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THE INFLUENCE OF PREBUCKLING  DEFORMATIONS AND STRESSES 

ON THE BUCKLING OF PERFECT  CYLINDERS 

By Manuel Stein 

SUMMARY 

Large-deflection  theory is  used t o  compute buckling  loads of simply  sup- 
ported  ini t ia l ly   perfect   cyl inders   under   axial  compression, external  pressure,  
and  combinations  of a x i a l  compression  and in te rna l   o r   ex te rna l   p ressure .  Impor- 
t a n t  resul ts   are   obtained by taking  into  account  prebuckling  deformations and 
s t r e s ses  induced by  edge support.  For example, the  presence of these deforma- 
t i ons  and s t resses  can  reduce the  axial-compression  buckling  load of an  unpres- 
sur ized  perfect   cyl inder   to  50 percent of the  c lass ical   value.  

INTRODUCTION 

Classical   theory and  experiment a r e   i n  good agreement for  buckling of c i r -  
cular   cyl indrical   shel ls   under   uniform  external   la teral   pressure.   (See  ref .  1.) 
For  external  hydrostatic  pressure  there i s  similar agreement  between  experiment 
and theory  except f o r  t he  lower  range of curvature  parameter ( L 2 / r t  < loo), where 
L, r, and t are  the  cylinder  length,   radius,  and thickness,   respectively.  For 
a x i a l  compression, however, severe  disagreement  exists;  experiments  have shown 
that   the   actual   buckl ing  s t ress   for   high  values  of r/t i s  from 15 t o  50 percent 
of that  predicted by classical   theory.   (See ref. 2 . )  The disagreement  found i n  
hydrostat ic   pressure  tes ts  a t  low values of the  curvature  parameter i s  probably 
a l so  due t o   t h e   i n a b i l i t y  of c lass ica l   theory   to   account   for   ax ia l  compression. 
(See ref. 1.) 

Convincing  arguments  have  been made that  the  occurrence of  buckling  stresses 
lower  than  expected  for axial compression i s  due i n   p a r t   t o   i n i t i a l   i m p e r f e c t i o n s .  
For example, t he  results of large-def lect ion  analysis   ( ref .  3 )  have indicated 
that  small in i t ia l   imperfec t ions  can lead   to   l a rge   reduct ions   in   the   buckl ing  
load. However, another  potential   reason  for  this  disagreement between c l a s s i ca l  
theory and  experiment has, until   recently,   been  unexplored.  This  potential   reason 
i s  the  inconsistent  assumption made in   c lass ica l   theory   wi th   regard   to   p rebuckl ing  
and buckling edge conditions.   In  classical   theory  the  prebuckling  deflection and 
s t r e s s  components a re  assumed t o  be either  constant  or  zero.  Thus, it is implied 
t h a t   t h e  edges  of t h e   s h e l l  are free  unt i l   buckl ing  occurs;  however, during  the 
buckling  process  the  edges are assumed t o  be radial ly   res t ra ined  (s imply sup- 
ported or clamped). 



The ef fec t  of one deviation from t h e   c l a s s i c a l  edge conditions  has  already 
been invest igated  (see  refs .  4 and 5 )  for   buckl ing   in   ax ia l  compression by use of 
l inear  equations.  The edges  of t h e   s h e l l  were  allowed t o  remain free during  the 
buckling  process and the  resul t ing  buckl ing  load was less than   ha l f   the   c lass ica l  
load.  Although t h i s  result demonstrates  effectively  the  importance of t he  edge 
conditions, in  practice  the  occurrence  of  free  edges i s  rare;  the  edges of t h e  
s h e l l  are usua l ly   a t tached   to  a ring or   pressed  against   the   platens of a t e s t ing  
machine. The approach  of  references 4 and 5 i s  consis tent   in   the  sense  that   pre-  
buckling and buckling edge conditions are the  same.  However, it seems more real-  
i s t i c   t o   t a k e   t h e   o p p o s i t e  though s t i l l  consistent approach,  wherein from the  
inception  of  loading  through  buckling  the  edges of the  cyl inder   are   radial ly  
res t ra ined.  Moreover, it i s  apparent   that   such  res t ra int  must l e a d   t o  nonuniform 
prebuckling  deflections and stresses  throughout  the  cylinder,  the  importance of 
which should  be  determined.  This  approach to  cylinder  buckling  analysis  has been 
adopted in   the   p resent   inves t iga t ion .  

