vi−1||2. The parametrization ve
tor has elements

ti = τi/τn ∀i = 1 . . . n.

We 
onstru
t the matrix A, whose elements are the B-Spline basis fun
tions

of degree g evaluated at the ti, and the ve
tor V = (Vx, Vy, Vz) of points to
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be approximated. Then the three systems of normal equations

ATAx = ATV

are e�
iently solved using the Cholesky fa
torization for any Vx,Vy,Vz ve
tor.

On
e all the Least Square 
urves have been 
reated, s∗ is 
reated as the sweep

NURBS surfa
e that interpolate the 
reated 
urves. s∗ satis�es the following

properties:

. degree g in u dire
tion

. knot ve
tor K in u dire
tion

. uniform partition of [0, 1] in v dire
tion as knot ve
tor

. the 
ontrol points grid is obtained by the 
ontrol points of 
urves

c1, . . . , cm 
oherently ordered.

An example of strip surfa
e 
reated 
onsidering 2 rings around the boundary

of a Mesh-Fa
e is illustrated in Fig.5.10. The Mesh-Fa
e with the boundary

in red and the strip NURBS surfa
e obtained applying the LS method are

illustrated in Fig.5.10(a) and Fig.5.10(b), respe
tively. Fig.5.10(
) shows how

the strip �ts the Mesh-Fa
e.

2) AG1
approximating Strip Surfa
e An alternative method to 
reate

a strip surfa
e approximating the mesh boundary is based on the de�nitions

of AG0
and AG1


ontinuity. In this 
ase s∗ is 
reated in order to have the

same tangent planes of M a

ording to the toleran
e of the AG1

ontinuity.

In parti
ular, the 
urve on the boundary of M is 
reated using the Least

Square approximating method introdu
ed before.

Fig.5.11 illustrates an example of AG1
approximating strip surfa
e. Fig.5.11(a)

and Fig.5.11(b) show respe
tively the open mesh with the boundary in red

and the blending NURBS surfa
e obtained by applying the method. Fig.5.11(
)

shows how the blending surfa
e �ts the open mesh. Here the blending surfa
e
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(a) (b)

(c) (d) (e)

Figure 5.10: Least Square Strip NURBS surfa
e approximating the boundary

of the A Mesh-Fa
e. a) Mesh-Fa
e with boundary, b) Least Square Strip,


) strip �tting Mesh-Fa
e, d) NURBS surfa
e joined G1
with the strip, e)

example of AG1
Fa
e-Join between a NURBS surfa
e and a Mesh-Fa
e. Fa
es

are plotted with 3× 3g


depends on toleran
es 
hosen for AG1
and AG0


ontinuity. A lower toleran
e

set of points produ
es the best blending surfa
e �tting.

On
e s∗ is 
reated, a G1
join with s is performed. Two examples are

illustrated in Fig.5.10(d-e) and Fig.5.11(d-e) respe
tively. In both 
ases the

NURBS surfa
e s is joined with AG1

ontinuity with M performing a G1

join

with the strip surfa
e s∗. In parti
ular Fig.5.10(d) and Fig.5.11(d) show the

result of G1
join between s and s∗, while Fig.5.10(e) and Fig.5.11(e) show

how the modi�ed NURBS surfa
e s �ts M .
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(a) (b)

(c) (d) (e)

Figure 5.11: AG1
Strip NURBS surfa
e approximating the hole of the A

mesh fa
e a) Mesh-Fa
e with boundary, b) Least Square Strip Surfa
e, 
)

Strip Surfa
e �tting Mesh-Fa
e, d) NURBS surfa
e joined G1
with the strip,

e) example of AG1
Fa
e-Join between a NURBS surfa
e and a Mesh-Fa
e.

Fa
es are plotted with 3× 3g


Case II: NURBS �xed. Given M and s as above, in order to join M and

s we 
reate a blending NURBS surfa
e sM su
h that:

- one boundary 
oin
ides with c,

- the opposite boundary 
oin
ides with p,

- it is G1
joined with s,

- it is AG1
joined with M .

Finally a tessellation algorithm is applied to the blending surfa
e in order to


reate an extension of the mesh M . This tessellation is performed in order
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(a) (b)

Figure 5.12: Example of 1-1 Fa
e-Join G1
Case II: a) Mesh-Fa
e and NURBS

surfa
e, b) result of 1-1 Fa
e-Join G1
. Fa
es are plotted with 3× 3g


to perfe
tly mat
h p and to mat
h c with AG1

ontinuity. The example

illustrated in Fig.5.12 shows how the blending surfa
e is 
reated and then

tessellated. We noti
e that the NURBS blending surfa
e joins AG1
with the

Mesh-Fa
e M and G1
the NURBS s.

5.5 1-n Fa
e-Join between EB-Rep

The 1-n Fa
e-Join operation 
loses a hole of an open EB-Rep solid with

a fa
e. We denote with F the fa
e and suppose it has a 
lose outer boundary

W . Instead, the open solid C is supposed to have a bounded hole H whi
h


an be shared by more than one fa
e of C. Following the 
lassi�
ation given

for Fa
e-Join, we have three 
ases:

Case I: C is �xed, F is modi�ed

Case II: F is �xed, C is modi�ed

Case III: C and F 
an be both modi�ed

In this se
tion we suppose that the entity to be modi�ed is represented by

NURBS surfa
es. In parti
ular, in Case I we suppose that F is a NURBS

surfa
e and C is an EB-Rep with Mesh-Fa
es around the hole. In Case II we

suppose that F is a Mesh-Fa
e and C is an EB-Rep with NURBS surfa
es
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around the hole.

5.5.1 1-n Fa
e-Join C0

Our method joins with C0

ontinuity a single fa
e F and an open solid

C with a hole H . In 
ase F is modi�ed, every edge is adapted to the 
orre-

spondent edge on H . On the 
ontrary, if C is modi�ed, every surfa
e with

an edge or a vertex on H is modi�ed and adapted to the 
orrespondent edge.

The method requires the sele
tion of two sets of verti
es VW = (vw1, . . . , vwn)

and V H = (vh1, . . . , vhn) with the same number of elements. If the sele
tion

of verti
es does not 
reate the same number of edges, 
ouples of edges are


onne
ted or split until the same number of edges on the fa
e boundary W

and on the hole boundary H is rea
hed. Conne
tion or splitting pro
ess ends

when the following 
onditions are satis�ed:

. H and W have the same number of edges

. every edge in H and its 
orrespondent edge in W are delimited by


orrespondent verti
es on V C and V H respe
tively.

In the next subse
tions we suppose that H and C respe
t both 
onditions.

The mat
h between the sets VW and V H 
ompletes the 1-n Fa
e-Join C0

operation.

