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THE MECHANICS OF DEFORMATION AND FRACTURE

We are engaged in an exploration of the thermal effects which
inevitably accompany the deformation of solids. These effects have
been noted often and they are sometimes conspicﬁous. However,
earlier studies have tended to neglect the non-linearities which
arise because the deformation processes are likely to be both

.exothermic and temperature sensitive., Under these conditions
regenerative feedback (a chain reaction effect) occurs which en-
hances the heating and can lead to instability.

Our strategy has been the analysis of the mechanical behavior
of highly idealized models of materials with temperature dependent
properties. The results of the analyses are then compared with
observed phenomena. The idealizations are selected so as to
isolate the purely thermal effects in the multifaceted deformation
process. Consequently, much that is known about the detailed
physics of solids is neglected.in the analysis. On the other hand
it will be seen that the results are altogether complementary to

'the modern atomic scale theories and descriptions of the process.

The behavior of the models shows size effects, time effects, rate
of loading effects, and rate of strain effects which are similar
to those observed experimentally. Furthermore, the introduction

of the temperature dependent properties into the continuum theory



provides a bridge to the atomic scale theories through the concept
of the energy of activation for the atomic scale processes.

The body of this report consists of three separate reports
which are being proposed for presentation and publication. The
titles and other information about the reports are listed below.

"Apparent Departures from Newtonian Behavior in Liquids

. Caused by Viscous Heating', Proposed for presentation, 35-h

Annual Meeting, Society of Rheology, Pittsburgh, Pa., Oct. 1964.

"Thermal Effects in Model Viscoelastic Solids,'" Proposed for
the 6th Annual Structures and Materials Conference, AIAA,
Palm Springs, Cal., April, 1965.

[ QV‘ZN"I' S
"Combined Thermal and Geometric Effects in Viscous Selids,"

Will be sent to the American Society of Mechanical Engineers.
The reports are attached and separated from one another by

colored spacer pages.
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ABSTRACT b 17

As part of a general study of the flow and
deformation of materials with temperature dependent
properties, ideal Couette flow of sewme incompressi-
ble Newtonian liquids is considered here. Equations
for the time dependent temperature and velocity dis-
tributions in the liquid are solved, numerically, for
a variety of stress programs and thermal boundary con=-
ditions. The results are compared with closed form
analytical solutions that can be obtained in special
cases. Instabilities due to regenerative thermal
feedback are shown to severely limit the range of shear
rates or shear stresses for which steady fiows are pos-
sible. A new instability mode for the flow with con-
stant average velocity gradient 1s described which may
be connected with the effectiveness of lubricants.
Possible relationships of the heating effect to the sta-
bility of laminar flows and cavitation in liquids are
mentioned, It appears that some apparently non-Newtonlan
flows can be described more simply when the deviation
1s attributed to heating than when 1t 1s attributed to
intrinsic, non-Newtonlan behavior. A thermistor circuit

analog 1s demonstrated as an aild to the solution of the

Couette flow equations with thermal feedback. (};LLZZC4Q/
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temperature ccefficient of the viscosity of the
working liquid.

the temperature independent, volumetric heat
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the maximum value V can take on for steady

flow between isothermal walls,

the temperature dependent local viscosity

the reduced space variable

the current local shear stress

the value of O in the constant stress case,

or, the value of ¢ at 2=\ 1n the constant
rate of stress lncrease case, or the 1initial
stress in the constant boundary veloclty case.
the stress at which the temperature becomes
unbounded in the adiabatic, constant rate of
stress increase case.

the reduced time

the reduced time at which the temperature becomes
unbounded in the adliabatic, constant stress case,
or, the reduced time at which the stress decays
to one half its 1nitial value in the constant
rate of boundary movement case,

the reduced time at which the temperature be-
comes unbounded in the adlabatic, constant

rate of stress lncrease case.

the reduced temperature

the reduced temperature on the center plane of
the slab of 1liquid.

the steady value of $. which cannot exceed 1.187

in the ideal isothermal wall case.
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APPARENT DEPARTURES FROM NEWTONIAN BEHAVICR
IN LIQUIDS CAUSED BY VISCOUS HEATING

INTRODUCTION

The laws of thermodynamics teach that the flow
of fluilds is never exactly isothermal. On the other
hand, rheology, the science of deformation and fiow,
as defined by Reiner (1), specifically excludes pro-
cesses which are not isothermal., Orthodox rheologlsis
have made this compromise with reality in order to
simplify the mathematical descripiion of the pheno-
mena with which they are concerned, For this they
sacrifice completeness in the phenomenological de=-
scription of flows and lose some contact with the
molecular scale detaills of the processes. Furthermore,
gsome complicated viscosity laws and arbitrary yield
conditions must often be invented to compensate for
the inadequacies of their model.

Modern developments in mathematical technigque
and especlally devices for computatlion have ree-
moved some of the incentive for the preservation of
mathematical simplicity. It is in this context that a
study of the "rheology" of materials with tempersture
dependent properties has been undertaken, When the
model situations are carefully selected, it turne out
that the analrszes ars i Pomeidenla, and hhner provide

[ - 1 T, « omg v PR £ =y <,
some now Vievs of tha rrocepss o flaow,
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Two earlier reports were concerned with the tenip-
eratures generated during ideal viscometric experiments
involving Couette (2) and Poisuelle floﬁ (3) at con-
stant stress, and at constant pressure gradient respec-
tively. Criteria were establlished for significant
heating which showed that many experiments of practical
and theoretical interest, which have traditionally en-
gaged the attention of rheologists, are far from iso-
thermal. In these cases attention was drawn to time
and stress dependencles of the apparent viscosities of
Newtonian liquids which are due to the effects of heat-
ing.

Once these heating effects are acknowledged, more
accurate descriptions of flow processes and improved
contact wilth molecular scale events become possilble.
Hopefully, some new understanding of the stability of
laminar flow and the occurrence of cavitation in liquilds
will also be developed. The existénce of temperature

gradients invites convectlve circulations among stream-
lines and produces distortions of the velocity profiles,
elther or both of which could influence the transition
to turbulence. The connection with cavitation might

be related to the strong dependence of vapor pressures

on temperature.
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The general question of temperature changes in
viscometric experiments has had attention earlier, and
many citations are given in references 2 and 3. A re-
cent book on viscometry (4) also reviews earlier work
on heating in the flow of liquids. However, the material
introduced in references 2 and 3 and elaborated on in this
report shows that the book discussion does not take into
account the existence of a rather limited range of flow
rate and temperature in which steady stateé of flow
are possible. It will be shown here that outside of these
ranges an instability mode can appear in liquids;, in
which the velocity gradient 1s enhanced in the center
of the flow and reduced near the boundaries. Thils insta-
bility provides a mechanigm for stress reduction in
bearings. '

Among the distinctive properties of this insta-
bility is the fact that when 1t occurs, the temperature
in the center of the flow increases when the boundaries
are cooled! Similar arguments applied to the flow of
gases, which become more viscous when heated, would be
expected to lead to velocity gradient enhancement at
the boundaries and thus might be related to boundary

layer formation.
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This new type of instability arising in the
constant boundary veloclity case is related to, but
distingulshable from, the thermal instabllity described
in reference 2 which arises in the constant stress case.
It is an 1instability of the latter type which also
appears 1in the constant rate of stress increase case
described below,

In this continuing study of thermal effects in de-
formation and flow, the present report extends the
treatment of the Couette flow problem, A range of stress
proggams and more general thermal boundary conditions
are consldered. In addition, computed values of the
apparent viscositlies are presented as well as the local
instantaneous values of the central temperatures. While
these results have intrinsic practical and theoretical
interest, they also serve as a basis for the treatment
of more complex models which may include elastic as
well as viscous elements and in which geometric changes

may accompany the deformations.




