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Abstract

This thesis has been carried out at the Department of Mathematics of
the University of Bologna and at the Company HyperLean s.r.l. spin-off of
the University Polytechnic of Marche, as part of a collaborative project on
“Theoretical and numerical aspects of a hybrid geometric modeling system”.
The key observation that motivates the interest in this topic is that in dif-
ferent application contexts you have the need to create virtual solid models
that integrate real data acquired by 3D scanning, represented by polygo-
nal meshes, with synthetic models, designed by parametric/analytical multi-

patches.

The research topic covered the study of theoretical and numerical aspects
of solid modeling and the development of suitable solutions as part of a “hy-
brid geometric solid modeling system”.

In particular, the involvement as regards the professional side of the project
covered the development of algorithms for the optimization of the 3D geom-
etry of solid objects and boolean operations between polygonal meshes to
improve the LeanCost software (HyperLean’s proprietary software).
Concerning the academic side, we investigated many aspects of solid model-
ing, focusing on the B-Rep models and introducing the new paradigm “Ex-
tended B-Rep” which is able to integrate “mesh-faces” as part of a B-rep
model.

To manage the quality of the built model we studied a notion of continu-
ity and join between parametric and discrete representations and we pro-

posed a set of methods that guarantee that the models can be manipu-
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lated while maintaining predetermined continuity constraints among the con-
stituent parts.

We generalized the most important tools of solid modeling to the Ex-
tended B-Reps and proposed solutions to extend the geometric kernels of
standard solid modeling systems to be able to deal with Extended B-rep
models. The new geometric solid modeling kernel has been realized in a

software supported by the OpenCascade library.
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Introduction

In different application fields, ranging from computer graphics to indus-
trial design and 3D modeling, the user is faced with the design and editing of
complex 3D virtual geometric models. Basically 3D models can be classified
in two families: the digital models, that represent quite faithfully real objects
or phenomena, and the designed models, which are a virtual representation
of a shape concept, created by design. Each family has its own modeling
pipeline. Digital models are the result of an acquisition process through 3D
scanners. Oppositely, a designed model is typically created by means of a
conventional computer aided modeling system, where a designer has at dis-
posal a great number of tools to transpose his shape concept into a 3D model.
Digital models are often represented by polygonal meshes or point clouds.
Designed models are created by manipulating mathematical knowledge, such
as Bézier and spline patches or analytical surfaces.

Up to now, only limited research efforts have been devoted to put together
these two families of models and the only way that gives the possibility to
these two categories to dial is the conversion of one into the other.

The conversion of different kinds of geometric primitives into a common
form clearly implies expensive computations and possible loss of information.
Given the complexity of the shapes to be virtualized, converting the digitized
meshes into continuous designed models is unfeasible. On the other hand,
if one chooses to convert continuous surfaces into polygonal meshes through
tessellation, editing the model afterwards, if necessary, will be harduous.

Moreover, the digital preservation of acquired pieces requires that one can
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always distinguish digital models from the surface patch created following a

geometric process.

This project aims at integrating designed models, represented by con-
tinuous surfaces, and digital models, represented by polygonal meshes, in a
unique 3D model in which entities such as Non Uniform Rational B-Splines
(NURBS) analytical surfaces and meshes coexist. This would delete the gap
existing between designed and digital models and it would simplify many
processes that nowadays require the conversion of one representation in the
other.

To support this new modeling paradigm we propose a suitable solid model-
ing system that we name “Extended Solid Modeling System”. It is pointing
out that the proposed term “Extended” instead of Hybrid avoids a possible
misunderstanding. Infact, nowadays, what is commonly referred to as hybrid
system is a modeling system in which it is possible to model together solid
objects and surfaces. The adjective Extended is in order to underline the
extension which was made compared to existing systems.

In the proposed Extended Solid Modeling System, which relies on Boundary
Representation (B-Rep) of solid models, the faces are described by differ-
ent kinds of representations, both continuous and discrete, such as NURBS
surfaces and meshes. Here different forms of representation coexist, interact
and, since they do not have to be converted into a common form, they always
keep their shape features and analytical properties. The regions of the model
represented by meshes maintain their faithful compliance to the real data,
while those represented by continuous models are easily editable.

The possible applications of such an Extended System are spread through
cultural heritage, medical science, passing through industrial design and en-
gineering applications. Every scenario in which it is necessary to build or
rebuild a piece or a surface starting from an existing model represented by a

mesh is a possible application for our proposal.
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In the context of cultural heritage, artwork findings are not only frag-
mented, but are often incomplete. Therefore, to build a virtual model of a
restored object, the digitized data must be supplemented by modeling the
missing parts and assembling them in such a way to be compliant with the
real findings. Currently available systems address the problem by convert-
ing different representations into a common form. Unfortunately, in the
virtualization of complex artworks, the conversion of detailed meshes into
smooth surfaces implies unacceptable approximations, while the conversion
of smooth surfaces into meshes makes it difficult to operate on the model to
make changes.

Instead, an extended model would allow to combine the expressiveness of
meshes with the easy editability of smooth surfaces in order to restore the
missing parts. No conversion would be required.

An example is illustrated in Fig.1 and Fig.2 where are represented two dif-

Figure 1: Example of Statue reconstruction, Mars statue is repaired

ferent ruined statues. In Fig.1(a) is illustrated the statue ruined with some

missing pieces, while in Fig.1(b) the statue has been repaired recreating miss-
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Figure 2: Example of statue reconstruction, Caesar’s Nose recreated and
attached

ing parts using NURBS surfaces.

Another example is shown in Fig.2 which shows how a nose is reconstructed
using a CAD system and then joined to the rest of the statue. In Fig.1 and
Fig.2 from left to right, we can see respectively the ruined statue and the

repaired one.

A different application that motivated the research proposed is in the con-
text of biomedical engineering. In particular the implant design, Plastic
Surgery and Maxillofacial Surgery. The extended paradigm could be used to
integrate the digitalized parts of the human patient with parts modeled by a
biomedical designer. This would make the design and prototyping processes
quicker, cheaper and more efficient.

By the way of illustration we show an example in Fig.3(a) of broken femur.
Fig.3(b) illustrates a possible prosthesis that can be modeled with a CAD
system. In this case an extended model could be used to adapt exactly the
boundary of the sphere to the boundary of the broken femur in order to have

an accurate result.
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Figure 3: Example of femur reparation

To formulate a complete proposal of an Extended Solid Modeling System
we investigated theoretical and numerical aspects and we developed suitable

software tools. This project has involved two main goals:

a) Study and design of a theory for a new paradigm of extended solid
model reprentation. This will provide the basis for the definition of a

new paradigm of an Extended Solid Modeling kernel.

b) Development of tools to extend a classic solid modeling system, aimed

at integrating the new primitives and the new paradigm.

a) Since digital models are represented by meshes, while designed models ex-
ploits continuous surfaces, the main proposal is the study of a new reprenta-
tion scheme, named EB-Rep, that extends the classic B-Rep, in which meshes
are represented using a new entity called Mesh-Face.

Moreover we study the Boolean Operation between Extended models, in-
vestigating the mesh/NURBS intersection algorithm, in order to realize new
mixed models in which NURBS and meshes coexist.

Then, to control the quality of the model, it is necessary to define a notion
of continuity for Extended models, that we call approximate geometric con-
tinuity (AG), and a set of conditions to guarantee that extended models be
manipulated keeping prescribed continuity constraints between their consti-

tuting patches. To this aim we investigate how to handle the join between
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mesh and NURBS entities.

b) In particular we tackled the definition of a new data structure for extended
models and develop algorithms for the join between mesh and NURBS.
Beyond the design of such a new Extended Solid Modeling System, we inves-
tigated the instruments to integrate our innovative proposal in actual sys-
tems, giving the possibility to enlarge their potentialities without strongly
modify their geometric kernel. Although the activities of the project have
been mostly oriented to a fundamental research, some efforts have been also
addressed to the development of a prototype software, which is an extension
of a classic solid modeling system that manages both NURBS surfaces and
meshes. This system will be used to validate the effectiveness of the proposed

theory and methodologies.

The work of this thesis is organized as follows.
In the first chapter we introduce the basic notions necessary for our work. In
particular we briefly discuss the representation schemes, focusing on B-Rep
representations. Then we introduce parametric curves and surfaces and, in
particular, NURBS and finally meshes and their properties.
In the second chapter we formalize the innovative concepts of Mesh-Face and
Extended B-Rep model (EB-Rep).
In the third chapter we describe methods to efficiently represent valence semi-
regular meshes with NURBS surfaces in an EB-Rep model.
In the fourth chapter we introduce methods to efficiently represent an un-
structured mesh with NURBS surfaces in an EB-Rep model.
In the fifth chapter we introduce the most important tools of solid modeling
and show how to adapt them for an Extended B-Rep model. In particular we
consider Boolean Operations, Cutting Operation and Face-Join for Extended
B-Rep.
In the sixth chapter we illustrate in details an example of Finite Element
Analysis applied to an Extended B-Rep solid. In particular we apply the
Finite Cell Method to an Extended B-Rep solid obtained with tools of solid
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modeling introduced in the fifth chapter.

In the last chapter we illustrate in details the research activity performed at
Hyperlean company. In particular we describe the tools realized in order to
improve LeanCost software. These tools are a first application of innovative

concepts introduced in our Extended Solid modeling System.






Chapter 1

Geometric Representation of
Solid Objects

A Solid Model is a digital representation of the geometry of an existing or
envisioned physical object. Solid models are used in many industries rang-
ing from manufacturing to health care. Solid Modeling is a consistent set
of paradigms and algorithms for the representation and construction of solid
objects.

Principles of geometric and solid modeling are the foundation of Computer
Aided Design (CAD) and in general support the creation, exchange, visual-
ization and interrogation of digital models of physical objects. In particular
solid modeling techniques allow for the automation of several difficult engi-
neering calculations that are an important part of the design process. Sim-
ulation, planning and verification of machining and assembly processes were
one of the main reasons for the development of solid modeling. In addition,
solid modeling techniques serve are the basis for rapid prototyping, reverse
engineering and mechanical analysis using finite elements.

A central problem in all these applications is the ability to effectively and
unambiguously represent and manipulate three-dimensional geometry in or-
der to have a representation consistent with the physical behavior of real

objects. Solid modeling research and development has effectively addressed
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many of these issues, and continues to be a central focus of Computer-Aided
Engineering (CAE). The Solid Modeling technology is implemented in sev-
eral commercial solid modeling software systems.

Solid modeling is an interdisciplinary field that involves many areas, from
rigorous mathematical theories, computational geometry to expects of com-
puter aided geometric designer. Moreover the computational aspects of solid

modeling deal with efficient data structures and algorithms.

In this chapter we introduce some basic notions on the mathematical
representation of solid objects. In particular we introduce the definitions
of Representation Schemes, focusing on B-Rep representations, geometric
notions of parametric curves and surfaces and, in particular, NURBS. In
the last part another important geometric primitive, the polygonal mesh, is

introduced.

1.1 Representation Scheme

Solid modeling relies on the specific need for informational complete-
ness in mechanical geometric modeling systems, in the sense that any digital
model should support all geometric queries that may be required about its
corresponding physical object. This necessity led to the development of the
modeling paradigm that has defined the field of solid modeling as we know
it today [45]. These paradigms are based on the Representation Schemes.

Let’s introduce some basic definitions.

Definition 1.1. A R-set is a subset of 3D Fuclidean space that is closed,

bounded, reqular and semianalityc.

A physical object, modeled mathematically by an R-set, is unambiguously
defined by its boundary. All the R-set’s properties allow to study these

entities as if they were real solids.

Definition 1.2. A Syntactically Correct Representation is a finite symbol
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structure constructed with symbols from an alphabet according to syntactical

rules.

The collection of all syntactically correct representations is called a Rep-
resentation Space R. The mathematical modeling space whose elements are

R-sets (abstract solids) is called N.

Definition 1.3. A representation scheme is a relation:
rs: N—R

Let D be the set of the representable solids in rs and V be the set of
valid representations in R.
All the principal solid representations can be associated with rs and can have

the following properties:

. Domain: the set D of representable solids in rs. If the representation
is optimal we have D = N

. Validity: impossibility to create a non-sense representation

. Completeness: all representations are not-ambiguous. This means rs~!

is a function

. Uniqueness: every solid has a unique representation. This means rs is

a function
. Accuracy: it’s possible to represent exactly a solid
. Simplicity: it’s easy to create a representation
. Efficiency: closure, robust algorithms, compact storage.

The principal representation schemes used in CAD and CAGD application
fields are Constructive Solid Geometry (CSG) and Boundary Representations
(B-Rep). Moreover there are other representation schemes used for different

applications which are, for example:
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. Voxelization: it is essentially a list of spatial cells occupied by the solid.

. Cell decomposition: the solid is represented by its decomposition into

several cells.

. Surface Mesh modeling: the boundary of the solid is discretized using

a mesh.

. Sweeping: the solid is defined by a set moving through space that trace

or sweep out volume.

. Implicit representation: the solid is specified by a predicate (in/out)

that can be evaluated at any point in the space.

The most important CAD systems and solid modeling libraries use CSG
and B-Rep representation schemes. In particular, the open source softwares
Blender [2]|, OpenCascade [5] and CGAL [3]| use B-Rep data structure.

Constructive Solid Geometry CSG is a representation scheme in which
a solid is described through basic primitives, combined using boolean oper-
ators and rigid motions as shown in the example in Fig.1.1. Often a CSG
model appears visually complex, but is actually a clever combination or de-
combination of simple objects called primitives.

Primitives are the simplest solid objects used for the representation. Typi-
cally they are simple shape like cuboids, cylinders, prisms, pyramids, spheres
and cones.

This work focus on Boundary Representation schemes which are discussed

more in details in the next section.

1.2 Boundary Representation (B-Rep)

A B-Rep representation describes a solid using the decomposition of its
boundary in a collection of connected surface elements. The boundary of

the solid separates the inner from the outer space. Every point in space can
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7N
/v \'
Figure 1.1: CSG Representation Scheme: Union (U), Intersection (M) and

Difference (—) boolean operations used to construct a solid object from simple
primitives (sphere, cone, cube)

unambiguously be tested with respect to the solid by testing the point with
respect to the boundary of the solid. This allows us to test the validity of
the representation. The boundary is described by a pair of sets: the set of
geometric entities and the set of topological information. Geometric entities
are surfaces, curves and vertices. Topological entities are faces, edges and
vertices that are associated with the geometric entities. Connections between
topological entities give a detailed description of the shape of the object.
More in detail a B-Rep represents a solid describing the relationship between

geometric entities.
Definition 1.4. A B-Rep scheme B = (G, T) consists of

. a set of geometric data G = (P,C,S), where P contains points in
R3, C contains parametric curves in R3 and S contains analytic and

parametric surfaces R3.

. asetT = (V,E,F) of topological information providing relationships
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among the elements of G, where V are the vertices, E are the edges

and F' are the faces.

The entities in G are:

. Points (P): it contains points P; in R? that are associated with vertices
in V.

. Curves (C): it contains curves C; in R?® with their parameterization

p(t) € Cy,t € [t1,ta]. A curve is associated with an edge in F.

. Surfaces (S): it contains parametric surfaces S; in R with their pa-

rameterization p(u,v) € S;. A surface is associated with a face in F.
The entities in 7" are:

. Vertices (V): it contains vertices V; that are pointers to the associated
point P; in R? defined in G.

. Edges (F): it contains F; that are pointers to the associated curves C;
defined in G.

. Faces (F): it contains F; that are pointers to the associated surfaces
S; defined in G.

. Loops/Wires (W): it is an ordered sequence of vertices and edges.
A loop defines a not self-intersecting piecewise closed space curve W
which may be a boundary of a face. A loop can be considered as a

particular closed edge.

. Bodies/Shells (B): it is a set of faces that bound a single connected
closed volume. It’s possible to define a Skeletal Body as a solid made

of a unique point. This solid has a face with no boundary.

As shown in the simple example in Fig.1.2, all information about the cube
are stored in a Hierarchical Linked Table, shown in Fig.1.2(b), in which ge-

ometric information (points, curves and surfaces) are linked by topological
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entities (vertices, edges and faces). The faces A, B, ..., F' are delimited by
the edges [1,...,[12. For example, according to the linked table, face A is
delimited by edges [1,12,13,14. The edge [1 is delimited by vertices v1 and
v2.

A more complex example is illustrated in Fig.1.3(c). The topological struc-

110 v7
: 19
| NCE R :
v 13 v3
112 :
c 18 PRI = )
B 1112131415161718 19110111 12
D .
14 A : 12
yeeserafacanas B..... :.VG vl v2 v3 v4 v5 v6 v7 v8
Q‘J's
17 F
vl 11 v2

(a) (b)

Figure 1.2: Example of B-Rep Scheme: a) a solid object b) hiearchical linked
table associated with the object

ture of the object is represented in Fig.1.3(a). Fig.1.3(b) shows the geometric

entities associated with every face topological entity which are NURBS sur-

faces that bound the solid object. Most B-Rep schemes store additional

information to accelerate the traversal and processing of the boundary.
There are three different B-Rep classes: vertex-based-B-Rep, edge-based-B-
Rep and face-based-B-Rep.

A vertezr-based representation is the simplest B-Rep. In this scheme faces are

stored using a counterclockwise ordered list of vertex. Geometric information
about vertices are stored in a linked table.

An edge-based representation has the edge as fundamental geometric entity.

Edge-base data structures are the B-Rep schemes that allow to store the
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(b) ()

Figure 1.3: Example of B-Rep Representation Scheme: a) Topological struc-
ture, b) Geometric entities, ¢) Model

maximum amount of information about the represented solid.

In a face-based representation a graph is used to represent the connections
between the faces of a solid object.

In the next two subsections we focus on two particular edge-based data struc-
tures used to handle topology of the B-Rep schemes: Winged-Edge and Half-
Edge. These are the most frequently used and the most efficient due to their
compactness capabilites to store all necessary pieces of information in a small

number of elements.

1.2.1 Winged-Edge data structure

A winged-edge data structure represents a particular edge-based B-Rep

in which every edge stores four data:

. Pointers to its two end vertices
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. Pointers to left and right faces (in manifold solids)
. Pointers to preceding and next edge in clockwise order

. Pointers to preceding and next edge in counterclockwise order

terminating
\enex/
previous counter-clockwise edge ®

next clockwise edge

edge

face opposite face

previous clockwise edoe @ _ nextcounter-clockwise edge

ariginating
vertex

Figure 1.4: Winged-Edge data structure

An example of winged-edge data structure is illustrated in Fig.1.4. Each
vertex and each face has a pointer to one reference edge.

FEach edge is oriented: its orientation is given by its originating and termi-
nating vertices. Clockwise and counterclockwise orientations are given with
respect to the orientation of the edge.

The winged-edge data structure has been designed to allow effective local
modification of the solid topology. It is the oldest B-Rep data structure and
was initially used for representing polygonal meshes. The basic winged-edge
data structure assumes that every edge of the model has exactly two adja-
cent faces. This restricts the topology of surfaces to be 2-manifolds without
boundaries. A manifold model only contains manifold surfaces. However,

the result of boolean operations on manifold solids can lead to a result that
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is manifold with boundaries. An advanced winged-edge data structure allows

to represent also solid manifolds with boundary and non-manifolds.

1.2.2 Half-Edge data structure

Modern solid modelers use an advanced edge-based B-Rep data structure:
the half-edge data structure. In this representation scheme an edge is divided
in two coincident half-edges with the same shape, the same ending vertices
with opposite orientation. Half-edge is the main geometric entity of the

structure and stores five information:
. A pointer to the previous half-edge
. A pointer to the starting/ending vertex
. A pointer to the incident face
. A pointer to the opposite half-edge

As illustrated in Fig.1.5 each vertex and each face store a pointer to the
associated half-edge. The half-edge associated with a face is considered the

first edge of the face’s border loop. This scheme allows to represent faces

orientation.
opposite face
opposite half-edge
terminating vertex ® = @ originating vertex
half-edge
next half-edge face previous half-edge

Figure 1.5: Half Edge data structure
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1.3 Euler’s Equation

The Euler’s Equation describes the relationship between geometric en-
tities and topological properties of the represented solid. More in detail, a
representation of a 2-manifold without boundary is considered a valid repre-

sentation if it satisfies the following relation:
[Fl = [E|+ V] = [L] = 2(]C] = G) = x (1.1)

where
. |F| is the number of Solid’s Faces
. |E| is the number of Solid’s Edges
. |V] is the number of Solid’s Vertices
. |C| is the number of Solid’s Connected Bodies
. |L| is the number of Inner Loops in every face
. G is the genus of the Solid

The Euler Characteristic (or Euler Number), denoted by Yy, is a topological
invariant, a number that describes a topological shape in the space or a
structure regardless of the way it is bent. In case of connected solids it
provides a direct link to the topological genus of the object. Eq.(1.1) is
not the classical Euler’s Equation because it includes also the number C' of
connected components, assuming that the solid can have more than a single
connected component. We refer to [43| for details on this equation and on a
more general Euler’s Equation that describe Non-Manifold Solids and Solids
Manifold with Boundary.

