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Abstract—Automatic identification of articulation disorders in 

children’s speech is very important for the diagnosis and 

monitoring of speech therapy. In this work, acoustic features 

(MFCC) have been used with the two most commonly used 

classification techniques in the speaker and language 

identification area, GMM-UBM and I-vector, for identifying 

three types of articulation disorders associated with phoneme [r] 

from Arabic children’s speech. The sound [r] has been selected as 

it is the most common pronunciation problem that children 

suffer from. The impact of [r] location in a word on the speech 

disorders has been investigated by considering words with [r] in 

the beginning, middle and end  We achieved up to 75% accuracy 

with our I-vector system and 61% for our GMM-UBM system. 

Performance of these two systems are improved to 92.5% and 

83.4%, respectively, when disorder classes are combined into one 

class 

Keywords- Automatic diagnosis of Arabic speech disorders, 

speech disorders, articulation disorders, GMM, I-vector. 

I. INTRODUCTION 

Articulation is the process of producing speech sound. It  is 
the movement of mouth muscles and articulators (lips, tongue, 
teeth, jaw, soft palate, hard palate, and the rear part of the roof 
of the mouth) to make the sounds of speech. Each 
configuration of articulators generates different sounds. 
Airflow is initially produced by respiratory system and passes 
through larynx. The vocal folds may or may not vibrate 
depending on whether the produced sound is voiced (e.g. [i] 
vowel) or unvoiced (e.g. [s] fricative consonant). The way of 
moving articulators for producing specific sound depends on 
the context and it is different from speaker to speaker resulting 
in a different pronunciations for each phoneme in a language.  

There is no one standard way for the correct pronunciation 
of a phoneme in a specific language. However, sounds, 
syllables and words must be recognized correctly by humans.  

Because the correct pronunciation depends on many 
physiological factors, many articulation problems can occur. 
Articulation disorders consist of producing sounds, syllables or 
words in a way which makes it difficult for listeners to 
understand what is being said or requires them to carefully 
focus on the way words sound more than the meaning. 
Articulation disorders may become more obvious in rapid 

sound production in a normal conversation. Articulation 
disorders occur for many reasons ranging from physical 
handicaps, such as cerebral palsy, cleft palate, or hearing loss, 
to other problems in the mouth, such as dental problems or 
tongue-tie (ankyloglossia). Speech disorders may range from a 
mild lisp to nearly unintelligible speech. Although articulation 
problems affect both children and adults, young children often 
experience such problems during their language development. 
Bilingual children are more likely to have speech disorder in 
their second language [1]. According to [1], five to eight 
percent of preschool children in USA experience speech 
disorders, making this the most common category of childhood 
disabilities. On the other hand, childhood speech disorders are 
the most treatable disabilities when detected early.  

Many studies have focused on the quality assessment of 
articulation disorder. There are two main methods for disorder 
assessment, namely, perceptual assessment and objective 
analysis assessment [2-3]. In the earlier method, a clinician 
listens to the patient’s voice to describe and measure the 
articulation disorder. This remains the most common method 
used by clinicians and it is widely discussed in the literature. In 
contrast, in the objective analysis assessment method, acoustic 
features are extracted from speech and are used with an 
automatic classification system for making a decision. Most of 
the published work in this field is trying to recognize whether 
speech is normal or has some disorder without identifying the 
precise category of speech disorder. Some other studies have 
focused on improvement of the performance of these systems 
[4-8]. 

In this work, we are proposing an automatic system for not 
only classifying disorder and normal speech, but also to 
identify the articulation disorder category from a given speech 
segment. More specifically, proposed systems identify whether 
speech is normal or has a one of the articulation disorders: 
distortion, substitution, deletion and addition. 

In contrast to other languages, very little research in the 
field of speech disorders detection has focused on the Arabic 
language [9-10]. This paper describes our proposed system for 
detecting articulation disorders from Arabic children’s speech 
using the state of the art techniques applied in the field of 
speaker and language identifications such as Gaussian Mixture 
Models (GMM) and the I-vector technique [11]. 