DISCUSSION OF ANALYSIS

The strategy of the analysis including viscous
heating, and applied to the Couette flow problem, was
given in reference 2,and consists of the simultaneous
solution of approximate energy and force equations
for the instantaneous temperature and velocity distri-

butions in the slab of fluid as functions of the stress

history.
The force equation
(1) T =mgh
in which J 1s the local shearing stress; M is

lecal temperature dependent viscosity and %%‘-' is the

local velocity gradient, requires that the behavior of

the 1liquid he everywhere Newtonian, The temperature
dependence of the viscosity for liquids is assumed to

be given by —a (T=-Te)

(2) N = Mo e

in which the local viscosity is a function of T , the
local temperature. and 'Qg » the viscosity at the reference
temperature Ty, The temperature coefficient of viscosity,
2, 18 related to the molar energy of activatiqn for the

flow process, Ep, by the approximate relé’cionship
(3) o = Ea
R To

in which R 1s the molar value of Boltzmann's constant.
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The approximste energy equation

4 du — }-r Bl-r
(4) o ol X - K = Tyl

is composed of three terms., The first is the local
instantaneous work rate, or power input, which is the
product of the local stress and the local velo-
clty gradient across the slab, The secend is the
local energy storage rate uhich is the product of the
volumetric heat capacity, C , and the local rate of
temperature rise, %1; e The third term 1s the rate

of thermal energy loss from the volume element under
consideration., It is the product of the thermal con-
ductivity, k, and the second derivative of the tempera-
ture with respect to distance across the slab. The
instantaneous stress is assumed to be uniform across
the slab. This, in effect, neglects accelerations in
the fluid. The heat capaclity and thermal conductivity
of the fluid are assumed to be independent of tempera-
ture, This assumption is acceptable for viscous liquids,
where the temperatﬁre dependence of the viscosity is
very much stronger than the temperature dependence of
heat capacity and conductivity. For gases, a different
viscosity temperature relationship is required, and the
Prandtl number, which relates viscosity 10 thermal con-

ductivity, can be aszumed to be constant.
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Combining equations 1, 2, and 4 leads to a dif-
ferential equation relating the local instantaneous
temperature to the values of the space and time varia-
bles y and t for specified thermal boundary conditions
and stress programs.

LS (T‘To) LY
(5) Ll S R N Yol
T =<y T3P

Phe substitution of the non-dimensional variables

6 -
(6) ¢==a.(1‘-‘ro)., 'V:ﬁ-;_t ) g.__‘%’_.

in which { 1s the thickmess of the slab of fluid leads
to the equation

U ) ® oY
(1) Y(g) < =32 -8
in which CL‘C“'QP
(8) Y = 2

k M

The physical significance of the dimenslonless

quantity or similarity criterion {j is developed in
reference 2.
In general, equation 7 is analytically intractable,
and numerical solutions are required. However, speclal
solutions for the adiabatic cases, l;% = 0,
and for the steady cases, %% =0 ,
stress programs and thermal boundary conditions can be

for particular

obtained in closed form., These are plotted together

with the numerical solutions in the figures below.




In all the numerical computations, the thermal
boundary conditlions are regulated by encasing the slab
of working fluld between two slabs of insulation, each
having one third the thickness of the working material,
The insulating slabs, the outer boundaries of which are
held at the initial temperature, have the same volumetric
heat capaclity as the fluld but <their thermal conductivity
relative to the fluid 1s introduced as a parameter kj.
When k3 is high,the boundaries of the fluid are nearly
isothermal, When k; 13 low,the boundaries of the fluid
are nearly adiabgtic, Many cases appear in which the
influence of changes in the thermal boundary conditions
on the responses of the fluid overrides the influence

of changes in stress.




THE CONSTANT STRESS CASE

y
The responses of a large slab of liquid subjected

to a constant plane shearing stress were discussed in
reference 2, and all of the details need not be repeated
here. Equation 7 is spplicable with g— =1, The
essential feature of this case 1s that as the fluid
flows, 1t becomes hotter, This increases the flow rate,
which in turn increases the heating rate. If no heat
1s removed, the temperature becomes unbounded in the
finite time

kme  _
=i T

If heat 1s removed at the boundaries of the slab, steady

(9)

states can develop if the rate of heat generation does
not exceed the rate of heat removal. The condition for
the exlstence of steady states depends on the value of
the criterion 45 and the thermal boundary conditions
described by the parameter Ky

Numerical solutions for the time dependent cen-
tral plane temperatures for a range of constant stresses,

gﬂ » and thermal boundary conditions are shown in
f‘J

figure 1 in which the time scale is BY¥ op rY; .
©
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Figure 2 shows the corresponding time dependent, apparent
fluidities (reciprocal viscosities)., Notice in both of
thegse figures that curve number 1 lies above curve num-
ber 2 even though the stress level is higher for curve

2. This is an example of the effect of thermal boundary
conditlions overriding the effect of stress, This suggests
thagviscometers made of different materials, say glass

or plastic as compared with metal, could give somewhat
different results,

Curves 1 and 2 a}so exemplify the development of
steady states. The magnitude of the steady apparent vis-
coslity, however, is seen to be strongly dependent on the
stress and thermal boundary conditions, Effeects of this
type are often observed in creep experiments (7).

Por steady flow at constant stress, equation 7 re-

duces to ¥ b
¢ = - T
(10) % 2 P g ' b

which has been solved in closed form for the case of
isothermal boundaries (9). It is shown that steady

flow 1s not possible when the reduced temperature on

the central plane, ¢. , exceeds 1.187. This reduced
steady temperature is related to the reduced stress )
in the manner shown in figure 3, deriyable from reference

9., The magimum value of‘fa is 3.52.
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THE CONSTANT RATE OF STRESS INCREASE CASE

If the plane shearing stress increases linearly
with time, o = g, 7 s equation 7 takes the
form‘

ab _ 3 _ Y%
(11) Yare’ =3 YE-

Here, no steady states are possible because the heat-
ing rate constantly increases. If no heat is removed,

the energy equation becomes

b d ¢
12 * = —
which can be integrated to gilve
3 -4
4 = |- 2

t

(13) -15“

and 1t may be seen that the temperature becomes un-

bounded when

3\
(14) T =T =(Td’)
‘Notice that the adiabatic stress level at this time 1su
given by
— v __[3ae kMo \'3
(25) Too = To T, -(-—————-;——an )




That is, the experiment 1s terminated by thermal
catastrophe at a stress which lincreases as the cube
root of the loading rate. If the onset of thermal
instabllity 1is viewed as a yleld. ©process, this
result is in general agreement with many rheological
experiments.