As a simple example, we apply Euler’s Equation to the solid cube illustrated
in Fig.1.6, where the cube is described by 6 quadrilateral faces (Fig.1.6(a))
and by 12 triangular faces (Fig.1.6(b). It is a solid with a single connected

component and genus 0, and we have:
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(a) (b)

Figure 1.6: Cube represented with 6 quad-faces (a) and 12 triangular faces

(b)
. 6 Faces, 12 Edges, 8 Vertices in the quadrilateral case

. 12 Faces, 18 Edges, 8 Vertices in the triangular case

According to Euler’s Equation (1.1) we have :
6—12+8=2(1—0) =2
for the quad-case and
12— 18+8=2(1—0) =2

for the triangular one. Both representations result in y = 2 that is both are

valid representations of a cube.

Each face of a B-Rep can be associated with a geometry which characterizes
its shape. In particular, standard B-Rep systems use analytical surfaces such
as planes, spheres, cylinders and spline parametric surfaces.

In the following we briefly describe the spline parametric surfaces and the
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meshes, that are introduced as a new geometric primitive in the proposed
Extended B-Rep system and they define faces of the new proposed B-Rep

extension scheme.

1.4 Parametric curves and surfaces

Parametric curves and surfaces are the most used geometric entities in a

classical B-Rep scheme and are associated to edges and faces respectively.

Definition 1.5. Let I be an interval of R. A curve «y is a continuous mapping

v: 1 — X, where X is a topological space.

. 7y 1s said to be simple, or a Jordan arc, if it is injective, i.e. if for all

x, y in I, we have y(x) = y(y) implies x =y

. Af xyy with © # y such that v(x) = y(y) (with x,y different from the
extremities of 1), then v(x) is called a double (or multiple) point of the

curve.
. A curve vy is said to be closed or a loop if I = [a,b] and if v(a) = ~(b).

We always consider curves in n—dimensional Euclidean spaces, with n >

1. In particular we consider plane curves (on R?) and space curves (on R3).

Definition 1.6. A parametric curve c(t) is a geometric entity whose equa-
tions express the coordinates of points as function of a variable t, called pa-
rameter:

c:R—R"

where n = 2, 3.

According to this definition, we write c(t) = (x(t),y(t)) if n = 2 or
c(t) = (x(t),y(t), z(t)) if n = 3, where z, y, z are the three components of the
function and represent the coordinates of the point in R? or R? associated

with the parameter ¢.
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In order to define continuity of curves we need to introduce differentiability
of functions. Let’s now consider k a non negative integer and D an open set

on the real line such that f is defined on that set with real values.

Definition 1.7. A function f is said to be of (differentiability) class C* if
the derivatives f', f", ..., f®) exist and are continuous (the continuity is
implied by differentiability for all the derivatives except for f*)).

f is said to be of class C'™°, or smooth, if it has derivatives of all orders.

Continuity of parametric curves is described by parametric continuity as

follow.

Definition 1.8. A curve can be said to have C™ continuity if
"y
dtn

15 continuous of value throughout the curve.

This means that the first n derivatives of the functions that describe the curve

are continuous.

According to the definition, a curve is said to be C? if the curve is contin-
uous, C' if first derivatives are continuous, C? if first and second derivatives
are continuous and C™ if first, second, ..., n—th derivatives are continuous.
In general, when two joining curves describe a 2D /3D shape, the requirement
of C™ continuity at the contact point can be quite restrictive.

In addition to parametric continuity, geometric continuity (G™) was intro-
duced to make the shape description independent on the speed to trace out
the curve. In particular geometric continuity describes continuity between
two parametrizations ¢ and r of two curves joined at an extreme point con-

sidering also the equivalent parametrizations of ¢ and r [29].

Definition 1.9. Let q(u), v € [a,b], and (@), @ € [a,b], be two regular C™
parametrizations. These parametrizations are said to be equivalent, that is,
they describe the same oriented curve, if there is a C™ function f : [a, 5] —
la,b] such that:
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. ff>0

Definition 1.10. Let’s consider q and r be two C™ parametric curves meeting
at a point P. They meet with n—th-order geometric continuity, denoted by
G"™, if there exists a parameterization § equivalent to q such that ¢ and r meet

with C™ continuity at P.

An example is shown in Fig.1.7. On the left two curves join with a G*!
connection: the tangent vectors have the same direction but different length.
On the right they join with C! connection: the tangent vectors have the same
length and direction.

According to the definition, if we consider the tangent vectors on both sides

Cl
(a) (b)

Figure 1.7: Join between two curves represented in Bernstein Basis form with
continuity G! (a) and C' (b)

of a point on a curve, they are G°/C? connected if the curves touch at the
join point, G' connected if the curves share a common tangent direction at
the join point, G? connected if the curves also share a common center of cur-
vature at the join point and G™ connected if ¢™ (¢) # 0 and ¢'™ (t) = kg™ (t),
for a scalar k£ > 0.

In general, G™ continuity exists if the curves can be reparametrized to have
C™ (Parametric) continuity. A reparametrization of the curve is geometri-

cally identical to the original, only the parameter is affected.
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We now introduce basic definitions for parametric surfaces.

Definition 1.11. A surface s is a topological space in which every point has
an open neighbourhood homeomorphic to some open subset of the Fuclidean

plane E2.

Definition 1.12. A parametric surface is the image of an open subset of the
Euclidean plane (typically R?) by a continuous function in a topological space

that is generally an Euclidean space of dimension at least three.

In our work we consider surfaces s : R? — R? defined by vector functions

of two variables v and v, called parameters, as follows:

S(u’ U) = (x(u, U)a y(ua 'U)’ Z(”? 'U)),

where x,y,z are the three components bivariate functions that represent the
coordinates of the point in R? with parametric coordinates (u,v).

The Jacobian matrix is the matrix of all first-order partial derivatives. Ja-
cobian matrix of a parametric surface is a 3 X 2 matrix. A point p whose
Jacobian matrix has rank two is said regular, or the parametrization is said
regular at p. A surface has C! continuity if the Jacobian matrix associated
to the surface has rank 2 for all points throughout the surface itself.

The tangent plane at a regular point p is the unique plane passing through
p, and is generated by the two row vectors of the Jacobian matrix. The nor-
mal line, or simply normal at a point of a surface is the unique line passing
through p and perpendicular to the tangent plane. A normal vector is a
vector which is parallel to the normal. According to these notions, surfaces

are said to be:
. CY if the result surface is continuous

. C' if the tangent plane exists for every internal point of the result

surface.

According to [29] we give the following definition.
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Definition 1.13. Let s and r be two C™ parametric surfaces meeting along
an edge e. They meet with n-th-order geometric continuity, denoted G", if
there exists an equivalent reparametrization s of s such that, along e, § and
r meet with C™ continuity.
1.5 NURBS Curves and Surfaces

Non Uniform Rational B-Spline (NURBS) are mathematical models used
in geometric modeling to generate and represent parametric curves and sur-
faces. Their properties allow to have a great flexibility and precision for
handling both analytic and free-form shapes. NURBS are commonly used
in CAD, CAM and Computer Aided Engineering (CAE) and they are repre-
sented by the common standards, such as IGES, STEP and others.
In order to define NURBS curves and surfaces we need the following defini-
tions. For properties and tools we referred to [28] or [50].
Definition 1.14. Let [a, b] be a closed and bounded interval and A = {x;}i—1
a set of points (knots) such that:

A=< 11 <...<xp <Xp_1=0b

We denote by A the partition of [a,b] in k + 1 subintervals:

.]Z‘:[l‘i,l‘i+1) Z:O,,k’—l

o I = [xp, 7 + 1]
Given an integer m > 0, and P, the space of real polynomials of order at
most m, we define the space of piecewise polynomials:

PP,.(A) ={f|3po, ...,k € P, s.t f(x) =pi(x) Ve el;, 1=0,...,k}

Definition 1.15. Let [a, b] be a closed and bounded interval and A = {x;}i—1. &

.....

a partition of [a,b]. Let m be a positive integer, M = (my, ma, ..., my)
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a vector of positive integers such that 1 < m; < m, Vi = 1,...,k. Let
W = (wy,...,wg) be a vector of not negative coefficients. We define space of
polynomial B-Spline functions of order m with knots x4, ..., xy of multiplicity

mi,...,my as follows:
S(Pp, M,A, W) = {s(z) | so(z),...,sk(x) € Py s.t.
s(x)=si(x) xel;, i=0,....k
= S’i

st (x;) M) 1=0,....om—-—my—1 i=1,... k}.

We observe that for m; =1V i=1,...,k we have the maximum conti-
nuity, instead if m; =mVi=1,... k, S(P,, M, A, W) reduces to PP,,(A).
The space S(P,,, M, A, W) has dimension m+ K, where K = Zle m;. In the

same way we can define the space of rational B-Spline functions as follows.

Definition 1.16. The space of rational B-Spline functions s represented as
R(P,,, M, A, W)

where M = (mq, ma, ..., my) is the multiplicity vector, W = (wy, ..., wy) the
vector of weights and m + K, with K = Zle m;, s the dimension of the

space.

Definition 1.17. The set

A ={t:}ic1. omik

where K = Zle m; is called Extended Partition associated with R(P,,, M, A, W)
if and only if:

Dt Sty <L S lopgk
ctm=a; bk 1 =0

ctmats tmaos - tma i = (1,00, X1, oo, Tk, . .., Tg) where x; 1S repeated

m; times Vi =1,... )k
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A stable base for the space S(P,,, M, A, W) is represented by the Nor-

malized B-Spline functions.

Definition 1.18. Let A* be the extended partition associated with |a,b]. We
define the set of Normalized B-Spline functions

{Ni,m}i:1 ..... m+K

using the recursive formula:

T — ti ti—f—h — X .
——N;p1(2) + —————Nij1pa(x) ifti <ti+h
Nip(x) =< tith—1 — 1 (@) tivn —ticn (@)
0 otherwise
for h=2,... m, where:

i7 x = .
! 0 otherwise

and conventionally 8 = 0.

Definition 1.19. Given S(P,,, M, A, W) of dimension m + K, we define a
B-Spline function of order m in S(P,,, M, A, W) as:

m+K
i=1
where © € [a,b] and {N; ,,(z)}"4% are the Normalized B-Spline basis func-
tions defined on A*.
Definition 1.20. Given R(P,,, M, A, W) of dimension m + K, we define a
Rational B-Spline function in R(P,,, M, A, W) as:
m+K
Z clwlN%m(:c)
i=1
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where x € [a,b], {Nim(z)} X are the Normalized B-Spline basis functions
defined on A* and w; > 0 Vi.

In order to modify a B-Spline function and enlarge the dimension of its
space, we can act on the knot vector or on the degree. In these case coeffi-
cients ¢; of the function are modified but the function shape is unchanged.
We introduce the most important tools used to modify the knot vector of
a B-Spline function. These methods are valid also for Rational B-Spline

functions.

Knot Insertion The Knot Insertion (KI) algorithm modifies the knot vec-
tor of a B-Spline function f(x) adding one or more knots to the extended
partition A* associated with f(x). Knot Insertion leaves f(x) unchanged.

Given A* the extended partition associated with [a, b] and ¢ € [a, b], we insert
a knot ¢ in A*, where t; < t < t,,1, thus generating a new extended partition

AA* = {tAi}iZQm-l—K-l—l where:

t; 1<
tig i>1+2

The new space of functions S(P,,, M, A, W) has dimension m + K + 1 and
is such that S(P,,, M, A, W) C S(P,,, M, A, W).
The Normalized B-Spline basis functions are modified according to the fol-

lowing theorem introduced in [15].

Theorem 1.5.1. Given A* and A* the two extended partitions defined before,

the following relation is valid:

sz(l’) 1 <l—m
t— Al' ) tAi+m+1 —t .
Nz,m(x) = ﬁNz,mCU) -+ szﬁkl’m(x) l—m+1<i<]
Liym — t; Ligmy1 — tig1

Nig1m(x) i>1—1
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Coefficients of the new function are modified according to the following

rule:
C; z§l—m+1
=49 e+ (1=X)eiq l—m+2<i<I
Ci—1 1>+
t—1;
where \; = ————
tz‘—i—m_ti

Degree Elevation The Degree Elevation algorithm represents f(x) of or-
der m as a function f(z) of order m + 1 with the same shape. Coefficients

of the new function are modified according to the following rule:

Co = Cop
_c(n+1—1i) +ici
o n+1

1=1,...,n
Cnt1 = Cn

A NURBS curve in R” in parametric form is a vectorial function with n

components that are NURBS functions. In particular:

Definition 1.21. A NURBS curve ¢(t) € R" can be expressed as follows:

m+K

m+K Z Wi PiNim(t)
c(t) = (er(t), ..., ca(t)) = Z PR m(t) = j:iK

> wiN;m(1)
j=1

where the parameter t € [a,b], ¢;(t) are NURBS functions defined in (1.3)
and the P; € R"™ are called control points. The ordered sequence of control

points forms a control polygon.

Let consider S, = (P,, N,A,) and S, = (P,,, M, A,) two spaces of mono-
variates B-Spline functions, defined respectively on [a,b] and [c, d] of order

m and n, knot partitions A, = {x;},—1_, and A, = {y;}i=1. x, multiplicity
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vectors N = (nq,...,ny) and M = (mq,...,my) associated with A, e A,
h
Sy and S, have dimensions n + H and m + K respectively, where H = Z n;
i=1
k
and K = Z m;. The tensor product space of S, and S, denoted by S, ®.S,,
=1

with dimension (n+ H)(m+ K) that can be written as
Sy @Sy = (P, N, M, Ay x Ay).

Definition 1.22. We define a tensor product B-Spline function associated
with Ay x A, as

n+H m+K

s(x,y) = Z Z CiiNin (@) Njm (y), (1.4)

=1 j=1
where N;,(x) and N;,,(y) are the Normalized B-Spline basis functions of S,
and S,, associated with the ertended partitions A}, = {u;}i=1. on+n and

Ay = {vj}j=1..2m+K TESPEctively.
Definition 1.23. A NURBS bivariate function s defined as

n+H m+K

SN i Non(2)Njn(y)

i=1 j=1
r(z,y) = n+Hjm+K (1.5)

D0 wiNi(@)Njm(y)

i=1 j=1

where w; ; > 0.

This function can be written in this form:

n+H m+K

r(@,y) = > > cijRingim(,y)

i=1 j=1

where R;, jm(x,y) are the Bivariate Rational B-Spline basis functions de-
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fined as follows:

wi,jNi,n(ZU)Nj,m(y)
n+H m+K

DY wiNon(@)Njm(y)

i=1 j=1

Ri,n,j,m<x7 y) -

A NURBS surface can be represented using a 3D points grid (&;, 7, ¢;;) with
i =1,...,n+Heyj=1,...,m+ K where § and 7, are the Greville’s
abscissas of the knot vectors in v and v direction. If the grid is represented
on the plane (&,n;) withi=1,...,n+H and j =1,...,m+ K we have the
pre-image of the Control Grid.

Definition 1.24. A parametric NURBS surface is a vector function s(u,v) €
R3 with components x(u,v), y(u,v) and z(u,v) which are NURBS functions,
defined in (1.5) belonging to the same space. A parametric NURBS surface

s written as follows:

n+H m+K

s(u,v) = Z Z P, iRip jm(u,v)

=1 j=1
where Pij = (xij, Y5, 25) € R® are the control points.

An example of NURBS surface and its control grid is shown in Fig.3.1.

G! join between NURBS surfaces Using NURBS surfaces to construct
complex surface objects requires to consider a smooth connection between
the several surfaces approximating piecewise the object. Adjacent NURBS
surfaces need to be joined with geometric continuity at the same order. Ac-
cording to Definition 1.13 two surfaces are joined with G*' continuity along
an edge e if there exists an equivalent reparametrization of the surfaces such
that, along e, the two surfaces have the same tangent plane. For bicubic and
biquartic surfaces, conditions for G! join are introduced in [21].

G' Join between NURBS surfaces can be performed with the algorithm de-
scribed in [24].
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Figure 1.8: NURBS surface representing a Torus and its control mesh

Given two NURBS surfaces s; and s, with control points d; ; and ci” and
weights w; ; and w; ; respectively, we suppose to keep s; intact and modify
the first and second lines of control points along the upper boundary strip
of s, as follows, while keeping the other control points of s, unchanged. The
following cases show how the new control points ciayb of s, are set as combi-
nation of control points d of s;. The same is done for weights. Here we give
the general conditions, which do not imply that s; and sy are joined along

both entire edges.

1 At the lower-left corner position of the parametric domain of s, we set

2wW0,0€0,0 — W1,0C1,0

Cor—2,0 =
2wo,0 — W10

War_20 = 2Wo,0 — W10

2(wo,pCo0 — Wo1Co1) — (2w1,0¢1,0 — W1,1C1,1)
2(221}0’0 — w()yl) - (2w1,0 - wl,l)

Cop—21 =
Wor—91 = 2(2wo 0 — wo 1) — (2wy9 — wi1)

2 In the interior corresponding m pairs of boundary patches of the para-

metric domains of s; and s,, we set

Cor—24k,0 = Ck.0
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Wor—2+k,0 = Wk, 0

2(Wg,0Ck,0 — Wk 1Ck1)
2Wg 0 — Wi,

Cor—24k1 =
Wop—_94k,1 = 2Wko — Wk 1

with £ =1,...,2m.

3 At the lower-right corner position of the parametric domain of s1, we

set

2W2m41,0C2m+1,0 — W2m,0C2m,0

Co(r+m—1),0 = 9
Wom+1,0 — W2am,0

W2(r4+m—1),0 = 2w2m+1,0 — Wam,0

- 2(w2m+1,002m+1,0 - w2m+1,102m+1,1) - (2w2m,002m,0 - wzm,1€2m,1)

I - =
2(r+m-1),1 2(2wam+1,0 — Wamt1,1) — (2Wam,0 — Wam,1)

W2(r4+m—1),1 = 2(27110,0 - wo,l) - (27111,0 - le)

With these conditions s; and s, are G' connected.
According to literature, there are other algorithms that can be applied in

order to solve this problem (i.e. [21]).

1.6 Polygonal Meshes

Polygonal meshes have a central role in our proposal. Let us introduce

some basic definitions.

Definition 1.25. A mesh M = (V, E, F') is a collection of vertices V, edges
E and faces F' that defines a surface or the shape of a polyhedral object in
solid modeling [17].

The faces of the Mesh usually consist of triangles, quadrilaterals, or other
simple convex polygons, but may also be composed of more general concave
polygons, or polygons with holes. In our work we do not impose that all the

polygonal faces are planar.
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A verter v € V is a point in the 3D space with associated information such
as color, normal vector and texture coordinates. An edge is a straight line
that connects two different vertices. A face is a closed polygon bounded by
a cycle of edges.

An edge is called interior if it belongs to at least two faces, otherwise it is
an ezterior or a boundary edge.

A vertex is called interior if it doesn’t belongs to a boundary edge, otherwise
it is an ezterior or a boundary vertex.

A mesh is called closed if every edge is interior, otherwise it the mesh is called
open or with boundaries.

Furthermore we distinguish between low, medium and high resolution meshes.
Low resolution meshes have |V| < 100, medium resolution meshes have
100 < |V| < 10000 and high resolution meshes have |V| > 10000.

A triangle mesh is a mesh in which all faces are triangles, while a quad mesh
is a mesh in which all faces are quadrilaterals. A quad-dominant mesh is a
mesh in which the majority of faces are quadrilaterals, while there may be
a small fraction of non-quadrilateral faces, typically triangles and/or pen-
tagons.

