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Contrasting the Effects of Different Frequency
Bands on Speaker and Accent Identification
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Abstract—This letter presents an experimental study inves-
tigating the effect of frequency sub-bands on regional accent
identification (AID) and speaker identification (SID) performance
on the ABI-1 corpus. The AID and SID systems are based on
Gaussian mixture modeling. The SID experiments show up
to 100% accuracy when using the full 11.025 kHz bandwidth.
The best AID performance of 60.34% is obtained when using
band-pass filtered (0.23–3.4 kHz) speech. The experiments using
isolated narrow sub-bands show that the regions (0–0.77 kHz)
and (3.40–11.02 kHz) are the most useful for SID, while those in
the region (0.34–3.44 kHz) are best for AID. AID experiments are
also performed with intersession variability compensation, which
provides the biggest performance gain in the (2.23–5.25 kHz)
region.

Index Terms—ABI-1, accent identification, bandwidth, fre-
quency region, Gaussian mixture model, intersession variability
compensation, speaker identification, sub-band.

I. INTRODUCTION

I T is well known that an acoustic speech signal contains in-
formation beyond its linguistic content. This paralinguistic

information, includes clues to a speaker’s accent and identity,
which are exploited by automatic accent identification (AID)
and speaker identification (SID) systems. The relationship be-
tween AID and SID is asymmetric, since accent information is
relevant to SID but speaker information is a distraction in the
context of AID.
Currently, the most commonly used parameterisation for both

AID and SID is to represent a spoken utterance as a sequence
of Mel-Frequency Cepstral Coefficient (MFCC) vectors, cov-
ering the entire frequency bandwidth. However, it is known
that different frequency regions contain different types of in-
formation. For instance, the SID study in [1], which was per-
formed on the clean TIMIT corpus using mono Gaussian mod-
eling, showed that the frequency regions below 600 Hz and
above 3000 Hz provided better SID accuracy than the middle-
frequency regions. However no similar study has been con-
ducted for AID. In this letter, the contrasting importances of dif-
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ferent frequency bands for AID and SID are investigated, using
contemporary GMM-based systems.
In the most widely used approach to AID and SID, the dis-

tributions of feature vectors are characterized using a Gaussian
Mixture Model (GMM) [2], [3]. Individual accent or speaker
GMMs are typically built by MAP adaptation of a Universal
Background Model (UBM). This is an accent and speaker
independent GMM constructed using data from a variety of
accents, speakers and background conditions. This approach
has been very effective for various SID tasks [4] and its perfor-
mance remains comparable to that obtained with more complex
models. It has also been applied to AID, but with less success
[5]. An alternative is to use a discrimination-based approach,
such as a Support Vector Machine (SVM), applied to GMM
super-vectors, which consist of the ‘stacked’ means of the
mixture components of the accent or speaker GMMs [5], [6]. A
combination of the GMM and SVM approaches for SID, where
the GMM was used to calculate likelihood values and the SVM
classifier was used to separate the likelihood values for a correct
speaker and impostor, is presented in [7] and showed slightly
better results than the GMM system alone. Other acoustic-based
approaches incorporate the use of phone durations and average
cepstra [8], phone and word-level Hidden Markov Models
(HMMs) [9]–[12], and stochastic trajectory models [13]. The
most successful systems use intersession variability compen-
sation (ISVC). This is a subspace projection technique for
removing irrelevant variability in speech classification tasks,
which has been shown to improve the performance of speaker,
language and accent identification and has become a standard
component of these systems [5], [17]. ‘Phonotactic’ approaches
to AID exploit accent-dependent differences in the sequences
in which speech sounds occur [14]. For AID, these approaches
outperform the GMM-based acoustic methods described above
[5].
This letter begins by reporting the results of applying GMM-