The detalled numerical solutions of equation 11
for the reduced temperature on the central plane of
the slab of liquid are shown in figure 4. Notice,
again, that the effect of thermal boundary conditions
can override the effects of stress. PFigure 5 shows
the inverse of the apparent viscoslity as a function
of time, The time scale 1in figure 5, as well as in
figure 4 1s "Qj‘l; Y or 'Y/’Y.'., . Thermistor
analog scolutions of equation 11 are discussed in a

later section.




- 13 -

THE CONSTANT RATE OF BOUNDARY MOVEMENT CASE

If the average reduced shear rate, V, in the slab
of liquid is held constant, the instantaneous value of

the stress is defined by the equations
]

\
d
ae) vV ={ x4t =22 [ =tag

9 (4

Equation 7 then takes the form

S N SR S
U P T N

‘g
since — = Mo\ _ o
TPt T (etat

This case is different from the constant stress
case because as the process goes on and the liquid
becomes hotter, the stress decreases. Thus the rate
of heat input decreases.

If no heat is removed, the temperature in the slab
is independent of f , and the adlabatic energy equation is

) Mo t=22

A

Separating the variables and integrating leads to
A $ — ¢
(19) v = 2 (\Q. —D = ¥, (\Q —\3

The instantaneous adiabatlc stress 1s then glven by

- \ X

(20) & =7 Ve =9V - = =
X i
\ =+ ~, \4r‘r”



- 14 -

HEere T, is not an adiabatic catastrophe time but
rather the time required for the atress to decay to
one half its initial value. Notice, however, that
the adiabatic temperature can increase to any value
17 the experiment is run long enough., The decay of
stress with deformation in this case, which can be
very abrupt if the shear rate 1s high, can be asso-
clated with the rheological phenomenon of yield and
possibly with fracture,

If heat 1s removed from the boundaries of the
fluid which 1s subjected to a constant average shear
rate, steady states can develop. These steady states,

described by solutions of

2 ¥
(21) ‘Hig‘¢¢d§]\- = S€- )

must be identical with the steady states developed in

the constant stress case and subject to the same limi-

tations of ¢ and stress., For the case of ideal isothermal

boundaries, these limitations are exhibited in figure
3. This is the rather important point that is not

mentioned in reference 4,
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To obtain closed form solutions for the steady
state, isothermal wall, constant boundary velocity

case we begin with the energy equation (ef equation 4).
N
o dw  _ ¥ 9

C O vl
integrating once we obtain
a6 (N — 996
(23) ~ -"‘*’) = T
k ( 7 al’*
Since %:O for kL:-\é-— .

Now, if 23 is combined with equations 1 and 2

using 6, it becomes

(24) ?.’.ﬂ.".(l—u\———-j‘“’ = o%d¢
k % %

which can be Integrated again to give

(25) qm (¥ u j = <! —

since ¢ =0 when W= 0O,

If the conditions on the central plane & = &

and W = %é- are now substituted into 25, an equa-

tion similar to that in reference 4 is obtained.

A 'Io V Q’c \
. IS == & — .
(26) e % -

This equation is compatible with those derived
for the steady state, isothermal wall, constant stress

case except that the range of its applicability is not
defined.
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When the requirement that ¢$_. & 1.187 generated
for the constant stress case is applied, an upper limit
on V for steady flow between isothermal walls appears

om 9 Yo Y
(27) \IM\ =[(‘e— ‘)( \k — 4‘17(;‘%33 X

aﬂtﬁ

A typical value of the thermal conductivity of
organic 1iquids is 1.6 X 103 (ergs/sec em?2) (°C/cm).
When the initial viscosity is one poise, a typical
value of a 1s 0,08 °C~1, It follows that the maximum
allowable boundary yelocity for steady flow would be

(59)()

This critical value of V, decreases as the initial

. 3 \Va
(28) V. = 417 ‘-“-—’-“—"—-) = 600 tmfy

viscosity increases. The point is that measurements
made in the middle ranges with many commercial vis-
cometers are outside of the range of steady flow. Notice
that below this velocity, temperature effects are not
necessarlly negligible, For example, close to this value
of Vy, the,afparent, viscosity differs from %, by the
factor f -Q.‘als = 2,27 .

Q
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Returning to the main thread of the discussion,
numerical solutions of equation 17 for the tempera-
ture on the center plane are presented in figure 6.
Notice that curves 5 and 6 for which heat i1s removed
from the boundaries, lie above curve 7 which 1s for
the uncooled case. The reduced apparent viscosities
as functions of time are shown in figure 7. Since the
apparent viscosities shown by curves 5 and 6 are higher
than the adiabatic values, more power 1s avallable than
in the adlabatlic case to support the higher temperatures.
The nature of the instability involved in this
case 1s suggested by the plots of the evolving tempera-
ture and velocity profiles (figure 8) in an "experiment”
which has no steady state. Noticée how the velocity
gradient tends to rise in the center and fall near the
walls. The latter effect, which is quite dramatiec,
could account for the low drag on lubricated bearings
as well as some of the differences between standing
and sliding friction since the drag depends on the wall
d

W
zﬂgsvmhb. This also

explains how the use of a lubricant with a high visco-

velocity gradient o = "Io(

sity (7o) can lead to a low drag.
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THE THERMISTOR ANALOG
The.fact that the resistance of a typical ther-

mistor depends on temperature in the same way as the
viscosity of a typical liquid (8) permits the easy con-
struction of an electrical analog for the solution

of flpw problems with thermal feedback. As an exam=-
ple, the response of a thermistor to the saw tooth
voltage program

is shown in figure 9.

When the voltage amplitude is low, the current
varies linearly with the voltage and, since the heat-
ing is negligible,‘the ascending and descending branches
of the current-voltage curve nearly coincide. As the
voltage amplitude lncreases, the temperature rise 1in the
thermistor reduces the resistance and introduces a non-
linearity into the ascending branch. The stored heat
changes the shape of the descending branch, opening a
hysteresis loop,and causing a drift on cycling. A fre;

quency dependence is also exhibited,
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CONCLUDING DISCUSSION

The general relevance of these computations to-
rheology need not be defended because stress and time
dependencles of apparent viscositlies are very commonly
observed (4). It is important in these cases to separ-
ate the "anomolies" due to heating from those due to
changes in molecular configurations in the stress field
(6). A further point can be made in connection with
the "exclusively" Newtonian behavior of low viscosity
fluids such as air and water which is often cited (4).

In these cases the regime of Newtonian behavior is ac-
tually limited by the transition to turbulence. If
convectlve circulations among the streamlines are assumed
to be related to the origin of turbulence, and if atten-
tlon is glven to the influence of viscosity on the develop-
ment of convective circulations (7), the present treat-
ment suggests that, in the case of alr and water, the
temperature gradlents necessary for the onset of convec-
tion may be lower than those required for the development

of discernible changes in viscosity.
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The thermal feedback occurring in i1deal Couette
flow is the simplest example of a phenomenon which
can occur in all_ real mechanical, electrical and mag-
netic processes. While the general insights into creep,
yield, flow stability, cavitatlion and lubrication dis-
cussed above are likely to be useful, this model can
also serve as an element of composite models and can
be used to represent other types of processes. For
example, application to the breakdown of dlelectrics (9),
and the limiting strength of solids (10) (11) have
been descfibed. Special thermal effects arising in
viscoelastic materials subjected to cyclic loading
have been discussed by Shapery (12). The wave propa-
gation problem has been considered by Petrof and

Gratch (13) and many other questions can be considered.
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CAPTIONS FOR FIGURES

1.