 In this study, we specifically focused on the pronunciation 
disorders of the Arabic phoneme [ر] (corresponding to [r] in 
the International Phonetic Alphabet (IPA)), as it is considered 
as one of the hardest and the most common Arabic speech 
disorders. We perform the study combining the three Arabic 
vowels with this phone and for the same phone in the word at 
different positions (start of the word, middle of the word, and 
end of the word). This is because the articulation disorders for 
[r] are different depending on its place in the word. For 
example, some children have deletion disorder of [r] when it 
comes at the end of a word, but not in the beginning or in the 
middle.  

The rest of the paper is organized as follows: types of 
articulation disorders are illustrated in section 2. A description 
of collected speech data and systems overview are presented in 
sections 3 and 4. Experiments and results are presented and 
discussed in section 5.  Section 6 describes experiments and 
results when combining disorder classes into one class against 
normal class. Paper conclusion and references are presented in 
sections 7 and 8. 

II. CHILDREN’S SPEECH DISORDERS 

Children’s articulation disorders can be defined as the 
inability of children to pronounce some sounds properly. There 
are many causes including improper adjustment of articulation 
structures. Articulation disorder can be classified as one of the 
following four categories: Finally, complete content and 
organizational editing before formatting. Please take note of the 
following items when proofreading spelling and grammar: 

A. Distortion 

Articulation distortion includes sound pronunciation which 
is slightly different from the correct sound. It often appears in 
the sound of certain phonemes such as ([s], [ʃ]), where [s] is 
accompanied by a sound of a long whistle, or when one 
pronounces a sound of [ʃ] from the side of the mouth and 
tongue.  

For example, children with this kind of disorder pronounce 
the word /sajara/ (a car) as /ɵajara/. 

This may occur as a result of tooth loss, the tongue is not 
put in its proper position during pronunciation, deviation of 
teeth position or loss of teeth on both sides of the lower jaw, 
which makes air go to both sides of the jaw so that the child 
cannot pronounce sounds like [s] and [z]. 

B. Deletion 

    In this type of speech disorder, children drop one or more 

phonemes from a word making their speech very difficult to 

understand. This kind of disorder is more common for 

preschool children than school children. Children experiencing 

this kind of disorder often drop phonemes from the end of a 

word rather than beginning or middle of a word.  

For example, the word /bader/ (moon) is pronounced as /bade/. 

 

C. Substitution 

Substitution occurs when children pronounce an 
inappropriate sound for a phoneme instead of desired sound. 
For example, the word /faraʃe/ (butterfly) is pronounced as 
/faɣaʃe/. In this word, the sound [r] ر is substituted by sound 
[ɣ]. غ 

D. Addition 

In this articulation disorder, children add extra sound 
(phone) to the word; the sound was heard like the one repeated, 
for example, the word /radʒʊl/ (man) is pronounced as 
/rrradʒʊl/. 

In some cases, distortion and substitution could be 
considered as one type of disorder for example, pronouncing 
/faraʃe/ as /faɣaʃe/ can be considered as a distortion where the 
phone [r] was changed to [ɣ]; if it occurs in every word 
containing [r] then it is also considered as a substitution. 

This study focused on four classes of articulation disorders 
associated with sound [r] in its three positions in a word 
(beginning, middle, and end). Disorder classes include; 
substitution [r] by [l], substitution of [r] by [ɣ], deletion of [r] 
and adding extra [r]. 

III. DATA DESCRIPTION 

Samples were collected from more than 240 school 
children ages 5-12 years whose native language is Arabic. We 
visited three primary schools, explained to teachers the purpose 
of this study, and asked them to help in selecting children for 
recording. Each of the selected children was asked to 
pronounce three carefully selected words presented with an 
image shown on a card, containing phoneme [r] (‘ر’) in the 
beginning, middle and the end. Pronunciations of the three 
selected words are /rʔas/ (head; رأس), /faraʃhe/ (butterfly; 
 respectively. Speech therapists ,(بدر ;moon) /and /bader ,(فراشة
were used as experts to evaluate and categorize the articulation 
problem of each child.  