based classifiers to AID (14 classes) and SID (93 or 94 classes)
on the Accents of the British Isles (ABI) speech corpus [15].
SID accuracy using full bandwidth (11.025 kHz) speech and
512 component GMMs is close to 100%, confirming that SID is
a relatively simple task for this type of data [1]. The best AID
accuracy is 60.34%, obtainedwhen the recordings are band-pass
filtered (0.23–3.4 kHz), using 4096 component GMMs and a
pitch-based speech activity detector (SAD).
Next, AID and SID experiments are conducted on the same

narrow sub-bands. In this way it is possible to contrast the utility
of information in different regions of the speech spectrum for
these tasks. The results show that it is useful to divide the spec-
trum into four regions: A (0 to 0.77 kHz), B (0.34 to 3.44 kHz),
C (2.23 to 5.25 kHz) and D (3.40 to 11.02 kHz). Our results
suggest that speaker information dominates in regions A, corre-
sponding to primary vocal tract resonance information, and D,
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corresponding to high-frequency sounds. These results are con-
sistent with [1]. In contrast, region B is most useful for AID,
indicating that the vocal tract resonance information in this re-
gion is biased towards linguistic, rather than speaker informa-
tion. Region C contains both types of information, although
speaker information appears to dominate.When ISVC is applied
to sub-band AID systems the biggest gain is observed in region
C, where AID performance is improved by 24%, indicating that
ISVC is able to factor out some of the speaker information in
this region.

II. CORPUS AND DATA DESCRIPTION

The “Accent of the British Isles” corpus of regionally ac-
cented adult’s speech (ABI-1) was used in all experiments.
This was collected to support research into the implications of
regional accents for speech and language technology. ABI-1
[15] comprises recordings of speech representing thirteen re-
gional accents of British English, namely Belfast, Birmingham,
Burnley (Lancashire), Denbigh (North Wales), Elgin (Scottish
Highlands), Dublin, Glasgow, Hull (East Yorkshire), Inner
London, Liverpool, Lowestoft (East Anglia), Newcastle and
Truro (Cornwall), plus ‘Standard Southern English’ (SSE).
The objective in each location was to record twenty subjects
(ten men and ten women) who were born in the location and
had lived there for all of their lives. Each subject recorded
approximately 15 minutes of read speech. The prompt texts
were chosen for their relevance to applications or their phonetic
content. The recordings were made in relatively quiet rooms.
The ABI-1 corpus comprises recordings of 283 subjects, of
which 280 were used in the current study. ABI-1 consists of
approximately 70 hours of recordings, with speakers’ ages
ranging from 16 to 79 years. The recordings are transcribed
at the phrase level, but the transcriptions were not used in the
present study. All ABI-1 recordings were made using head
mounted and desk microphones, and sampled at 22.05 kHz.
Only the head mounted microphone recordings were used for
experiments reported in this letter.
For both SID and AID, the speakers were divided into three

subsets; two with 93 and one with 94 speakers. Gender and
accent were distributed equally in each subset. A “jack-knife”
training procedure was used in which two subsets were used
for training and the remaining subset for testing. This proce-
dure was repeated three times with different training and test
sets, so that each ABI-1 speaker was used for testing, and no
speaker appeared simultaneously in the training and test sets.
The SID systems were evaluated using 993 segments of length
3, 10, and 30 seconds from all test recordings. The AID systems
were evaluated using 1504 30-seconds segments from all test
recordings. All the above indicated segment lengths are after si-
lence removal.

III. SYSTEM DESCRIPTION

A. Signal Analysis

Feature extraction for both SID and AID was performed
as follows. Periods of silence were discarded using an en-
ergy-based SAD. The speech was then segmented into 20-ms
frames (10-ms overlap) and a Hamming window was applied.
The short-time magnitude spectrum, obtained by applying the
FFT, is passed to a bank of 31 Mel-spaced triangular band-pass