Case I: Join by modifying F . The method modi�es the boundary 
ontrol

points of the NURBS surfa
e F , adapting them to the points of H . In

parti
ular, we 
an subdivide our method in the following steps:

. The stru
ture of F is made 
ompatible with the stru
ture of every edge

on H . In parti
ular, for every edge eHi ∈ H it is ne
essary to have the

same number of 
urve segments of the 
orrespondent edge on W , the

boundary of F . Knot insertion operations are applied to make this


ompatibility.
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(a) (b) (c)

Figure 5.13: Example of 1-n Fa
e-Join Case I. a) NURBS surfa
e above the

open EB-Rep, b) Topology of the open EB-Rep 
) Result of 1-n Fa
e-Join.

Fa
es of the EB-Rep are plotted with 3× 3g


. The boundary 
ontrol points of F are modi�ed to mat
h exa
tly every

edge of H .

This method is an extension of the 1-1 Fa
e-Join C0
method. In parti
ular the

main idea of 1-1 Fa
e-Join C0
is repeated for every 
ouple of 
orrespondent

edges. Fig.5.13 shows an example of 1-n Fa
e-Join C0
. A NURBS surfa
e

is joined to an open EB-Rep with Mesh-Fa
es representing a tooth. The

hole on the mesh is 
losed with a watertight C0
join. Fig.5.13(a) shows the

NURBS surfa
e positioned above the open EB-Rep. At the beginning, the

boundary W of the surfa
e does not have the same number of verti
es of the

hole H . Only 4 verti
es on both boundaries are 
hosen and edges of H are

atta
hed in order to obtain the same number of edges of W . Then joining is

performed atta
hing the NURBS 
urves to the polylines on H . Fig.5.13(
)

shows the obtained result.

Case II: Join by modifying C. The method modi�es all the fa
es on H

adapting them to the edges of W . More in details, we determine the fa
es of
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the EB-Rep C whi
h share either edges on H , or only a simple vertex on H .

Then for every fa
e, the asso
iated grid of 
ontrol points is modi�ed. The

method 
an be des
ribed with the following steps:

. For every fa
e with an edge on H to be modi�ed, the 1-1 Fa
e-Join C0

is applied.

. For every fa
e with a single vertex to be modi�ed, the interested 
ontrol

point in the NURBS grid and the edges delimited by the vertex are


hanged.

(a) (b)

Figure 5.14: Example of 1-n Fa
e-Join, Case II: a) Mesh-Fa
e above the open

EB-Rep, b) Result of 1-n Fa
e-Join. Fa
es are plotted with 3× 3g


An example is illustrated in Fig.5.14. A Mesh-Fa
e is joined with an open

EB-Rep model des
ribed by NURBS fa
es. Fig.5.14(a) shows the Mesh-Fa
e

pla
ed above the open solid.

Fig.5.14(b) shows the obtained result. We noti
e that all surfa
es around the

hole are adapted to �t the surfa
e. In this 
ase the boundaryW of the surfa
e

does not have the same number of verti
es of the hole H . In parti
ular W

has 4 edges, while H has 16 edges. Only 4 verti
es on both boundaries are


hosen and the edges of H are atta
hed in order to obtain the same number

of edges of W .
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5.5.2 1-n Fa
e-Join AG1

The 1-n Fa
e-Join AG1

loses the hole of an open solid with a surfa
e


reating a smooth join. The methods have the same stru
ture of the 1-1

Fa
e-Join AG1
. We distinguish between Case I and Case II.

Case I: Join by modifying F In this 
ase F is a NURBS surfa
e, while

C is an open solid with a hole H and n Mesh-Fa
es around H .

A set of strip surfa
es {s∗i }
n
i , approximating the Mesh-Fa
es around H is


reated. Then a G1
join between {s∗i }

n
i and F is performed.

The method 
an be stru
tured in the following steps:

. For every Mesh-Fa
e around H an approximating strip NURBS surfa
e

s∗i is 
reated.

. Adja
ent strip surfa
es s∗i and s∗j are joined in order to have G1

onti-

nuity.

. The set {s∗i }
n
i is joined G1

with F following the existent methods for

NURBS joining.

Creation of every s∗i i = 1, . . . , n has been des
ribed in the previous se
tions

for the 1-1 Fa
e-Join AG1
.

On
e all s∗i i = 1, . . . , n are 
reated, join between NURBS entities is per-

formed following algorithms des
ribed in [24℄.

In this 
ase it is ne
essary to 
onsider also the algorithms for G1

onne
tion

of three and four NURBS surfa
es ([24℄).

Case II: Join by modifying C In this 
ase F is a Mesh-Fa
e, while C is

an open solid with a hole H and n NURBS fa
es around H .

A strip surfa
e s∗ approximating the Mesh-Fa
e is 
reated. Then a G1
join

between s∗ and the NURBS fa
es around H is performed.

The method 
an be stru
tured in the following steps:

. A strip NURBS surfa
e s∗ approximating F is 
reated.
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. s∗ is joined G1
with all the NURBS fa
es around H following the exis-

tent methods for NURBS joining.

The pro
edure for 
reating every s∗ has been des
ribed in the previous se
-

tions for the 1-1 Fa
e-Join AG1
.

On
e s∗ is 
reated, join between NURBS entities is performed following al-

gorithms des
ribed in [24℄.

Also in this 
ase it is ne
essary to 
onsider also the algorithms for G1

on-

ne
tion of three and four NURBS surfa
es ([24℄).

5.6 n-m Fa
e-Join between EB-Rep solids

The n-m Fa
e-Join between EB-Rep solids is the most general 
ase of

join. In order to des
ribe n-m Fa
e-Join between EB-Reps, we introdu
e the

following de�nition.

De�nition 5.3 (n-m Fa
e-Join between solids). Given two solids A and B

with two holes HA and HB delimited by two 
losed boundary WA and WB

respe
tively on A and B. A n-m Fa
e-Join between solids between A and B

along WA and WB 
reates a 
onne
ted solid C su
h that A and B are joined


losing the holes with C0
or G1


ontinuity.

Fig.5.15 illustrates an example of di�erent results of Join operation. A

teapot body and its spout, illustrated in Fig.5.15(a), are joined in two dif-

ferent ways. Fig.5.15(b) shows the result of a sharp join, while Fig.5.15(
)

shows the result of a smooth join.

Join di�ers from Union boolean operation be
ause both solid shapes 
an be

modi�ed during the operation to adapt ea
h other in the desired way. The

boundary of the modi�ed solid is 
onne
ted with the boundary of the �xed

solid, 
losing both the holes.

In this se
tion we analyze the n-m Fa
e-Join between two Extended B-Reps

E1 and E2. We propose to modify the entity des
ribed by NURBS surfa
es,

leaving un
hanged the one des
ribed by Mesh-Fa
es. We suppose that the
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(a) (b) (c)

Figure 5.15: Example of join operation: a) body of the teapot and spout, b)

union between obje
ts, 
) join between obje
ts

open solid E1 has a hole delimited by a wire W1, while E2 is delimited by

W2 and W1 and W2 do not ne
essarily have the same number of edges.