A cyl inder   without   ini t ia l   imperfect ions i s  considered, and large-deflection 
theory i s  used t o  determine  the  deformations and s t resses   p r ior   to   buckl ing  and t o  
determine  the  buckling  equation.  Results  are  obtained  for  buckling of simply sup- 
ported  cylinders  under  axial  compression,  external  pressure, and combinations of 
axial Compression  and in te rna l   o r   ex te rna l   p ressure .  Some re su l t s  of t h i s   i nves t i -  
gation were presented i n  reference 6. The present  paper  includes  the  results  given 
in   re fe rence  6, some addi t ional   resul ts ,  and a complete  discussion of the  analysis .  

SYMBOLS 

pressure stress coeff ic ient ,  - prL2 
Ihs* 

p la t e   s t i f fnes s ,  Et3 

Young ' s modulus 

a x i a l  stress coeff ic ient ,  P& 
D X 2  

length  of  cy1,inder 

number of s t a t ions   i n   ha l f   l eng th  

in-plane stress resu l tan ts  

number of waves in   c i rcumferent ia l   d i rec t ion  

applied axial in-plane  compressive  force  per  unit  length 

pressure 

radius of cylinder 



t thickness  of  cylinder w a l l  

functions  of X which appear  in  the  buckling  displacements UB, VB, 
and WB, respect ively 

x, Y 

displacements i n   t h e  x-, y-, and radial   d i rect ions,   respect ively 

prebuckling  displacements  (functions  of  x) 

buckling  displacements  (functions  of x and y )  

axial and circumferential   directions 

curvature  parameter, " ' i n -  r t  

EX, EY'7Xy in-plane  s t ra ins  

CL Poisson 's   ra t io  

When the  subscr ipts  x and y follow a comma, they   ind ica te   par t ia l   d i f -  
fe ren t ia t ion  of the   p r inc ipa l  symbol with  respect t o  x and y. Primes indicate  
to ta l   der iva t ives   wi th   respec t   to   x .  

mALy SIS 

In   the   l a rge-def lec t ion  Donne11 theory,   the   basic   different ia l   equat ions of 
equilibrium f o r  a cylinder are: 

Nx,x + Nxy,y = 0 7 
D$cw + - NY r - (NXw,= + Nyw,yy + 2NvwyXy) = 4 

According t o  Hooke ' s  l a w ,  

Ex Nx = 
l - P  

3 



The nonlinear  strain-displacement  relations are: 

Equations (1) t o  ( 3 )  provide 

T x y  = u,y + V,x + w,xw,d 

a complete set of  nine  equations  in  the  nine unknown 
s t ress   resu l tan ts ,   s t ra ins ,  and displacements which, together  with  boundary con- 
d i t ions ,   spec i fy   the  problem. The ends of the  cyl inder  are considered t o   s a t i s f y  
t h e  following simple  support  boundary  conditions from t h e   i n i t i a l   a p p l i c a t i o n  of 
load: 

Zero (radial) deflection: 

Zero moment : 

Constant (axial) displacement: 

Zero shear   s t ress :  

It i s  t o  be  expected  that 
is, they  are  functions o n l y  of 

prebuckling  deformations  are  axisymnetric;  that 
x and may be  obtained  directly from equations (1) 

where the  subscr ipt  A denotes  prebuckling  values, and the  primes  denote  dif- 
ferent ia t ion  with  respect   to   x .  The f i rs t  of equations ( 5 )  requi res   tha t   the  
prebuckling N& be  constant;  thus NA i s  set ,equal t o   t he   nega t ive  of t h e  
compressive  load  intensity P. The second of equations ( 5 )  together  with  the 
boundary  conditions ( 4 )  requi re   tha t  N x y ~  = 0 and VA = .O. Equations ( 2 )  and 
equations ( 3 ) ,  if  deformations are considered -as $unctions  only  of x, i den t i fy  

4 



The equation  determining  the  prebuckling  deflection is  obtained from equations ( 5 )  
as : 