TABLE I
THE CENTER FREQUENCIES FOR 31 MEL-SPACED BAND-PASS FILTERS

filters, spanning the frequency region from 0 Hz to 11025 Hz.
The center frequency for each filter is shown in Table I.
The SID and AID experiments were first performed using

the full bandwidth (0–11.025 kHz) and telephone bandwidth
(0.23–3.4 kHz) speech. The latter was obtained by passing the
recordings through a band pass filter. The calculation ofMFCCs
was based on all 31 filters and the first 23 filters for full and
telephone bandwidth, respectively. In both cases, the first 19
MFCCs were used.
To investigate the effect of different frequency regions, sepa-

rate SID and AID experiments were conducted using frequency
band limited speech data comprising the outputs of groups of
four adjacent filters. We considered 28 overlapping sub-bands,
where the th sub-band comprises the outputs of filters to

( ). Each set of four filter bank outputs was
transformed to 4 Mel-frequency cepstral coefficients (MFCCs)
and feature warping [16] was applied.

B. GMM-UBM System

The SID and AID systems are based on the Gaussian Mixture
Model – Universal Background Model (GMM-UBM) method
[3]. In what follows, “class” refers to accent or speaker, de-
pending on the particular experiment.
In the GMM-UBM approach, a UBM is built using utterances

from the training sets of all classes. Class-dependent models
are obtained by MAP adaptation [3], adapting the means of the
UBM, using the class-specific enrollment data. The result is one
UBM and class-dependent GMMs, where in our experiments
is 14 and 93 or 94 (depending on the “jack-knife” set) for AID

and SID, respectively.
For AID, the inter-session variability within a class, such as

inter-channel and inter-speaker variability, is estimated using
the technique described in [17]. This technique is applied on a
band specific level with a fixed band-independent rank. During
testing, both the UBM and the class dependent GMMmeans are
shifted in the estimated ‘nuisance’ direction of each test utter-
ance before scoring. ISVC was not used in the full bandwidth
AID experiments (Table II) or the initial sub-band experiments
(Figs. 2 and 3) but was used in the final AID sub-band experi-
ments (Figs. 4 and 5). ISVC was not used in the SID systems,
because the same recording equipment was used for the whole
corpus and the recording environment for each subject did not
change.
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TABLE II
SUMMARY OF RESULTS FOR SID AND AID SYSTEMS (IDENTIFICATION RATE)

Fig. 1. SID performance as a function of frequency sub-band for 3, 10 and 30
second test signals when using 512 component GMMs.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In order to demonstrate the competitiveness of our AID and
SID recognition systems, the first experiments are performed
using the full bandwidth (0–11.025 kHz) and telephone band-
width (0.23–3.4 kHz) speech. The obtained results are presented
in Table II. The AID system here uses a pitch-based SAD. Using
the full bandwidth speech, the performance of the AID system
using 30 second test segments is 38.50%, 40.64% and 42.54%
with 512, 2048 and 4096mixture components, respectively. The
performance of the SID system using a 512 component GMM
is 98.98%, 100% and 100% for 3, 10 and 30 second test files,
respectively. When using the simulated telephone bandwidth
speech, the AID performance increased by between 42% and
49%, while the SID performance dropped by between 3% and
11%. Current state-of-the-art AID systems typically use 4096
component GMMs and pitch-based SAD which also achieved
the best performance (60.34%) in our experiments (the corre-
sponding performance for energy-based SAD is 57.37%).
In the following, we study the performance of the SID and

AID systems for each individual sub-band. For the purpose of
analysis, it is also useful to divide the entire frequency range
into four broader regions: A from 0 to 0.77 kHz, B from 0.34
to 3.44 kHz, C from 2.23 to 5.25 kHz and D from 3.40 to 11.02
kHz. Both the AID and SID systems here use the energy-based
SAD (as the pitch-based detector would eliminate most of the
high-frequency unvoiced fricative sounds). Based on the results
in Table II and since the feature dimensionality is much lower
when using individual sub-bands as opposed to the full band-
width, both the SID and AID systems in the following experi-
ments are based on 512 component GMMs. The results for SID
are shown in Fig. 1. It can be seen that the lowest performance is
obtained using the mid frequency sub-bands (region B). These
results are consistent with previous findings reported in [1],
which were obtained for clean speech on the TIMIT corpus and
using only mono Gaussian modeling. The performances for 3,
10 and 30 second test files show similar trends, but accuracy is

Fig. 2. AID performance as a function of frequency sub-bands using 512 com-
ponent GMMs and 30 second test signals.