Obviously an EB-Rep 
an have di�erent kinds of fa
es around a hole. We

fo
us only on the one involving Mesh-Fa
es and NURBS be
ause all the most

used analyti
 surfa
es 
an be represented exa
tly by a NURBS surfa
e. A

n-m Fa
e-Join between a NURBS and an analyti
 surfa
e is redu
ed to a join

between two NURBS, whi
h is a 
ase solved in 
lassi
 B-Rep systems. More-

over n-m Fa
e-Join between a Mesh-Fa
e and an analyti
 surfa
e is redu
ed

to a join between a NURBS and a Mesh-Fa
e.

5.6.1 n-m Fa
e-Join C0

The n-m Fa
e-Join method atta
hes with C0

ontinuity E1 and E2 and

is based on the 1-n Fa
e-Join C0
algorithm. More in detail, the method joins


ouples of 
orrespondent surfa
es 
losing both the holes of E1 and E2. It


an be des
ribed with the following steps:

. Split/Join edges of W2 in order to have the same number of edges of

the wire W1.

. For every fa
e with a vertex on W1, the 1-1 Fa
e-Join C0
method is

applied.
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(a) (b)

Figure 5.16: Example of n-m Fa
e-Join C0
: a) an EB-Rep �Tube� with Mesh-

Fa
es and an EB-Rep �Tube� with NURBS fa
es. b) Result of n-m Fa
e-Join

C0
. Fa
es are plotted with 3× 3g


Fig.5.16 shows an example of C0
join between open solids des
ribed by EB-

Reps made of Mesh-Fa
es and NURBS surfa
es respe
tively. In Fig.5.16(a)

the two solids are positioned su
h that there is an empty spa
e between

them. Fig.5.16(b) shows the result of EB-Rep join C0
. We 
an noti
e how the

boundary fa
es of the NURBS tube are extended in order to 
lose the nearest

hole of the mesh tube. Correspondent verti
es sele
ted at the beginning are

atta
hed and edges are modi�ed in order to have a watertight joining.

5.6.2 n-m Fa
e-Join AG1
of Open Solids

The n-m Fa
e-Join AG1
method atta
hes with AG1


ontinuity two solids

E1 and E2 and is based on the 1-n Fa
e-Join AG1
algorithms. Also in this


ase it is ne
essary to 
onsider also the algorithms for G1

onne
tion of three

and four NURBS surfa
es. In general G1

onne
tion of n ≥ 3 NURBS sur-

fa
es sharing a 
ommon vertex has to be 
onsidered ([24℄).



Chapter 6

Finite Cell Method applied to

Extended B-Rep solids

Computer-aided engineering (CAE) is the usage of 
omputer software to

aid in engineering analysis tasks. CAE tools are used, for example, to an-

alyze the robustness and performan
e of 
omponents and assemblies. The

term en
ompasses simulation, validation, and optimization of produ
ts and

manufa
turing tools.

The most famous 
omputational tool for performing engineering analysis is

the Finite Element Analysis (FEA), that divides a 
omplex problem into

small elements. In applying FEA, the 
omplex problem is usually a physi-


al system with a mathemati
al equation asso
iated, while the divided small

elements of the 
omplex problem represent di�erent volumes in the physi
al

system.

Various methods has been introdu
ed and improved. A
tually problems

arise, for example, when 
onsidering heterogeneous materials or more gener-

ally when dis
retizing stru
tures whi
h have a very 
omplex geometry whi
h

might even 
hange during the 
omputation. To over
ome these problems the

Finite Cell Method (FCM) [26℄ was introdu
ed. It 
an be 
onsidered as a


ombination of a �
titious domain method with high-order �nite elements.

In this 
hapter we illustrate in detail an example of FCM applied to an EB-

115



116 6. Finite Cell Method applied to Extended B-Rep solids

Rep representing a perforated tooth before being in
apsulated. Using Finite

Cell Method we simulate the appli
ation of a for
e on a spe
i�
 point of the

tooth and analyze the e�e
ts of this for
e on the obje
t.

In the �rst part of the 
hapter we introdu
e the Finite Cell Method des
ribing

its features. Then we explain how the solid virtual obje
t has been 
reated.

In the last part we illustrate results and dis
uss the use of extended solids

for physi
al analysis.

6.1 Finite Cell Method

Finite element analysis (FEA) with standard methods requires the dis-


retization of the physi
al domain into a �nite element mesh, whose bound-

aries respe
t the boundaries of the starting geometry. This 
onstraint is still

a severe bottlene
k in the simulation pipeline, in parti
ular, when highly


omplex geometries need to be dealt with. All the new methods introdu
ed

in the last de
ade have the main goal to alleviate or eliminate the dis
retiza-

tion 
hallenge for 
omplex geometries. The most well-known 
on
ept is most

probably Isogeometri
 Analysis, introdu
ed by Hughes and 
o-workers in

2005 [37℄ in the 
ontext of CAD. The main idea of Isogeometri
 Analysis is

to use the same higher-order smooth spline basis fun
tions for the represen-

tation of geometry in CAD and the approximation of solutions �elds in �nite

element analysis.

In 
ases where no CAD model is 
reated beforehand, Isogeometri
 Analysis


annot be applied, and a more general approa
h is required. FCM is intro-

du
ed by Parvizian, Duster and Rank in 2007 ([26℄ and [27℄) as a solution for

these 
ases. The main idea of this type of method 
onsists of the extension

of the physi
al domain of interest beyond its potentially 
omplex boundaries

into a larger embedding domain of simple geometry. An example is given in

Fig.6.1 where a potato domain is extended with a �
titious domain 
reating

a simple area that 
an be approximated with a regular mesh. The �
titious

area is penalized by a 
oe�
ient α that is near to 0. Doing so, a simple
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Figure 6.1: Fi
tious domain theory

stru
tured grid is used for the dis
retization. This grid eliminates the time


onsuming and errors during the generation of boundary 
onforming meshes.

The �
titious domain 
on
ept is then 
ombined with higher-order basis fun
-

tions for the approximation of solution �elds, the representation of the ge-

ometry at adaptive quadrature points, and weak imposition of un�tted es-

sential boundary 
onditions. In parti
ular an adaptive quadrature is used

in order to in
rease a

ura
y of numeri
al integration obtained by Gauss

quadrature. Fig.6.2 illustrates the generation of the sub-
ell stru
ture in two

dimensions following the general pro
edure of re
ursive bise
tion used for

quadtree. Starting from the original �nite 
ell of level k = 0, ea
h sub-
ell of

level k = i is �rst 
he
ked whether it is 
ut by a geometri
 boundary. If true,

it is repla
ed by four equally spa
ed 
ells of level k = i+ 1, ea
h of whi
h is

equipped with (p+ 1) ∗ (p+ 1) Gauss points. Partitioning is repeated for all


ells of 
urrent level k, until a prede�ned maximum depth k = m is rea
hed.

In 3D the sequen
e is analogous, with the di�eren
e that every 
ell is a 
ube

and is subdivided in 8 o
tants, as in the o
trees stru
ture.

