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Abstract 
This work presents a simulation analysis of the bioimpedance 
measurements at the human forearm. The Ansys® High Frequency 
Structure Simulator (HFSS) has been used to analyze the electrical 
response of a section of human forearm with three domains of di-
electric behavior – fat, muscle and artery (blood). The impedance 
values were calculated as the ratio of the output voltage at the 
electrodes to the applied known current (1 mA). A model was 
developed and was simulated for impedance values obtained within 
a frequency range of 1 kHz to 2 MHz. The measurements were done 
at three instances of radial artery diameter. The maximum 
resistance and reactance values were calculated as 445 Ω and 178.5 
Ω, 356 Ω and 138 Ω, and 368 Ω and 144.3 Ω for diameters 2.3 mm, 
2.35 mm, and 2.4 mm respectively. The set of impedance values 
obtained followed the Cole-plot trend. The results obtained were 
found to be in excellent agreement with the Cole modelling. The set 
of values obtained at three different diameters reflected the effect 
of blood flow on impedance values. 
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Introduction 
 
In the last three decades, bioimpedance analysis has become 
more extensively used to measure clinically important 
parameters [1]. Non-invasive bioimpedance plethysmo-
graphy provides waveform information that relates to the 
distension of blood vessels and can therefore be used for 
estimating stroke volume [2–5] and cardiac output [6–12]. 
Bioimpedance offers significant advantages over existing 
techniques such as ultrasound which requires continuous 
presence of a trained operator and thermodilution which is 
an invasive method and cannot readily measure beat-to-beat 
changes. Electrical impedance measurements at the forearm 
provide a possible way to characterize hemodynamics, and 
in particular changes in the amount of blood in the arm as a 
result of vasodilatation and/or the cardiac cycle.  

Although the simulation perspective to bioimpedance 
plethysmography is a rarity there have been several 
investigations pertaining to the impedance response at 
forearm section. Some works [13–16] related to multi-
frequency electrical bioimpedance (MF-EBI) for segmental 
fluid/fat estimation whereas others [17–19] focused on single 
frequency measurements to evaluate parameters such as 
Heart Rate (HR) and Pulse Wave Velocity (PWV). Due to a 
high variability amongst the impedance values obtained from 
different works, the application dependence of the 
measurements can be considered a fair statement. The choice 

of forearm quite obviously owes to the more approximate 
cylindrical geometry, which makes it easier to construct and 
analyze. However, more importantly, the blood dynamics of 
radial artery can be reflected through bioimpedance 
considering a forearm section. This can provide an insight to 
the arm tissue behavior along with the individual 
contribution of different layers (along with blood flow) to the 
impedance variations. Also, the forearm provides a simpler 
and justifiable site for PWV measurement 

The objective of this work is to simulate the electrical 
response of a section of human forearm and obtain the values 
of impedance over a wide frequency range. These simulation 
results will be compared to the Cole type response. The 
simu-lation would be performed at three instances of radial 
artery diameters to mimic the condition of blood flow. The β 
dispersion region, as identified by Schwan [20] and Cole 
theory [21] form the basis of this work. 
 
Method 

 
A 3D finite element model of a simplified human forearm 
was constructed using Ansys® HFSS, which allows 
simulation of applied electromagnetic fields in the frequency 
domain.  

Our investigation is limited to the β dispersion region 
as it is in this frequency range (1 kHz to 100 MHz) that the 
tissues reflect maximum passive cell membrane capacitance 
and intracellular organelle capacitance effects [22]. The 
mathematical consideration of bioimpedance theory is 
governed by Maxwell’s equations. For most practical 
situations, the solution to Maxwell’s equations requires a 
complex matrix approach, which is performed by the finite 
element modelling platform provided by Ansys® HFSS. 
Also, the boundary between two dielectrics is automatically 
specified through Ansys using the defined mesh settings. The 
forearm was modelled as a structure consisting of three tissue 
domains – fat, muscle and artery. Even though bone is a 
major part of the forearm, the overall contribution of bone to 
the electrical impedance changes is expected to be negligible 
due to a constant low conductivity over β dispersion 
frequency range. Hence, bone was not considered to be a part 
of this model. The fat and muscle regions have been 
considered as layered, whereas the artery overlaps the 
domains of both the muscle and fat regions. The tissue 
domains in the model are therefore not layered. The 
longitudinal dimension of the section of the arm was taken 
to be 70 mm, with the fat layer having a thickness of 3 to 
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6 mm and muscle with a thickness of 10 to 15 mm from the 
axis. The artery has been modelled to mimic the radial artery 
blood properties, for which simulation has been performed 
using three different diameters – 2.3 mm, 2.35 mm, and 2.4 
mm as also reported by some previous works [23,24]. The 
transverse and the longitudinal views of the model are shown 
in Fig.1 (a) and 1 (b) respectively.  