2.

3.

5.

Te

The reduced,time -dependent, central plane tempera-
tures, for various values’or the reduced constant
stress, 2 » and various thermal boundary condie
tions kl,

The reduced, time-dependent, apparent fluidity for
various values of the reduced constant stress. &4
and various thermal boundary conditions kl.

The steady state reduced central plane temperatures
for the isothermal wall case as a function of the
reduced constant stress Y ,

The reduced time -dependent,central plane tempera- '
ture for various constant rates Lf stress lncrease
and a function of the rate, ¢, , and the thermal
boundary conditions,

The reduced, time-dependent apparent fluidity for
various constant rates of stress increase and
various thermal boundary conditions.

The reduced,time-dependent central plane tempera-
tures for various values of the reduced constant
boundary velocity, Qﬂ‘ and various thermal boundary
conditions,

The reduced, time dependent apparent viscosity for
various values of the reduced constant boundary

velocity, Y » and various thermal boundary conditions.
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The evolving reduced temperature profile (a)

and velocity profile (b) for a constant deflec-
tion rate case having no steady state,

The behavior of the thermistor analog circult for
a saw tooth voltage waveform for different ampli-

tudes and different frequencies.
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ABSTRACT S)
Joo"

As part of a general study of the behavior of materials with
temperature dependent properties, a simple model of a viscoelastic
solid is considered here. Ideal experiments at constant stress
and constant rate of deformation are examined. The analysis leads
to yield and fracture criteria which in the usual theory are
regarded as experimentally determined quantities. Rate of strain
and size effects are also deduced and a phenomenon resembling strain
hardening can develop. The treatment is independent of, but comple-
mentary to, the atomic scale theories of the deformation of solids.
The temperature coefficient of viscosity which is introduced into
the continuum theory//here, is related to the energy of activation
for the flow process which is accessible to the atomic scale theory.
The appreciation of the temperature field in which motions of the

atoms occur could improve the predictions based on dislocation theory.

Cufr
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NOTATION

M of §F 6* 4 + <~

o}

temperature coefficient of the viscosity of the working material.
the temperature independent, volumetric heat capacity of the
working material.

a convenient non-dimensiongl_g;oup of parameters, or similarity
criterion, which defines theAgource strength in the reduced
energy equation.,

the temperature independent volumetric thermal conductivity of
the working material.

the thermal conductivity of the insulation used to regulate the
thermal boundary conditions relative to that of the working material.
the thickness of the slab of mdterial.

the deformation rate in the constant rate of deformation case.
current real time.

current. local temperature,

an initial or reference temperature.

the local velocity in thematerial relative to that at § = 0,
the space coordinate in the slab.

the relative current boundary displacement of the slab of
material.

the maximum or equilibrium displacement of the viscoelastic
slab for a constant applied stress,

the temperaturé dependent local viscosity in the viscous part

of the viscoelastic model,



5 9

Y

9

the viscosity at the reference temperature.

the spring constant in the elastic part of the viscoelastic
model.

the reduced space variable.

the current value of the shear stress on the viscous part of the
model.

the initial value of the stress.

the current stress on the elastic element in the constant rate
of deformation case.

the current value of the total stress in the constant rate of
deformation case.

the current stress on the viscous element in the constant rate
of deformation case.

Ythe reduced time.

the mechanical relaxation time; or the time at which the isothermal
viscous stress has decayed to l/e of its initial value.

the time at which the adiabatic stress has decayed to 1/2 its
initial value in the constant rate of deformation case.

the reduced temperature.

the critical temperature, characteristic of the material, at
which fracture is expected.

the maximum steady state value ¢ can reach.

the reduced temperature on the center plane.



THERMAL EFFBCTS IN' MODEL VISCOELASTIC SOLIDS

INTRODUCTION

All mechanical processes involving real materials are to some extent
irreversible and, therefore, must be accompanied by thermal effects. The
irreversibility is complete in the flow &f viscous fluids. The consequence
of heat generation in one dimensional (Couette) flow of ideal viscous liq-
uids have recently been explored (1). Criteria were established for esti-
mating the significance of the heating effects which are useful for under-
standing apparent departures from Newtonian behavior.

In the present report, the exploration of the consequences of heating
has been extended to include the deformations of model viscoelastic solids
made by combining an ideal elastic element with the viscous model of ref-
erence 1. The use of such a model, or of any homogeneous isotropic, contin=
uum model, ignores a great deal that is known about the physics of solids.
However, it will be seen that this treatment is altogether complementary to
the elegant and compelling atomic scale descriptions of the deformation of
solids involving the theory of the imperfect crystal and the configurational
changes of polymer molecules.

The existence of heating effecéts accompanying the deformation of solids
has often been noted and is sometimes conspicuous (2) (3) (4) (5) (6).
Because the deformations can be both exothermic and temperature sensitive,
regenerative feedback can occur. This would enhance the thermal effects and
could lead to instability. In the case of stressed liquid, the development

of very high temperatures can be averted by convective
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circulations, turbulence and cavitation which consume large amounts
of energy from the flow. In the case of solids, convective processes
cannot occur, but thermal catastrophe can be averted by yielding and
fracture,

When the temperature dependence of the viscous element is acknow-
ledged, yield and fracture criteria follew as logical consequences.

Rate of loading and size effects also appear in a natural manner and a
phenomenon resembling strain hardening can develop. Furthermore, the
introduction of the temperature coefficient of viscosity into the theory
of the continuum, by itself, provides a bridge to the atomic scale events
through the concept of the energy of activation.

While the results of this. study of the continuum model are of intrin-
sic interest, the importance of this point of view is likely to be greater
when it is used to supplement the solid state physics approach to the prob-
lem of deformation, With an appreciation of the temperature field in which
atomic scale movements occur, the microscopic theory can be sharpened and,
hopefully, better correlations with experiment will be obtained.

DISCUSSION OF ANALYSIS

In the analysis given below, the responses of a simple parallel
arrangement of an ideal elastic element and an ideal viscous element to
a constant stress and to a constant rate of deformation are examined.
The idealizations that are made are that the spring constant, the heat
capacity, the thermal conductivity and the density are independent of

temperature. In addition, dynamic effects are neglected., Furthermore,
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the problem of shape changes accompanying the deformations is avoided
by considering only plane shears in an infinite slablor, equivalently,
torsion im a thin-walkgd tube.

The deformations are measured by the relative parallel displace-
ments of the boundaries of the slab., The restraints are the shear
displacement dependent elastic forces and displacement rate dependent
viscous forces. The viscous forces are computed from the solutions of
approximate energy and momentum equations as in reference 1.

Even with the above simplifications, the problem with heat gene-
ration and heat conduction is somewhat involved and unfamiliar. To
assist in the interpretation of the numerical results obtained using
an IBM 7094 computer, comparisons are made with:the familiar isother-
mal and with the simple adiabatic behavior of the model.