The 
orresponding algorithms are simple, a

ommodate geometries of ar-

bitrary 
omplexity, and allow for reliable automation of the dis
retization

pro
ess. The �nite 
ell method maintains optimal rates of 
onvergen
e with

mesh re�nement and exponential rates of 
onvergen
e with in
reasing polyno-

mial degree, and thus guarantees full a

ura
y at a moderate 
omputational

e�ort [46℄. Due to the �exibility of the quad-based geometry approximation,

the �nite 
ell method 
an operate with almost any geometri
 model, ranging
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Figure 6.2: Adaptive quadrature of Finite Cell Method

from boundary representations in CAGD to voxel representations obtained

from medi
al imaging te
hnologies.

6.2 FEA and EB-Rep for a Dental Implant ap-

pli
ation

A dental implant, also known as an endosseous implant, is a surgi
al 
om-

ponent that interfa
es with the bone of the jaw or skull to support a dental

prosthesis su
h as a 
rown, bridge, denture, fa
ial prosthesis or to a
t as an

orthodonti
 an
hor. Fig.6.3 shows an example of dental implant.

The basis for modern dental implants is a biologi
 pro
ess 
alled osseointe-

gration where materials, su
h as titanium, form an intimate bond to bone.

As illustrated in Fig.6.4, �rstly existing tooth is extra
ted then, after three

months, implant �xture is pla
ed. After about 3 or 4 months the healing

abutment is pla
ed and �nally, after 2 or 3 weeks the �nal dental prostheti


is added.

Su

ess or failure of implants depends on a �nite number of fa
tors regarding

healthy 
onditions of the person re
eiving it. It is fundamental to determine

exa
tly the position and the number of implants. In order to do it, it is also
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Figure 6.3: Dental implant

Figure 6.4: Detailed dental implant pro
ess

ne
essary to evaluate the amount of stress that will be put on the implant

and �xture during normal fun
tion.

Planning the position and number of implants is key to the long-term health

of the prostheti
 sin
e biome
hani
al for
es 
reated during 
hewing 
an be

signi�
ant. The position of implants is determined by the position and angle

of adja
ent teeth, lab simulations or by using 
omputed tomography with

CAD/CAM simulations and surgi
al guides 
alled stents.

In our work we want to simulate the stress on a dental prostheti
 used for

a dental implant.

In parti
ular, we 
onsider the tooth represented by the mesh illustrated in

Fig.6.5(a). Then we 
ut the inferior part of the tooth and 
reated the 
avity
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(a) (b)

Figure 6.5: a) Original Tooth, b) modeled prosthesis

for the abutment. The resulting model is shown in Fig.6.5(b). In this 
ase

we observe that the analysis model is an EB-Rep model, whi
h 
onsists of

mesh for the upper part, analyti
al surfa
e for the 
avity (
ylinder) and a

NURBS surfa
e for the bottom.

On
e the model is 
reated, the stress analysis is applied. We simulate the

Figure 6.6: For
e applied on the tooth

appli
ation of a 
onstant for
e F on the top of the prosthesis. Fig.6.6 shows

the for
e applied on the obje
t. Fig.6.7 shows how the adaptive quadrature is
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performed on the obje
t. In this 
ase more than 5 re�nements are applied to

the grid and a dis
retization is obtained. Then integration is performed and

Figure 6.7: Adaptive quadrature re�nements

results are shown in Fig.6.8. We 
an noti
e how the tooth is deformed and

where there is the major stress (
oloured in red). In 
on
lusion, we applied a

Figure 6.8: Tooth Boundary Conditions and applied For
e

stress analysis test to an Extended B-Rep model obtaining satisfying results.

Indeed 
onditions required to perform Finite Cell Method are the possibility

to determine the 
losure of an obje
t, separating the inside from the outside.

In this way it is possible to use the �
titious domain. An Extended B-Rep

model has a valid representation that separates the inside from the outside

of a solid obje
t.

More in general, other analysis methods simply require properties of 
lassi


solid obje
t representations. Extended B-Rep models guarantee all these
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properties. Future developments will investigate the use of EB-Reps in other

interesting FEA examples.



Chapter 7

Resear
h a
tivity performed for

Hyperlean

During my P.h.D I 
ollaborated with Hyperlean S.r.l, a spin-o� from the

Polyte
hni
 University of Mar
he. Hyperlean [4℄ is interested in the area of

knowledge management software systems to support the produ
t life
y
le.

The main software 
reated and improved is LeanCost, an optimal software

solution for produ
t 
osting and 
ost simulation.

Our 
ollaboration with Hyperlean 
onsisted in the 
reation of geometri
 tools


urrently implemented in LeanCost. The algorithms we 
reated involved the

Inje
tion Molding and the Boolean Operations between meshes. In the �rst


ase the algorithm has been studied and implemented 
onsidering innovative

aspe
ts of EB-Reps models. In parti
ular all the steps of the algorithm work

on both analyti
 surfa
es and Mesh-Fa
es. In the se
ond 
ase the algorithm


on
erning Boolean Operations between meshes integrates the e�
ient rep-

resentation of meshes des
ribed in 
hapters 3 and 4. It introdu
es a new

approa
h for the representation of results of Boolean Operations between

meshes that have been e�
iently represented in an Solid Modeling System

extended to manage both Mesh-Fa
es and analyti
 surfa
es.

In the �rst part of this 
hapter we are going to introdu
e LeanCost and its

pe
uliarities. Then we explain in detail tools realized to improve LeanCost.
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7.1 LeanCost

LeanCost is the optimal software solution for produ
t 
osting and 
ost

simulation developed by Hyperlean. This software has the main goal to re-

du
e the time spent estimating 
ost of produ
tion of an obje
t and generating

o�ers.

The main idea of the software is to provide di�erent 
osts of produ
t of an

obje
t depending on pro
esses and materials used to realize it. Software is

subdivided in two di�erent parts: a se
tion in whi
h 
osts of pro
esses and

raw materials are 
ombined in order to return an e
onomi
 produ
tion 
ost

of the obje
t and a previous geometri
 se
tion in whi
h feature re
ognition is

applied in order to re
ognize steps ne
essary to produ
e a part starting from

a raw material. This se
ond part is the most interesting for our work and

the one we are going to 
onsider in detail.

Geometri
 se
tion 
onsiders a 3D CAD model with some given 
hara
teristi
s

of the proje
t. A detailed analysis of geometry is performed, extra
ting fea-

tures and main operations ne
essary to realize the model. Then te
hnology

to use is determined 
onsidering features extra
ted.

Inje
tion Molding

A se
tion of LeanCost is dedi
ated to Inje
tion Molding Te
hnology, a

method of pro
essing predominantly used for thermoplasti
 polymers. That

te
hnology 
onsists of heating thermoplasti
 material until it melts, then this

melted plasti
 is for
ed into a steel mold, where it 
ools and solidi�es.

For our studies what is really important is the Inje
tion Molding pro
ess


y
le. This 
y
le 
onsists of three major stages:

. Inje
tion Stage

. Cooling or Freezing Stage

. Eje
tion and Resetting Stage

In the �rst stage, the mold is 
losed and the inje
tion unit fa
ilitates the

�ow of molten material from the heating 
ylinder through the nozzle into the
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mold. In the se
ond stage molten material is 
ooled and the obje
t solidi�es.