Equation. (6) has   the   fo l lowing   so lu t ion   tha t   sa t i s f ies   the  boundary  conditions (4)  

WA = A 1  s i n  alx sinh a p  + A2 cos alx cosh a 9  + L ( p  + P) 
2 

Et ( 7 )  

where 

(a22 - a12)cos a1L cosh - a2L - 2ala2 s i n  - alL sinh - a21 2 2 

sinh2 * + cos2 $ cosh2 - 2 2 

(a22 - a12)sin alL sinh - a2L + 2a1a2 cos - alL a21 
A2 = - c ( p  + 2 2 COSh - 

P) 
2 

a L  a L  
sinh2 2 + cos2 1 cosh2 

2 2 2 

With WA known, the  axisymmetric  prebuckling axial displacement UA can  be 
found  from  equations  (2) and ( 3 ) .  A s o l u t i o n   t o   t h e  axisymmetric  problem was 
f i rs t  obtained in   re fe rence  7 and i s  reported  in   reference 8. 

To the  prebuckling  displacements are added the   in f in i tes imal  nonaxisymmetric 
displacements UB, VB, and wB that  occur at buckling: 

u = ~ A ( x )  + 

v = v ~ ( x , Y )  

w = wA(x)  + wB(x,Y) 

5 



The displacements UB, vB, and WB must also  satisfy  simple-support  boundary 
conditions  consistent  with  the  axisy-metric  prebuckling  solution. The following 
buckling  equations may now be obtained by substi tuting  equations (8) in to  equa- 
t i ons  (1) t o  ( 3 ) ,  subt rac t ing   ou t   ident i t ies  (3) re lat ing  subscr ipt  A deforma- 
t ions,  and then  neglecting terms nonlinear  with  respect  to  subscript  B 
deformations : 

U + -  1 - P  
2 

+ -  1- P I 

B, = 2 wA wB,YY 

where 

The conditions  of  continuity  around the cy l inder   a re   sa t i s f ied  i f  

uB = U(x)sin 

VB = v(x)cos - "i 
wB = W(x)sin - ;yJ 

where n, t h e  number of waves around tbe  cyl inder ,  i s  an  integer.  Equations (9)  
may  now be converted to   the  fol lowing  ordinary  different ia l   equat ions  re la t ing U, 
V, and W which have  complicated  variable  coefficients and  which are not  solved 
here  but  are  included on ly  for  the  sake  of  completeness: 

6 
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where 
- 
NxB = 1 - p2 

Instead of  solving  these  equations  directly,  an  equivalent  energy method was 
used. The potential  energy IT of the  loaded  cylinder i s  

When t h e   f i r s t   v a r i a t i o n  of t h i s   p o t e n t i a l  energy  expression, i n  which  equa- 
t i ons  (3) are   used  for   the  def ini t ion of the   s t ra ins ,  i s  taken  with  respect  to u, 
v, and w and set  equal  to  zero,  equations (1) in  terms of u, v, and w r e su l t .  

Noting t h a t  -P = 
r 

Et W A ' ~  + E wA), equations ( 3 )  f o r   t h e   s t r a i n s   i n  
1 -  P 

terms  of t he  u, v, and w of equations (8) are 

When equations (13) are   used  for   the  def ini t ion of t h e   s t r a i n s   i n   t h e  energy 
expression (12), y dependence  can  be eliminated if upon subs t i tu t ion  from  equa- 
t i ons  (10) the  y integrat ion i s  performed. It i s  also  convenient a t  th i s   po in t  
t o  drop all terms of higher  than  second  degree i n  U, V, and W ( so  t h a t   t h e  
result ing  expression  corresponds  to  eqs.  (11) ) . Thus, the  potential-energy func- 
t i o n  which is  t o  be  minimized i s  