In this model, the displacement of the two elements are always
identical. The instantaneous value of the shear stress on the viscous

element, 0" , is related to the total stress, Iy > by

in whichp,is the spring constant, € is the relative boundary

(L
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displacement and 4L is the thickness of the slab.

The displacement is related to the viscous stress history by the

definition Y
dur,
€ = {0 go a—‘; A\\, dt

in which y is the ‘space variable, - is the local velocity relative to
the boundary at y = OIand t is the current time.
The application of the Newtomism viscosity . law with exponemtially

dépendent viecosity f{gee ref, 1)

73 —a (T-T.)
< = "] ﬁ = "]bdal; -

then leads to
\ t L a(T"ToB
€ = 7\1’0 §¢S - dzﬁ dt
o

in which 7], is the viscosity at the temperature'T;;'q and U are
the local, instantaneous values of the viscosity and temperature and o
is the temperature coefficient of viscosity.

The instantaneous local temperature is computed from the approxi-
mate energy equatiom

2
a ot 3

in which c and k are the volumetric heat capacity and thermal comduc-

tivity respectively, The solution of equation 5 depends on the momentum

(2)

(3)

(4)

(5)
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equation (equation 3) and the thermal boundary conditions defined in
terms of the. relative thérmal topductlvity of 'layers of insulating. material, Ky,
encasing the slab of workimg material. In the illustrative examples,
the thickness of each of these layers is assumed to be one third of the
thickness of the slab, and their outer boundaries are held at the ini-
tial temperaturas,

Using reduced variables as in reference 1,

s = X v = X t+

b=al(T-T) T 0 ©

)

equation 5 becomes

"3(;‘{-}"%‘* _ 2% _ ¥ 7

in which

= Q'k;'o (8)

Equation 4 becomes
1

.
e _ b frf.e,q)o\ﬂa\'t’ 9)

N

I} k"

[

and equation 1 can be written v !
L* ¢
o~ = o - ME fd‘fue,dfo\'!”
kq]bo o

(10)



CREEP

If at A = 0, a total stress, 9, , is applied to the parallel
arrangement of the elastic and viscous elements and held constant,
equation 10 shows that the stress on the viscous element will have
the initial value O~ = .= @, . At later times, 0 L 0q and
an equation for 9 can be obtained from equation 10 by differentia-~

t ion with respect to time to get
1

d o cml’? ®
dr=‘_\<&«rrLQ 41

which upon separation of variables and integration gives

TSP A
égl = ‘EL- ~£%$: gn j;-cyc*‘¢ﬂ‘k

This can be substituted into equation 7 to give

™ 0
3.-._{( ¢a\ d
$ - N3 v ~
%\Q-(' “‘MOO ! =_§i_u
-3 ;I‘-
in which
Mme
N, =
"
C%}gjL
which together with appropriate thermal boundary conditions can be
solved numerically. The results are described in a later section
of this report.
In order to facilitate the understanding of the general numeri-

cal solutions of the creep equation, it is useful to inspect the

(11)

(12)

(13)

(14)
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ideal isothermal behavior of the model, 1In this case, @ in equation

12 is independent of t and equal to one. Thus, equation 12 becomes

< _ %
= L ~ (15)
G
so that the stress on the viscous element and thus, the rate of dis-
placement, decays to zero at a rate determined by the mechanical relaxa-
tion time, ’YM .
The instantaneous displacement for the isothermal case; from
equation 1, can be written
2(e — o) -=
= > ¢ x = ém(_\ - R MY
. (16)
. . e, = cad . . qers .
in which ~ = 7:—— is the maximum or equilibrium displacement.
These results, familiar to rheologists’are plotted together with the
solutions using equation 7 whenever they are appropriate,
An appreciation of the ideal adiabatic creep behavior of the
model can also contribute to the understanding of the general numeri-
cal solutions of the creep equation. The development of the equations
for the adiabatic case is somewhat more complicated and less familiar
than the isothermal case.
Here R is also independent of g so that equation ! becomes
2
d o chl ¢
S = T e (17)

an K Mo
A value of -QQ can now be obtained from the adiabatic form of

e \* d
5(g) <’ =2

equation 7

(18)
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which can be substituted into equation 17 to give

do - ( o, Y— L deé
Separating variables and integrating leads to the relationship
between the temperature and the stress on the viscous element
2L
z 2
o — & Z s, 4)
Yo 3

since $ = 0 when o = «; .

Notice that when € =0 , ‘P reaches its maximm value so

_ Y
<b~h - ‘fi:“

The solution can now be completed by substituting from

equation 20 into 18 using 21 leading to

dé $
-a-z: —-’0(\—%“ <

Here the variables can be separated and we have

\
SMPT S

o \— %

4>Mg°d’a¢ .r__q.mgq_e::‘i 24

‘QS' ¢M_ ¢ = z o ?

The integral in equation 24 can be convertéd to a well-known
tabulated function (the exponential integral, E‘(ﬁ\) by the substi-

tution

(19)

(20)

(21)

(22)

(23)

(24)



whence d)m

So that the adiabatic time temperature relation is
- = b“ . N
V=T e Y_EA (b = Ei (P = 4’)}
2.

The adiabatic displacement history can be obtained from

equation 20, 21 &nd 1.

_ (-0 _ ol 1 T 2o ]
& = i = m w s 30

= S C\"J\- "/Q,M)

The adiabatic creep deformation history of the model,.
computed as indicated above using tables of L =%4 (Z\’ is compared
with the more familiar isothermal deformation history in figure 1.
Notice that if the value of bw is small ( Q,ML 0.1) the adiaba-
tic and isothermal curves are quite close together., As ¢Mincreases R
the approach to ém is much more rapid in the adiabatic case.
The adiabatic creep temperature history is plotted in figure 2.

The use of Q/ ¢- as a temperature scale tends to exaggerate the

temperature effects at low (bmand contracts them at high values of cb'\.

(25)

(26)

27)

(28)
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A graphical representation of the adiagbatic éreep displacement —
temperature relationship (equatiom .28) is given in figure 3 together
with a curve for a case with heat conductiom. The point of this
figure is that while in the adiabatic case the temperature reaches
its maximum when the strain reaches its maximum, in the real case
the rate of heat generation becomes so slow when & approaches &,
that the conduction process can cause the temperature to fall,

The description of the creep behavior of the model with both
heat generation and heat comduction :cammot be discussed (except quali-
tatively) without the numerical solutioms of equation 11. The machine
solutions for the deformation history for various valwes of Qn“and ky
are presented in figures 3 and 4. The computed values of the tempera-
ture on the center plane of the viscous element for(bh\= 2.5 and 25 for
various values of k; are shown in figures 5 and 6.

This model is only suitable for describing what has been called
primary creep (7). Secondary creep can be better described in terms
of the viscous element by itself as is mentioned in reference 1. The
duration of the primary creep phase is regulated by the value of QM’
N and the thermal boundary conditions. Another matter is the question
of whether the material will survive the primary creep phase., If the
temperature attained in the sample exceeds some critical value character-
istic of the material, say'4&, fracture can be expected before primary

creep is complete. Obviously, this cannot happen if ¢m< 4)1
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However, even if 42“ > ¢% )fracture need not occur if the thermal
boundary conditions are such as to prevent Q from exceeding ¢1 .
Another example or the type of experiment to which these compu-
tations would be applicable are, perhaps, those relating to the shear
strength of adhesive or brazed joints. There have been many studies
which have shown that thin joints can be stronger than thick joints

as predicted by the analysis (8) Q).