In the last stage, the mold is opened, the part is eje
ted and the mold is then


losed again in readiness for the next 
y
le to begin.

A

ording to this pro
ess, we 
an easily understand that the main 
ost of

Inje
tion Molding is the 
reation of the mold. The more 
ompli
ate is the

mold, the more expensive is the produ
tion of the obje
t. The most 
ommon

types of molds used in industry are two-pie
e molds and multi-pie
e molds.

The �rst 
ategory has only one primary parting surfa
e and 
onsists of two

major pie
es, 
ore and 
avity, separated along a single dire
tion to eje
t the

molded part. The se
ond 
ategory is used instead to 
reate 
omplex shaped

parts that 
an not be made by two-pie
e molds. In this 
ase molds have

many parting dire
tions.

The Parting Dire
tion is 
onsidered as the main dire
tion of eje
tion for the

mold. In our 
ase it is the dire
tion along whi
h it is possible to see the

biggest area of the surfa
e of the obje
t.

If we want to estabilish approximatively the 
omplexity of realization of a

3D model using Inje
tion Molding we need to determine some fundamental


hara
teristi
s of the obje
t and of its mold. In parti
ular it is ne
essary to:

. determine if the obje
t is moldable or not,

. estabilish whi
h is the prin
ipal parting dire
tion,

. �nd the best solution between all possible molding solutions.

The tool we realized to improve LeanCost 
omputes these three ne
essary

information and allows users of LeanCost to extimate an approximation of

produ
tion 
ost of a given 3D model. Our algorithm has been 
reated as-

sembling algorithms that 
an be applied on EB-Rep models, 
onsidering the

pe
uliarities of both analyti
 surfa
es and Mesh-Fa
es. In the next se
tion

we explain in detail the realized tool.
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7.2 Compute Best Molding Solution

Our aim is to des
ribe in detail the method we 
reated in order to obtain

those fundamental 
hara
teristi
s introdu
ed in the previous se
tion. Our

algorithm 
onsiders a solid model S and its triangulationMS and determines

if the model is moldable or not. If the solid obje
t is 
onsidered as moldable,

the prin
ipal parting dire
tion is 
omputed and all possible solutions, given

a maximum number of pie
es n, are 
omputed.

Our algorithm 
an be subdivided in four prin
ipal steps:

. Compute all the 
andidate extra
tion dire
tions d1, . . . , dm.

. Compute Fa
e Visibility and determine if the obje
t S is moldable.

. Compute the Parting Dire
tion d.

. Compute all solutions s1, . . . , st whi
h have at maximum n pie
es.

We are going to des
ribe all steps in detail in the next paragraphs.

Compute Candidate Extra
tion Dire
tion

We analyze the solid model S, 
onsidering in parti
ular all its fa
es a
-


ording to its Boundary Representation. For every fa
e we 
onsider the type

of the fa
e, distinguishing between planar and 
ylindri
 fa
es. For every pla-

nar fa
e we 
ompute area and the normal ve
tor. Instead for every 
ylindri


fa
e we 
onsider the axis of the 
ylinder. Then we assemble fa
es in groups

a

ording to their main dire
tion and 
ompute the total area of every group

of fa
es. Mesh-Fa
es are analyzed 
onsidering normals of planar fa
es. This

pro
edure allows us to estabilish whi
h are dire
tions that are normal or axis

of the biggest areas in the solid obje
t. These dire
tions are the main 
andi-

date to be the Parting Dire
tion of the mold.

We have these two remarks:

1. Stru
ture of a mold implies that one pie
e is extra
ted along Parting

Dire
tion d while the se
ond one is extra
ted along −d. So, when a

dire
tion d is 
onsidered, we automati
ally 
onsider also −d.
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2. Solid models are 
reated using CAD systems in whi
h the obje
t is

drawn with a 
orner in the origin and with main fa
es parallel to the

main planes. Considering the main dire
tions x, y, z is often a good


hoi
e to �nd the Parting Dire
tion.

On
e the main 
andidate dire
tions are 
omputed, we order them a

ording

to the asso
iated area. The dire
tion that is normal for the biggest area is

analyzed as �rst 
andidate Parting Dire
tion.

Compute Fa
e Visibility and determine if the obje
t S is moldable

On
e possible extra
tion dire
tions are 
omputed, the fa
e visibility is

analyzed for every dire
tion d and its opposite −d, in order to understand if

the obje
t is moldable or not.

For every fa
e of the solid is determined:

. if the fa
e is a 
ylinder with axis parallel with d. In this 
ase the fa
e

is 
onsidered as normal to dire
tions d and −d.

. if the fa
e is a planar fa
e with normal ve
tor d and −d. In this 
ase

the fa
e is 
onsidered as normal.

Then, for every fa
e fi an algorithm is performed that determines visibility of

the mesh Mfi asso
iated with fi. For Mesh-Fa
es we 
onsider the mesh itself.

This algorithm 
reates a di
tionary in whi
h with every fa
e fi is asso
iated

a list of values indi
ating the visibility of the 
orrespondent triangle in Mfi .

Visibility is 
omputed using depth bu�er.

On
e a di
tionary is 
reated for both dire
tions d and −d, for every fa
e is

determined if it is totally visible, partially visible, or 
ompletely not visible

from d or −d. With this last step fa
es are grouped in these three 
ategories.

Repeating this pro
ess for every 
ouple of dire
tions allows us to have pre
ise

information on visibility of fa
es along 
andidate extra
tion dire
tion.

In order to estabilish if a part is moldable or not it is enough to 
ontrol if all

the fa
es of S are 
ompletely visible for at least one dire
tion or its opposite.

If there are one or more fa
es that are not visible from any dire
tion the
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Figure 7.1: Example of Moldable Part and its Parting Dire
tion

obje
t is 
onsidered non moldable. On the 
ontrary, if every fa
e is visibile

from at least one dire
tion, the obje
t is 
onsidered moldable.

An example is illustrated in Fig.7.1(a) where a solid obje
t is represented.

This parti
ular part is moldable and we 
an easily see that one needs a two-

pie
e mold to 
reate the obje
t. Fig.7.1(b) and Fig.7.1(
) show visible fa
es

from the parting dire
tion and from its opposite. Fa
es 
oloured in red are

fa
es visible from the Parting Dire
tion, fa
es 
oloured in orange are fa
es

visible from opposite Parting Dire
tion.

Compute the Parting Dire
tion

After having determined the moldability of a part, Parting Dire
tion is the

dire
tion, and its opposite, that has the biggest visible area. In order to 
om-

pute this 
ouple of dire
tions, we 
onsider, for every 
andidate dire
tion d,

the total area of fa
es visible from d and −d and 
hoose the most visible area.

