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.. THE MECHANICS OF DEFORMATION AND FMCTURE 

W e  are engaged i n  an exploration of the thermal e f f e c t s  which 

inevi tab ly  accompany the deformation of so l id s .  These effects have 

been noted-often 1 ,  and they are sometimes conspicuous. However, 

earlier s tudies  have tended t o  neglect the non- l inear i t ies  which 

a r i s e  because the deformation processes are l i k e l y  t o  be both  

Under these conditions 0 exothermic and temperature sens i t ive .  

regenerative feedback (a chain react ion e f f e c t )  occurs which en- 

hances the heating and can lead t o  i n s t a b i l i t y .  

Our s t ra tegy  has been the analysis of the mechanical behavior 

of highly ideal ized models of materials with temperature dependent 

propert ies .  The r e s u l t s  of the  analyses are then compared with 

observed phenomena. The idea l iza t ions  are se lec ted  so as t o  

i s o l a t e  the purely thermal e f f e c t s  i n  the multifaceted deformation 

process. Consequently, much t h a t  is known about the de t a i l ed  

physics of so l id s  i s  neglec ted- in  the ana lys i s .  

i t  w i l l  be seen t h a t  the r e s u l t s  are a l toge ther  complementary t o  

the modern atomic scale theor ies  and descr ipt ions of the process. 

On the other  hand 

The behavior of the models shows s i z e  e f f e c t s ,  time e f f e c t s ,  rate 
a 

of loading e f f e c t s ,  and r a t e  of strain e f f e c t s  which a re  s imi la r  

t o  those observed experimentally. Furthermore, the introduct ion 

of the temperature dependent properties i n t o  the continuum theory 
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e - provides a bridge t o  the atomic scale theor ies  through the concept 

of the energy of ac t iva t ion  for the atomic scale processes, 

The body of t h i s  repor t  consis ts  of three separate repor t s  

which are being proposed f o r  presentation and publication. The 

t i t les and other  information about the repor t s  are l i s t e d  below. 

%Apparent Departures from Newtonian Behavior i n  Liquids 

Caused by Viscous Heating", Proposed f o r  presentation, 35 * 
Annual Meeting, Society of Rheology, Pit tsburgh, Pa. ,  Oct. 1964. 

a 

'Thermal Ef fec ts  i n  Model Viscoelastic Sol ids ,  " Proposed f o r  

the 6th Annual Structures  and Materiels Conference, A M ,  

Palm Springs, C a l . ,  A p r i l ,  1965. 

t4 Q t s r t q l  s 
"Combined Thermal and Geometric Effects  i n  Viscous 4&&b,'' 

Wi1.l- be sent t o  the American Society of Nechanical Engineers 

The r epor t s  a re  attached and separated from one another by 

colored spacer pages 
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ABSTRACT 

As part of a general study of the flow and 

deformation of materials with temperature dependent 

properties, ideal Couette flow of M e  incompressi- 

ble Newtonian liquids is considered here. Equations 

for the time dependent temperature and velocity d i s -  

tributions in the l i q u i d  are solved, numerically, for 

a variety of stress programs and thermal boundary con- 

ditions. The results are compared with closed form 

analytical solutions that can be obtained in special 

cases. Instabilities due to regenerative thermal 

feedback are shown to severely limit the range of shear 

rates or shear stresses for which steady flows are pos- 

sible. A new instability mode for the flow with con- 

stant average velocity gradient is described which may 

be connected with the effectiveness of lubricants. 

Possible relationships of the heating effect to the sta- 

bility of laminar f l o w s  and cavitation in liquids are 

mentioned. It appears that some apparently non-Newtonian 

flows can be described more simply when the deviation 

is attributed to heating than when it is attributed to 

intrinsic, non-Newtonian behavior, A thermistor circuit 

analog is demonstrated as an aid to the solution of the 

Couette flow equations with thermal feedback. 
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NOTATION 

a 

C 

k 

f t  
% 

. 
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f 
6 

6, 

T: 

the maximum value V can take on POP steady 

flow between isothermal walls, 

the temperature dependent local viscosity 

the reduced space variable 

the current local shear stress 

the value of 6 in the constant stress case3 

or, the value of 6 at Y =  I in the constant 

rate of stress increase caselor the initial 

stress in the constant boundary velocity case, 

the stress at which the temperature becomes 

unbounded in the adiabatic, constant rate of 

stress increase case. 