A tetra-polar configuration of electrodes was simulated 
(also shown in Fig 1).  The outer set of electrodes supply the 
current and the inner pair is used for voltage measurements.  
The electrodes were realized using cylindrical conductors of 
copper with a diameter of 2 mm and spacing of 24 mm for 
the outer pair and 11 mm for the inner pair. Additionally, the 
outer electrodes were connected through a conducting sheet, 
over which the direction of current flow was specified for 
simulation purposes. The frequency dependent dielectric 
properties for each of the tissue materials have been defined 
using the database developed by Gabriel [25–28] using the 
parametric modelling of tissue properties within 10 Hz to 20 
GHz (Fig.2). The conductivity and the permittivity values 
were set for fat, muscle and blood within 1 kHz to 2 MHz. 

 
 

 
 

Fig.1 (a): Transverse view of the model 
 

 
 

Fig.1 (b): Longitudinal view of the section 
 

 
 
 

  
Fig. 2: Conductivity and permittivity values for blood, muscle and fat used in the simulation as compiled by Gabriel [27] 
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The simulation was performed to determine the value of 
impedance measured across the electrodes at various fre-
quencies within 1 kHz to 2 MHz. The impedance was 
calculated as the ratio of measured voltage to the applied 
current at the corresponding electrodes. IEC 60601 technical 
standards [29] describe safety of medical equipment and 
prescribe allowable current ranges. The preferred range is 
between 10 μA to 1 mA for the frequency range of interest 
[30] and hence 1 mA was chosen for simulation purposes.    

Ansys® was used to automatically mesh with maxi-
mum element sizes of 10 mm each for fat and muscle and 
5 mm for the artery. Fig.3 – (a), (b), and (c) show the mesh 
distribution over each of the domains. 
 

 
Fig.3 (a): Mesh distribution in the fat layer  

 

 
Fig.3 (b): Mesh distribution in the muscle layer with an element size 

of 10 mm 

 

 
Fig.3 (c): Mesh distribution in the Artery  

 
Simulations were run at frequencies of 1 kHz, 5 kHz, 10 kHz, 
50 kHz, 100 kHz, 150 kHz, 200 kHz, 250 kHz, 400 kHz, 
500 kHz, 600 kHz, 700 kHz, 800 kHz, 900 kHz, 1 MHz, 
1.25 MHz, 1.5 MHz, and 2 MHz. For each of these 
frequencies, three diameters of the artery were modelled as 
mentioned previously: 2.3 mm, 2.35 mm, and 2.4 mm. 

Results 

The simulation was performed to evaluate the dielectric 
behavior of the compositional properties of fat, muscle and 
artery in the human forearm. The simulation produced results 
in the form of electric field distributions (an example shown 
in Fig. 4 (a) and 4 (b)) throughout the structure at each 
frequency step, which was used to calculate the voltage drop 
across the measuring electrodes. The electric field 
distributions as shown in Fig. 4 (a) and (b) provide a good 
indication of electric potential gradient throughout the 
structure volume

. 

 

 
 

Fig.4 (a): Electric field distribution in the transverse view of the model simulated at 50 kHz for 2.3 mm arterial diameter.  
The magnitude has been indicated though different color intensities. 
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Fig.4 (b): Electric field distribution in the longitudinal view of the model simulated at 50 kHz for 2.3 mm arterial diameter.  
The magnitude has been indicated though different color intensities. 

  
The voltage was calculated using the line integral of the 
electric field gradient between the inner electrode pair 
terminals. The obtained value of the voltage was complex, 
due to the complex electric field and corresponded to the 
resistive and reactive behavior of the model. The obtained 
values have been calculated for impedance (Z) as ratio of 
measured voltage (V) to current (I) and plotted as a Nyquist 
plot (as shown in Fig 5) between Re. (Z), i.e. Resistance and 
Img. (Z), i.e. Reactance for all the frequencies. The three 
curves correspond to the three diameters of the artery. 
 
Discussion 
 
The electrical behavior of biological tissues can often be 
effectively represented using the Cole model. The Cole 
equation describes the frequency dependence of tissue 
conductivity and permittivity. The results obtained through 
the simulations agree with the Cole model in the sense of 
varying resistance and reactance values with frequency. The 
geometrical interpretation can be seen as Cole plots for all 
the three diameters. The semi-circular shape of the plot 
verifies the agreement of the obtained results with Cole 
modelling (Fig.5). The major portion of the plot follows the 
Cole plot trend but the values at lower frequencies were 
found to be divergent.  

The maximum resistance and reactance values were 
calculated as 445 Ω and 178.5 Ω, 356 Ω and 138 Ω, and 368 
Ω and 144.3 Ω for diameters 2.3 mm, 2.35 mm, and 2.4 mm 
respectively. The expected values at the extremities of the 
Cole plot (R0 and R∞) can be found by extrapolating the Cole 

trend and observing the values at the resistance axis. The 
above values of the impedance were found within agreeable 
limits of some previous results such as [31] (which found 
average value of forearm resistance of 346 Ω) and [32]) 
(which found mean±standard deviation values of resistance 
of 319±21.9 Ω and reactance of 30±2.3 Ω for arm at 50 kHz).  