7 



When the  der ivat ives   occurr ing  in   the  expression  for  II are  replaced by 
f in i te   d i f fe rences  and the  integrat ions  are   replaced by f i n i t e  sums, t h e  minimiza- 
t i on   p rocess   l eads   d i r ec t ly   t o  a s e t  of  simultaneous  linear  algebraic  equations 
f o r  t h e  U, V, and W values at discrete   points   a long  the  length of the  cyl inder  
The s ta t ions  a long  the  length of the  cylinder  are  taken  to  be  equally  spaced and 
numbered from m = 0 at  the   cen te r   t o  m = M a t  the  end.  There a re   a l so  sta- 
t ions  corresponding  to m = -1 and m = M + 1. The following  difference  approxi- 
mations f o r   t h e  first and second derivatives  are  used: 

where m i nd ica t e s   t he   s t a t ion  and E i s  the  dis tance between s ta t ions.   Inte-  
g ra l s   a r e  approximated by f i n i t e  sums according to   the   t rapezoida l   ru le .  The 
quant i t ies  U and W are evaluated a t  t h e   f u l l   s t a t i o n s ;  V i s  evaluated a t  the  
ha l f   s ta t ions .  When these  replacements  are  carried  out,  equation (14)  becomes 

8 



where €im0 and 6rn are  Kronecker de l t a s  which have the  value  zero if the  sub- 
sc r ip t s   d i f f e r   i n   va lue  or have the  value  unity i f  the  subscr ipts   are   the same. 

The def lect ions  are  assumed t o  be  symnetric  about  the  center of the  cylinder;  
t he re fo re ,   a t  x = 0 the  geometric  conditions  are U = V = W '  = 0 or 

UO = 0 

A t  x = - = ME, the  geometric  conditions  that  correspond t o  equations (4) are L 
2 

U = V ' = W = O  or 

9 



VM 1 = v  
" 

2 M+L) 2 

According t o   t h e  minimum potential-energy method f o r  t h i s  case,   the  fol-  
lowing  equations  subject  to  the  foregoing  conditions  (eqs.  (16) and (17))  must 
be s a t i s f i e d  

( m  = 1, 2, . . ., M - 
1? 

an 
av 1 

= o  ( m  = 0, 1, . . ., M - 1) 
m + -  

2 

an - z o  ( m = 0 ,  1, . . ., M - 1 ,  M + l )  awrn J 
The (M + 1) equation of t h e  last set   provides  for  automatic  satisfaction of t he  

natural  boundary condition:  zero moment a t  x = -. Thus, L 
2 

and wM+1 can be eliminated as one  of t h e  unknowns to   l eave  3M - 1 unknowns 

The equations  obtained  are homogeneous in the  3M - 1 unknowns, so t h a t   e i t h e r  
a l l  the  unknowns are zero  or  the  following  determinant  of  the  matrix  of  coeffi- 
c ients  i s  zero 

I I 

*11 I A12 I A13 
I I 

I I 
" " " " " " - "  

" " " " -  
I - 1 -  - - - - 

This  determinant i s  symmetric  about the  principal  diagonal ( A l l ,   A 2 2 ,  and A33 a re  
symmetric  submatrices; A21,  A31, and A 3 2  are the  transposes of A12,  A13, and A23,  

respectively),  and the  submatrices  have the following sets of numbers which are 
of  order  indicated: 

10 



-1 2 + 3 &  .(*) -1 0 . . . 
A 1 1  = 

I :  . . .  
. . .  

0 . . .  
- 

0 

0 

0 

0 -1 

- 
( M - ~ ) x ( M - ~ )  

- 
l+p nL l+p nL 

- -" " 

2 %  2 2 M r  0 . . .  0 

0 -%EL anL 0 
2 m  2 2 M r  

. . .  0 

A12 = 

0 . . .  l+p nL l+p nL 0 " 

2 2 "  2 2 M r  
0 

0 . . .  0 " 
1+p rL l+p a 

- 2 %   2 m  - 
(M-1)XM 

0 . . .  

0 . . .  

0 

0 

. . .  . 0 



4 3  = 

0 . .  

. . .  

0 

0 

12 



I 

where 

+ 
3z2 2Mr 



( m  = 2, 3, . . ., M - 2) 

a M - l , M - l  = kA'y4i ')]2 + F A ' (  v)] " - 
6DZ2 

The argument  of WA and i t s  derivatives  in  the  previous  expressions i s  i n  
the  dimensionless form x/L (instead  of x). 