The number of edges incident to a vertex is called valence or degree of the
vertex.

Every mesh has an ideal valence, which is the valence of the regular vertices.
All the vertices with a valence different from the ideal valence are called ex-
traordinary vertices (EV).

For a triangular mesh an EV is an interior vertex with valence different from
6. Fig.1.9(b) shows a triangular closed mesh with EV colored in red and two
of the non-EV in blue. If the triangular mesh is open, a boundary vertex
with valence different from 4 is considered an EV. Fig.1.9(a) shows a quad
closed mesh with EV in red and some of the non-EV in blue.

For a quad mesh the EV is an interior vertex of the mesh with valence dif-
ferent from 4. If the quad mesh is open, a boundary vertex with valence

different from 3 is considered an EV.



1.6 Polygonal Meshes

35

According to [17], a mesh is said to be regular if the ideal vertex valence is

W

(@) (b)

Figure 1.9: Examples of structured meshes: (a) quad mesh representing the
Fertility statue, (b) triangular mesh representing a dolphin

maintained for all internal vertices of the model. For a quad mesh, a com-
pletely regular mesh is defined to be the one where all vertices have valence
4. This constraint is difficult, often impossible, to satisfy, as only genus-1
(toroidal) models can be described as a regular mesh.
A mesh is said to be wvalence semi-reqular if there is a restricted number of
extraordinary vertices. The EVs define the boundary curves of a coarse seg-
mentation of the model. Each of the coarse regions is described by a mesh.
Valence semi-regular meshes are able to describe surface models of arbitrary
genus, while exhibiting the structural regularity that facilitates many geo-
metric processing algorithms.
A mesh is said to be unstructured if a large fraction of its vertices have va-
lence different from the ideal valence.

Fig.1.9 shows two examples of valence semi-regular meshes representing the
Fertility statue and a dolphin, while Fig.1.10 shows two examples of unstruc-
tured meshes representing a femur and a bunny.

Moreover, we distinguish between conforming and non-conforming meshes.
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Figure 1.10: Examples of unstructured meshes: (a) quad mesh representing
a femur, (b) triangular mesh representing a bunny

Conforming meshes have the property that any two faces may share either
a single vertex, or an entire common edge. Non-conforming meshes do not
respect this property.

T-meshes, are a special case of non-conforming meshes: in a T-mesh, there

amnEuEREENEENER

Figure 1.11: Examples of T-mesh representing the fertility statue

may exists an edge e of a face f that coincides with a chain of edges of two
or more faces glued to f along e. All the internal vertices of such a chain,
that split e, are called T-junctions of the mesh. An example is illustrated in
Fig.1.11.

A mesh can be represented in different ways. The minimal data structure re-
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quired is the Face-Vertex mesh which consists of a simple list of vertices, and
a set of polygons. More sophisticated but useful for processing mesh is the
winged-edge data structure, analogous to the winged-edge data structure de-
scribed for B-Rep. Winged-edge meshes allow constant time traversal of the
surface, but with higher storage requirements. There exists many different

standard file formats to store mesh data such as .obj,.stl,.ply and .3ds.
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Chapter 2

Extended Solid Modeling System

Our aim is to close the gap between parametric and discrete geometry for
representing solid objects. We introduce a new solid modeling system that
includes a new paradigm to represent and edit solid models. In particular,
we extend a standard B-Rep scheme in order to make analytical surfaces and
polygonal meshes coexist.

In the first part of this chapter we describe the main aspects of a solid
modeling system. Then we introduce the concept of Mesh-Face and define the
Extended B-Rep scheme. These are the basic concepts of the new Extended
Solid Modeling System that we propose in this thesis. In the second part
of this chapter we investigate the mathematical foundations necessary for
our new system, with particular attention to the smooth connection between
Mesh-Faces and NURBS or analytic surfaces. In the last part of the chapter
we provide a high-level overview of methods realized for our Extended Solid

Modeling System.

2.1 Solid Modeling Systems

A solid modeling system, often called solid modeler, is a computer pro-
gram that provides facilities for storing and manipulating data structures

that represent the geometry of solid objects or assemblies.

39
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Tipically it allows to select and manipulate modeling primitives, such as
lines, cubes and cylinders, and invokes modeling operations to combine these
primitives into more elaborate representations.

The structure of a solid modeling system can be subdivided in three sections:
the representation data structure, the mathematical foundations and the al-
gorithms necessary for the applications. The representation data structure is
the scheme used to represent a physical object. In chapter 1 we introduced
the most important representation schemes that supply to the specific need
for informational completeness in mechanical geometric modeling systems
[45].

The mathematical foundations are all those abstract concepts that allow to
idealize and approximate a physical object. These abstractions and idealiza-
tion, which involves geometric representation of the shape and approximation
models, allow to consider the object as a perfect and homogeneous 3D point
set, ignoring internal structures and boundary imperfections. Moreover con-
tinuity between geometric representations is considered in order to join solid
objects. These are the basis for the algorithms necessary to model the object.
The algorithms are tools necessary to represent, modify and investigate solid

objects.

In our work we consider a solid modeling system with a Boundary Repre-
sentation scheme (B-Rep) and extend it in order to manage both analytical
surfaces and polygonal meshes. In the next section we introduce the new

data structure of our Extended Solid Modeling System: the Mesh-Face.

2.2 Mesh-Face

In Chapter 1 we introduced the main characteristics of a B-Rep scheme.
We introduced the “face” topological element explaining that the geometric
entity associated with this element could be a plane, an analytic surface or a
NURBS surface. The Extended B-Rep exploits all these kinds of primitives
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Figure 2.1: Example of Mesh-Face representing a hand

as a topological face and furthermore it considers the new primitive Mesh-
Face.

A Mesh-Face consists in a mesh of polygonal facets with boundaries associ-
ated with a single face of a B-Rep representing a solid object. A Mesh-Face
can represent both the boundary of a solid object and just a part of it, that
we call submesh.

The proposed scheme includes both the trivial cases, where the solid is de-
scribed by only one Mesh-Face, and the more general cases, where the Mesh-
Face, delimited by a closed polyline, represents one face of the EB-Rep. An
example of Mesh-Face is shown in Fig.2.1 with its boundary polyline colored
in red. The Mesh-Face is handled exactly as a standard face in a B-Rep
data structure. Therefore the loop of the face is defined by the polygonal
boundary of the Mesh-Face.
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2.3 Extended B-Rep

In many situations a solid can be more intuitively described by meshes for
some parts of it and by parametric or exact surfaces for other parts. In these
cases, we introduce a suitable representation, named Extended B-Rep (EB-
Rep), that aims at closing the gap between parametric and discrete geometry

in the representation of solid objects.

Definition 2.1 (Extended B-Rep). An Extended B-Rep is a representation
scheme

B. = (G, T)

where the geometry is described by G, = (V, E, F.) and the set of the faces
F, admits also Mesh-Faces.

(a) (b)

Figure 2.2: Three examples of Extended B-Rep: (a) femur composed by a
Mesh-Face with a NURBS sphere, (b) Horse represented by Mesh-Faces, (c)
Mold model obtained by a point cloud triangulation composed by a Mesh-
Face and analytical surfaces

This new structure has to maintain the same properties, in particular the
same topology T', and to provide the same tools of the standard B-Rep, while
holding the new potential for Mesh-Face primitives.

Three examples are shown in Fig.2.2. Fig.2.2(a) shows an example of EB-Rep

composed of two faces: a NURBS spherical face and a Mesh-Face representing
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a part of a femur. Fig.2.2(b) shows a particular EB-Rep model composed of
multiple Mesh-Faces bounded by polylines. Fig.2.2(c) illustrates an example
of a mold where the body is described by planar, analytic and NURBS sur-
faces, while the cavity is a Mesh-Face representing the object to be molded.

A Mesh-face represents the triangulation of the point cloud of the object.

Mesh-Faces and EB-Reps are the basis of our innovative Extended Solid
Modeling System, where meshes and NURBS surfaces coexist.
In order to realize this new system it is necessary to handle the interaction
between classic B-Rep entities and meshes. Most of the tools are directly
inherited from the standard solid modeling systems that use analytic and
NURBS entities. Also polylines are handled in classic B-Rep systems. In-
stead, the notion of continuity between Mesh-Face and NURBS entities has
to be investigated, because it is necessary to define a new concept of con-
tinuity between smooth and discrete entities. Concerning the tools for the
EB-Rep modeling system the Boolean Operations need particular care to be
managed, considering in particular the surface-to-surface intersection prob-
lem. In the next sections we investigate and introduce possible solutions for

these two problems.

2.4 Continuity for Extended B-Rep

For Extended B-Rep models it is impossible to create an exact smooth
join between a Mesh-Face and a NURBS surface. Meshes are piecewise linear
approximations, under a given tolerance, of analytic surfaces, thus it is only
possible to give some less restrictive conditions in order to obtain a join that
is smooth under a given tolerance.

We present an alternative definition of continuity between discrete and con-
tinuous entities: the Approximated Geometric (AG) continuity, similarly

introduced in [44].
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Definition 2.2 (AG° continuity). Given a surface s(u,v) with a boundary
curve c(t) and a mesh M with a boundary polyline p, we say that s and M
join with AG® continuity along the boundaries ¢ and p, according to a given

tolerance tol, if and only if:

du(p,c) = max(dp(p,c),on(c,p)) < tol (2.1)
where
ou(A,B) = max Ibrélél d(a,b) (2.2)

du(A, B) is called the bivariate Hausdorff distance between curves, while
61(A, B) is the univariate Hausdorff distance between curves and d(a,b) is

the Euclidean distance.

This definition implies that the distance between all points of p from ¢
and the distance of all points of ¢ from p has to be < tol. Fig.2.3(a) shows
an example of the described condition: in this case the p is shorter than ¢,
s0 0y (p, c) < tol but dy(c, p) > tol, since d(co, p) > tol.

Moreover, for every point p; € p there is a point ¢* € ¢ such that d(p;, ¢*) =
51 (pi, ) and for every point ¢; € c there is a point p* € p such that d(c;, p*) =
dr(ci, p). We observe that if ¢* is the nearest point to p; on ¢, this does not
imply that p; is the nearest point to ¢* on p. Fig.2.3(b) shows an example of
the previous statement in which ¢* is the nearest point to p,, but py is not

the nearest point to c*.

Definition 2.3 (AG! continuity). Given a surface s(u,v) with a boundary
curve c(t) and a mesh M bounded by a polyline p. Assume M and s join with
AG° continuity along ¢ and p respectively. We say that s and M join with
AGY continuity along c and p respectively, according to a given tolerance
toly, if and only if:

dta(p,c) = max(dga(p, ¢), dnalc,p)) < toly (2.3)
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Figure 2.3: Curve ¢ and polyline p for the definition of AG® Continuity

where

po with b* € B s.t. b = argminyepd(a,b)
(2.4)

Sua(A, B) = maxiial, - iip
acA

where 7i4|, is the normal vector to A in a, dy.(A, B) is the bivariate
angular Hausdorff distance and 67, (A, B) is the univariate angular Hausdorff
distance.
This definition implies that the angle between the normal vectors at two
closest points respectively on ¢ and on p is smaller than a given tolerance.
The univariate angular Hausdorff distance is computed considering for every
point @ € A, the nearest point b € B. Considering the previous remark
and Fig.2.3(b), we observe that the couple of points (a,b) used to compute

drala, B) is not necessarily the couple of points used to compute 6, (b, A).

Definition 2.4 (G'-AF continuity). Let a surface s(u,v) with a boundary
curve c(t) and a mesh M bounded by a polyline p with vertices py, ..., p, be
given. Let M and s be joined C° along p and c. M and s join with G*'-
Almost Everywhere Continuity along c and p if and only if they are G*
connected along all points of ¢ except at pq,...,p,, where ¢ is possibly not
differentiable.
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Figure 2.4: An example of G'-Almost-Everywhere Continuity

An example of G1-AFE Continuity is illustrated in Fig.2.4 where a NURBS
surface, on the left, and a mesh on the right, join with G-~AFE continuity.
The surfaces have C° continuity along the boundary curve and G* continuity

everywhere except at the vertices of the mesh on the boundary polyline.

These definitions allow us to introduce less restrictive connection conditions
for a join between a Mesh-Face and a NURBS. In particular the definitions
of AGY and AG! coincide with the main idea of numerical approximation.
All the main numerical algorithms for solid modeling are based on a given
tolerance, this because the use of finite numbers introduces errors due to the
impossibility to exactly represent a real number on a machine with finite
memory. A lot of applications, involving 3D scanners for example, determine
the quality of an object considering the given tolerance of the 3D scanner
equipment. Therefore, concepts such as AG? and AG' continuity are com-
monly used in all numerical algorithms and in all those applications that use
these algorithms.

Instead, the last definition is the most intuitive one, also if the result surface
is not differentiable on its boundary. In this case the join is smooth except
for a finite number of points and in these points the two tangent vectors have
a distance angle that is related with the dihedral angle between all adiacent

polygons.
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2.5 Methods

In this section our goal is to provide a high-level overview of typical
methods involved in solid modeling which can be generalized for our Ex-
tended Solid Modeling System. In particular we focus on Boolean Opera-
tions, Cutting and Join Operation. These tools play a fundamental role in
solid modeling. Boolean operations allow to create complex objects from
simple primitives. Cutting operation allows to model a solid object by us-
ing surfaces. Join operation is a fundamental tool that allows to build a new

model from two or more different models by matching them along boundaries.

2.5.1 Boolean Operation with Extended B-Rep

Boolean Operations (BO) are the basic tools used to model a solid ob-
ject. The combination of Union, Intersection and Difference operations on
primitive objects allow us to create complex objects.

In solid modeling, the set-theoretic Boolean Operations are substituted by
the Regularized Boolean Operations (RBO), in which the result is the closure
of the BO between the interior of the two solids. This is done in order to
eliminate the remaining lower-dimensional structures. Given two solids A

and B and a BO op, its corresponding RBO, denoted by opx is defined as
Aopx B=cl(1A op1B) (2.5)

where cl(A) denotes the closure of A. An example is illustrated in Fig.2.5 in
which it is possible to see the difference between a classic BO and a RBO.
Fig.2.5(a) shows the two solids A and B, Fig.2.5(b) shows the BO between
A and B that produces a non-manifold object with an isolated surface.
Fig.2.5(c-d) show respectively the interior of the RBO operation between
A and B and the result of RBO, that prevents the situation illustrated in
Fig.2.5(b) creating in every case a manifold solid. In a solid modeling system,

a RBO between two solids A and B is performed determining the boundary
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Figure 2.5: Difference between Boolean Operation and Regularized Boolean
Operation

b of the result solid C'. In particular we define:

(AN B) = (hANB)U (bBN1A) (2.6)
P(AUB) = (bANcB)U (BB NcA) (2.7)
b(A\ B) = (bANeB)U (bBN1A) (2.8)

where 1A is the interior of A and cA is the external part of A. The boundary
b of the resulting solid is computed applying a surface-surface intersection
algorithm that determines all the intersections between surfaces of A and B.
Then an algorithm is applied to create the B-Rep structure of the object.

In an Extended Solid Modeling System in which Mesh-Faces are managed it

is necessary to distinguish between three possible cases:
. NURBS - NURBS intersection
. Mesh - Mesh intersection

. NURBS - Mesh intersection

The first case is the classic surface-surface intersection between two NURBS
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surfaces. This problem has been investigated since 1987 and two of the most
famous solutions are proposed in [10] and [31]. Given two surfaces in R?, the
intersection can be either a set of isolated points, a set of curves, a set of
overlapping surfaces or any combination of these cases. In [10] a marching
method is applied to compute the intersection, while in [31] a loop detection,
that recursively subdivides two surfaces until no surface patches intersect in
a closed loop, is proposed. Open source libraries as OpenCascade [5| and
CGAL [3] and other CAD systems use a similar algorithm to compute RBO
between solid objects represented with B-Reps.

The Mesh-Mesh intersection is a case managed in the solid systems that use
only meshes. As an example, Carve library [1] realizes boolean operations
between meshes. The structure of the surface-surface intersection algorithm
is analogous to the one described for NURBS surfaces. Once the intersec-
tions are computed, a classification is performed in order to create the result
mesh. We refer to [23] where the boolean operations between meshes in the
system DesignBase are described in details. Once the intersection lines and
points are computed, the included parts are removed and the two solids are
joined creating the final mesh.

The NURBS-Mesh intersection is the novel case that has to be considered
in order to perform RBO in an Extended Solid Modeling System. In this
case intersection between two entities is computed considering the AG° con-
tinuity. In particular, the intersection curves between a Mesh-Face M and
a NURBS surface s are respectively a polyline p that bounds the Mesh-Face
and a NURBS curve ¢ that bounds the NURBS surface. The result surfaces
are a trimmed NURBS and trimmed Mesh-Face. An example is illustrated
in Fig.2.6 where a NURBS and a triangular mesh are intersected. The in-
tersection polyline is marked by points in red, where ¢ and p intersect each
other. The polyline is the boundary polyline of the Mesh-Face illustrated.
As we can notice, the polyline is C° with the Mesh-Face, while is AG® with
the NURBS surface. The precision of the intersection polyline respects the

tolerance used in the surface-surface intersection algorithm and depends also
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Figure 2.6: Intersection between a NURBS and a mesh

on the tolerance associated with the AG? continuity.

2.5.2 Cutting Operation

Cutting is an operation between a solid A and a surface s which results
in two distinct solid components, A; and Ay, that share a common face s.
According to the normal of the surface, A; or A, is chosen. This tool plays
a fundamental role in “Hybrid Solid Modeling Systems”, which are systems
that allow to create a solid object, with a freeform surface as boundary, mod-
eling it with surfaces.
Actually all the most important industrial CAD system such as Inventor,
SolidWorks and Catia use cutting operation in order to efficiently model a
solid object. An example of multiple cutting operation is shown in Fig.2.7.
Fig.2.7(a) shows the solid and the surfaces for cutting, Fig.2.7(b) illustrates
how the solid is bounded by the surfaces, Fig.2.7(c) shows the final solid
obtained. The solid is originally delimited by NURBS surfaces and is cut by
NURBS surfaces.
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Figure 2.7: Example of Cutting operations with a classic B-Rep model and
NURBS surfaces

In an Extended Solid Modeling System this tool allows to cut EB-Reps with
both NURBS surfaces and Mesh-Faces. Result of this tool is an EB-Rep. In
this case, similarly to the Boolean Operations introduced before, the surface-
surface intersection between Mesh-Faces and NURBS surfaces has to be man-

aged.

2.5.3 Join Operation

The Join Operation attaches two entities changing one or both entities.
The possibility of modifying the entities makes this tool differ from Boolean
Operation, in which both entities are fixed. We distinguish between 1-1
Face-Join operation, 1-n Face-Join and n-m Face-Join of open solids. 1-1
Face-Join matches two surfaces along an edge, creating a connected surface.
1-n Face-Join closes the hole of an open solid with a surface. n-m Face-Join
of open solids matches two open solids closing a hole on both entities.
When a Join operation is performed it is necessary to specify a level of reg-
ularity along the boundary edges which determines the smoothness of the
resulting surface or solid. It is possible to have C° or G™ regularity, with
n=1,2,.... In our work we consider only the C° and the G cases.

In case of C° continuity, the join produces an object C that has points around

the joining area in which is not differentiable, or rather that there exist points
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that have two distinct tangent planes. Surfaces that are G! joined are differ-
entiable with derivatives until first order along the joining boundary.

In an Extended Solid Modeling System these tools allow to join NURBS
surfaces and Mesh-Faces. Results are EB-Rep solids. In this case it is impor-
tant to manage the smooth joining between NURBS surfaces and Mesh-Faces
according to the definitions of AG' and G'-AFE continuity.