the reduced time 

the reduced time at which the temperature becomes 

unbounded in the adiabatic, constant stress case, 

or3 the reduced time at which the stress decays 

to one half its initial value in the constant 

rate of boundary movement case, 

the reduced time at which the temperature be- 

comes unbounded in the adiabatic, constant 

rate of stress increase ease. 

the reduced temperature 

the reduced temperature on the center plane of 

the slab of liquid. 

the steady value of 

in the ideal isothermal w a l l  case. 

which cannot exceed 1.187 



3XI!RODUC!I!ION 

The laws of themodynamLcs teach that the flaw 

of fluids is never exactly issthemnaJ, On the other 

hand, rheology, the acienee of defomatim m d  flow, 

8s defined by Reinen. (11, spciffcally excludes pro- 

ceases whlch tiwe not jbsothemml, 0 O~%Bsod~x rheologists 
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Two earlier reports were concerned with the tenlp- 

eratures generated during ideal viscometric experiments 

involving Couette (2 )  and Poisuelle flow ( 3 )  at con- 

stant streas, and at constant pressure gradient respec- 

tively. Criteria were established for significant 

heating which showed that many experiments of practical 

and theoretical interest, which have traditionally en- 

gaged the attention of rheologists, are far from fso- 

thermal. In these cases attention was drawn to time 

and stress dependencies of the apparent viscosities of 

Newtonian liquids which a r e  due to the effects of heat- 

ing. 

Once these heating effects are acknowledged, more 

accurate descriptions of flow processes and Improved 

contact with molecular scale events become possible. 

Hopefully, some new understanding of the stability of 

laminar flow and the occurrence of cavitation in liquids 

will also be developed. The existence of temperature 

gradients invites convective circulations among stream- 

lines and produces distortions of the velocity profiles, 

either or both of which could influence the transition 

a 
to turbulence. The connection with cavitation might 

be related to the strong dependence of vapor pressures 

on temperature, 
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The general question of temperature changes in 

viscometric experiments has had attention earlier, and 

many citations are gfven in references 2 and 30 A re- 

cent book on viscometry (4) also reviews earlier work 
on heating in the flow of' liquids. However, the material 

introduced in references 2 and 3 and elaborated on in this 

report shows that the book discussion does not take into 

account the existence of a rather limited range of flow 

rate and temperature in which steady staees of flow 

are possible. It will be shown here that outside of these 

ranges an Instability mode can appear in liquids, in 

which the velocity gradient is enhanced in the center 

of the flow and reduced near the boundaries. This insta- 

bility provides a mechaniqm for stress reduction in 

bearings ,, 

Among the distinctive properties of this insta- 

bility is the fact that when it occurs, the temperature 

in the center of the flow incsqises when the boundaries 

are cooled! 

gases, which become more viscous when heated, would be 

expected to lead to velocity gradient enhawcement at 

the boundaries and thus might be related to boundary 

layer format ion . 

Similar arguments applded to the flow of 
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This new type of instability arising in the 

constant boundary velocity case is  related to, but 

distinguishable from, the thermal instability described 

in reference 2 which arises in the constant stress case. 

It is an Instability of the latter type which also 

appears in the constant rate of" stress increase case 

described below, 

In this continuing study of t h e m 1  effects in de- 

formation and f l o w ,  the present report extends the 

treatment of the Couette flow problem, A range of stress 

programs and more general thermal boundary conditions 

are considered. In addition, computed values of the 

apparent viseoslties are presented as well as the local 

instantaneous values of the central temperatures. While 

these results have intrinsic practical and theoretical 

interest, they also serve as a basis for the treatment 

of more complex models which may include elastic as 

well as viscous elements and in which geometric changes 

may accompany the def omations 



DISCUSSION OF ANALYSIS 

The strategy of the analysis including viscous 

heating, m U  applied t o  the Couette flow probPem, was 

given in reference 2,md conl~ists of the sirnultaneous 

solution of approximate energy and force equations 

for the instantaneous temgeraetwe and velocity d i s t r i -  

butions in the slab of f l u i d  as f’uctfons ef the stress 0 
history. 