When the  number of waves around the  cyl inder  nL/nr, the  number o f  s t a t ions  
i n  a half   length M, the  cylinder of i n t e r e s t  Z, the   internal   pressure prL2/DJr , 
and the  Poisson 's   ra t io  p for t he  material (p = l/3 in   the   p resent   ca lcu la t ion)  
a re  chosen, t he  requirement that  the  determinant  vanishes  provides  the  desired 

eigenvalue (5) for  buckling. The correct  choices of n and M are  discussed 

in   the  fol lowing  sect ion.  

2 

LIMITATIONS OF TEE  CALCULATIONS 

If accurate  results  are  to  be  obtained,  the  value of M must be la rge  enough 
t o  provide  about  four  stations  for  each  prebuckling  (inward or outward)  wrinkle. 
In   the   p resent   ca lcu la t ion  a t  l e a s t  four and usua l ly   f ive  or more s ta t ions  were 
provided  per wrinkle. For Z > 1,000, t h i s   c r i t e r i o n   l e d  t o  equations  involving 
determinants  that were too  large for economical application of the  IBM 7090 com- 
puting machine used. Hence, calculations have  been  limited t o  Z 6 1,000. For 
the   presented  resul ts :  M = 17 f o r  Z 200, M = 34 f o r  Z = 500, and M = 50 
f o r  Z = 1,000. 

The proper  value of n i s  the  integral   value which yields  the  lowest 
buckling  load,  with  the  physical  restriction  that n cannot  be less than 2 
(si.nce n = 1 is  simple  translation and n = 0 i s  an  axisymmetric  form). L i t t l e  
accuracy i s  lo s t ,  however, i f  n i s  considered t o  be  continuously  variable  for 
n > 2. It was found t h a t  n = 2 gave the  condi t ion  for   instabi l i ty   for   a lmost  
every  case  except  for  the  range  of  higher  external  pressures. The d i f f e r e n t i a l  
equations  of  equilibrium  (eqs. (1) ) are  accurate  for  the  case n = 2 only i f  a t  
least   three  wrinkles   are   present   in   every  par t  of a cylinder  length  equal  to  the 

1 4  



radius so that  the  deformations  are  extensional.   (See ref. 9. ) For t h i s  reason 
s m a l l  values  of  the  curvature'parameter ( Z  < 5 0 )  could  not  be  treated  for axial 
compression  and f o r  combinations  of axial compression  and internal   pressure.  

RESULTS 

I n   f i g u r e s  1 t o  4 interaction  curves are presented  for  values of t h e  curva- 
ture  parameter Z = 50, 100, 200, and 500. Each point on the  curve  presents a 
combination of axial compression  and lateral pressure  that  causes  buckling. When 
the  curves depend on r/t, they  correspond t o  n = 2; elsewhere, t he   r e su l t s  were 
given by n > 2 with n assumed continuously  variable. A t  t he  end p o i n t s   t o  
t h e  l e f t  the  curves  give  the  buckling  pressures  for  cylinders  under  external 
la teral  pressure  alonk. The hydrostatic  pressure  for  buckling i s  given by the  
point on the  curve marked by a cross. When the  pressure i s  zero,   note  that   the 
axial buckling  stress i s  50 percent   or   less  of the  c lass ical   value.  With in t e rna l  
pressure  present,   the  axial   stress  required  for  buckling  increases  unti l  it 
approaches the   c lass ica l   va lue .   S t ress   coef f ic ien ts   for   ex te rna l   l a te ra l   p res -  
sure  alone,  external  hydrostatic  pressure  alone, and ax ia l  compression  alone are 
presented  in   f igures  5 ,  6, and 7, respect ively,   for  a wide range  of  curvature 
parameter Z (within  the  l imitat ions  specif ied  in   the  previous  sect ion) .  

DISCUSSION 

Experimental  results  are  availab1e.i.n  reference 10 for  cylinders  with com- 
binations of internal   pressure and axial compression and w i t h  curvature  parameters 
about  equal to   those   p resented   in   f igures  1 and 4. The experimentally  obtained 
buckling  stress  coefficients  are  plotted  along  with  the  theoretical   curves  in 
f igures  1 and 4. A comparison  of t he   r e su l t s  shows that,  although  the  experi- 
mental  cylinders were ring supported and the  theory w a s  f o r  simply  supported 
cylinders,  there i s  much be t te r   quant i ta t ive  agreement  of  experiment  with  present 
theory  than  with  classical   theory.  The evident  disagreement in   the  shapes of t he  
theo re t i ca l  and experimental  interaction  curves  has  not  been  explained. 