2.6 A new I/0O format to manage Extended B-
Rep

The Extended Solid Modeling System introduced in this chapter manages
both Mesh and NURBS entities and represents solids obtained by modeling
these entities using an Extended B-Rep scheme. In order to import or to
export this new kind of solids in which NURBS and meshes coexist it is
necessary to realize an extension of the standard exchange format “ST EP”
(STandard for the Exchange of Product model data) [6]. That new format,
called “Extended-STEP” allows to save an entire mesh in a Mesh-Face struc-
ture. In particular there are two new entities called “MESH FACE” and
“POLYGON _FACE” respectively stored in this format:

#l=MESH FACE(nFaces,#nfl,#nf2,...,#nfn)
#nfl=POLYGON FACE(nVertices, #nvl, #nv2, ..., #nuvn)
#nvl = CARTESIAN _POINT( ', (z,y, 2))

Introducing these new entities in the STEP format it is possible to represent

Mesh-Faces and manage import and export of EB-Reps.



Chapter 3

EB-Rep form of a Valence
Semi-Regular Mesh

An Extended B-Rep paradigm can be realized as a new data structure
in an Extended Solid Modeling System. However, a most typical scenario
could require the integration of the Mesh-Face primitive into an existing
Solid Modeling System based on a classical B-Rep paradigm. In this case
the data structure can not be modified and thus finding an alternative way
to represent a mesh in a standard B-Rep data structure becomes necessary.
In our work we realized such a system, based on B-Rep data structure, which
manages both meshes and NURBS surfaces.

According to the literature, the most intuitive way to represent a mesh surface
is to associate a plane with every face. This approach is implemented in all
the common CAD systems in order to represent a solid model given a mesh
representing its boundary. Alternatively, if the mesh is a quad mesh, we can
associate a NURBS bilinear surface with every face. Both these methods
allow us to realize the reverse process, returning to the original mesh after
a given B-Rep processing, without losing any piece of information, but they
require a number of B-Rep faces equal to the number of faces in the original
mesh. Considering that, usually, the meshes are defined by milions of facets,

both these methods would lead to an inefficient implementation of an EB-

53



54

3. EB-Rep form of a Valence Semi-Regular Mesh

Rep scheme in a standard Solid Modeling System.

In this chapter we propose a new approach, suitable for valence semi-regular
quad meshes. In the second part of the chapter we extend this method
to triangular valence semi-regular meshes. The representation of general
unstructured meshes as EB-Rep is discussed in chapter 4.

All the methods proposed in this work have been implemented in our system,
based on OpenCascade library, in order to verify the validity of our proposals
and provide examples. Images illustrated in this chapter and in the following
are realized with our OpenCascade system. Note that a EB-Rep face is
graphically represented with a 3 x 3 grid of curves (3 x 3gc) as shown in
Fig.3.1. The boundary curves of the grid correspond exactly to the boundary
curves of the geometry associated with the topological face, while the inside

curves are added for visualization purposes.

(a) (b)

Figure 3.1: a) NURBS surface b) NURBS surface represented with our Open-
Cascade system

3.1 Quadrilateral mesh decomposition in rect-

angular patches

Our approach describes a quad mesh, representing the boundary of a
solid object, by an EB-Rep with faces described by a low number of NURBS

surfaces, without losing any information.
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In the simplest case in which the mesh is regular, then it can be represented by
a unique NURBS bilinear surface whose control points are the mesh vertices.
In the more general case, first we need to subdivide the mesh into submeshes
with rectangular topology and then to associate a bilinear NURBS surface
with each submesh.

Assuming to have a valence semi-regular mesh, we realized two methods for

the mesh decomposition step:

. Quad Mesh Patching(QMP): Create rectangular patches without T
junctions. More in detail, the result B-Rep structure has only faces
delimited by four edges and four vertices. Every vertex is a corner

vertex for every face that contains it.

. Quad Mesh T-Patching(QMTP): Create rectangular patches with T

junctions.

Given a quadrilateral mesh M = (V| E, F) with or without boundary, the
methods create an EB-Rep B, = (G, T), T = (Vg, Er, Fr) where:

VrCV
.ET:{éeET‘é:Utev eleE, [j€{177|E|}}

CFr={feFr|f=Uf,, fi,€F ILe{l,.. . |F|}}

The EB-Rep topological structure 7" has vertices that are vertices of the mesh
M and edges that are obtained gluing edges in E of the original mesh M.
With any new face in F7r is associated a submesh with rectangular topology
formed by adjacent faces in F. B, is the B-Rep description of the original
mesh M. In order to better describe the methods we recall the following

definitions:

. EV C V the set of extraordinary vertices of V. These are all internal
vertices with valence different from 4 and all boundary vertices with

valence different from 3.
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. BV C V the set of boundary vertices of V that are not in EV.
. NV =V \ (EV UBYV) the set of inner, non-extraordinary vertices.
Both the QMP and QMTP methods can be subdivided in the following steps:
Step 1: Select the set of extraordinary vertices E'V .
Step 2: Create the set of edges Fr.

Step 3: Create the set of faces Fr from vertices and edges of the new
mesh 7.

Step 1. Collect all the extraordinary vertices ev; € EV of the original
mesh M. If M has all extraordinary vertices (NV = {(}}) the method is
stopped because there is no possibility to decrease the number of faces, that
is |Fr| = |F|. A NURBS patch is associated with every face of Fr. If no
extraordinary vertex is found (EVUBV = {0}), the mesh is represented with
a single rectangular bilinear NURBS patch. In this case the vertex chosen as

origin of the patch is freely chosen.

Step 2. From every edge e € E starting from every extraordinary vertex
ev; € EV a polyline p is traced composed of edges in E. p is called straight

edge and it is built as follows:

. p starts from ev; € EV and ends when either another extraordinary
vertex ev; € EV, or a boundary vertex bv € BV or ¢; € Ep are
encountered. In the last two cases, bv and vy € V such that vy =pne;

are added to Vp and marked as ’visited’.

. pis built following a straight line determined from v; € V. In particular,
when an ordinary vertex v; € V' is visited, the list of edges incident this
vertex is read and the algorithm proceeds in the straight direction.
That is the new edge of the straight line and is determined as the
second edge of the list after the edge considered.
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Figure 3.2: Result of the Step 2 for the decomposition of the “A” quad-mesh.

. If p arrives at a visited inner vertex v, € V it means that 3 ¢; such

that pNé; # (. In this situation we have two possibilities:

1 for QMTP a new T-vertex v; = v, is created and v; is added to
Vr, €; is split, a new edge ¢€; delimited by v, and ev; is created and

the algorithm goes to the next step.

2 for QMP a vy is added to Vyp, ¢; is split, a new edge ¢€; delimited
by v, and ewv; is created and a new edge €, that has vy as starting

vertex is created.

. If p arrives at a visited vertex on the boundary, we have two possibili-

ties:

1 If this vertex is contained in a boundary edge of the new mesh T,

the edge is split.

2 1If this vertex does not belong to any edge of the new mesh 7', the

vertex is added to the list of the extraordinary vertices.

An example is illustrated in Fig.3.2 where the “A” quad-mesh is decomposed
by applying the QMP method. The extraordinary vertices in EV are colored

in red and the straight line traced from the extraordinary vertices are colored
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in blue. The initial “A” mesh M = (512,1024,512) is represented with an
EB-Rep whose topological structure is 7' = (24, 48, 24).

Step 3. The NURBS faces are created in the last step of both the methods.
Starting from V; and FEp this step first determines the vertices for each
rectangular face f € Fy and then builds the new NURBS surface considering

these vertices as control points. In particular:

. Determine the boundary edges for each face in Fr. For every new vertex
v € Vr all the new incident edges € € Er are considered and saved using
a counterclockwise order. Every couple of consecutive edges (é;,¢;)
represent a corner of new face f (with the exception of T-junctions),
thus determinating the first three corner vertices of f. Let us denote
by é; = (z,z;) and é; = (x,z;). Then a searching algorithm is used to
compare the other couples of consecutive edges incident to x; and z; to
find the common vertex, that is the fourth corner vertex. Finally the

face boundary is built.

. NURBS patching. The bilinear NURBS surface is defined by building
the grid of control points from the vertices of M following the ’straight
edges’ and the mesh structure. The control points of the NURBS patch

are determined considering the regular structure of the sub-meshes.

Considering the decomposition of the “A” mesh, in Fig.3.2, a new NURBS
face, overimposed in yellow, is created. The control points of the NURBS
bilinear surface are the control points of the boundary curves and the vertices

of M, marked in green.

Examples We tested the QMP and QMTP methods by implementing the
two algorithms in our OpenCascade platform. In Fig.3.3 some examples of
closed valence semi-regular quad meshes efficiently represented as an EB-Rep

with bilinear NURBS surface patching are shown.
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We also tested some open meshes, represented in Fig.3.4. The results ob-
tained are reported in Table 3.1 and Table 3.2, respectively.

Observing both sets of examples, from Tables 3.1 and 3.2 we notice that

Mesh | |F[ | (V] BV Eel | Vel | Bzl [V
QMP | QMP || QMTP | QMTP

A 512 [ 512 | 16 | 24 | 24 18 20

H Cube | 80 | 66 | 26 | 72 | 58 64 58
Human | 806 | 808 | 100 | 344 | 346 | 160 | 203
Tooth |[1132]1134] 16 | 30 | 32 28 32
Fertility | 3357 | 3351 | 48 | 2271 | 2265 | 132 191

Table 3.1: EB-Rep form of Quadrilateral Meshes (for meshes illustrated in
Fig.3.3). From left to right: Mesh Name, number of faces, vertices, Extraor-

dinary Vertices of M; number of faces in T by QMP, number of vertices in T
by QMP, number of faces in T by QMTP, number of vertices in T by QMTP

Mesh \EL VIRV [Frel | [Vl | Fr| \Vr|
QMP | QMP || QMTP | QMTP
Pawn 148 | 154 5 5 9 5 9
Rocker Arm | 161 | 172 22 75 85 44 63
Tube 240 | 263 5) 15 20 15 20

Table 3.2: EB-Rep form of Quadrilateral Meshes (for meshes illustrated in
Fig.3.4). From left to right: Mesh Name, number of faces, vertices, Extraor-
dinary Vertices of M; number of faces in T by QMP, number of vertices in T
by QMP, number of faces in T by QMTP, number of vertices in T by QMTP

the method QMTP, which admits T junctions, is obviously more efficient
than QMP in terms of number of facettes required. Moreover, the number
of faces and vertices of the EB-Rep depends on the number of extraordinary
vertices KV in the mesh M. The smaller is the number of extraordinary
vertices, the fewer is the number of NURBS patches necessary to give an
efficient representation of the mesh. The two closed meshes representing the
“A” (|F| = 512) and the tooth (|F| = 1132) have a small number of extraor-
dinary vertices (|[EV| = 16). Their EB-Rep form needs a small number of
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Figure 3.3: First Column: Initial Meshes M, Second Column: EB-Reps
obtained by QMP, Third Column: EB-Reps obtained by QMTP. Faces are
plotted with 3 x 3gc
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Figure 3.4: First Column: Initial open meshes M, Second Column: EB-Reps
obtained by QMP, Third Column: EB-Reps obtained by QMTP. Faces are
plotted with 3 x 3gc
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NURBS patches, respectively 18 and 28 by QMTP. However, if the number

of extraordinary vertices is higher the gain is lower.

3.2 Triangular to Quadrilateral mesh conver-
sion

The QMP and QMTP methods introduced require a valence semi-regular
quad mesh as input, thus if we need an efficient B-Rep description of a valence
semi-regular triangular mesh we need first to convert it into a quadrilateral
mesh without losing original information about the geometry of the mesh.
To this aim, we considered and modified the method introduced in [47], which
takes as input a triangular mesh and gives as output a quadrilateral mesh.

The algorithm consists of four different steps:
Step 1: unification of 4-valence vertices
Step 2: matching of couples of triangles
Step 3: matching analysis
Step 4: quads subdivision of remaining triangles

We modified Step 2 by introducing a new condition to match couples of
triangles in order to minimize the number of extraordinary vertices in the

resulting quad mesh.

Step 1. The first step requires to determine all 4-valence internal vertices
in the input triangular mesh. For every vertex v; in V' the 4 triangles sharing
v; are unified and subdivided into 4 quads. Fig.3.5 shows how Step 1 is
performed. Vertices of the new quads are the middle points of the boundary

edges and the vertices of the 4 triangles.
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Figure 3.5: Step 1: Transformation of 4 triangles into 4 quads

Step 2: The second step unifies the biggest number of triangles in the mesh.
For every triangle T', all the adjacent triangles T;, if not already analyzed,
are considered and the best quad, formed by 7" and 7T}, is determined by
analyzing the displacement G of the four quad corners with respect to a 90
degree angle.

In particular, for every couple of adjacent triangles T" and T}, the displacement

G, is computed by
4

G =" |(a; — 90°) (3.1)

j=1
where o are the angles of the quadrilateral obtained from 7" and T;.

T is matched with the face T; with the minimum G; value.

Fig.3.6 shows the application of Step 2. Fig.3.6(a) illustrates the set of
triangles T}, 7 = 1,2, 3 that can match with triangle T. According to the G;
values, the triangles 7" and T} are unified. The result of the match is shown
in Fig.3.6(b).

Step 3. The main goal of this step is to determine if there is a different
combination of triangles such that the number of non-matched triangles is
minimized. In order to understand better this step we can consider the
example in Fig.3.7. In Fig.3.7(a) we have two new quadruplet of quads, the

green and the yellow one, bounded by non-matched triangles, respectively
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Figure 3.6: Step 2: Transformation of 2 triangles 7" and T} into 4 quads

the blue and the red ones.

If we apply the quadrilateral subdivision of remaining triangles we obtain the
quads shown in Fig.3.7(b) and thus creating four new extraordinary vertices
of valence 3. A more efficient quadrilateral subdivision can be obtained by
matching the two quadruplets of triangles thus obtaining two sets of 8 quads

without introducing any extraordinary vertex, as illustrated in Fig.3.7(c).

Step 4. The last step considers the remaining triangles and subdivides
them into 3 quads introducing the middle point of every edge and the centroid
of the triangle, as illustrated in Fig.3.8. In this case an extraordinary vertex

of valence 3 is introduced.

The method previously described computes a quadrilateral mesh minimiz-
ing the number of triangles to be subdivided by the Step 4. This idea initially
seems to be perfect because it minimizes the number of extraordinary ver-
tices that are obtained during the decomposition. However we noticed that
it is not enough, because there is no rule on the order in which triangles to
be matched in couple are analyzed. This may produce a result in which two
triangles A and B are matched because, analyzing A, B is the best matching

for A. We improved this method by introducing two iterations in Step 2. In



3.2 Triangular to Quadrilateral mesh conversion

65

Figure 3.7: Step 3: Analysis of the remaining non-matched triangles

Figure 3.8: Step 4: Triangle subdivision into 3 quads

the first iteration, we match only couples of triangles such that G; < tol,
where G} is defined in (3.1) and tol is a small angle (for example tol = 10°).
This condition allows us to create quadrilaterals that are almost rectangles.
Then, in the second iteration, we allow all the couple matching of the re-
maining triangles. In this way we obtain a better decomposition and the

number of extraordinary vertices created by the subdivision is minimized.

After the conversion from triangular to quadrilateral mesh, we can optimize
the global structure of the mesh in order to improve the quality of the quads

in the quadrilateral mesh following for example the method described in [16].
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Figure 3.9: First Column: Triangular Meshes representing solid objects, Sec-
ond Column: Extended B-Rep obtained by QMP, Third Column: Extended
B-Rep obtained by QMTP. Faces are plotted with 3 x 3gc
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Mesh | |F[| | [V | [EV]| |Fr|[ | [Vr] | Fr| |Vr|
QMP | QMP | QMTP | QMTP
Hand 1220 | 612 133 1534 | 1536 264 306
Vase 8832 | 4416 4 65 65 10 15
Dolphin | 5360 | 2682 | 719 9480 | 9482 1453 2048

Table 3.3: EB-Rep form of Triangular Meshes (for meshes illustrated in
Fig.3.9). From left to right: Mesh Name, number of faces, vertices, Extraor-

dinary Vertices of M; number of faces in T by QMP, number of vertices in T
by QMP, number of faces in T by QMTP, number of vertices in T by QMTP

Examples We tested the proposed method by implementing it in our
OpenCascade platform. In Fig.3.9 we illustrate some examples of triangular
meshes transformed into quadrilateral meshes and then efficiently represented
by EB-Reps with bilinear NURBS surfaces using the QMP and QMTP algo-
rithms presented. The results are reported in Table 3.3.

In this case the number of extraordinary vertices |EV| is computed consid-
ering the quadrilateral mesh obtained as the result of the conversion. For
triangular meshes we notice that only the QMTP algorithm gives an effi-
cient representation of the triangular mesh with EB-Rep. The reason is that
the tri-to-quad transformation increases the number of faces and sometimes
produces an efficient representation without T junctions that has more faces
than the original mesh.

These algorithms to obtain an efficient mesh representation by EB-Rep using
NURBS surfaces solve problems connected to the representation of valence
semi-regular meshes in standard B-Rep schemes. Moreover, if we want to
compute a Boolean Operation between two Extended B-Rep solids we are
forced to analyze geometrically both solid representations in order to find
intersections between solids. In this situation, in order not to control all
the plane faces of every mesh-face we could benefit of this efficient way to
represent a mesh-face.

The general case of unstructured meshes is considered in chapter 4, where

we introduce a new method to represent an unstructured triangular mesh as
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an EB-Rep.



Chapter 4

EB-Rep form of an Unstructured
Mesh

The faces of an EB-Rep can be mesh-faces, analytical surfaces and NURBS
surfaces as desired. In our work we realized a geometric kernel, using the
OpenCascade library, that extends a classic solid modeling system based on
B-Rep in order to manage both meshes and NURBS faces.

In this chapter we face the problem to construct an EB-Rep with patching
NURBS from an unstructured mesh representing the boundary of a solid
object or part of it. This allows us to handle the mesh, described as an EB-
Rep, in both a new Extended Solid modeling system and in our extension of
a classic system. It is really important to observe that the EB-Rep allows us
to manage separately the different parts of the solid. Some parts will be con-
sidered as Mesh-Faces and left unchanged, while others will be represented
with NURBS patches and can be modified.

This problem arises for example in reverse engineering when a physical ob-
ject is acquired by a 3D scanner system and reconstructed as unstructured
mesh, subsequent CAD process that has to be performed on it will work on
the associated B-Rep model.

In the literature there are a lot of methods to reconstruct a surface starting

from an unstructured mesh or from a point cloud that is triangulated.
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Most of the reconstruction methods used in reverse engineering subdivide
the mesh into sub-meshes, then extract primitives that better fit the data
and finally detect topology and boundaries of the object. In [11] a first ap-
proach that follows this pipeline is proposed for meshes and point clouds. An
evolution of this approach is introduced in [36], where the authors propose
a process to reconstruct a B-Rep model from a 3D point cloud. The first
step consists of triangulating the point cloud. Then the authors propose to
segment the mesh by using border edge detection and compute the primi-
tive parameters for each sub-mesh with a method based on surface normal
estimation. Topology is determined as in [11]. Recently in [20], the authors
proposed a review of reverse engineering methods observing existent CAD
systems.

Other methods analyze individually the extraction of primitives and the de-
tection of topology and boundaries, often using RANSAC algorithm [30].

A recent method that realizes all the pipeline to reconstruct a B-Rep model
composed of planes, spheres, cylinders and cones from a 3D mesh whose
vertex coordinates are considered exact is introduced in [14]|. The first sem-
inal proposal for patching NURBS are [32] and [35], where Hoppe proposed
a method for Unorganized Points. This method is a surface reconstruction
method that triangulates the point cloud by means of energy minimization
producing an unstructured triangular mesh. The complexity of this method

is directly related to the arbitrary topology of the object represented.

Our method creates an EB-Rep with NURBS faces approximating an
unstructured triangular mesh with arbitrary topology. It can be applied to
obtain a valence semi-regular mesh from an unstructured one.

The method is subdivided in the following steps:

. Step 1: create a simplified quadrilateral mesh M, by approximating

the original unstructured mesh M

. Step 2: compute a parametrization for every set of points
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. Step 3: apply LSPTA algorithm adapted to approximate points in order

to create a Catmull-Clark surface approximating the original points.

. Step 4: convert the Catmull-Clark surface to NURBS patches.

In the next sections we describe in more details the required steps.

4.1 Step 1: From a Triangular Mesh to a sim-
plified quad-mesh

Given a triangular unstructured mesh M, the method described in [38] is
applied to obtain a quad dominant simplified mesh. The algorithm, called In-
stant Field-aligned Mesh, computes a mesh M, that is globally aligned with
a direction field using local orientation-field and local position-field smooth-
ing operators. The mesh is then extracted from the fields and optionally
post-processed. The number of faces of M4 is decreased significantly com-
pared to the initial number of triangle faces in M. The topology of the
surface is preserved.