CONSTANT RATE OF RE LATIVE BOUNDARY DISPLACEMENT

When the model solid consisting of a simple elastic element and
a simple viséous element in parallel is deformed at a constant rate,
€=yt , the total stress is the sum of the independent stresses on each
of the elements (equation 1). Although this "experiment" is more com-
plicated, in principle, than the creep experiment, it is more commonly
used for the evaluation of the '"properties" of solids. Here, the prob-
lem of the instantaneous application of a stress does not arise.
Furthermore, by the regulation of the deformation rate, the time required
for the completion of a test can be varied over a wide range. This
experiment is always terminated by yield or fracture. Thus, it provides
a value of the "strength'" of the material.,

In this experiment, the stress on the elastic element increases

linearly with time according to
e le
L3

(29)

. = t::t. == éﬁlﬁji. —
e ¢
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The stress on the viscous element deformed at a constant rate is some~
what more complicated. This matter was discussed in detail in refer-
ence | where it was shown that

SRR SRy )

so that the total stress obtained by combining equations 29 and 30

becomes

! -
o S T

The values of Q and the integral of ue_Q then are obtained from the
solutions of equation 7. Because of the independence € the viscous
and elastic stresses, the numerical solutions of equation 7 presented
in figures 6 and 7 of reference / and the discussion therein are
directly applicable. However, before considering the significance

of equation 31, the more familiar isothermal and adiabatic stress
histories of the model will be examined.

If the temperature throughout the material always has the ini= :
stress then has the constant value
\'4

, = :213 Y
2

and the total stress is given by

(30)

(31)

The viscous

(32)

(33)
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Thus, for the isothermal case, the relatiomship between the stress and
the time (or deformation) can be represented by a straight line with the
slope E’-%Q—rand the intercept at A’= 0 of % ¥ . This is a relation-
ship familiar to rheologists and it is shown together with examples of
the adiabatic relationship in figure 8.

In the absence of heat conduction (adiabatic case) the value of(b
is also independent of § , but the appropriate value of ef is given in

reference 1 as

¢ il
-Q.~.H—,‘,“

in which
I NI
© T ameret
The adiabatic viscous stress is then time dependent according to
v = quﬁr \ ﬂJQ'/¢'
P

Equation 31 for the total stress then has the form

emlr + Mo ¥ \

- = k Lo v/
or
— — Mor [ XT+ LY +'v'..'m>

While the first term of the expression on the right hand side of
equation 37 increases linearly with deformation (or time) as before,
the second term decreases, If this rate of decrease is high, the total
stress can also decrease with deformation producing an effect similar to
yield., On the other hand, the rise of the firs term can arrest this

decline and produce an effect similar to work hardening.

(34)

(35)

(36)

(37

(38)
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Examples of the adiabatic and isothermal relationships between
total stress and deformation are plotted in figure 8 together with
the curves for the separate elements of the composite model.

Returning now to the probiem of the numerical solutions of equa-
tion 31 for the time (or deformation) dependent stress on the model
subjected to a constant deformation rate, it is seen that the total
stress is composed of that on the viscous element, already presented
in reference 1, plus a linear term. In any particular situation,
these terms can be assembled. The adiabatic curves shown in figure 8
are typical.

It may be seen that when the value of A%, is low, a high initial
stress and a pronounced dip or yield can be expected. This is also
the condition that leads to the rapid development of a high tempera-
ture in the material that could lead to failure at low values of the
displacement (brittleness). If failure does not occur promptly, at
yield, the stress can rise again before the "lethal' temperature is
reached, thus producing the strain hardening effect. This analysis can
also account for the strong dependence of yield on strain. vate
that has often been observed experimentally.

CONCLUDING DISCUSSION

The analysis of thermal effects in a model solid given above is
part of a continuing study of the behavior of materials with tempera-
ture dependent properties. It explores the general consequences of the
conservation of energy on mechanical behavior in a simple but fundamental
manner. It is not intended to apply to any particular material but
rather to display the potential of a somewhat different type of pheno-

menological description of deformation and fracture. The point of view



-15-

is not altogether new. Zener (2) and others have remarked on adia-
batic instability in deformation. Seitz (10) remarks on the possi-
bility of regeneration in the movement of dislocations in metals.
The essential novelty seems to be that the question of thermal feed-
back is the focal point of the present study.

The results teach that an extremely primitive model can account
for a number of details of the behavior of real solids, In the tra-
ditional treatments which neglect thermal feedback, the processes of
yield and fracture and their time and size dependencies require rather
intricate rationalizations., The possihility of exchanging the usual
yield and fracture criteria by some more basic notions of what con-
trols the responses of materials to stress could be useful both in
design problems and in materials development.

Of further interest is the possibility of strengthening the solid
state physics approach to the deformation problem. From the atomic
scale point of view, the energy of activation for the movement of dis-
locations, which appears directly in the temperature dependence of the
process, is an accessible quamity. Thus, a new bridge over ;he gap
between the atomic scale and continuum view of the mechanics of solids
may be provided.

Finally, it may be noted that the discussion and analysis of ref-

erence 1 is a special viscoelastic case in which the elasticity is negli-

gible, The importance of the elastic effect depends on the value of both

Y and 7, . Whenever T, is sufficiently small, the €lastic effect is
im&ortant. But even farﬂﬁhsmall, if 8 is sufficiently high the viscous
eheatiag-dominatgs<
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CAPTIONS FOR' FIGURES

#1

#2

#3

#4

#53

#6

#7

#8

The reduced, time dependent adiabatic creep deformation (—Ee:'m) for
various values of the reduced maximum temperature @p.
The reduced, time dependent adiabatic creep temperature (¢/¢m)‘ ‘
for various values of the reduced maximum temperature @.
The reduced temperature dependent creep deformation (\-— %)2
)

for the adiabatic case and for a case with heat conduction (=5, Tm=1, k= lO)
The reduced, time dependent creep deformation for f;, = 2.5 and for
various thermal boundary conditions, (*'j =5, N = \>_
The reduced, time dependent creep deformation for ¢M- 25 and for
various thermal boundary conditions, ('03 = 5') 'Ym. =10 ).

OV phona
Detail near the origin of the reduced time dependent temperature

A
8/@,, for Y= g) N = l) (q>m =725) and for various thermal
boundary conditions.
o phoma
Detail near the origin of the reduced time dependentA temperature
¢<,/¢m for 9:5:5‘, T’m—_-\()) (¢m=’)_5') and for various thermal
boundary conditions.
Examples of the relationship between the stress (%:—) and the time
o

'r
(or deformation) (TP;) for the constant rate of boundary displace-

ment case.
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ABSTRACT 106 1 7

!

As part of a general study of the behavior of mater-
lals with temperature dependent properties, combined ther-
mal and geometric effects in ideal viscous materials are
explored analytically. The responses of cylinders to con-
stant axlal loads and to constant rates of axial deforma-
tion are computed. This continuum analysis is independent
of, but complementary to, the contemporary solid state phy-
slcs approach to the problem of the mechanical behavior of
solids. The temperature coefficient of viscosity can be re-
lated to the atomic scale theory through the concept of the
energy of activation for the flow process.