Fig. 3. The difference between the normalized SID and AID performance for
frequency sub-bands using 30 second test signals.

around 27% and 10% lower on average for the 3 and 10 second
test data, respectively, compared to the 30 second data. The re-
sults for AID are shown in Fig. 2. Compared with the results for
SID, region B appears to be more useful, while regions C and
D are less useful.
In order to contrast the SID andAID performances, the results

presented in Figs. 1 and 2 were first normalized to sum to one
over all the sub-bands and then subtracted. The resulting con-
trastive SID and AID performance, which we refer to as NSID –
NAID, is shown for 30 second test data in Fig. 3. Regions with
positive values (A, C and D) in Fig. 3 carry more speaker spe-
cific information than accent information, while the region with
negative values (B) contains more AID information. Region A,
corresponding to the primary vocal tract resonance information
of vowel and nasal sounds, and regions C and D, corresponding
to high frequency sounds such as fricatives, are most useful for
SID. Region B is where one would expect to find vocal tract
resonance information for general voiced speech sounds. Al-
though this information will be biased by individual differences
in vocal tract physiology, linguistic information dominates and
makes the region most useful for AID. This is consistent with
observations on the importance of vowels in subjective analyses
of accent [18].
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Fig. 4. AID performance after ISVC as a function of frequency sub-bands
using 512 component GMMs and 30 second test signals.

Fig. 5. The difference between the normalized SID and AID performance for
frequency sub-bands (after application of ISVC to AID system).

Last, we present results obtained with ISVC [17]. To inves-
tigate which frequency bands gain most from ISVC in AID,
we apply it to each frequency sub-band separately, with ISVC
subspace dimension 100. The result is shown in Fig. 4. Fig. 5
shows normalized AID (after ISVC) subtracted from normal-
ized SID. A comparison of Figs. 3 and 5 suggests that ISVC
gives the biggest gain in region C. In fact, comparing Figs. 2 and
4, the average improvement of AID performance in this region
is 24%, compared with average improvements of 6% and 2% in
regions A and B, respectively, and an 12% decrease in region
D. This suggests that ISVC is able to compensate for some of
the speaker-dependent information in region C, which is noise
from the perspective of AID, but not in region D.

V. CONCLUSION

This letter studied the effect of different frequency bands on
automatic accent identification (AID) and speaker identification
(SID) using the Accents of the British Isles speech corpus. Both
the AID and SID systems were based on GMM-UBM approach.
The competitiveness of our systems was demonstrated using
full bandwidth (0–11.025 kHz) and band-pass filtered (0.23–3.4
kHz) speech experiments. The SID system achieved 100% accu-
racy using 30 second full bandwidth test signals and 512 com-
ponent GMMs. The best AID accuracy was 60.34%, obtained
using the band-pass filtered data, pitch-based SAD and 4096
component GMMs. The experimental results contrasting the
utility of information in narrow sub-bands for the AID and SID
tasks showed that it is useful to divide the spectrum into four

regions: A (0 to 0.77 kHz), B (0.34 to 3.44 kHz), C (2.23 to
5.25 kHz) and D (3.40 to 11.02 kHz). Our experiments con-
firmed that speaker information dominates in regions A, cor-
responding to primary vocal tract resonance information, and
D, corresponding to high-frequency sounds. In contrast, region
B is most useful for AID, indicating that the vocal tract res-
onance information in this region is biased towards linguistic,
rather than speaker information. Region C contains both types
of information, although speaker information appears to domi-
nate. When intersession variability compensation is applied to
the AID system the biggest gain is observed in region C, where
AID performance is improved by 24%, indicating that ISVC is
able to factor out some of the speaker information in this region.
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