It should  be  noted  that  the boundary conditions on inplane  buckling  displace- 

ments  of the  present  theory U ~ , ~ ( % , Y )  = V ~ , ~ ( ~ & , Y )  = 0 are   d i f fe ren t  from the  

corresponding  boundary  conditions  of  the  classical  theory 
uB,.(k$,y) = vB(+,y) = 0. In   c lass ica l   theory   essent ia l ly   the  same results are 

obtained  for  both  sets of inplane boundary condi t ions  for   cyl inders   in  axial com- 
pression and internal  pressure.   Recently  Fischer  obtained results on e s sen t i a l ly  
t h e  same bas is  as t h a t  of the  present   paper   except   that   he   sat isf ied  the  c lass ical  
inplane  conditions.  (See  ref. 11. ) He obtained  markedly  different  results - 
much smaller changes  from the   c lass ica l   theory  - which indicates  that   the  buckling 
load of a cy l inder   in  axial compression i s  qu i t e   s ens i t i ve   t o   i np lane  boundary 
conditions. 
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Figure 1.- Theoret ical  and  experimental   results  for  buckling  of a cylinder  of low Z under com- 
binat ions of axial compression  and in t e rna l   p re s su re .  Crosses ind ica te   hydros ta t ic   ex te rna l  
pressure  for   buckl ing.  
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Figure 2.- Theoret ical   resul ts   for   buckl ing  of  a cylinder  of Z = 100 under  combinations  of  axial 
compression  and in te rna l   p ressure .   Crosses   ind ica te   hydros ta t ic   ex te rna l   p ressure   for   buckl ing .  
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binations  of  axial   compression  and  internal  pressure.   Crosses  indicate  hydrostatic  external 
pressure  for   buckl ing.  



In  figure 5 the  end  points  of  the 103 - 
curves  of  figures 1 to 4, as  well  as 

against  the  curvature  parameter Z, 
external  lateral  pressure,  are  plotted 
some  additional  calculated  results  for 

- Present theory 

Comparison  of  the  theoretical  results 
o d '  cal  curve  and  with  experimental  data. 

- together  with  the  corresponding  classi- IO2 

this  stiffening  effect  disappears.  Clas- 
ues  of Z. In  the  range of lower Z 

"- ders  by  about 25 percent  at  higher  val- 
conditions  serve  to  stiffen  the  cylin- 
deflections  and  the  different  boundary 
shows  that  the  prebuckling  stresses  and 

ment  than  the  present  theory. 10 IO 

sical  theory  agrees  better  with  experi- 

"_ Class~cal  theory 

0 Experlmenl  (See re f  I1 

P 9' 
N N  od 

- //'/ 1- /' 

I .  I 
'"04 lo3 

z: 2- 
figure 6 results of the  present Figure 5.- Theoret ical  and  experimental  results 

theory  for  external  hydrostatic  pressure 
are  plotted  against  the  curvature  param- 
eter Z, together  with  the  corresponding 1 0 3 -  

classical  curve  and  with  experiment. 
Comparison of the  theoretical  results 
shows  that  prebuckling  stresses  and 
deformations  and  the  different  inplane 
boundary  conditions  serve  to  stiffen  the I O 2 -  

values  of Z. In  the  range  of  lower Z i l A  
cylinder  by  about 25 percent  for  higher 

O a' 

prebuckling  stresses  and  deformations 
this  stiffening  effect  disappears  and u. 

whereas  the  classical  theory  agrees  with 
80 percent  of  the  classical  value.  Thus, 
serve  to  weaken  the  cylinder  to  about 

experiment  in  the  range  of  higher  values 

lower  values  of Z, the  present  results 
I I I I of Z and  disagrees  in  the  range  of I 

buckling  pressures  roughly 25 percent for buckling of cyl inders   under   hydrostat ic  
high  in  both  regions. pressure. 

f o r  buckling of cylinders  under lateral  
pressure.  