Fig.7.2 shows an example of determination of the Parting Dire
tion. Fig.7.2(a)

shows the obje
t to be molded, Fig.7.2(b-
-d) show di�erent 
andidate Part-

ing Dire
tions. From this simple example it is easy to understand that the

Parting Dire
tion is the one shown in Fig.7.2(
) be
ause it has the biggest

visible area, 
oloured in red.

Other 
oloured fa
es are respe
tively:

. Not visible fa
es in 
yan

. Fa
es partially visible from d in yellow



7.2 Compute Best Molding Solution 129

. Fa
es partially visible from −d in violet

Figure 7.2: Example of 
andidate Parting Dire
tions: a) obje
t, b-
-d) ex-

amples of di�erent 
andidate parting dire
tions

Compute all solutions whi
h have at maximum n pie
es

On
e a Parting Dire
tion d1 is 
omputed, all possible solutions, given a

maximum number n of pie
es, are 
omputed 
onsidering all possibilities.

Starting from d1 and −d1, the se
ond parting dire
tion d2 is 
hosen as the

one that minimize the remaining non visible area. All dire
tions d3, . . . , dn

are 
omputed following the minimization rule. In the last step all solutions

are ordered 
onsidering the minimum number of pie
es ne
essary to mold the

part.

Fig.7.3 shows an example of 
omplete solution. Fig.7.3(a) shows the part

to mold. Fig.7.3(b-
) show the Parting Dire
tion. Fig.7.3(d-e-f) show all

the other dire
tions ne
essary to mold all fa
es of the obje
t. As we 
an

noti
e existing holes require single pie
es to be molded. These additive pie
es

in
rease the 
omplexity of the mold.
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Figure 7.3: Example of Moldable Part Solution. a) obje
t, b-
-d-e-f) parting

dire
tions in the solution

7.3 Boolean Operations in LeanCost

Boolean Operations are the basi
 instruments for Solid Modeling. Lean-

Cost needs to extimate tools ne
essary to obtain a solid model starting from

a raw material. These tools in
lude boolean operations.

Inside LeanCost, for every solid model, a mesh is 
reated in order to visualize

the obje
t. Using existing libraries it is possible to perform boolean opera-

tions between meshes asso
iated with solid obje
ts.

LeanCost takes in input a solid obje
t and operates on solid obje
ts, while

result of a boolean operation applied to meshes is obviously a mesh. It was

ne
essary to give, as result, a B-Rep representation of the resulting solid ob-

je
t. Due to this ne
essity we devised a method that re
reate the wire of the

solid obje
t result of the boolean operation between meshes asso
iated with

two solid obje
ts.

In the next paragraphs we are going to des
ribe in detail 
hara
teristi
s of the
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boolean operations with Carve library and the algorithm 
reated to obtain

a solid obje
t as result.

Boolean operations between meshes

The algorithm that we 
reated gives the possibility to rebuild the bound-

aries asso
iated with the fa
es of a B-Rep model obtained as the result of a

boolean operation between two solids A and B. More in detail, given two

solids A and B, MA and MB are de�ned the meshes asso
iated respe
tively

with A and B and • is 
alled a boolean operation between meshes. MR is

the resulting mesh.

The goal of the algorithm is to get from MR the solid R represented by

B-Rep. In order to rea
h e�
iently the goal it is ne
essary to build the mesh

MR asso
iated with a solid S building a single mesh for ea
h single fa
e and

�lletting verti
es on the boundary of adja
ent fa
es. In this way, ea
h fa
e

of the mesh MS has a referring fi fa
e on S.

It is possible to subvide the algorithm in the following steps:

. Boolean operation is performed and information is extra
ted.

. Creation of new boundaries of the interested fa
e

. Creation of a B-Rep result

These steps are detailed below.

Boolean operation is performed and information is extra
ted The

�rst part of this algorithm 
onsists of the exe
ution of the boolean operation

• between meshes MA and MB asso
iated with the solids A and B. Meshes

have to be stru
tured as follows:

. ve
tor v of the verti
es made by 3 ∗ nv elements. These elements of v

respe
t the following rule:

- v[3i] = mesh → v[i] → x

- v[3i+ 1] = mesh → v[i] → y
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- v[3i+ 2] = mesh → v[i] → z

. ve
tor f of the fa
es of the mesh. Considering only triangular meshes,

the stru
ture of f is similar to the stru
ture of v but in this 
ase the

indi
es of the three verti
es that represent ea
h fa
e are 
onsidered.

The rules are:

- f [3i] = mesh → f [i] → v[0]

- f [3i+ 1] = mesh → f [i] → v[1]

- f [3i+ 2] = mesh → f [i] → v[3]

. list of attributes to be asso
iate to ea
h fa
e of the mesh. In this 
ase,

an internal values list is 
reated in order to give the index related to

the fa
e fj asso
iated with the fa
e in the B-Rep model for ea
h fa
e

of the mesh. Infa
t, as said before, the meshes are built dis
retizing

the B-Rep model asso
iated with the solid. So, ea
h fa
e of the mesh

belongs to one and only one fa
e of the B-Rep model.

On
e the stru
ture related to both meshes MA and MB is 
reated, the

boolean operation is performed and we go on 
reating the stru
ture needed

for the following steps.

First of all, the result mesh starting from the ve
tors given as output of the

algorithm realizing the boolean operation. Then, it is performed a method

that gives the possibility to get every interse
tion polylines from that boolean

operation. Being more pre
ise, the algorithm that realize this boolean opera-

tion determines all the shared edges of the two involved meshes. These edges

are 
alled interse
tion edges. For ea
h of these edges, the indi
es of the fa
es

that interse
t and the starting and ending points of the edge are kwown.

All the 
losed interse
tion polylines are build using this information. Finally,

the fa
es of the B-Rep model dire
tly involved in boolean operation are de-

termined using the information 
onverted in the attributes list.

These fa
e are all and only fa
es for whi
h the boundary is modi�ed. In

addi
tion, it is determined if a point belongs to an edge of the B-Rep model



7.3 Boolean Operations in LeanCost 133

fa
e or if it is a point internal to it for ea
h polyline. Then, a list is 
reated in

whi
h it is listed for ea
h non internal point its referring edge in the B-Rep

model of the 
onsidered solid.

Creation of new boundaries of interested fa
es The main part of

the algorithm 
onsists in the 
reation of new boundaries asso
iated with the

fa
es involved in the boolean operation. This method is iterated on every

fa
e belonging to the solids A and B. The algorithm 
onsiders all the loops

that delimit a fa
e f , independently from the fa
t that they are internal or

external. All the edges of the involved loop are determined. These edges are

fundamental for the 
onstru
tion of the new loop. All the polylines pi that

lie 
ompletely or partially on the fa
e f are 
onsidered. The subpolylines sj

lying on f are determined for ea
h one of these. These sj are polylines with

all the verti
es lying on f . sj 
an be divided in two types:

. open polylines starting from an edge ek and ending in an edge el where

ek an el are not ne
essarily di�erent

. 
losed polylines in whi
h all the points are internal to f .