Non linear feedback effects occur both as a result of
heating, and of shape change. In the tensile cagz:;;e both
destabilizing. In the compressive case the geometric effects
are stabilizing and the heating effects are destabililizing.
One result of the analysis is therefore the prediction that
the compressive deformation of a cylinder can occur rapidly
at first, due to thermal feedback, and then be arrested due

to geometric feedback, This 1s an effect familiar to stu-

dents of metal forming processes. CZ)AZZ;A/




NOTATION
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the temperature coefficient of viscosity of the
working material.

the current cross section of the sample.
the initial cross section of the sample.

the temperature independent volumetric heat capacity
of the material.

the current length of the sample.

the initial length of the sample.

the reduced length of the sample.

the reduced length in the adiabatic case.
the reduced length in the isothermal case.
the current load on the sample (o~ A ).
the initial load on the sample.

the load in the adiabatic case.

the load in the isothermal case.

the rate of increase of £ imn the constant rate of
deformation case,

the current time.

a convenient group of parameters having the dimensions
of time., It is the time that would be required for the
length to double in the adiabatic, no-shape change case.

a convenient group of parameters having the dimensions
of time. It is the time that would be required for
the temperature to become unbounded in the adiabatic,
no shape change case.

the current lopal temperature
the initial or reference temperature
a convenient group of parameters, the value of which

indicates the relative importance of the thermal effects
in the constant rate of deformation cases.
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a convenient group of parameters, the value of which
indicates the relative importance of the thermal effects
in the constant load cases.

the

the

the

the

the

initial strain rate in the constant load case.
temperature dependent, current, local viscosity.
viscosity at the reference temperature.

current value of the stressy”

reduced temperature,



COMBINED THERMAL AND GEOMETRIC

EFFECTS IN VISCOUS MATERIALS

INTRODUCTION

The flow and deformation of materials is a pro-
cess which is at once exothermic and temperature sen-
sitive. Under these conditions regenerative feedback
(a chain reaction effect) is possible which can enhance
the thermal effects and lead to instability. Some con-
sequences of thermal feedback in selected, highly
idealized model mechanical experiments have been dis-
cussed in earlier reports (1, 2). It was shown that
thermal feedback could lead to yield and fracture in
solids and to turbulence and cavitation in liquids.

Feedback effects and instability in mechanical
experiments can also arise from purely geometric con-
siderations. For example, when a constant tensile load
is applied to a sample of material, the elongation is
accompanied by:}eduction in cross section so that the
stress tends to increase producing positive feedback.
Conversely, under a constant compressive load the stress
tends to decrease so that the feedback is negative or
degenerative.

In the present report, combined geometric and ther-
mal effects are explored. The study of the combined
effect 1s one of the many elaborations of the simple

theory of thermal feedback in mechanical processes which
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might be undertaken. It turns out to be of some special
interest because under selected conditions the feedback
processes oppose one another. Experiments and processes

in which this occurs may be particularly suitable for
applying and testing the theory.

The model that is used in the analysis below 1s a
cylinder of homogeneous, isotropic, incompressible vis-
cous material subjected to a constant axial load or a
constant axial elongation rate. The static adiabatic and
isothermal behavior of this model are contrasted. The
use of this model or of any homogeneous, ié%ropic conti-
nuum model ignores a great deal that 1s known about the
physics of solids. However, it will be seen that this
treatment 1s altogether complementary to the elegant and
compelling atomic scale descriptions of the deformation
of solids. One connection between the continuum and atomic
scale theories is made through the temperature coefficient
of the viscosity which is related to the energy of acti-
vation for the flow process. Another is through the appre-
clation of the temperature field in which the atomic scale
events associated with the deformations occur.

The omission of elasticity, which can perhaps be re-
medied in the manner suggested 1n reference 2; is somewhat
extravagant. On the other hand, geometric effects are not
influential except for large deformations in which rever-

sible or elastic effects are often not very significant.
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The omission of heat conductlon keeps the temperature

and stress fields uniform. With heat conduction the
interior of the cylinder would be hotter than the sur-
face which might contribute to size effects and special
surface effects which have often been noted in experiments.

Of the results given here, perhaps the most interest-

ing relates to the compression of the model cylinder.
There the stabilizing effect of the increase in croess
section must overtake the destabilizing effect of the
heating at some fraction of the original length of the
cylinder. This may be related to what actually happens

in certain forming operations applied to metals.



DISCUSSION OF THE ANALYSIS

In the earlier work (1), (2), geometric effects
were avoided by discussing only the plane shear defor-
mation of an infinite slab. The axial deformation of
a cylinder which involves shape changes and which is
considered in this report is also a viscometric experi-
ment (3). The shear viscosity M 1s related to the
axial load P by the equation :

P _ — 21 d&
) AT T T T &

in which A is the current uniform cross section of the
cylinder, the factor 3 converts the shear viscosity to

the tensile viscosity, g~ is the current stress, t

is time and £ is the current reduced length which 1s de-
fined in terms of the current length, \. , and the initial

length, Lo, by

— L: = f&g
(2) i - Lo A

in which the incompressibility condition is applied.
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CONSTANT RATE OF DEFORMATION

If in an isothermal experiment ( 1 :=."’l° ) the

dd
t

rate of change of length 1s a constant, =Y

the current value of the load)Fi , is given by
> = = (e r)(he)= B
(3) P = aA ( = "\ % Gart)
In the compression experiment, ¥ 1s negative and
P. 1is always greater than P,.
If now the deformation is considered to be adia-
batic and the viscosity depends on temperature (as in

reference (1) according to
(4) m =M € = N, &
in which T is the current temperature, T, 1s the initial
temperature, a is the temperature coefficient of the
viscosity and 4> is a reduced temperature defined by
equation 4, the current load has the value

- —$
3morAo e P. -

b Y
(\“\'\'t) (l-\-kt)

The value of q: can be obtained from the energy

(5) P =

balance equation, which equates the mechanical work

done to the local stored thermal energqy

(6) Plé—';:"'- cloAs iTE

in which ¢ is the volumetric heat capacity, or

3a r* -4 a ¢
e (l+re)t dt
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in which the variables can be separated to give

$ X at
(8) <2 A¢ — too (\..\\.ty‘
in which
(-
(9) tw = 34—"’]0 YL
whence by integration
¢ — = ! + caonttant
(10) = \"t.(\-\-rt) "
but since ¢ =0 for t =0
\ \+x)rt
(11) o _ + (1 + )

\+ ¢t
. - \
in which A = —-\'tw
Whence it follows that
Pe \
lvrt I (1+x)rt

(12) Po =

gilves the adiabatic load history at constant rate of
elongation or compression.

The load-deformation (or time) curves for tension
are plotted in figure 1 for various values of K .
The isothermal case corresponds to A= 0 . The
load-deformation curves for compression are plotted in
figure 2. Temperature histories for the two cases are
shown in figures 3 and 4. 1In figure 1 it is seen that

thermal feedback accentuates the load reduction due to
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the geometric effect. When o 1is sufficiently high
the feedback due to geometric effects becomes negli-
gible and the problem is similar to that discussed in
reference 1.