- Present  theory 
"- C l o s s ~ c a l  theory 
0 Experlment (See  ref I1 

/ o  

N N  
* o x  -/ +% 

&?P 

10 

-lo oo 

0 

10 I02 IO lo4 

Z =  $m 
the trend Of experiment and yield Figure 6.- Theoret ical  and experimental results 

For axial  compression  of  unpressurized  cylinders  the  present  results  are 
more  than 50 percent  below  the  classical  values.  (See  fig. 7. ) Thus,  the  axial 
buckling  load  is  sensitive  to  the  prebuckling  deformations  and  stresses  resulting 
from  restraint  of  the  edges. The value  of  the  buckling  load  from  the  present 
theory  is  dependent  on  radius-thickness  ratio,  whereas  in  the  classical  theory  it 
is  not.  The  dependence  on  radius-thickness  ratio  occurs  when  the  critical  wave 
form  is  determined  to  have  two  waves  in  the  circumferential  direction,  and  it 
can  be  seen  from  figure 7 that  the  empirical  curves  of  reference 2 - and  there- 
fore  experimental  results - exhibit  stronger  dependence  on  radius-thickness 
ratio.  Agreement  between  theoretical  and  empirical  curves  is  much  better  with 
the  present  theory  than  with  classical  theory,  especially for low  radius- 
thickness  ratios. 
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Figure 7.- Theoretical and empirical results for 
buckling of cylinders in axial compression. 

Neither  the  results  of  the  present 
theory  nor  the  results  of  classical 
theory  for  buckling  in  axial  compression 
indicate  that  the  buckle  wave  form  is  of 
the  diamond  pattern  as  indicated  by 
buckled  experimental  cylinders.  The 
results  of  present  theory,  which  specify 
two  waves  in  the  circumferential  direc- 
tion  at  buckling,  deviate  even  farther 
from  the  experimental  buckled  wave  form 
than  the  results  of  classical  theory. 
However,  previous  work  has  shown  (see 
ref. 12) that  the  equilibrium  configura- 
tion  of  a  structure  corresponding  to  the 
mode  at  buckling  need  not  be  stable 
under  many  conditions  of  loading. If 
the  buckling  mode  is  not  stable,  it 
might  not  necessarily  resemble  the  final 
shape  of  a  buckled  experimental  structure. 

CONCLUDING €ENARKS 

The  present  paper  has  focused  attention on a serious  shortcoming  of  classical 
buckling  theory. In the  interest  of  avoiding  complicated  prebuckling  deformations 
and  stresses,  the  classical  approach  is  to  relax  completely  the  supports  in  the 
prebuckling  range  and  thus  to  assume  that  the  prebuckling  stresses  are  zero or 
constant  and  that  the  prebuckling  deformations  are  zero,  constant,  or  linear. 
Prebuckling  deformations  and  stresses  due  to  edge  support  have  been  ignored  also 
in  studies  of  effects  of  initial  imperfections.  In  every  practical  cylindrical 
shell  structure,  however,  some  measure  of  radial  support  is  present  from  the 
beginning  of  loading so that,  prior  to  buckling,  complicated  axisymmetric  deforma- 
tions  and  stresses  are  present  to  modify  the  load-shortening  behavior  of  the  cyl- 
inder  and  to  influence  its  buckling  load.  This  influence  is  especially  notable 
for cylinders  in  axial  compression  and  for  short  cylinders  under  external  hydro- 
static  pressure,  where  it  accounts  for a large  part  of  the  disagreement  between 
classical  theory  and  experiment. 

Further  work  needed in this  field  includes  studies  of  cylinders  with  clamped 
edges  and  with  flexible  rings  at  the  edges. In order  to  study  the  behavior of 
longer  cylinders  (cylinders of larger Z) in  axial  compression,  it  would  also  be 
desirable  to  analyze  the  semi-infinite  cylinder.  In  addition,  in  future  cylinder 
studies,  it  would be useful  to  extend  this  work by using  a  more  exact  theory  for 
buckling  into  two  circumferential  waves for less  than  three  wrinkles in  the  axial 
direction. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Langley  Station,  Hampton, Va., August 20, 1963. 
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