In the �rst 
ase, the polyline sj will be a new edge of one of the loop of the

fa
e. In the se
ond 
ase, sj will be a new loop of f . On
e all the sj are

determined, the main part of the algorithm is performed: building of new

loops. The method is the following:

. the �rst subpolyline s1 is 
onsidered and the starting and ending edges

ek and el are determined, if they exist. More in detail, the point pfirst

and plast in whi
h s1 interse
ts respe
tively ek and el are determined.

If ek and el do not exist and s1 is internal, a new loop is added to the

fa
e. If ek and el exist, it is ne
essary to determine the following edges

making the loop. Considering plast an the side el related to it, it is

possible to distinguish three di�erent 
ases:

- the new edge to be built is delimited by another subpolyline sj

with starting or ending point on that side.
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- the new side to be built is delimited by a vertex native to the side

- if ek=el, pf irst and plast make the ends of the last side ne
essary

to 
lose the loop

Ea
h of these possibilities needs to make 
he
ks in order to determine

right sequen
es of the sides delimitating the edge of the fa
e.

. During every 
he
k the following point of the loop is determined. The

algorithm goes on until the starting point is rea
hed.

First, a rule for the orientation of edges, loops and polylines should be set, in

order to semplify a lot the pro
ess and in order to make possible to determine

always the dire
tion of travel to follow. If this were not done, it should be

ne
essary to make expensive dire
t 
ontrols in order to 
hoose the vertex. It

is ne
essary to make the following 
onsiderations to get a 
orre
t result:

. It is ne
essary to set 
orre
tly the last point of the external loop. In

parti
ular, the last point of the loop is the one from whi
h it is started

with the �rst 
onsidered polyline. Fig.7.4 shows an example of a new

boundary 
reated with this algorithm. In this 
ase, and also in all the

following examples, verti
es are 
onsidered in 
ounter
lo
kwise order.

As we 
an see, the blue polyline divides the fa
e in two parts, the

green polygon delimitates the new fa
e. The �rst and last point of the

boundary is p1, that is the starting point of the polyline.

. It is possible that the same edge is interse
ted by two or more di�erent

polylines. In this 
ase, it is ne
essary to determine properly the portion

of the edge belonging to the external loop. Fig.7.5 shows an example

of an edge interse
ted by two polylines. In this 
ase, following the


ounter
lo
kwise order, we obtain the new boundary delimited by the

green line. If there was no order, we should have established whi
h was

the order of points 
onsidering dire
tly triangles of the result mesh.

. It is possible that a polyline starts from one vertex on the external loop

and ends on one edge belonging to an internal loop. In this 
ase, the
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Figure 7.4: Example of new boundary

Figure 7.5: Example of edge interse
ted by two polylines
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Figure 7.6: Example of polyline that starts from outer loop and ends on an

inner loop

loop that was previously internal should be eliminated. Fig.7.6 shows

an example of a polyline that starts from the outer loop and ends on

the inner loop. In this 
ase the new outer loop, drawn in green, has

some edges of both outer and inner loops. The new boundary is made

of just one outer loop.

. On
e new loop is built, it is ne
essary to 
onsider if and whi
h internal

loops are still belonging to the edge of the fa
e. Fig.7.7 shows an exam-

ple of a polyline that subdivides a fa
e in two parts and separates the

inner loops. As we 
an noti
e, the �rst inner loop, after the appli
ation

of the algorithm, is outside the fa
e and so is not any more 
onsidered

as a loop. Instead, the se
ond and third loops are still inside the fa
e

and are 
onsidered as inner loops.

. A fa
e 
an have two or more 
onne
ted 
omponents. Fig.7.8 shows an

example of a 
ouple of polylines that subdivide a fa
e in three 
onne
ted


omponents. In this 
ase the orientation of the polylines 
reates two


onne
ted 
omponents that are 
onsidered as the same fa
e with two

outer boundaries. Obviously it is possible to separate this fa
e in two



7.3 Boolean Operations in LeanCost 137

Figure 7.7: Example of inner loops inside (2,3) and outside (1) the new

boundary

distin
t fa
es.

This part of the algorithm gives the possibility to get loops making boundary

of a fa
e. This method is repeated for all the fa
es of the solids A and B

involved in the boolean operation.

Creation of B-Rep results The last step is the 
reation of new fa
es

starting from boundaries got in the previous step. Subsequently, new fa
es

are added to the solid model R resulting by boolean operation. If a subtra
-

tion operation is performed, fa
es of the solid B got by the algorithm, are

inverted in order to have 
onsistent normal and a valid solid model. The

result is a valid B-Rep model that 
an be 
onsidered the result of a boolean

operation between solids A and B under a �xed toleran
e.

In this 
hapter, we dis
ussed in detail the main algorithm realized during

the 
ooperation with Hyperlean. These algorithms give the possibility to

in
rease the potentiality of an extremely useful software as LeanCost.
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Figure 7.8: Example of fa
e with two 
onne
ted 
omponents



Con
lusions and main results

The resear
h proje
t has been subdivided into a
ademi
 and professional

side. On the a
ademi
 side we investigated many aspe
ts of solid model-

ing, fo
using on the B-Rep models and introdu
ed a new paradigm whi
h is

able to integrate mesh and NURBS entities. To support this new modeling

paradigm we proposed a suitable solid modeling system named �Extended

Solid Modeling System�. On the other hand, the professional side of the

proje
t 
overed the development of algorithms in order to optimizate 3D ge-

ometry of solid obje
ts and boolean operations between polygonal meshes

improving the LeanCost software.

A
ademi
 performed a
tivity

To formulate a 
omplete proposal of an Extended Solid Modeling System,

the a
ademi
 side of this proje
t was involved into two main goals:

. Study and design of a theory for a new paradigm of extended solid

model representation that provide the basis for the de�nition of a new

paradigm of an Extended Solid Modeling kernel.

. Development of tools to extend a 
lassi
 solid modeling system, aimed

at integrating the new primitives and the new paradigm.

Con
erning the design of new paradigm of extended solid model represen-

tation, �rst of all we introdu
ed the innovative paradigm �Extended B-Rep�

139
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(EB-Rep) whi
h is able to integrate the geometri
 entity �Mesh-Fa
e� as part

of a B-rep model.

On
e the main 
hara
teristi
s of the EB-Rep were introdu
ed, in order to

realize this new system it was ne
essary to handle the intera
tion between


lassi
 B-Rep entities and meshes. In parti
ular, the notion of 
ontinuity be-

tween Mesh-Fa
e and NURBS entities had to be investigated, be
ause it was

ne
essary to de�ne a new 
on
ept of 
ontinuity between smooth and dis
rete

entities.

We formalized the de�nition of 
ontinuity between dis
rete and 
ontinuous

entities: the Approximated Geometri
 (AG) 
ontinuity, 
on
eptually intro-

du
ed in [44℄. In parti
ular we analyzed the AG0
and the AG1

de�nition of


ontinuity between Mesh-Fa
es and NURBS or analyti
 surfa
es. Moreover

we formalized the G1
-Almost-Everywhere Continuity, that is a di�erent de�-

nition of G1

ontinuity between Mesh-Fa
es and NURBS or analyti
 surfa
es.