Fig.4.1 shows an example of simplification of a mesh representing a section
of an Artery obtained using a 3D scanner. Fig.4.1(a) shows the original ver-
tices of the mesh, Fig.4.1(b) illustrates the triangulation obtained from the
vertices. The simplified mesh is shown in Figd.1(c) and, overimposed, the
vertices of M (Figd.1(d)).

By observing the obtained mesh we notice that the remeshing algorithm

produces a few triangular and pentagonal faces.

The simplified quad dominant mesh M, is transformed into a quadrilateral

mesh M, according to the following rules necessary to apply the step 2:
. If a face has an extraordinary vertex, it has to be stored as the first

vertex of the face.

. Quad faces obtained from a non-quadrilateral face have to be stored in

counterclockwise order starting from the first vertex.
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(c) (d)

Figure 4.1: Artery Point Cloud and Artery Triangulation

In order to satisfy these conditions, we transform every non-quadrilateral
face F;, subdividing it into quads. Generally, for a polygonal face F; with n
edges, the centroid ¢; of F; is connected to the middle points m;i, myo, ..., m;,
of every edge. Therefore n quadrilateral faces are obtained. Fig.4.2 shows
how both pentagonal and triangular faces are transformed into quadrilateral
faces.

Result is a non-conformal mesh that is used to associate a quadrilateral face
with every point. Step 3, which performs the LSPIA algorithm, will receive
as input M4 and other informations about connection between M4, M, and
the vertices of M.

In the last part of Step 1, the order of the vertices in every face is modified
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(a) (b)

Figure 4.2: Examples of subdivision of a polygonal face in quads: a) pentag-
onal face, b) triangular face

keeping orientation and ordering vertices such that the first vertex of the face
is an extraordinary vertex, if it exists.

Fig.4.3 shows an example of the transformation of the mesh M into the
quadrilateral mesh My,. As we can notice we obtain a non-conformal mesh
in which new edges, created subdividing triangular and pentagonal faces, de-
limitate a quadrilateral face.

This new non-conformal structure allows us to keep the original quad domi-

Figure 4.3: Fertility mesh with quadrilateral faces: a) M, mesh, b) a zoomed
detail

nant mesh and to know exactly which new quadrilateral faces are associated
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with an old non-quadrilateral face. This does not create any problem for the
association of points with a face, because in this case only the new quadri-

lateral faces are considered.

4.2 Step 2: Parametrization

The created coarse quadrilateral mesh M, is a non-conformal quadrilat-
eral mesh approximating M. We associate with every face f; of M, a cloud
of points P, subset of the vertices of M. This is performed associating with
every point the nearest face intersected by its normal vector.

For every face f; with internal points Py, and vertices vy, . . ., vy the parametriza-
tion associates the vertices with the corners of the planar domain [0, 1]?, such
that vertices have parametric coordinates (u,v) respectively (0,0), (0,1),
(1,1), (1,0) and internal points have coordinates (u,v) with 0 < u,v < 1.

In Fig.4.4 an example of association between points and faces is illustrated.

Figure 4.4: Points associated with a face of Artery
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Fig.4.4(a) shows the coarse mesh M, and a group of points associated with
a given face. Fig.4.4(b) illustrates a detail of the given face and all points
associated with it, with a line connecting every point with the corresponding

point on the face.

4.3 Step 3: Application of LSPIA Approximat-
ing Algorithm

In [42]| a Progressive Iterative Approximation algorithm (PTA) for curves
and Loop subdivision surfaces is introduced with the aim of constructing ef-
ficiently smooth interpolations of a set of points. Then, in [22]| the PTA pro-
posal is extended for interpolating a set of points with a Catmull-Clark sur-
face. In [39] a PTA algorithm is introduced in order to interpolate/approximate
a B-Spline surface with rectangular topology. Finally, in [25] the PTA algo-
rithm is extended to a Least Squares Approximating algorithm (LSPIA) for
NURBS surfaces.

We extended LSPTA algorithm to obtain a Catmull-Clark surface [19] ap-

proximating with good accuracy the original mesh M.

Given a mesh M, a quad dominant mesh M, extracted by M, with n, + 1

vertices and ny + 1 faces, and the associated quadrilateral coarse mesh M,

with m, + 1 vertices and m; + 1 faces. For every point @); in the set V' of
vertices of M, we have a corresponding face fj Jj=0,...,my in M, and

fil=0,...,ny in My and parametric coordinates (u;,v;) associated with

Q; on f;. Fig.4.5 shows the difference between faces of M, (on the left) and

M,

, (on the right). In particular f; is a quadrilateral face of M, obtained

subdividing a pentagonal polygon, while f; is a face of M 4. We notice that
each face fj of M, has a corresponding face f; of M,y LSPIA iteratively
constructs the approximating surface as a Catmull-Clark Surface. Let be
given an ordered point set {Q;}:" to be fitted and {(u;,v;)}™ the associ-
ated parameters, with (u;,v;) € Q; j =0,...,my; Q; is the parametric

domain [0,1]? associated with f; in M,. At the starting iteration we define
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Figure 4.5: a) Faces of M4 b) Faces of M,

{PP},v, that are the vertices of M,y as the control points of the blending

Catmull-Clark surface P° i.e.,
PY(u,v) = Z B, (u,v) Py (u,v) € Q Q=UQ;
h=0

where By (u,v) are the blending basis functions of the Catmull-Clark surface
in a space of dimension n, + 1. Then the displacement with respect to the

original points is computed as follows
5? :Qi—PO(ui,vi) i:O,...,mU. (41)

The adjusting vector is defined as

A =Y Bu(ui,v;)6) h=0,...,n, (4.2)

1=0

where p is a constant satisfying the condition

2
O<pu<— (4.3)
Ao
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with )y the largest eigenvalue of matrix AT A, where A, is the collocation

matrix defined as:

BQ(UQ,UQ) Bl(UQ,UQ) e Bn(UO,’Uo)
A Bo(Ub U1) B1(U1, U1) cee Bn(uh Ul)
Bo(tm, Um)  Bi(tm,vm) . Bp(Um, i)

The new control points at the next iteration are
Pl=P)+A) h=0,...,n, (4.4)

and the new fitting surface is defined as
Pl (u,v) = ZBh(u,v)P,} (u,v) € Q (4.5)
h=0

In general, at the k-th iteration, starting from the surface P*(u,v), we com-

pute
§F = Q; — P*(uy, v;) 1=0,...,my,
AF :,uZBh(ui,vi)éf h=0,...,n,,
i=0

P =P+ AF h=0,...,n,.

Then the surface at the (k 4 1)-th iteration

Uz
P* (u,v) = ZBh(u,v)P/fH (u,v) € Q
h=0
In our algorithm, at the first step, it is necessary to apply Stam’s algorithm
[48] in order to evaluate the basis functions in the matrix A.
Stam’s algorithm requires one or two steps of refinement of the mesh M,
that can be either local or global. In our implementation we used a local

refinement that significantly improves performances and saves memory space.
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This allows us to define Catmull-Clark surfaces on 2; associated with fj in
M, as follows:
K
S(u, 0)jwwyee, = 3 Prbi(u,v) (4.6)
i=1
where K = 2N + 8 and N is the valence of the EV of f;. If N = 4, P?
are exactly the vertices P of My, otherwise they are a first or a second
local Catmull-Clark refinement of the vertices PY. Fig.4.6 shows a local first
refinement of M4 to obtain the vertices 15,? Vertices in blue are the 2N + 8
vertices necessary to evaluate the surface in ); corresponding to the face

in blue. In this case N = 5, thus we have 18 vertices. We compute every

Figure 4.6: First refinement of a face with an extraordinary vertex

basis function By (u,v) by using (4.6). In particular for each h = 0,...,n,

we define

q; =

0ifj#h
1ifj=nh
and

K
By (u,v) = chibi(u,v) (u,v) € Q
i=1

where ¢; are a first or a second local Catmull-Clark refinement of the scalar
coefficients g¢;.

To avoid the computation of the eigenvalues of AT A, in [25] an alternative
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method to determine the weight 4 is proposed. A is a (m + 1) x (n + 1)
matrix. Let ATA = {aij}og" where a;; = ZBZ-(uk, vg) B (ug, v ).
k=0

Together with Z Bi(ug, vx) = 1 we have
=0

M-

n
E :az}j
J=0

ZBi(Ukavk)Bj(ukavk)

i=0 L k=0 1
m n m

= Z B (ug, vg) Z Bj(ug,vp) | = > Bilug,vp) =t ¢;
k=0 =0 | -

It means that ¢; is the sum of the i-th row elements of AT A.

2
Therefore, \g < max; ¢; :=C,i=0,...,n and ol < o so we define
0

Mza-

Theorem 4.3.1. If A is non-singular, the introduced LSPIA method is con-

vergent.

Proof. As result of the iterative method introduced above, a sequence

Pk(u,v) k=0,1,...is generated. To show its convergence, let
PY={Py, P, ... P 3T

and
Q: {Q07P17"'7Pm7}T
According to (4.4) we have
PFYY = PE 4> Bilug,v;)(Q5 — PH(uy,v;))
=0

= P+ Biuj,v5) | Q5 — > Bi(ug, v) P
j=0 =0
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then, we get,
P* = PF AT (Q — APF) (4.7)

where A is the collocation matrix.
Letting I be the n + 1 identity matrix and D = I — uAT A, by (4.7) we have

P (ATA)TATQ = (I — pAT A)[PF — (AT A) 71 ATQ)
= (I = pATAP[PF — (ATA)TIATQ)

— Dk+1[P0 _ (ATA)flATQ]

Supposing {\;(D)}?_, are the eigenvalues of D sorted in non-decreasing order,
we get \;(D) = 1 — pu); where {\;}7, are the eigenvalues of AT A sorted in
non-decreasing order.

We supposed that A is non-singular and AT A is positive definite so, noting
0<p< )\%, we have 0 < p\; < 2 and —1 < {N(D)} < 1(: = 0,1,...,n).
It leads to 0 < p(D) < 1, where p(D) is the spectral radius of D, and the

convergence condition is satisfied. O

If A is singular, AT A is not positive definite and we do not have a theo-
retical proof of the convergence. However it should be pointed out that we
have made lots of experiments with this method and all of them converged
also in the case of singular collocation matrix.

Given a tolerance tol and defined dist(k) = || P*(u;, v;) — Qi]|2, the iterative

procedure is stopped when one of the following conditions is met:
|dist(k + 1) — dist(k)| < tol

dist(k + 1) < tol.

In our implementation we used tol = 1 x 10~*. A Catmull-Clark surface is

obtained as result.
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4.4 Step 4: Patching NURBS

As known in literature, Catmull-Clark surfaces have problems of conti-
nuity and curvature around the E'V. In order to solve this problem, many
patching techniques have been proposed. A first approach for the correction
of the surface consists in blending the surface in order to obtain the desired
regularity. A second approach replaces the Catmull-Clark surface around
EV with a patch that preserves continuity and improves curvature. Other
different solutions for this problem are proposed and cited in [9].

In our work we use a Gregory patch to replace Catmull-Clark patch [9]. In
particular, a Catmull-Clark patch with an extraordinary point is replaced
by a bicubic Gregory patch that interpolates the boundary of the patch it-
self and joins with G continuity with the adjacent patches. This process is
explained in details in [9] and involves the computation of first derivatives

of the vertices. The bicubic patch is created by modifying a classic bicubic

Figure 4.7: Control Points in a Bicubic Gregory patch

Bézier patch. In particular, as shown in Fig.4.7, the four constant internal
control points are modified by inserting four control points that are a convex
combination of 2 assigned points obtained by imposing G'-continuity con-
ditions at the boundaries. In this way the bicubic patch is defined by 20
control points, while the classic bicubic Bézier patch is defined by 16 control

pOiIltS. The internal control pOthS are PLLZ', P1727Z', P2717Z', P2,2,i with ¢ = O, 1.
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All adjacent patches around the E'V are created in a similar way in order to
have a G connection.

In particular a bicubic Gregory patch has the following formula:

S(u,v) = ZZBf(u)Bje(v)a,j(u,v) (4.8)

where:

n!
Bj'(u) = m

ui(l o u)nfi
is the usual basis of the Bernstein polynomials and the internal control points
are given by

~uPriotoPig

. P =
b U+ v
P uPoo+ (1 —v)Pi3.
SIS
u+(1—0)
P — (1—w)Poro+vPon
. Iy =
(1—u)+wv
P o (1 — U)P27270 + (1 — U)P27371
. I =

’ (1—u)+(1—wv)

Obtained result is a patching in which all regular boundaries have a C? con-
nection, while patches that share an extraordinary vertex are G joined.
Finally, a Gregory patch can be represented as a rational NURBS patch [49].
The patch (4.8) can be described using a rational Bézier patch of degree 7 in
u and v.

To sum up, the steps described above allow us to obtain a NURBS represen-
tation of a Catmull-Clark surface approximating an unstructured polygonal

mesh.

4.5 Examples

We report the results of our algorithm when applied to two differents un-

structured meshes “Artery” and “Fertility”. The first mesh represent an open
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section of an artery, while the second one a closed mesh of a statue.

Fig.4.8 shows the algorithm applied to the mesh that represents a section of
an artery. Fig.4.8(a) shows the set of vertices V and the open quad-dominant
mesh M, created by Instant Field-aligned algorithm.

Fig.4.8(b) shows a zoom of Fig.4.8(a) in which it is possible to observe vec-
tors connecting vertices and the corresponding points on the associated face.
Fig.4.8(c) shows the set of vertices V' and the Catmull-Clark result surface
grid, that allows us to see all the extraordinary vertices of the approximating
surface. Finally, Fig.4.8(d) shows the NURBS patches in which the Catmull-
Clark surface is subdivided in order to obtain an approximating EB-Rep with
NURBS surfaces.

In order to obtain this result, LSPIA algorithm has been applied on a mesh
M, with 127 faces, setting the value p defined in (4.3), fgpery = 9.8 X 1072,
Result has been obtained in 24 iterations, with a residual tolerance of 1 x10~*
and approximates the original mesh with a residual r = 1.462 x 10~

Fig.4.9 shows the algorithm applied to the mesh that represents the Fer-
tility statue. Fig.4.9(a) shows the set of vertices V' and the open quad-
dominant mesh M, created by Instant Field-aligned. Fig.4.9(b) shows a
zoom of Fig.4.9(a) in which it is possible to observe vectors connecting ver-
tices and the corresponding points on the associated face.

Fig.4.9(c) shows the vertices V' and the Catmull-Clark resulting patching,
that allows us to see all the extraordinary vertices of the approximating sur-
face. In Fig.4.9(d) the NURBS patches in which the Catmull-Clark surface
is subdivided in order to obtain an approximating B-Rep with NURBS sur-
faces are illustrated. In order to obtain this result, LSPTA algorithm has
been applied on a mesh M, with 1090 faces, setting the value ;1 defined in
4.3, Hartery = 2.14 x 1072

Result has been obtained in 53 iterations, with a residual tolerance of 1 x 1074

and approximates the original mesh with a residual r = 2.68 x 107
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(c) (d)

Figure 4.8: Artery: a) Vertices and Coarse Quadrilateral Mesh, b) Zoom that
shows vectors connecting Vertices and corresponding points on associated
faces, ¢) Vertices and Catmull-Clark result surface grid, d) NURBS patches
partially visualized in order to show the shape and the position
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4.6 A proposal of a Surface Reconstruction Method

Surface reconstruction methods create a 3D model from a dense cloud of
points representing a solid object. In the literature there are a lot of meth-
ods to reconstruct a surface starting from a point cloud. Several approaches
are based on combinatorial structures, such as Delaunay triangulations [40)],
alpha shapes [13], or Voronoi diagrams [8]. These schemes create a triangle
mesh that interpolates all or most of the points of the original point cloud.
Other methods directly reconstruct an approximating surface, typically rep-
resented in implicit form. These methods can be subdivided in global and
local methods. Global methods commonly define the implicit function as the
sum of radial basis functions (RBF) [18]. Local methods consider subsets of
nearby points at a time.

According to a recent state of the art report [12|, almost all surface recon-
struction methods produce as output an implicit representation or a tri-
angular mesh. One of the few methods that creates NURBS patching is
the Hoppe’s method for Unorganized Points, introduced in [32] and in [35].
Another interesting method that fits a triangular mesh with G' smoothly
stitching bi-quintic Bézier patches is introduced in [41].

Our method can be considered as a variant of Hoppe’s surface reconstruction
method which works on an unstructured mesh obtained by a pre-processing
of the original point cloud. In Hoppe’s work a triangular mesh is obtained
from a point cloud applying a method that defines an implicit signed dis-
tance function associating an oriented plane with each of the points. Then
the mesh is obtained applying a contouring algorithm. Finally an optimiza-
tion algorithm is applied in order to reduce the number of vertices and to fit
well the point cloud. Details of this method are described in [34] and in [33].
Another possibility is to apply the Cocone algorithm that reconstructs a
mesh from sample points. This method was introduced in [7]. The input
consists of the coordinates of the point cloud and output is a piecewise lin-
ear approximation of the surface which is made of Delaunay triangles with

vertices at the input points only. Other versions of the algorithm have been
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realized in order to manage noisy point clouds or large sets of points.
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Figure 4.9: Fertility Statue: a) Vertices and Coarse Quadrilateral Mesh, b)
Zoom that shows vectors connecting Vertices and corresponding points on
associated faces, c¢) Vertices and Catmull-Clark result surface grid, d) NURBS
patches partially visualized in order to show the shape and the position
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Chapter 5

Solid Modeling tools for Extended
B-rep

We introduced Extended B-Rep schemes and described some methods
to provide an efficient representation of both valence semi-regular and un-
structured meshes as EB-Reps. We want now to extend the most important
tools for solid modeling to manipulate EB-Rep solids. Although examples
illustrated in this chapter are realized using our geometric kernel, that is an
extension of a classic system based on B-Rep data structure, they allow us
to understand how these tools could be applied to EB-Rep solids in a new
Extended Solid Modeling System.

In the first part of this chapter, we describe the principal tools of solid mod-
eling: Boolean Operations and Cutting Operation. In the second part we
analyze the Join between EB-Rep models, providing some basic notions and

examples.

Generally the construction of solid objects requires a long sequence of
simple editing operations which are the fundamental tools for Solid Modeling.
The following tools have been considered and realized in our Extended Solid

Modeling System:

89
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. Affine transformations: rotation, scaling and translation
. Boolean Operations

. Cutting Operation

. Join

Affine transformations, such as rotation, scaling and translation, are imme-
diatly applied to the EB-Rep schemes because the topological structure of
the EB-Rep solid is unchanged and the geometry entities associated follow
the same rules used for standard B-Rep solids [43]. The other operations are

considered in the rest of this chapter.

5.1 Boolean Operations between EB-Reps

In chapter 2 we overviewed Boolean Operations, that are the most impor-
tant tools used to model a solid object. The combination of Union, Intersec-
tion and Difference operations on simple shapes allow us to create complex
objects.

In order to compute Boolean Operations between EB-Reps the same rules
used for standard Boolean Operations between B-Reps can be applied. How-
ever, as explained in chapter 2, the introduction of the Mesh-Face primitive
implies new difficulties both in performing the intersection between a Mesh-
Face and a NURBS or analytical face and in intersecting Mesh-Faces.

We realized Boolean Operations between EB-Rep solids in the Extended
Solid Modeling System. We report a few examples of Boolean Operations
between a solid represented by NURBS surfaces and a solid described by
Mesh-Faces. Fig.5.1(a-b) show a B-Rep cylinder built with NURBS surfaces
and a Mesh-Face representing a tooth. Fig.5.1(c) shows the EB-Rep result
of the Boolean Union between the cylinder and the tooth which is composed
of NURBS surfaces and Mesh-Faces. Observing the result, we notice that

both NURBS surfaces and Mesh-Faces are trimmed. The intersection curves
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are trimmed NURBS curves, if they delimit two NURBS surfaces; otherwise,
they are polylines that have AG® continuity with both the NURBS surface
and the Mesh-Face.