Out of this process, a total of 764 word utterances have 
been used, 287 normal pronunciations and 477 containing one 
type of articulation disorders. Samples with addition disorder 
are very few, and are, therefore, excluded from the following 
experiments.  

More details of the data set are shown in table 1. Since this 
amount of data is relatively small for dividing into two subsets; 
training and testing, leave-one-out strategy was used for 
training and testing our systems. This means, for the set of 
words beginning with [r], one utterance from each class was 
left for testing and the remaining were used for training. This 
process was repeated 50 times, resulting in 200 testing 
segments for each system. The same procedure was used for 
the other two words (i.e. /faraʃhe/ and /bader/). 

Table 1: Data set description 
 Normal Substitute 

by [l] 

Substitute 

by [ɣ] 

Deletion 

/rʔas/   96 50 53 50 

/faraʃhe/ 95 51 53 50 

/bader/   96 58 60 52 



I. SYSTEM DESCRIPTION 

A. Feature Extraction 

The first stage in any speech pattern classification process 
is to convert the speech waveform into a sequence of acoustic 
feature vectors. 12-dimensional Mel Frequency Cepstral 
Coefficients (MFCC) features were extracted from 20ms 
frames, with a frame shift of 10ms.  Each feature vector is 36-
dimensional, comprising of 12 features plus 12 “delta” and 12 
‘delta-delta’ parameters, giving 36 features per frame at frame 
rate of 100 frames per second. RASTA filtration is applied to 
the power spectra and feature mean and variance normalization 
at utterance level was applied on the final feature vectors. 

B. GMM-UBM 

The Gaussian Mixture Model is widely and successfully 
used in various speech processing applications such as speaker, 
language and accent identification [12, 13].  It is also used for 
classifying normal and impaired speech [14]. This motivated us 
to use it for identifying articulation disorder types, in addition 
to normal speech.  

A Universal Background Model (UBM) is a GMM trained 
on acoustic features (36 MFCCs) extracted from all training 
dataset of all classes.  The K-means clustering algorithm is 
used for finding initial parameters of UBM GMM (means, 
diagonal covariance matrices and weights).  GMM parameters 
were soft tuned by 4 iterations of EM algorithm. 

A class-dependent GMM is obtained by MAP (Maximum 
A Posterior) adaptation (means only) of the UBM using the 
class specific enrollment features. The result is one UBM 
model and three class-dependent models, one for each class. 

We have tried different number of Gaussians for GMMs 
16, 32, 64 and 128. UBM with 64 components is found to have 
the best performance. Consequently, UBM of 64 components is 
used in all of subsequent GMM-UBM experiments presented 
in this paper. 

C. I-Vector  

Our second speech disorder identification system is based 
on I-vectors, a technique introduced in [15] for speaker 
identification. This technique has also been proven to work 
well in language and accent identification [11, 16]. An I-vector 
classifier is based on a configuration determined by the size of 
the UBM, the number of factor dimensions for the total 
variability subspace, as well as the various compensation 
methods to attenuate within-class speaker variability. Feature 
vectors of each word utterance in the training and testing data 
are used for adapting means of the UBM (which is trained on 
all available training data) in order to estimate a word 
dependent GMM using the eigenvoice adaptation technique.  

The eigenvoice adaptation technique assumes that all the 
pertinent variability is captured by a low rank rectangular 
matrix T known as total variability matrix.  The GMM 
supervector M  (vector created by concatenating all mean 
vectors from the word dependent GMM) for a given word 
utterance can be modeled as follows: 

 TxmM                                                                                  (1) 

Where m is the UBM supervector, the I-vector x is a 
random vector having a normal distribution N (0, I), and the 
residual noise term ε ∼ N (0, Σ) models the variability not 
captured by the matrix T.  In training the total variability 
matrix for articulation disorder speech identification, we 
assumed that every word utterance for a given disorder class is 
considered a different class. Additional details on the I-vector 
extraction procedure are described in [15].  