Then we provided a high-level overview of typi
al methods involved in solid

modeling introdu
ing their generalization to the Extended Solid Modeling

System. In parti
ular we fo
used on Boolean Operations, Cutting and Join

Operation.

Con
erning Boolean Operations, we investigated the NURBS-Mesh interse
-

tion. In this 
ase the problem of interse
tion between two entities has been

solved 
onsidering the AG0

ontinuity and the result surfa
es are a trimmed

NURBS and trimmed Mesh-Fa
e.

In Cutting Operation, similarly to the Boolean Operations, the surfa
e-

surfa
e interse
tion between Mesh-Fa
es and NURBS surfa
es is suitably

managed, thus we used the same notions previously introdu
ed.

Join operation has been analyzed handling the smooth joining between NURBS

surfa
es and Mesh-Fa
es a

ording to the de�nitions of AG1
and G1

-AE 
on-

tinuity.

The Development of tools to extend a 
lassi
 solid modeling system re-

quired �rst of all to manage the e�
ient integration of the Mesh-Fa
e prim-
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itive into an existing Solid Modeling System based on a 
lassi
al B-Rep

paradigm.

At this aim, we proposed innovative approa
hes, suitable for both valen
e

semi-regular and unstru
tured meshes.

Valen
e semi-regular quadrilateral and triangular meshes are represented by

an EB-Rep with fa
es des
ribed by a low number of NURBS surfa
es, with-

out losing any information. The number of fa
es depends dire
tly from the

number of Extraordinary Verti
es of the mesh.

We provided a standard and an improved version of the methods, 
alled re-

spe
tively Quad Mesh Pat
hing(QMP) and Quad Mesh T-Pat
hing(QMTP).

The �rst one 
reates re
tangular pat
hes without T jun
tions while the se
-

ond one allows T jun
tions, diminishing the number of pat
hes ne
essary to

represent the obje
t, but losing the uniqueness of the solution, that depends

from the order in whi
h extraordinary verti
es are 
onsidered. We imple-

mented these methods in our OpenCas
ade platform in order to validate our

proposal.

For unstru
tured meshes with arbitrary topology we studied and realized an

innovative method that 
reates an EB-Rep with NURBS fa
es approximat-

ing the initial mesh. In parti
ular, the proposed algorithm extended LSPIA

algorithm introdu
ed in [25℄ in order to obtain a Catmull-Clark surfa
e ap-

proximating with good a

ura
y the original mesh. We tested this method

by implementing it in our OpenCas
ade geometri
 kernel.

Furthermore, our innovative method is very interesting be
ause of its mul-

tiple appli
ations. It 
an be applied to obtain a valen
e semi-regular mesh

from an unstru
tured one dis
retizing the Catmull-Clark surfa
e, or it 
an

be 
onsidered as a variant of Hoppe's surfa
e re
onstru
tion method, intro-

du
ed in [32℄ and in [35℄, whi
h works on an unstru
tured mesh obtained by

a pre-pro
essing of the original point 
loud.
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Con
erning the se
ond main goal of our a
ademi
 proje
t, we extended

the most important tools for solid modeling to manipulate EB-Rep solids.

In parti
ular we extended the existing methods for Boolean Operations and

Cutting Operation in order to manage EB-Reps. In both 
ases, the interse
-

tion 
urves are trimmed NURBS 
urves, if they delimit two NURBS surfa
es,

otherwise they are polylines that have AG0

ontinuity with both the NURBS

surfa
e and the Mesh-Fa
e. We produ
ed examples of the proposed methods

using our OpenCas
ade platform.

Then we analyzed in detail the Fa
e-Join operation, introdu
ing the 1-1 Fa
e-

Join operation, the 1-n Fa
e-Join operation and �nally the n-m Fa
e-Join.

In all these 
ases, the literature does not provides solutions for mat
hing

meshes and NURBS entities, thus we started from de�nitions of AG0
, AG1

and G1
-AE 
ontinuity and realized innovative methods to join a NURBS

surfa
e and a Mesh-Fa
e.

For the 1-1 Fa
e-Join, we analyzed both the situations in whi
h the NURBS

is �xed and the Mesh-Fa
e is �xed and introdu
ed new methods that require

the modi�
ation of the NURBS surfa
e or the 
reation of a blending NURBS

surfa
e in order to 
lose the gap between the two entities.

Methods 
on
erning the 1-n Fa
e-Join operation and the n-m Fa
e-Join has

been realized extending 
orrespondent methods introdu
ed for 1-1 Fa
e-Join.

proposed methods has been implemented and tested in our OpenCas
ade

platform.

All the notions and methods introdu
ed in our work allow us to formulate

a 
omplete proposal of an Extended Solid Modeling System and to provide

the instruments to integrate the new primitives and the new paradigm into

a 
lassi
 B-Rep Solid Modeling System.
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Professional performed a
tivity

The professional side of our resear
h a
tivity has been subdivided in two

main works that improved the LeanCost software: the development of al-

gorithms for the optimization of the 3D geometry of solid obje
ts and the

study and realization of a method 
on
erning boolean operations between

polygonal meshes.

In the �rst part of our proje
t we studied the Inje
tion Molding Te
hnology,

in whi
h a thermoplasti
 material is heated until it melts, then this melted

plasti
 is for
ed into a steel mold, where it 
ools and solidi�es. The main


ost of Inje
tion Molding is the 
reation of the mold. The more 
ompli
ate

is the mold, the more expensive is the produ
tion of the obje
t.

In order to determine the 
omplexity of realization of a 3D model using

Inje
tion Molding some fundamental 
hara
teristi
s of the obje
t and of its

mold has to be determined. In parti
ular it is ne
essary to:

. determine if the obje
t is moldable or not,

. estabilish whi
h is the prin
ipal parting dire
tion,

. �nd the best solution between all possible molding solutions.

We realized an innovative algorithm that solves these problems starting from

the B-Rep representation of the model. In parti
ular our algorithm �rstly

�nds all the 
andidate extra
tion dire
tions, 
omputes Fa
e Visibility for

ea
h dire
tion and determines if the obje
t is moldable. Then the Parting

Dire
tion and all molding solutions are 
omputed.

The se
ond part of our resear
h a
tivity involved the 
reation of an algo-

rithm that gives the possibility to rebuild the boundaries asso
iated with the

fa
es of a B-Rep model obtained as the result of a boolean operation between

two solids. More in details, two solids A and B, their asso
iated mesh MA
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and MB and the mesh MR result of Boolean Operation between MA and

MB are given. Our algorithm obtains from MR the B-Rep solid R in whi
h

surfa
es are parts of original surfa
es of solids A and B.

The algorithm �rstly extra
ts ne
essary information from Boolean operation

result, then the new boundaries of the interested fa
es are 
reated and �nally

the B-Rep model of the result is 
reated.
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