In this example the new EB-Rep scheme B, = (G.,T) has the geomet-
ric set G, made of points, curves, surfaces and meshes. Here curves are
trimmed NURBS and polylines involving points on both NURBS surfaces
and Mesh-Faces, surfaces are trimmed NURBS, while the set of meshes con-

tains trimmed Mesh-Faces. A further example is illustrated in Fig.5.2, where

(a) (b) ()

Figure 5.1: Example of Boolean operation: a) B-Rep (NURBS) cylinder, b)
EB-Rep (Mesh-Face) representing a tooth. ¢) Union result. Faces are plotted
with 3 x 3gc

a NURBS cylinder, a Mesh-Face representing a tooth and a NURBS cube
are used to create a prosthesis for a dental implant. Fig.5.2(a) shows the
three objects. Fig.5.2(b) shows the result of the Boolean Difference between
the tooth and the cube. In this case the new EB-Rep obtained is bounded
by a trimmed Mesh-Face and a trimmed NURBS representing a plane. The
intersection curve is a closed polyline that has AG® continuity with both the
NURBS and the Mesh-Face surfaces.

Fig.5.2(c) shows the result of the difference between EB-Rep obtained in
Fig.5.2(b) and a NURBS cylinder. The cylindric face in the result is a
trimmed NURBS, while the intersection curve is a closed NURBS curve.
Boundary curves are two trimmed NURBS and a polyline involving points

on the NURBS plane surface and the Mesh-Face. The set of surfaces is made
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of three trimmed NURBS, while the set of meshes contains a trimmed Mesh-
Face.

The last and more general example is illustrated in Fig.5.3, where the lower

(a) (b)

Figure 5.2: Example of Boolean operation: a) a B-Rep (NURBS) cylinder,
an EB-Rep (Mesh-Face) tooth and a NURBS cube, b) difference between
tooth and cube. c) difference between result of operation in b) and cylinder.
Faces are plotted with 3 x 3gc

part of a shoe is created using boolean operations between EB-Reps with
both Mesh-Faces and NURBS surfaces. In particular Fig.5.3(a-b-c¢) show
respectively a B-Rep solid, bounded by NURBS surfaces, representing the
“Air Jordan logo”, a Mesh-Face representing the lower part of a sole and a
B-Rep solid made of NURBS surfaces that represents the insole of the shoe.
Fig.5.3(d-e) show the result of Boolean Union between the sole and the in-
sole. In this case the new EB-Rep obtained is bounded by both a trimmed
Mesh-Face and a trimmed NURBS. The intersection curve is a closed polyline
that has AGY continuity with both the NURBS and the Mesh-Face surfaces.
Fig.5.3(f-g) show the result of Boolean Difference between the EB-Rep ob-
tained at the previous step and the “Air Jordan logo”. As we can notice
observing the detail in Fig.5.3(g), in the new EB-Rep the Mesh-Face and the
NURBS solid are trimmed and the intersection polyline has AG® continuity
with both the NURBS and the Mesh-Face surfaces.
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Figure 5.3: Example of Boolean operation: a) a B-Rep (NURBS) solid rep-
resenting the “Air Jordan logo”, b) an EB-Rep (Mesh-Face) representing a
sole, ¢) a NURBS insole, d-e) union between insole and sole, f) difference
between result of operation in d) and “Air Jordan logo”, g) Detail of boolean
operation in f).

5.2 Cutting Operation

In chapter 2 we introduced Cutting operation as a fundamental tool of
“Hybrid Solid Modeling Systems”. In particular cutting involves a solid A
that is cut by a surface s. Result of the operation are two distinct solid
components that share the common face s. According to the outward normal
of the surface, one of the two solids is chosen. We extended cutting operation
to allow also EB-Rep solids and Mesh-Faces as input. An EB-Rep solid can
be cut both by a NURBS face and a Mesh-Face. Result is always an EB-Rep
solid. Fig.5.4 shows an example of Cutting with Extended B-Rep models. In
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() (d) (€)

Figure 5.4: Example of Cutting operations with Extended B-Rep. First
row: a)NURBS surface, b) Mesh-Face representing a tooth. Second row: a)
surface and Mesh-Face b) inferior solid obtained by cutting c) superior solid
obtained by cutting. Faces are plotted with 3 x 3gc

particular, Fig.5.4(a-b) show the cutting surface (a) and the solid to be cut
(b). The solid is an EB-Rep description of a mesh representing a tooth, while
the surface is a NURBS surface. We placed the two objects as displayed
in Fig.5.4(c) such that the surface subdivide the solid into two separated
components. The resulting solids shown in Fig.5.4(d) and Fig.5.4(e) are two
Extended B-Rep with NURBS faces and mesh-Faces. As we can notice, both
the EB-Rep schemes B, = (G.,T) associated with the two resulting solids
contain a trimmed Mesh-Face, a trimmed NURBS surface and a polyline

having AGY continuity with both the surfaces as boundary curve.
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In the next sections we analyze in detail the Face-Join operation. In par-
ticular we introduce the 1-1 Face-Join operation, the 1-n Face-Join operation

and finally the n-m Face-Join.

5.3 1-1 Face-Join Operation

The 1-1 Face-Join operation is the basic tool to define the 1-n Face-Join
and the n-m Face-Join.
Joining two surfaces produces a connected surface where the two identified
edges are adapted and connected. Often, when the Face-Join is applied, one
surface is fixed and one is modified.
Let’s define the Face-Join operation in a classic environment between B-Rep

faces.

Definition 5.1 (1-1 Face-Join operation). Given two couples (A,ea) and
(B,ep) where A and B are two surfaces delimited by closed boundaries W4
and Wpg, respectively, and ey and eg are two edges of W and Wg. A
1-1 Face-Join operation between A and B along es and ep (called shared

edge) creates a connected surface C' where one of the following three cases is
verified:

. Case I: A is fizred and B is modified such that eg is attached to e
. Case II: B is fixed and A is modified such that e, is attached to ep

. Case III: a new edge ec is defined, both B and A are modified in order

to attach both eg and e to ec.

Fig.5.5(a) illustrates an example of 1-1 Face-Join where the first surface,
on the right side, is fixed and the other is modified. Otherwise, if both
surfaces are modified, a common edge is chosen and then both surfaces are
adapted to the chosen edge, thus we can consider the third case as a partic-
ular case of the first two cases.

When a 1-1 Face-Join operation is performed it is necessary to specify a
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A

Figure 5.5: Example of join operation: a) surfaces, b) C° 1-1 Face-Join, c)
G' 1-1 Face-Join. Faces are plotted with 3 x 3gc

level of regularity along the shared edge, that is C° or G™ continuity, with
n =1,2,.... The regularity of the joining determines the smoothness of the
resulting surface. In our work we consider only C° and G' continuity joins.
In case of C° continuity, the join gives as result a surface C' with points along
the shared edge that have two distinct tangent planes. Fig.5.5(b) illustrates
an example of two NURBS surfaces joined with C° regularity. As we can
notice, points on the shared edge have two distinct tangent planes, so the
resulting surface is not differentiable everywhere.

Surfaces that are G* joined will have tangent vectors with the same direction
but with different lengths along the shared edge. Fig.5.5(c) illustrates an ex-
ample of two NURBS surfaces joined with G regularity. As we can notice,

the tangent plane is well-defined for all points of the shared edge.

5.4 1-1 Face-Join for EB-Reps

In order to realize the Face-Join between EB-Reps it is necessary to define
the join between a NURBS surface s and a surface described by a Mesh-Face
M. The three cases introduced in the previous section are still valid and are

formulated in the following form:

. Case I: M is fixed, s is modified,
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. Case II: s is fixed, M is modified,
. Case III: both s and M can be modified.

Similarly to the classic case, Face-Join between EB-Rep can be performed as
a sharp joint or a smooth one. A sharp joint modifies a surface, the one that
is not fixed, so that the faces join with C° continuity, adapting the free face
to the fixed one.

Instead, a smooth join between EB-Reps requires that the resulting surface
is AG' or G'-AFE along the shared edge.

In the next subsections we analyze all the cases introduced distinguishing

between sharp and smooth join.

5.4.1 1-1 Face-Join CV

Let’s analyze the simplest case: joining a NURBS surface and a Mesh-
Face with C° continuity. Face-Join C? is realized joining two edges respec-
tively on the two surfaces and modifying one or both the surfaces.

To introduce our methods, we assume to have a Mesh-Face M = (V, E, F)
and to select a polyline p, defined by m edges of E, delimited by two different
vertices (vg,v1 € V') on the boundary of M. Moreover we assume to have a
NURBS surface s with a NURBS boundary curve ¢ of degree g, defined by b
control points and delimited by two control points vy e 0.

Generally p and ¢ do not have the same number of vertices and control points.
Our methods connect the first /last vertices (vg,v; € V') of the Mesh-Face with
the first/last points of the NURBS curve (v, 01). It is possible to generalize

the methods to consider the join along only a piece of p or c.

Case I: Mesh-Face fixed. Given M and s, the NURBS s and its boundary
curve ¢ are adapted to join exactly M along p. In particular we apply the
“Adapt NURBS to Mesh” (ANTM) algorithm that consists in the following

steps:
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. Multiple knot insertions are applied in order to subdivide c in a piece-

wise curve with m linear pieces.

. The control points of ¢ are moved in order to match polyline p. In
particular control points that are exactly on ¢ are matched with the
correspondent vertices of p, while the control points that are not on ¢ are
moved onto the correspondent segment delimited by two consecutive

vertices of p. Thus ¢ is completely matched with p.

L ST
SN T e T
c ~ | R

(a) (b) ()

Figure 5.6: ANTM algorithm: a) curve ¢ and polyline p, b) multiple knot
insertions applied to ¢, ¢) control points of ¢ are attached to points on p.

The steps of the algorithm are illustrated in Fig.5.6. In Fig.5.6(a) the polyline
p and the NURBS curve ¢, with its control points, are illustrated. Fig.5.6(b)
shows the result of the first step of ANTM algorithm. Fig.5.6(c) shows
how the new control points are matched with the correspondent vertices and
points on p. In particular the control points on ¢ (red) are attached to the
vertices of p (blue), while the control points that are not on ¢ (green) are
attached to points on the segments of p (yellow) according to the second
step of the ANTM algorithm. An example of 1-1 Face-Join with the Mesh-
Face fixed is illustrated in Fig.5.7 where the NURBS boundary is adapted
to the Mesh-Face vertices. As we can notice, the Mesh-Face on the left is
unchanged. On the contrary the control point grid associated to s has been

modified and the first row has been adapted to the vertices of p.
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(a) (b)

Figure 5.7: Example of Join C°, Case I: a) Mesh-Face (top) and NURBS
surface (bottom), b) result of C° join. Faces are plotted with 3 x 3gc

Case II: NURBS fixed. Given M and s as above, in order to join the
Mesh-Face and the NURBS surface a blending surface s,; is created. In
particular our method creates a blending NURBS surface such that:

. one boundary coincides with c,
. the opposite boundary matches the polyline p of M,

. the degree is the degree of ¢ in one direction and 1 in the other direction.

sy connects all the points vy, ..., v, on the Mesh-Face to the correspondent
U1, ..., 0, control points on the NURBS surface.

Finally a tessellation algorithm is applied to the blending surface in order to
create an extension of the mesh M. This tessellation is performed in order
to perfectly match p and to match ¢ with AG? continuity. An example is
illustrated in Fig.5.8. As we can notice, the blending NURBS surface, repre-
sented in yellow, is added in order to connect the two surfaces thus forming a

watertight C° connection. s); has a structure compatible with both s and M.

Remark 1. The proposed C° join methods produce good results in case the

Mesh-Face is a low or medium resolution Mesh-Face. However, in case M is a



100 5. Solid Modeling tools for Extended B-rep

Figure 5.8: Example of 1-1 Face-Join C° Case II: a) NURBS surface (bottom)
and Mesh-Face (top), b) result of 1-1 Face-Join C. Faces are plotted with
3 X 3gc

high resolution Mesh-Face the C° join methods could be extremely expensive
in terms of knot insertions to modify s.

A possible solution is to join s with a low resolution approximation of p.

A 1-1 Face-Join of M with s, considering p,, as the new boundary of M,
produces a result that is not CY or watertight. The subset of m vertices can be
chosen in order to approximate the mesh with AG continuity according to a
given tolerance. This kind of joining is really interesting for some engineering

applications.

5.4.2 1-1 Face-Join G' Almost Everywhere (G'-AF)

1-1 Face-Join G'-AFE joins a NURBS surface s and a Mesh-Face M with
G'-AFE continuity defined in chapter 2. We propose a method to solve Case
I where the NURBS s is modified in order to join with G'-AE continuity the
fixed Mesh-Face M.

Case I: Mesh-Face fixed. Given s and M as illustrated in Fig.5.9(a), and
a curve ¢ and a polyline p, respectively on s and M, along which the surfaces

are joined, the Face-Join G'-AFE method follows these steps:
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Figure 5.9: Example of join G'-AFE. a) NURBS surface (left) and Mesh-Face
(right), b) NURBS structure is adapted to Mesh-Face adding control points,
¢) Result of join G'-AFE.

. ANTM algorithm is applied to the control points of s as shown in
Fig.5.9(b),

. internal control points of s are modified according to G' connection

conditions.

In Fig.5.9(c) the result of join is illustrated. Moreover we notice that NURBS
points p1,...,p, are only connected with the vertices of the Mesh-Face but
they are not G' connected because they have two distinct tangent planes

associated. Vectors in blue show the distinct tangent planes associated with

points py, ..., Pn.
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5.4.3 1-1 Face-Join AG!

1-1 Face-Join AG!' joins a NURBS surface s and a Mesh-Face M with

AG? continuity. Also in this case we distinguish between Case I and Case II.

Case I: Mesh-Face fixed. In this case the proposed methods create a strip
surface s* that approximates with AG! continuity the Mesh-Face. Then s*
is joined G! with s. In particular, given p, a boundary polyline of M, and c,

a boundary curve of s, the Face-Join AG' methods follow these steps:

. the vertices necessary to create the strip surface starting from the

boundary of M are determined.
. a strip surface s* that approximates the boundary of M is created.

. s* and s are joined with G' continuity using the standard methods for
G! NURBS join.

s* is characterized by:
. u degree of s* is the degree of c,
. v degree is free,
. §* in u direction is compatible with both boundaries ¢ and p.

In a 1-1 Face-Join it is often necessary to join only a part of the boundary
of the Mesh-Face, thus the strip surface is created considering only vertices
near to the interested boundaries. If instead the join involves the entire closed
boundary of the Mesh-Face, the strip surface is created as a periodic surface.
The accuracy of the 1-1 Face-Join AG! methods depends on how s* is created.

We propose two different methods to create the s* structure:
1) A Least Square Strip Surface

2) An AG' Approximating Strip Surface
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1) Least Square Strip Surface The first and most intuitive method to
create s* approximating the mesh boundary is to select m sets Vi,...,V,, of
adjacent vertices of M, with m > 1 and construct m least square approxi-
mating NURBS curves ¢y, ..., ¢p.

The most critical step to be performed is the selection of the m sets of points.

In order to explain how to create these sets we need the following definition.

Definition 5.2. Given a mesh M with boundary W and boundary vertices
V1,...,Un, a vertexr v is said to be at distance d from the boundary if the

shortest path between v and a verter on W passes throught d edges.

Vertices on the boundary of the mesh are the first set of points V;. Then,
the second set V5 is created considering and ordering all vertices with distance
1 from the boundary.

All sets of vertices V;, i = 3,...,m are created similarly as V5.

When the sets of vertices are created, the least square approximating NURBS
curves are computed. Degree g, and knots vector K of the curves are fixed
when the first curve ¢; is created considering the set of boundary points. All
other curves ¢;, ¢ > 1 are created with the same structure, approximating
the associated set of vertices V.

The number of control points that determines the number of elements in K
is chosen in order to have an AG' join between s* and M. The parametric

points for the Least Square method are computed using the following formula:

7'1:0

T, = Ti—1 + dist; Vi=1...n
where dist; = ||v; — v;_1]|2. The parametrization vector has elements
ti = Ti/Tn Vi=1...n.

We construct the matrix A, whose elements are the B-Spline basis functions

of degree g evaluated at the ¢;, and the vector V = (V,,V,,V,) of points to
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be approximated. Then the three systems of normal equations
AT Az = ATV

are efficiently solved using the Cholesky factorization for any V,,,V,,V. vector.
Once all the Least Square curves have been created, s* is created as the sweep
NURBS surface that interpolate the created curves. s* satisfies the following

properties:
. degree g in u direction
. knot vector K in u direction
. uniform partition of [0, 1] in v direction as knot vector

. the control points grid is obtained by the control points of curves

C1,...,Cn coherently ordered.

An example of strip surface created considering 2 rings around the boundary
of a Mesh-Face is illustrated in Fig.5.10. The Mesh-Face with the boundary
in red and the strip NURBS surface obtained applying the .S method are
illustrated in Fig.5.10(a) and Fig.5.10(b), respectively. Fig.5.10(c) shows how
the strip fits the Mesh-Face.

2) AG' approximating Strip Surface An alternative method to create
a strip surface approximating the mesh boundary is based on the definitions
of AG® and AG! continuity. In this case s* is created in order to have the
same tangent planes of M according to the tolerance of the AG' continuity.
In particular, the curve on the boundary of M is created using the Least
Square approximating method introduced before.

Fig.5.11 illustrates an example of AG! approximating strip surface. Fig.5.11(a)
and Fig.5.11(b) show respectively the open mesh with the boundary in red
and the blending NURBS surface obtained by applying the method. Fig.5.11(c)

shows how the blending surface fits the open mesh. Here the blending surface
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(d)

Figure 5.10: Least Square Strip NURBS surface approximating the boundary
of the A Mesh-Face. a) Mesh-Face with boundary, b) Least Square Strip,
c) strip fitting Mesh-Face, d) NURBS surface joined G' with the strip, e)
example of AG! Face-Join between a NURBS surface and a Mesh-Face. Faces
are plotted with 3 x 3gc

depends on tolerances chosen for AG' and AG? continuity. A lower tolerance

set of points produces the best blending surface fitting.

Once s* is created, a G' join with s is performed. Two examples are
illustrated in Fig.5.10(d-e) and Fig.5.11(d-e) respectively. In both cases the
NURBS surface s is joined with AG! continuity with M performing a G* join
with the strip surface s*. In particular Fig.5.10(d) and Fig.5.11(d) show the
result of G' join between s and s*, while Fig.5.10(e) and Fig.5.11(e) show
how the modified NURBS surface s fits M.
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() (d)

Figure 5.11: AG! Strip NURBS surface approximating the hole of the A
mesh face a) Mesh-Face with boundary, b) Least Square Strip Surface, c)
Strip Surface fitting Mesh-Face, d) NURBS surface joined G' with the strip,
e) example of AG' Face-Join between a NURBS surface and a Mesh-Face.
Faces are plotted with 3 x 3gc

Case II: NURBS fixed. Given M and s as above, in order to join M and
s we create a blending NURBS surface sy, such that:

one boundary coincides with ¢,

the opposite boundary coincides with p,

it is G! joined with s,

it is AG*' joined with M.

Finally a tessellation algorithm is applied to the blending surface in order to

create an extension of the mesh M. This tessellation is performed in order
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(a) (b)

Figure 5.12: Example of 1-1 Face-Join G' Case II: a) Mesh-Face and NURBS
surface, b) result of 1-1 Face-Join G!. Faces are plotted with 3 x 3gc

to perfectly match p and to match ¢ with AG' continuity. The example
illustrated in Fig.5.12 shows how the blending surface is created and then
tessellated. We notice that the NURBS blending surface joins AG! with the
Mesh-Face M and G! the NURBS s.

5.5 1-n Face-Join between EB-Rep

The 1-n Face-Join operation closes a hole of an open EB-Rep solid with
a face. We denote with F' the face and suppose it has a close outer boundary
W. Instead, the open solid C'is supposed to have a bounded hole H which
can be shared by more than one face of C'. Following the classification given

for Face-Join, we have three cases:
Case I: C'is fixed, F'is modified
Case II: F'is fixed, C' is modified
Case III: C' and F' can be both modified

In this section we suppose that the entity to be modified is represented by
NURBS surfaces. In particular, in Case I we suppose that F'is a NURBS
surface and C'is an EB-Rep with Mesh-Faces around the hole. In Case IT we
suppose that F' is a Mesh-Face and C' is an EB-Rep with NURBS surfaces
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around the hole.