The values obtained at lower frequencies do not follow 
the Cole trend and reflect the minimum values of reactance 
for each plot. The simulation results at lower frequencies (1 
kHz to 200 kHz) were found to be mainly resistive and 
possessed a different variation of values than the rest of the 
plot. The high resistance values and corresponding changes 
with diameters at lower frequencies are a result of significant 
change in the conductivity due to change in the arterial 
diameter. Due to the large conductivity of blood, the major 
change in the impedance occurs as a resistive change due to 
change in arterial dimension. Hence at lower frequencies, the 
response is dominantly resistive. The value of maximum 
reactance for each Cole plot is defined by a characteristic 
frequency (Fc) which was found to be different for three 
diameters of the artery.  

Although bone as a biological tissue does possess 
frequency dependent dielectricity, it has a fairly low and 
constant conductivity over the frequency range of interest. 
The low variability of conductance makes it a redundant 
contender for observing impedance changes with pulsating 
artery. However, it is believed to offer a significant change 
in overall resistance value while contributing negligibly to 
the impedance changes with artery diameter and frequency.  
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Fig.5: Cole plot of obtained Resistance vs Reactance for three arterial diameters 
 

This work aimed to investigate the overall impedance 
variations caused by pulsatile flow of blood through the 
radial artery along with other prominent contributing tissue 
domains. It might be a good idea to study the overall 
response with bone included in the model even though its 
electrical properties do not indicate that it introduces 
significant changes in the overall behavior in the context of 
this work. 

Although the above simulation model lacks blood flow, 
the consideration of different arterial diameters partly 
compensates for the hemodynamic effects. The choice of 
different arterial diameters complies with the characteristics 
of arterial system. It was reasonable to assume that the 
diameter changes uniformly at each wavelength flow of 
blood, in accordance with long wavelength approximation 
[33] applied to Moens-Korteweg Equation [34] yielding the 
expression: 

 

    (2) 

 
where, E is the arterial elastic modulus, h is the arterial wall 
thickness, r is the radius and ρ is the blood density. 
Considering c = f λ, the wavelength (λ) can be calculated 
using frequency (f) as (72 bpm/60) 1.2 Hz (average) [35]. In 
this case, the pulse wave velocity (c) can be considered as 8 
to 10 m/s (based on results of several works [36–38]) and the 
maximum fundamental frequency of the blood pressure 
pulse as 25 Hz [39,40], λ can be evaluated to be 32 to 40 cm 
which is significantly larger than the dimension of the model.  
Hence, each wavelength of blood can be assumed ‘longer’ 
than the proposed arterial dimensions leading to the 
consideration of blood flow induced arterial diameter 
changes. The obtained results with different diameters are 
important in the sense that they reflect the influence of 

arterial hemodynamics to the impedance values. The 
obtained variation in the set of values proves that the 
composition of tissues along with the hemodynamics serve 
as important contributors to the overall electrical response. 
The latter, particularly, has been justified by several works 
[41–48] analyzing the blood flow effects and contributions 
to the bioimpedance readings.  

The arm structure was enveloped with a radiation 
boundary and a vacuum region to mimic the prevention of 
any electromagnetic interference from an outside source. 
The trade-off between the computing complexity and model 
efficacy was optimized by selecting the mesh element sizes 
of 10 and 5 mm for outside layers and artery respectively. 
Initial simulations with finer mesh sizes produced almost 
identical results but took longer to converge to a solution.  
This work neglects the contribution of bone to the overall 
measurements. Bone is expected to offer higher resistance 
and capacitance and is predominantly piezoelectric, although 
dynamic mechanical deformation was not simulated [49].  

Also, this study is confined to the compositional 
properties of blood, fat and muscle tissues and considers 
dielectric properties to be isotropic. It neglects any dynamic 
effects, for example, that may cause non-uniform diameter 
changes along the length of the artery.  However, the study 
provides a useful insight to tissue electrical response through 
obtained impedance values over the β dispersion frequency 
range along with changes in impedance variations due to 
changes in arterial diameter. This can be related to arterial 
hemodynamics to help estimate the vessel diameter changes 
through induced impedance variations.  
 
Conclusion 
 
This simulation study aimed at evaluating the impedance 
values of a section of human forearm Ansys® HFSS was 
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used to construct and simulate a model consisting of three 
layers of tissues – fat, muscle and artery and the electrical 
response was simulated over a frequency range of 1 kHz to 
2 MHz.  

The effect of blood pulsatile flow has been mimicked 
and analyzed as the electrical response at three different 
arterial diameters. This approach provides a simulation 
perspective to analyze impedance contributions from 
different tissue layers along with blood dynamics. The 
obtained results clearly assert a good capability of the setup 
to be quite sensitive towards diameter changes. This may aid 
future works in investigating the electrical variations due to 
pulsating artery. The study highlights a basic understanding 
of the frequency dependent electrical behavior of human 
forearm tissues and presents an efficient simulation tool to 
analyze the effects and individual contributions of different 
tissues to the bioimpedance measurements.  
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