In figure 2 it is seen that the feedback effects
oppose each other, When > 2 , the effects of
thermal feedback are at first decisive, producing an
initial load reduction which could appear as a mechani-
cal instability which 1is arrested when the deformation
or cross-sectional area becomes sufficiently high.

This 1s a phenomenon which is similar to that which
occurs when nail heads are formed on a wire. This
idealized computation is likely to lead to a thinner
head than is actually observed because, when heat con-
duction is taken into account, the hammer and anvil be-
come more effective heat sinks as the axial length be-

comes smaller,




CONSTANT LOAD

When the load on the viscous cylinder is held
at the constant value Po, the stress will depend on
time. In the isothermal case the deformation rate

is given by (cf equation |)

ddi _ = _ s g, =P ¢,
3 "o

{

130 32 Je 3, 2 A,
in which a tensile load is counted positive. Whence

d¥@; _
(14) '—:EFT = /3 dt
where /_; - S5 — P

B 3AM.
thus

\

Y 3 t
(15) ‘ E & A
since L=\ when £ =0
or

(16) L= \-pt

When the adiabatic case is considered

—_ a‘:fd» ¢ — &iq ¢ —
I A i A

and ¢>must be determined from the energy equation

(equation 6) in the form

(18) Po aLooslog? . L, A, 48

3 " t




or
¢ Temho v db tw do
\.Q, -_ - —
(19) Q,Pca; t: dt ‘ﬁ: dt
in which t'w = 2cm. A, — 3cm., Al
a Py o o Py
Substituting 19 into 17
A dRka Lt db
(20) 2 4t ‘ﬁ—ff At

whence, integrating, we find a relationship between

the length and temperature
(21) & = ,ﬁ' (f;-lB = «' (¥-1)
[

~
in which c*' —
= At

This can now be substituted into the energy equa-
tion (equation 19) to obtain a relationship between

length and time which is the solution to the ideal

adiabatic constant load problem. We have then

(22) &N g %es e d(LR)

.
= At
or separating variables and integrating
- 0(' *“ - °<l £o.
= t = —e a i
(23) \ \ a.
L o 2
=i *
The indicated integration in equation 23 can be per-
formed by parts to give , Lo °‘|£._ P
< £t - - = —_ £ d.(a.d:)
(24) oa.z t|“ o(\ iq' °(l it

a
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1}
which/\computed from tabulated functions for various

values of ' i~ to get the relationship between
QQ and t.
a

For the preparation of Table I we let

(25) f$(x¥) = Z=— =< A(x¥)
A L oL P
- 02
so that
-t
' '
(26) = 5 = () = f(x L)
o 0o
It can be shown that for large values of «‘iq.
m——a —_ - '
= .Ei . = « = <'¥,.
(27) . Sl S <™ Ca" L)
and for small o' f.‘
‘Q_—d“v t ) | _ \
(28) V2 \ = _T \£
oA t o =8 K Ka,

For intermediate values of b(' ff& Table I

is used.
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The results of the computations using equation 26
are shown in figures 5 and 6 for constant tensile and
constant compressive load respectively. Here again
the dramatic stabilization of the compressed material
at some fraction of its original length is shown along
with the enhancement of the tensile instability by the
combined geometric and thermal effects. The correspond-

ing temperature histories (equation 21) are linear and

need not be plotted.
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CONCLUDING DISCUSSION AND ACKNOWLEDGEMENTS

The study presented above is part of a continuing
program of study of the behavior of materials with tem-
perature dependent properties. While the model is high-
ly idealized, the analysis further strengthens the view
that the application of the first law of thermodynamics
may be useful for understanding the mechanical behavior
of real materials. .

Two points are made. Firstjés shown to be possible
to rationalize, qualitatively, a technologically impor-
tant type of deformation of solids. Second, a possible
way of bridging the gap between the equally elegant but
i1solated continuum and atomistic theories of solid behav-
ior is suggested.

This work was made possible by the encouragement and
support of the Office of Advanced Research and Technology
of the National Aeronautics and Space Administration under
Contract NASw 708 monitored by Messrs. Howard Wolko and
Melvin Rosche'. The author is indebted to his colleague,

Mr. George Mueller, for helpful discussions and assistance

in performing the computations.
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CAPTIONS FOR FIGURES

#1

#2

#3

#4

#5

#6

The tensile load ( Pa/ P ) versus the elongation
2 -1 ) in the adiabatic constant rate of
elongation case for various values of o,

The compressive load ( Pa /Po) versus the compression
I—& ) in the adiabatic constant rate of compression
case for various values of .

The reduced temperature ( $Pa) versus the elongation
( b ) in the adiabatic constant rate of elongation
case for various values of «.

The reduced temperature ( $a ) versus the compression
( V=2 ) in the adiabatic constant rate of compression
case for various values of «.

The reduced length ( & ) versus time ( At ) at constant
tensile load under adiabatic conditions for various values
of .

The reduced length ( £ ) versus time ( Bt ) at constant
compressive load under adiabatic conditions for various
values of «,
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TABLE I
g
£ wwp [(«)FOR INTERMEDIATE VALUES OF o¢
= (for finding ‘iq_(t) with equation 26)
oL < $ () s $ =0
LS Tension 93 Compression
.01 99,005 94,967 101.01 -105.02
.02 49,009 45,655 51.01 - 54.32
.03 32.346 29.387 34,35 - 37.22
.04 24,019 21.328 26.02 - 28,63
‘ .05 19.024 16.556 21,03 - 23,39
.06 15.696 13.401 17.69 - 19.86
.07 13.319 11,169 15.32 - 17.33
.08 11.579 9,553 13.54 - 15.41
.09 10.154 8.236 12,16 - 13,90
.10 9.048 7.225 11,05 - 12,67
o2 4,094 2.8709 6.107 - 6,929
3 2.469 1.5636 4,500 - 4,802
4 1.676 «9734 3.729 - 3.834
o5 1.213 «6533 3.297 - 2.843
«6 .9147 4603 3.037 - 2,267
o7 . 7094 3356 2.868 - 1,803
.8 .5617 .2511 2.782 - 1,445
.9 4517 .1915 2.733 - 1,111
1.0 3679 . 1484 2.718 - .823
1.1 .3026 .11662 2.731 - .5637
1.2 .2510 09257 2,767 - 3246
1.3 .2096 07419 2.823 - .1011
1.4 .1757 .05948 2.897 .1106
1.5 » 1487 .04873 2.988 .3135
1.6 .1256 .03925 3.096 .5097
1.7 1075 .03281 3.220 .7011
1.8 .0918 02712 3.361 .8890
1.9 .0787 .02249 3.524 1.069
2. .06767 .01876 3.695 1.260
‘ 3. .01659 .003547 6,695 3.238
4, .004579 .000800 13,649 5.981
5. .001349 .000201 29.68 10.50
6, .0004131 .0000520 67.24 18.74
7. .0001303 .0000147 156.66 34.84
8. .00004194 .00000427 372.63 67.75
9, .00001349 .00000104 900,35 137.5
10. 000004540 .000000383 2202.6 289.6
11. .000001518 .00000012 5443, 628.4
12, .00000051 00000004 13562, 1397,
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