Linear Discriminant Analysis (LDA) is used for reducing the I-
vectors dimension. The LDA procedure consists of finding the 
basis that maximizes the between classes variability while 
minimizing the intra-class variability. Each class is represented 
by mean of its I-vectors produced form training dataset after 
LDA dimension reduction. 

D. Visualization 

    Our I-vector system maps a word utterance into a 100 
dimensional vector space for classification. To obtain insight 
into how I-vector works, this space can be visualized by 
projecting it onto a suitable 2-dimensional subspace using 
LDA. Fig. 1 shows 2-dimentional I-vectors representing four 
classes of phoneme [r] at beginning of Arabic word /rʔas/ 
(head). It is clear from the figure that substitution articulation 
disorder is close to normal speech, while deletion is far away in 
the representative space. A possible explanation of this is that 
pronunciation of [ɣ] and [l] is close to [r], therefore realization 
of words with substitute [ɣ] and substitute /l] are close to each 
other and also close to correct pronunciation of [r]. On the 
other hand, deleting [r] from a word starting with [r] makes its 
realization very far from the correct pronunciation, hence 
difficult for understanding. 

 

 

Figure 1: LDA 2-dimentional visualization of average I-

vectors of 4 disorder classes 

 

 

I. EXPERIMENTS AND RESULTS 

 

A. Experimental Setup 

As we have declared earlier, we are interested in classifying 
articulation disorders of phone [r] at three positions in a word; 



beginning, middle and end. Therefore, we built three GMM-
UBM systems and three I-vector systems, one for each case, 
i.e. one system for identifying disorders of [r] when it comes in 
the beginning of a word (column 2 in tables 2 & 3), one for 
disorders of [r] when it comes in the middle (column 3 in tables 
2 & 3) and one when it comes at the end (column 4 in tables 2 
& 3). In each case, the systems are trained and tested 
independently using corresponding word utterances.  

One UBM was represented as a diagonal covariance GMM 
with different number of components range from 8 to 64. It 
was trained on all the speech segments of the training set for 
the three positions of [r], balanced over the four classes. The 
variance flooring was used in each iteration of EM algorithm 
during the UBM training. This UBM was used for both GMM-
UBM and I-vector disorder speech identification systems. 

For each case of [r] position, all class-specific training 
utterances were used for MAP adapting UBM means with 
relevance factor 16. The adapted means with the UBM 
covariance’s and weights form a class-dependent GMM. 

 In the recognition phase, acoustic features are extracted 
from testing utterances and then evaluated against four class-
dependent GMMs. The class model which gives the highest 
log-likelihood of a given test utterance is the identified class.  

For the I-vector classifier of the three positions of [r], 
various UBM sizes (16, 32, 64, and 128) and different factor 
dimensions (50 to 200 in steps of 50) were investigated. I-
Vectors are derived directly from the 36-dimensional feature 
vectors over an entire word utterance. The feature vectors from 
training and testing words are used to construct one I-vector 
per word utterance.  

During testing, I-vectors of a word utterance are projected 
to low-dimensional space by LDA projection matrix. 
Evaluation scores are calculated by computing dot product of 
testing I-vectors by representative means of each class, after 
applying LDA dimensionality reduction. For all experiments, 
the best LDA dimension reduction is dimension equal to 50. 

B. Results and Discussion 

      A GMM-UBM system was used for identifying 

articulation disorders of [r] in the three selected words. That 

is, three GMM-UBM systems were trained and evaluated on 

the recordings of the three words, i.e. one system for 

recognizing four classes of [r] in word /rʔas/, one for word 

/faraʃe/ and one for word /bader/. Results of each GMM-UBM 

system with a different order of UBM are presented in table 2 

below. 