5.5.1 1-n Face-Join C°

Our method joins with C° continuity a single face F' and an open solid
C with a hole H. In case F' is modified, every edge is adapted to the corre-
spondent edge on H. On the contrary, if C' is modified, every surface with
an edge or a vertex on H is modified and adapted to the correspondent edge.
The method requires the selection of two sets of vertices VIW = (vy1, .. ., Uyn)
and VH = (vp1,...,0p,) with the same number of elements. If the selection
of vertices does not create the same number of edges, couples of edges are
connected or split until the same number of edges on the face boundary W
and on the hole boundary H is reached. Connection or splitting process ends

when the following conditions are satisfied:
. H and W have the same number of edges

. every edge in H and its correspondent edge in W are delimited by

correspondent vertices on V' C and V H respectively.

In the next subsections we suppose that H and C respect both conditions.
The match between the sets VW and VH completes the 1-n Face-Join C°

operation.

Case I: Join by modifying /. The method modifies the boundary control
points of the NURBS surface F', adapting them to the points of H. In

particular, we can subdivide our method in the following steps:

. The structure of F' is made compatible with the structure of every edge
on H. In particular, for every edge ey; € H it is necessary to have the
same number of curve segments of the correspondent edge on W, the
boundary of F. Knot insertion operations are applied to make this

compatibility.
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Figure 5.13: Example of 1-n Face-Join Case 1. a) NURBS surface above the
open EB-Rep, b) Topology of the open EB-Rep ¢) Result of 1-n Face-Join.
Faces of the EB-Rep are plotted with 3 x 3gc

. The boundary control points of F' are modified to match exactly every
edge of H.

This method is an extension of the 1-1 Face-Join C° method. In particular the
main idea of 1-1 Face-Join C? is repeated for every couple of correspondent
edges. Fig.5.13 shows an example of 1-n Face-Join C°. A NURBS surface
is joined to an open EB-Rep with Mesh-Faces representing a tooth. The
hole on the mesh is closed with a watertight C° join. Fig.5.13(a) shows the
NURBS surface positioned above the open EB-Rep. At the beginning, the
boundary W of the surface does not have the same number of vertices of the
hole H. Only 4 vertices on both boundaries are chosen and edges of H are
attached in order to obtain the same number of edges of W. Then joining is
performed attaching the NURBS curves to the polylines on H. Fig.5.13(c)

shows the obtained result.

Case II: Join by modifying C. The method modifies all the faces on H
adapting them to the edges of W. More in details, we determine the faces of
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the EB-Rep C' which share either edges on H, or only a simple vertex on H.
Then for every face, the associated grid of control points is modified. The

method can be described with the following steps:
. For every face with an edge on H to be modified, the 1-1 Face-Join C°
is applied.

. For every face with a single vertex to be modified, the interested control
point in the NURBS grid and the edges delimited by the vertex are
changed.

(a) (b)

Figure 5.14: Example of 1-n Face-Join, Case II: a) Mesh-Face above the open
EB-Rep, b) Result of 1-n Face-Join. Faces are plotted with 3 x 3gc

An example is illustrated in Fig.5.14. A Mesh-Face is joined with an open
EB-Rep model described by NURBS faces. Fig.5.14(a) shows the Mesh-Face
placed above the open solid.

Fig.5.14(b) shows the obtained result. We notice that all surfaces around the
hole are adapted to fit the surface. In this case the boundary W of the surface
does not have the same number of vertices of the hole H. In particular W
has 4 edges, while H has 16 edges. Only 4 vertices on both boundaries are
chosen and the edges of H are attached in order to obtain the same number
of edges of W.
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5.5.2 1-n Face-Join AG!

The 1-n Face-Join AG! closes the hole of an open solid with a surface
creating a smooth join. The methods have the same structure of the 1-1
Face-Join AG'. We distinguish between Case I and Case II.

Case I: Join by modifying F 1In this case F' is a NURBS surface, while
C' is an open solid with a hole H and n Mesh-Faces around H.

A set of strip surfaces {s}", approximating the Mesh-Faces around H is
created. Then a G' join between {s;}” and F' is performed.

The method can be structured in the following steps:

. For every Mesh-Face around H an approximating strip NURBS surface

sf is created.

. Adjacent strip surfaces s} and s} are joined in order to have G' conti-

nuity.

. The set {sf}? is joined G' with F following the existent methods for
NURBS joining.

Creation of every sf ¢ =1,...,n has been described in the previous sections
for the 1-1 Face-Join AG!.
Once all s7 7 =1,...,n are created, join between NURBS entities is per-

formed following algorithms described in [24].
In this case it is necessary to consider also the algorithms for G! connection
of three and four NURBS surfaces (]24]).

Case II: Join by modifying C In this case F' is a Mesh-Face, while C'is
an open solid with a hole H and n NURBS faces around H.

A strip surface s* approximating the Mesh-Face is created. Then a G! join
between s* and the NURBS faces around H is performed.

The method can be structured in the following steps:

. A strip NURBS surface s* approximating F' is created.
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. 5% is joined G* with all the NURBS faces around H following the exis-
tent methods for NURBS joining.

The procedure for creating every s* has been described in the previous sec-
tions for the 1-1 Face-Join AG!.

Once s* is created, join between NURBS entities is performed following al-
gorithms described in [24].

Also in this case it is necessary to consider also the algorithms for G* con-
nection of three and four NURBS surfaces ([24]).

5.6 n-m Face-Join between EB-Rep solids

The n-m Face-Join between EB-Rep solids is the most general case of
join. In order to describe n-m Face-Join between EB-Reps, we introduce the

following definition.

Definition 5.3 (n-m Face-Join between solids). Given two solids A and B
with two holes Hy and Hp delimited by two closed boundary W and Wg
respectively on A and B. A n-m Face-Join between solids between A and B
along W, and Wg creates a connected solid C such that A and B are joined

closing the holes with C° or G' continuity.

Fig.5.15 illustrates an example of different results of Join operation. A
teapot body and its spout, illustrated in Fig.5.15(a), are joined in two dif-
ferent ways. Fig.5.15(b) shows the result of a sharp join, while Fig.5.15(c)
shows the result of a smooth join.

Join differs from Union boolean operation because both solid shapes can be
modified during the operation to adapt each other in the desired way. The
boundary of the modified solid is connected with the boundary of the fixed
solid, closing both the holes.

In this section we analyze the n-m Face-Join between two Extended B-Reps
E1 and E2. We propose to modify the entity described by NURBS surfaces,
leaving unchanged the one described by Mesh-Faces. We suppose that the
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(a) (b) ()

Figure 5.15: Example of join operation: a) body of the teapot and spout, b)
union between objects, ¢) join between objects

open solid E1 has a hole delimited by a wire W1, while £E2 is delimited by
W2 and W1 and W2 do not necessarily have the same number of edges.
Obviously an EB-Rep can have different kinds of faces around a hole. We
focus only on the one involving Mesh-Faces and NURBS because all the most
used analytic surfaces can be represented exactly by a NURBS surface. A
n-m Face-Join between a NURBS and an analytic surface is reduced to a join
between two NURBS, which is a case solved in classic B-Rep systems. More-
over n-m Face-Join between a Mesh-Face and an analytic surface is reduced
to a join between a NURBS and a Mesh-Face.

5.6.1 n-m Face-Join C"

The n-m Face-Join method attaches with C° continuity £1 and E2 and
is based on the 1-n Face-Join C algorithm. More in detail, the method joins
couples of correspondent surfaces closing both the holes of E'1 and E2. Tt
can be described with the following steps:

. Split/Join edges of W2 in order to have the same number of edges of
the wire W1.

. For every face with a vertex on W1, the 1-1 Face-Join C° method is

applied.



114

5. Solid Modeling tools for Extended B-rep

(a) (b)

Figure 5.16: Example of n-m Face-Join C°: a) an EB-Rep “Tube” with Mesh-
Faces and an EB-Rep “Tube” with NURBS faces. b) Result of n-m Face-Join
C°. Faces are plotted with 3 x 3gc

Fig.5.16 shows an example of C° join between open solids described by EB-
Reps made of Mesh-Faces and NURBS surfaces respectively. In Fig.5.16(a)
the two solids are positioned such that there is an empty space between
them. Fig.5.16(b) shows the result of EB-Rep join C°. We can notice how the
boundary faces of the NURBS tube are extended in order to close the nearest
hole of the mesh tube. Correspondent vertices selected at the beginning are

attached and edges are modified in order to have a watertight joining.

5.6.2 n-m Face-Join AG' of Open Solids

The n-m Face-Join AG' method attaches with AG! continuity two solids
E1 and E2 and is based on the 1-n Face-Join AG! algorithms. Also in this
case it is necessary to consider also the algorithms for G* connection of three
and four NURBS surfaces. In general G' connection of n > 3 NURBS sur-

faces sharing a common vertex has to be considered ([24]).



Chapter 6

Finite Cell Method applied to
Extended B-Rep solids

Computer-aided engineering (CAE) is the usage of computer software to
aid in engineering analysis tasks. CAE tools are used, for example, to an-
alyze the robustness and performance of components and assemblies. The
term encompasses simulation, validation, and optimization of products and
manufacturing tools.

The most famous computational tool for performing engineering analysis is
the Finite Element Analysis (FEA), that divides a complex problem into
small elements. In applying FEA, the complex problem is usually a physi-
cal system with a mathematical equation associated, while the divided small
elements of the complex problem represent different volumes in the physical
system.

Various methods has been introduced and improved. Actually problems
arise, for example, when considering heterogeneous materials or more gener-
ally when discretizing structures which have a very complex geometry which
might even change during the computation. To overcome these problems the
Finite Cell Method (FCM) [26] was introduced. It can be considered as a
combination of a fictitious domain method with high-order finite elements.

In this chapter we illustrate in detail an example of FCM applied to an EB-

115



116 6. Finite Cell Method applied to Extended B-Rep solids

Rep representing a perforated tooth before being incapsulated. Using Finite
Cell Method we simulate the application of a force on a specific point of the
tooth and analyze the effects of this force on the object.

In the first part of the chapter we introduce the Finite Cell Method describing
its features. Then we explain how the solid virtual object has been created.
In the last part we illustrate results and discuss the use of extended solids

for physical analysis.

6.1 Finite Cell Method

Finite element analysis (FEA) with standard methods requires the dis-
cretization of the physical domain into a finite element mesh, whose bound-
aries respect the boundaries of the starting geometry. This constraint is still
a severe bottleneck in the simulation pipeline, in particular, when highly
complex geometries need to be dealt with. All the new methods introduced
in the last decade have the main goal to alleviate or eliminate the discretiza-
tion challenge for complex geometries. The most well-known concept is most
probably Isogeometric Analysis, introduced by Hughes and co-workers in
2005 [37] in the context of CAD. The main idea of Isogeometric Analysis is
to use the same higher-order smooth spline basis functions for the represen-
tation of geometry in CAD and the approximation of solutions fields in finite
element analysis.

In cases where no CAD model is created beforehand, Isogeometric Analysis
cannot, be applied, and a more general approach is required. FCM is intro-
duced by Parvizian, Duster and Rank in 2007 (|26] and [27]) as a solution for
these cases. The main idea of this type of method consists of the extension
of the physical domain of interest beyond its potentially complex boundaries
into a larger embedding domain of simple geometry. An example is given in
Fig.6.1 where a potato domain is extended with a fictitious domain creating
a simple area that can be approximated with a regular mesh. The fictitious

area is penalized by a coefficient « that is near to 0. Doing so, a simple
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Figure 6.1: Fictious domain theory

structured grid is used for the discretization. This grid eliminates the time
consuming and errors during the generation of boundary conforming meshes.
The fictitious domain concept is then combined with higher-order basis func-
tions for the approximation of solution fields, the representation of the ge-
ometry at adaptive quadrature points, and weak imposition of unfitted es-
sential boundary conditions. In particular an adaptive quadrature is used
in order to increase accuracy of numerical integration obtained by Gauss
quadrature. Fig.6.2 illustrates the generation of the sub-cell structure in two
dimensions following the general procedure of recursive bisection used for
quadtree. Starting from the original finite cell of level k = 0, each sub-cell of
level k =i is first checked whether it is cut by a geometric boundary. If true,
it is replaced by four equally spaced cells of level £ =i + 1, each of which is
equipped with (p+ 1) % (p+ 1) Gauss points. Partitioning is repeated for all
cells of current level k, until a predefined maximum depth k& = m is reached.
In 3D the sequence is analogous, with the difference that every cell is a cube
and is subdivided in 8 octants, as in the octrees structure.

The corresponding algorithms are simple, accommodate geometries of ar-
bitrary complexity, and allow for reliable automation of the discretization
process. The finite cell method maintains optimal rates of convergence with
mesh refinement and exponential rates of convergence with increasing polyno-
mial degree, and thus guarantees full accuracy at a moderate computational
effort [46]. Due to the flexibility of the quad-based geometry approximation,

the finite cell method can operate with almost any geometric model, ranging
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Figure 6.2: Adaptive quadrature of Finite Cell Method

from boundary representations in CAGD to voxel representations obtained

from medical imaging technologies.

6.2 FEA and EB-Rep for a Dental Implant ap-
plication

A dental implant, also known as an endosseous implant, is a surgical com-
ponent that interfaces with the bone of the jaw or skull to support a dental
prosthesis such as a crown, bridge, denture, facial prosthesis or to act as an
orthodontic anchor. Fig.6.3 shows an example of dental implant.

The basis for modern dental implants is a biologic process called osseointe-
gration where materials, such as titanium, form an intimate bond to bone.
As illustrated in Fig.6.4, firstly existing tooth is extracted then, after three
months, implant fixture is placed. After about 3 or 4 months the healing
abutment is placed and finally, after 2 or 3 weeks the final dental prosthetic
is added.

Success or failure of implants depends on a finite number of factors regarding
healthy conditions of the person receiving it. It is fundamental to determine

exactly the position and the number of implants. In order to do it, it is also



6.2 FEA and EB-Rep for a Dental Implant application

119

Wl =
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Figure 6.4: Detailed dental implant process

necessary to evaluate the amount of stress that will be put on the implant
and fixture during normal function.

Planning the position and number of implants is key to the long-term health
of the prosthetic since biomechanical forces created during chewing can be
significant. The position of implants is determined by the position and angle
of adjacent teeth, lab simulations or by using computed tomography with

CAD/CAM simulations and surgical guides called stents.

In our work we want to simulate the stress on a dental prosthetic used for
a dental implant.
In particular, we consider the tooth represented by the mesh illustrated in

Fig.6.5(a). Then we cut the inferior part of the tooth and created the cavity
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(a) (b)
Figure 6.5: a) Original Tooth, b) modeled prosthesis

for the abutment. The resulting model is shown in Fig.6.5(b). In this case
we observe that the analysis model is an EB-Rep model, which consists of
mesh for the upper part, analytical surface for the cavity (cylinder) and a
NURBS surface for the bottom.

Once the model is created, the stress analysis is applied. We simulate the

Figure 6.6: Force applied on the tooth

application of a constant force F' on the top of the prosthesis. Fig.6.6 shows

the force applied on the object. Fig.6.7 shows how the adaptive quadrature is
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performed on the object. In this case more than 5 refinements are applied to

the grid and a discretization is obtained. Then integration is performed and

Figure 6.7: Adaptive quadrature refinements

results are shown in Fig.6.8. We can notice how the tooth is deformed and

where there is the major stress (coloured in red). In conclusion, we applied a

P
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Figure 6.8: Tooth Boundary Conditions and applied Force

stress analysis test to an Extended B-Rep model obtaining satisfying results.
Indeed conditions required to perform Finite Cell Method are the possibility
to determine the closure of an object, separating the inside from the outside.
In this way it is possible to use the fictitious domain. An Extended B-Rep
model has a valid representation that separates the inside from the outside
of a solid object.

More in general, other analysis methods simply require properties of classic

solid object representations. Extended B-Rep models guarantee all these
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properties. Future developments will investigate the use of EB-Reps in other

interesting FEA examples.



Chapter 7

Research activity performed for

Hyperlean

During my P.h.D T collaborated with Hyperlean S.r.l, a spin-off from the
Polytechnic University of Marche. Hyperlean [4] is interested in the area of
knowledge management software systems to support the product lifecycle.
The main software created and improved is LeanCost, an optimal software
solution for product costing and cost simulation.

Our collaboration with Hyperlean consisted in the creation of geometric tools
currently implemented in LeanCost. The algorithms we created involved the
Injection Molding and the Boolean Operations between meshes. In the first
case the algorithm has been studied and implemented considering innovative
aspects of EB-Reps models. In particular all the steps of the algorithm work
on both analytic surfaces and Mesh-Faces. In the second case the algorithm
concerning Boolean Operations between meshes integrates the efficient rep-
resentation of meshes described in chapters 3 and 4. It introduces a new
approach for the representation of results of Boolean Operations between
meshes that have been efficiently represented in an Solid Modeling System
extended to manage both Mesh-Faces and analytic surfaces.

In the first part of this chapter we are going to introduce LeanCost and its

peculiarities. Then we explain in detail tools realized to improve LeanCost.
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7.1 LeanCost

LeanCost is the optimal software solution for product costing and cost
simulation developed by Hyperlean. This software has the main goal to re-
duce the time spent estimating cost of production of an object and generating
offers.

The main idea of the software is to provide different costs of product of an
object depending on processes and materials used to realize it. Software is
subdivided in two different parts: a section in which costs of processes and
raw materials are combined in order to return an economic production cost
of the object and a previous geometric section in which feature recognition is
applied in order to recognize steps necessary to produce a part starting from
a raw material. This second part is the most interesting for our work and
the one we are going to consider in detail.

Geometric section considers a 3D CAD model with some given characteristics
of the project. A detailed analysis of geometry is performed, extracting fea-
tures and main operations necessary to realize the model. Then technology

to use is determined considering features extracted.

Injection Molding

A section of LeanCost is dedicated to Injection Molding Technology, a
method of processing predominantly used for thermoplastic polymers. That
technology consists of heating thermoplastic material until it melts, then this
melted plastic is forced into a steel mold, where it cools and solidifies.
For our studies what is really important is the Injection Molding process

cycle. This cycle consists of three major stages:

. Injection Stage
. Cooling or Freezing Stage

. Ejection and Resetting Stage

In the first stage, the mold is closed and the injection unit facilitates the

flow of molten material from the heating cylinder through the nozzle into the
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mold. In the second stage molten material is cooled and the object solidifies.
In the last stage, the mold is opened, the part is ejected and the mold is then
closed again in readiness for the next cycle to begin.

According to this process, we can easily understand that the main cost of
Injection Molding is the creation of the mold. The more complicate is the
mold, the more expensive is the production of the object. The most common
types of molds used in industry are two-piece molds and multi-piece molds.
The first category has only one primary parting surface and consists of two
major pieces, core and cavity, separated along a single direction to eject the
molded part. The second category is used instead to create complex shaped
parts that can not be made by two-piece molds. In this case molds have
many parting directions.

The Parting Direction is considered as the main direction of ejection for the
mold. In our case it is the direction along which it is possible to see the
biggest area of the surface of the object.

If we want to estabilish approximatively the complexity of realization of a
3D model using Injection Molding we need to determine some fundamental

characteristics of the object and of its mold. In particular it is necessary to:

. determine if the object is moldable or not,

. estabilish which is the principal parting direction,

. find the best solution between all possible molding solutions.

The tool we realized to improve LeanCost computes these three necessary
information and allows users of LeanCost to extimate an approximation of
production cost of a given 3D model. Our algorithm has been created as-
sembling algorithms that can be applied on EB-Rep models, considering the
peculiarities of both analytic surfaces and Mesh-Faces. In the next section

we explain in detail the realized tool.
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7.2 Compute Best Molding Solution

Our aim is to describe in detail the method we created in order to obtain
those fundamental characteristics introduced in the previous section. Our
algorithm considers a solid model S and its triangulation Mg and determines
if the model is moldable or not. If the solid object is considered as moldable,
the principal parting direction is computed and all possible solutions, given
a maximum number of pieces n, are computed.