 Similarly, three I-vector systems have been trained and 

evaluated on speech of the three words, in the same way for 

GMM-UBM systems described earlier. 

In order to study the effect of number of total variability 

factors, i.e. eigenvoices, on the performance of our disorder 

speech identification system, four different numbers of 

dimensions were tried (50, 100, 150 and 200) using UBM of 

16 components and utterances with [r] in the beginning. 

Results of these experiments suggest that total variability with 

100 dimensions gives the best performance.  Subsequently, 

100 is fixed for all of our I-vector experiments. 

 

Table 2: Performance (accuracy %) of GMM-UBM systems with different 

orders and different positions of [r]. 

UBM order 
[r] at the 

beginning 

[r] in the 

middle 
[r] at the end 

8 59 35 34.3 

16 60.8 40.2 39 

32 58.2 34 35.7 

 

The same UBMs with different number of Gaussians, which 

were used in GMM-UBM system described earlier, were also 

used for training I-vector systems. 

Results of I-vector system for each case of [r] position and 

each order of UBM, are presented in table 3, below. 

 

 

Table 3: performance [accuracy %] of I-vector system with different UBM 

order and different positions of [r]. 

UBM order 
[r] at the 

beginning 

[r] in the 

middle 

[r] at the end 

8 65.8 59.2 58.3 

16 75 65 62.5 

32 73.3 60.8 60.8 

64 62.5 51.7 44.2 

 

The table shows that UBM with 16 components gives the best 

performance for two identification systems and for the three 

positions of [r]. As expected, I-vector system outperformed 

GMM-UBM system for the three positions of [r]. The best 

result, 75%, was achieved by I-vector system when detecting 

disorders of [r] in the beginning of a word, using UBM of 16 

components.  

It is also interesting to note from these results that recognizing 

disorder of [r] seems to be easier when it comes at the 

beginning of a word than when it comes in the middle or in the 

end. A possible explanation for this, is that the pronunciation 

of [r] when it comes at the beginning needs more emphasis 

than when it comes in between or after different sounds. 

Therefore, the influence of the preceding and following 

sounds on [r] makes it less clear. 

 

I. NORMAL-DISORDER TWO-CLASS SYSTEM 

       In this system, we combine the training dataset of the 

three classes of articulation disorders; substitute by [l], 

substitute by [ɣ] and deletion, into one class, called ‘disorder’, 

and keep the ‘normal’ class. This system is used to classify 

testing utterance as normal speech or disorder speech. Our 

GMM-UBM and I-vector, with GMM order 16, systems 

(described above) are re-configured and re-trained for this 

two-class classification task. The results of these experiments 

are shown in table 4. 

Performance of our two systems are significantly improved 

when we reconfigure our problem as a two class task for 



distinguishing between disordered and normal speech. A 

possible explanation for this improvement could be stated in 

the following two ways: The task of classifying disorder 

speech and normal speech (i.e. two classes) is easier than 

classifying four classes (three types of disorder and normal).  

Secondly, the amount of training data is larger for the two-

class system.    

 

Table 4: Performance (accuracy %) of GMM-UBM and I-vector systems 

with different positions of [r]. 
System [r] at the 

beginning 

[r] in the 

middle 

[r] at the 

end 

GMM_UBM 83.4 82.6 79 

I-vector 92.5 78 77 

 

 

I. CONCLUSION 

    The aim of this paper was to evaluate the automated 

recognition of articulation disorders associated with [r] 

phoneme from Arabic children’s speech. We have used and 

presented the GMM-UBM and I-vector based systems which 

are used commonly in speaker, language and accent 

recognitions. Both systems were used for recognizing 

disorders of [r] in three different places in a word (begin, 

middle, end). The best performance (75%) was obtained by I-

vector system trained and evaluated on words with [r] in the 

beginning. We also conclude that performance of our two 

systems is much better when they used only to separate speech 

into normal and abnormal classes. 

The preliminary results are promising, but to prove the 

usefulness of our method, a larger study with larger dataset is 

needed. 
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