Our algorithm can be subdivided in four principal steps:

. Compute all the candidate extraction directions dy, ..., d,,.
. Compute Face Visibility and determine if the object S is moldable.
. Compute the Parting Direction d.

. Compute all solutions s, ..., s; which have at maximum n pieces.

We are going to describe all steps in detail in the next paragraphs.

Compute Candidate Extraction Direction

We analyze the solid model S, considering in particular all its faces ac-
cording to its Boundary Representation. For every face we consider the type
of the face, distinguishing between planar and cylindric faces. For every pla-
nar face we compute area and the normal vector. Instead for every cylindric
face we consider the axis of the cylinder. Then we assemble faces in groups
according to their main direction and compute the total area of every group
of faces. Mesh-Faces are analyzed considering normals of planar faces. This
procedure allows us to estabilish which are directions that are normal or axis
of the biggest areas in the solid object. These directions are the main candi-
date to be the Parting Direction of the mold.

We have these two remarks:

1. Structure of a mold implies that one piece is extracted along Parting
Direction d while the second one is extracted along —d. So, when a

direction d is considered, we automatically consider also —d.
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2. Solid models are created using CAD systems in which the object is
drawn with a corner in the origin and with main faces parallel to the
main planes. Considering the main directions z,y, z is often a good

choice to find the Parting Direction.

Once the main candidate directions are computed, we order them according
to the associated area. The direction that is normal for the biggest area is

analyzed as first candidate Parting Direction.

Compute Face Visibility and determine if the object S is moldable

Once possible extraction directions are computed, the face visibility is
analyzed for every direction d and its opposite —d, in order to understand if
the object is moldable or not.

For every face of the solid is determined:

. if the face is a cylinder with axis parallel with d. In this case the face

is considered as normal to directions d and —d.

. if the face is a planar face with normal vector d and —d. In this case

the face is considered as normal.

Then, for every face f; an algorithm is performed that determines visibility of
the mesh My, associated with f;. For Mesh-Faces we consider the mesh itself.
This algorithm creates a dictionary in which with every face f; is associated
a list of values indicating the visibility of the correspondent triangle in My,.
Visibility is computed using depth buffer.

Once a dictionary is created for both directions d and —d, for every face is
determined if it is totally visible, partially visible, or completely not visible
from d or —d. With this last step faces are grouped in these three categories.
Repeating this process for every couple of directions allows us to have precise
information on visibility of faces along candidate extraction direction.

In order to estabilish if a part is moldable or not it is enough to control if all
the faces of S are completely visible for at least one direction or its opposite.

If there are one or more faces that are not visible from any direction the
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Figure 7.1: Example of Moldable Part and its Parting Direction

object is considered non moldable. On the contrary, if every face is visibile
from at least one direction, the object is considered moldable.

An example is illustrated in Fig.7.1(a) where a solid object is represented.
This particular part is moldable and we can easily see that one needs a two-
piece mold to create the object. Fig.7.1(b) and Fig.7.1(c) show visible faces
from the parting direction and from its opposite. Faces coloured in red are
faces visible from the Parting Direction, faces coloured in orange are faces

visible from opposite Parting Direction.

Compute the Parting Direction

After having determined the moldability of a part, Parting Direction is the
direction, and its opposite, that has the biggest visible area. In order to com-
pute this couple of directions, we consider, for every candidate direction d,
the total area of faces visible from d and —d and choose the most visible area.
Fig.7.2 shows an example of determination of the Parting Direction. Fig.7.2(a)
shows the object to be molded, Fig.7.2(b-c-d) show different candidate Part-
ing Directions. From this simple example it is easy to understand that the
Parting Direction is the one shown in Fig.7.2(c) because it has the biggest
visible area, coloured in red.

Other coloured faces are respectively:
. Not visible faces in cyan

. Faces partially visible from d in yellow
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. Faces partially visible from —d in violet

Figure 7.2: Example of candidate Parting Directions: a) object, b-c-d) ex-
amples of different candidate parting directions

Compute all solutions which have at maximum n pieces

Once a Parting Direction d; is computed, all possible solutions, given a
maximum number n of pieces, are computed considering all possibilities.
Starting from d; and —d;, the second parting direction dy is chosen as the
one that minimize the remaining non visible area. All directions ds, ..., d,
are computed following the minimization rule. In the last step all solutions
are ordered considering the minimum number of pieces necessary to mold the
part.
Fig.7.3 shows an example of complete solution. Fig.7.3(a) shows the part
to mold. Fig.7.3(b-c) show the Parting Direction. Fig.7.3(d-e-f) show all
the other directions necessary to mold all faces of the object. As we can
notice existing holes require single pieces to be molded. These additive pieces

increase the complexity of the mold.
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Figure 7.3: Example of Moldable Part Solution. a) object, b-c-d-e-f) parting
directions in the solution

7.3 Boolean Operations in LeanCost

Boolean Operations are the basic instruments for Solid Modeling. Lean-
Cost needs to extimate tools necessary to obtain a solid model starting from
a raw material. These tools include boolean operations.

Inside LeanCost, for every solid model, a mesh is created in order to visualize
the object. Using existing libraries it is possible to perform boolean opera-
tions between meshes associated with solid objects.

LeanCost takes in input a solid object and operates on solid objects, while
result of a boolean operation applied to meshes is obviously a mesh. It was
necessary to give, as result, a B-Rep representation of the resulting solid ob-
ject. Due to this necessity we devised a method that recreate the wire of the
solid object result of the boolean operation between meshes associated with
two solid objects.

In the next paragraphs we are going to describe in detail characteristics of the
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boolean operations with Carve library and the algorithm created to obtain

a solid object as result.

Boolean operations between meshes

The algorithm that we created gives the possibility to rebuild the bound-
aries associated with the faces of a B-Rep model obtained as the result of a
boolean operation between two solids A and B. More in detail, given two
solids A and B, M A and M B are defined the meshes associated respectively
with A and B and e is called a boolean operation between meshes. MR is
the resulting mesh.
The goal of the algorithm is to get from MR the solid R represented by
B-Rep. In order to reach efficiently the goal it is necessary to build the mesh
M R associated with a solid S building a single mesh for each single face and
filletting vertices on the boundary of adjacent faces. In this way, each face
of the mesh M S has a referring f; face on S.
It is possible to subvide the algorithm in the following steps:

. Boolean operation is performed and information is extracted.

. Creation of new boundaries of the interested face

. Creation of a B-Rep result
These steps are detailed below.
Boolean operation is performed and information is extracted The
first part of this algorithm consists of the execution of the boolean operation

e between meshes M A and M B associated with the solids A and B. Meshes

have to be structured as follows:

. vector v of the vertices made by 3 * nv elements. These elements of v

respect the following rule:

- v[3i] = mesh — v[i] — x

- v[3i 4+ 1] = mesh — v[i] = y
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- v[3i + 2] = mesh — v[i] — =

. vector f of the faces of the mesh. Considering only triangular meshes,
the structure of f is similar to the structure of v but in this case the
indices of the three vertices that represent each face are considered.

The rules are:

- f[3i] = mesh — f[i] — v[0]
- f[3i 4+ 1] = mesh — f[i| — v[1]
- f[3i 4+ 2] = mesh — f[i| — v[3]

. list of attributes to be associate to each face of the mesh. In this case,
an internal values list is created in order to give the index related to
the face f; associated with the face in the B-Rep model for each face
of the mesh. Infact, as said before, the meshes are built discretizing
the B-Rep model associated with the solid. So, each face of the mesh

belongs to one and only one face of the B-Rep model.

Once the structure related to both meshes M A and MB is created, the
boolean operation is performed and we go on creating the structure needed
for the following steps.

First of all, the result mesh starting from the vectors given as output of the
algorithm realizing the boolean operation. Then, it is performed a method
that gives the possibility to get every intersection polylines from that boolean
operation. Being more precise, the algorithm that realize this boolean opera-
tion determines all the shared edges of the two involved meshes. These edges
are called intersection edges. For each of these edges, the indices of the faces
that intersect and the starting and ending points of the edge are kwown.
All the closed intersection polylines are build using this information. Finally,
the faces of the B-Rep model directly involved in boolean operation are de-
termined using the information converted in the attributes list.

These face are all and only faces for which the boundary is modified. In

addiction, it is determined if a point belongs to an edge of the B-Rep model
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face or if it is a point internal to it for each polyline. Then, a list is created in
which it is listed for each non internal point its referring edge in the B-Rep

model of the considered solid.

Creation of new boundaries of interested faces The main part of
the algorithm consists in the creation of new boundaries associated with the
faces involved in the boolean operation. This method is iterated on every
face belonging to the solids A and B. The algorithm considers all the loops
that delimit a face f, independently from the fact that they are internal or
external. All the edges of the involved loop are determined. These edges are
fundamental for the construction of the new loop. All the polylines p; that
lie completely or partially on the face f are considered. The subpolylines s;
lying on f are determined for each one of these. These s; are polylines with

all the vertices lying on f. s; can be divided in two types:

. open polylines starting from an edge e, and ending in an edge e; where

er an e; are not necessarily different

. closed polylines in which all the points are internal to f.

In the first case, the polyline s; will be a new edge of one of the loop of the
face. In the second case, s; will be a new loop of f. Once all the s; are
determined, the main part of the algorithm is performed: building of new

loops. The method is the following:

. the first subpolyline s; is considered and the starting and ending edges
er, and ¢; are determined, if they exist. More in detail, the point pg;yq
and py.s in which s; intersects respectively e, and e; are determined.
If e, and e; do not exist and s; is internal, a new loop is added to the
face. If e, and e; exist, it is necessary to determine the following edges
making the loop. Considering p;.s¢ an the side e; related to it, it is

possible to distinguish three different cases:

- the new edge to be built is delimited by another subpolyline s;

with starting or ending point on that side.
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- the new side to be built is delimited by a vertex native to the side

- if ey=e;, pyirst and pjast make the ends of the last side necessary

to close the loop

Each of these possibilities needs to make checks in order to determine

right sequences of the sides delimitating the edge of the face.

. During every check the following point of the loop is determined. The

algorithm goes on until the starting point is reached.

First, a rule for the orientation of edges, loops and polylines should be set, in
order to semplify a lot the process and in order to make possible to determine
always the direction of travel to follow. If this were not done, it should be
necessary to make expensive direct controls in order to choose the vertex. It

is necessary to make the following considerations to get a correct result:

. It is necessary to set correctly the last point of the external loop. In
particular, the last point of the loop is the one from which it is started
with the first considered polyline. Fig.7.4 shows an example of a new
boundary created with this algorithm. In this case, and also in all the
following examples, vertices are considered in counterclockwise order.
As we can see, the blue polyline divides the face in two parts, the
green polygon delimitates the new face. The first and last point of the
boundary is py, that is the starting point of the polyline.

. It is possible that the same edge is intersected by two or more different
polylines. In this case, it is necessary to determine properly the portion
of the edge belonging to the external loop. Fig.7.5 shows an example
of an edge intersected by two polylines. In this case, following the
counterclockwise order, we obtain the new boundary delimited by the
green line. If there was no order, we should have established which was

the order of points considering directly triangles of the result mesh.

. It is possible that a polyline starts from one vertex on the external loop

and ends on one edge belonging to an internal loop. In this case, the
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Figure 7.4: Example of new boundary
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Figure 7.5: Example of edge intersected by two polylines
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va v5 ]

Figure 7.6: Example of polyline that starts from outer loop and ends on an
inner loop

loop that was previously internal should be eliminated. Fig.7.6 shows
an example of a polyline that starts from the outer loop and ends on
the inner loop. In this case the new outer loop, drawn in green, has
some edges of both outer and inner loops. The new boundary is made

of just one outer loop.

. Once new loop is built, it is necessary to consider if and which internal

loops are still belonging to the edge of the face. Fig.7.7 shows an exam-
ple of a polyline that subdivides a face in two parts and separates the
inner loops. As we can notice, the first inner loop, after the application
of the algorithm, is outside the face and so is not any more considered
as a loop. Instead, the second and third loops are still inside the face

and are considered as inner loops.

. A face can have two or more connected components. Fig.7.8 shows an

example of a couple of polylines that subdivide a face in three connected
components. In this case the orientation of the polylines creates two
connected components that are considered as the same face with two

outer boundaries. Obviously it is possible to separate this face in two
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v_4 p_3 v 1

Figure 7.7: Example of inner loops inside (2,3) and outside (1) the new
boundary

distinct faces.

This part of the algorithm gives the possibility to get loops making boundary
of a face. This method is repeated for all the faces of the solids A and B

involved in the boolean operation.

Creation of B-Rep results The last step is the creation of new faces
starting from boundaries got in the previous step. Subsequently, new faces
are added to the solid model R resulting by boolean operation. If a subtrac-
tion operation is performed, faces of the solid B got by the algorithm, are
inverted in order to have consistent normal and a valid solid model. The
result is a valid B-Rep model that can be considered the result of a boolean

operation between solids A and B under a fixed tolerance.

In this chapter, we discussed in detail the main algorithm realized during
the cooperation with Hyperlean. These algorithms give the possibility to

increase the potentiality of an extremely useful software as LeanCost.
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Figure 7.8: Example of face with two connected components



Conclusions and main results

The research project has been subdivided into academic and professional
side. On the academic side we investigated many aspects of solid model-
ing, focusing on the B-Rep models and introduced a new paradigm which is
able to integrate mesh and NURBS entities. To support this new modeling
paradigm we proposed a suitable solid modeling system named “Extended
Solid Modeling System”. On the other hand, the professional side of the
project covered the development of algorithms in order to optimizate 3D ge-
ometry of solid objects and boolean operations between polygonal meshes

improving the LeanCost software.

Academic performed activity

To formulate a complete proposal of an Extended Solid Modeling System,

the academic side of this project was involved into two main goals:

. Study and design of a theory for a new paradigm of extended solid
model representation that provide the basis for the definition of a new

paradigm of an Extended Solid Modeling kernel.

. Development of tools to extend a classic solid modeling system, aimed

at integrating the new primitives and the new paradigm.

Concerning the design of new paradigm of extended solid model represen-

tation, first of all we introduced the innovative paradigm “Extended B-Rep”

139
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(EB-Rep) which is able to integrate the geometric entity “Mesh-Face” as part
of a B-rep model.

Once the main characteristics of the EB-Rep were introduced, in order to
realize this new system it was necessary to handle the interaction between
classic B-Rep entities and meshes. In particular, the notion of continuity be-
tween Mesh-Face and NURBS entities had to be investigated, because it was
necessary to define a new concept of continuity between smooth and discrete
entities.

We formalized the definition of continuity between discrete and continuous
entities: the Approximated Geometric (AG) continuity, conceptually intro-
duced in [44]. In particular we analyzed the AG® and the AG' definition of
continuity between Mesh-Faces and NURBS or analytic surfaces. Moreover
we formalized the G'-Almost-Everywhere Continuity, that is a different defi-
nition of G* continuity between Mesh-Faces and NURBS or analytic surfaces.
Then we provided a high-level overview of typical methods involved in solid
modeling introducing their generalization to the Extended Solid Modeling
System. In particular we focused on Boolean Operations, Cutting and Join
Operation.

Concerning Boolean Operations, we investigated the NURBS-Mesh intersec-
tion. In this case the problem of intersection between two entities has been
solved considering the AG? continuity and the result surfaces are a trimmed
NURBS and trimmed Mesh-Face.

In Cutting Operation, similarly to the Boolean Operations, the surface-
surface intersection between Mesh-Faces and NURBS surfaces is suitably
managed, thus we used the same notions previously introduced.

Join operation has been analyzed handling the smooth joining between NURBS
surfaces and Mesh-Faces according to the definitions of AG' and G'-AE con-
tinuity.

The Development of tools to extend a classic solid modeling system re-

quired first of all to manage the efficient integration of the Mesh-Face prim-
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itive into an existing Solid Modeling System based on a classical B-Rep
paradigm.

At this aim, we proposed innovative approaches, suitable for both valence
semi-regular and unstructured meshes.

Valence semi-regular quadrilateral and triangular meshes are represented by
an EB-Rep with faces described by a low number of NURBS surfaces, with-
out losing any information. The number of faces depends directly from the
number of Extraordinary Vertices of the mesh.

We provided a standard and an improved version of the methods, called re-
spectively Quad Mesh Patching(QMP) and Quad Mesh T-Patching(QMTP).
The first one creates rectangular patches without T junctions while the sec-
ond one allows T junctions, diminishing the number of patches necessary to
represent the object, but losing the uniqueness of the solution, that depends
from the order in which extraordinary vertices are considered. We imple-
mented these methods in our OpenCascade platform in order to validate our
proposal.

For unstructured meshes with arbitrary topology we studied and realized an
innovative method that creates an EB-Rep with NURBS faces approximat-
ing the initial mesh. In particular, the proposed algorithm extended LSPIA
algorithm introduced in [25] in order to obtain a Catmull-Clark surface ap-
proximating with good accuracy the original mesh. We tested this method
by implementing it in our OpenCascade geometric kernel.

Furthermore, our innovative method is very interesting because of its mul-
tiple applications. It can be applied to obtain a valence semi-regular mesh
from an unstructured one discretizing the Catmull-Clark surface, or it can
be considered as a variant of Hoppe’s surface reconstruction method, intro-
duced in [32] and in [35], which works on an unstructured mesh obtained by

a pre-processing of the original point cloud.
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Concerning the second main goal of our academic project, we extended
the most important tools for solid modeling to manipulate EB-Rep solids.
In particular we extended the existing methods for Boolean Operations and
Cutting Operation in order to manage EB-Reps. In both cases, the intersec-
tion curves are trimmed NURBS curves, if they delimit two NURBS surfaces,
otherwise they are polylines that have AG? continuity with both the NURBS
surface and the Mesh-Face. We produced examples of the proposed methods
using our OpenCascade platform.

Then we analyzed in detail the Face-Join operation, introducing the 1-1 Face-
Join operation, the 1-n Face-Join operation and finally the n-m Face-Join.
In all these cases, the literature does not provides solutions for matching
meshes and NURBS entities, thus we started from definitions of AG°, AG*!
and G'-AE continuity and realized innovative methods to join a NURBS
surface and a Mesh-Face.

For the 1-1 Face-Join, we analyzed both the situations in which the NURBS
is fixed and the Mesh-Face is fixed and introduced new methods that require
the modification of the NURBS surface or the creation of a blending NURBS
surface in order to close the gap between the two entities.

Methods concerning the 1-n Face-Join operation and the n-m Face-Join has
been realized extending correspondent methods introduced for 1-1 Face-Join.
proposed methods has been implemented and tested in our OpenCascade

platform.

All the notions and methods introduced in our work allow us to formulate
a complete proposal of an Extended Solid Modeling System and to provide
the instruments to integrate the new primitives and the new paradigm into

a classic B-Rep Solid Modeling System.
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Professional performed activity

The professional side of our research activity has been subdivided in two
main works that improved the LeanCost software: the development of al-
gorithms for the optimization of the 3D geometry of solid objects and the
study and realization of a method concerning boolean operations between

polygonal meshes.

In the first part of our project we studied the Injection Molding Technology,
in which a thermoplastic material is heated until it melts, then this melted
plastic is forced into a steel mold, where it cools and solidifies. The main
cost of Injection Molding is the creation of the mold. The more complicate
is the mold, the more expensive is the production of the object.

In order to determine the complexity of realization of a 3D model using
Injection Molding some fundamental characteristics of the object and of its

mold has to be determined. In particular it is necessary to:
. determine if the object is moldable or not,
. estabilish which is the principal parting direction,
. find the best solution between all possible molding solutions.

We realized an innovative algorithm that solves these problems starting from
the B-Rep representation of the model. In particular our algorithm firstly
finds all the candidate extraction directions, computes Face Visibility for
each direction and determines if the object is moldable. Then the Parting

Direction and all molding solutions are computed.

The second part of our research activity involved the creation of an algo-
rithm that gives the possibility to rebuild the boundaries associated with the
faces of a B-Rep model obtained as the result of a boolean operation between

two solids. More in details, two solids A and B, their associated mesh M A
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and M B and the mesh MR result of Boolean Operation between M A and
M B are given. Our algorithm obtains from M R the B-Rep solid R in which
surfaces are parts of original surfaces of solids A and B.

The algorithm firstly extracts necessary information from Boolean operation
result, then the new boundaries of the interested faces are created and finally

the B-Rep model of the result is created.
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