The force eq\aatfon 

in which 6 is the local s h e k n g  stress; I\ 

local temperature dependent viscosity $bnd dw - is the 
looal velocity gMdlent, requires that the b e h v i s r  of 

is  

+ 
the liquid be e v e m e r e  Hewtoraim. The temperatwe 

dependence of the sfscoreity far l iqu id8  is assumed t o  

i n  which the local viscosity lis a f a c t i o n  of T , the 

local tempemtuse, ma To , the viscosity a% the reference 

temperature To. 0 The temperatwe coefficient of’ viscosity, 

d 
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(4) 

1s composed of three terms, The rlmt i8 the local 

Instantaneous work mte, or power input, which is the 

product of the locap stress and the l~cal velo- 

ci ty  gradient across the s lab,  The second I s  the 

local energy stomage Pete which I s  the prschct of the 

volwaetric heat capacity, C and the local rate of 

temperature rise, The thiM term is %he rate 

of thermal energy loss from the volume element under 

a 
b t  

consideration, 

ductivity, k, and the second derivrtfve of the tempera- 

ture w i t h  respect t o  distance across the slab, 

iaatrrntrneaus stress l a  arssumed to be Wfom across 

the slab, This, in effect,  neglects accelerations ia 

the fluid, The heat capacity and t h e m  conductivity 

of the fluid are aarsugled to be fmdependent of tempem- 

ture, This asamption is acceptable for virscous l iquids,  

whess the t evra ture  dependence of the viscosity is 

very much stmnger tfaasb t h e  tempmture dependence OF 

Beat capacity and conductivity, For gases, a dif‘femnt 
viscosity temperature relationship ia zequlred, and the 

g s a d t l  number?, which relates xtsecmity t o  % h e m  con- 

duct%vity, can be aasrmed to be constan%, 

It is the product of the t h e m 1  con- 

The 

0 
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Combining equations 1, 2, and 4 leads to a dif- 

ferential equation relating the local instantaneous 

temperature to the values of the space and time varia- 

bles y and t f o r  apacifled thermal boundary conditions 

The 8ubstitution of the non-dimensional variables 

In which 

to the equation 

l e  the thickness of the slab of fluid leads 

W d  

In whlch 

The physioal signif icmb of the dlmensionlesa 

quankity o r  shAlar1ty criterion '3 is developed in 
reference 2. 

In general, equation 7 is analytically Intractable, 
and numerical solutions aro required. 

solutions for the adiabatic cases, 

However, special 

= 0 ,  &= tb 
a 9 a 

and for the steady ca8e8, o , for particular 
stress programs and thermal boundary conditions can be 

obtained in closed form. 

bv 

These a re  plobted together  

w i t h  the numerical solut ions i n  the f igures  below. 



In all the numerical computations, the t h e m  

boundary conditions are regulated by encaelng the slab 

of worklw f lu id  between two slabs of insulation, each 

having one third the thickness of the working matePlal. 

The insulating slabs, the outer boundaries of which are 

held at the initial temperature, have the same volumetric 

heat oapacity as the f lu id  but 

re la t ive  to the f lu id  i s  introduced as a parameter kl. 

When e i c 3  hlgh,the boundaries of the f l u i d  are nearly 
l s o t h e ~ .  When kl is low,the boundaries of the fluid 

? n e  nearly adiabatic. 

influence of changes i n  the thermal boundarg conditlona 

on the responses of the fluid overrides the influence 

of ohanges In stress. 

0 

their  thermal conductivity 

mv cases appear in which the 
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THE COMSTAWP STRgsS CASE 
\ 

The responses of a large slab of liquid 8ubJected 

t o  a constant plane shearing stress were discussed %XI 

reference 2, and a l l  of the details need not be repeated 

here. Equation 7 ia applicable with S, = 1. The 

essential feature of' this case is that as the fluid 

flows,it becomes hotter. 

which In  turn increases the heating rate. 

is peawed, the temperature becomes unbounded in the 

fydte time 

v 

This increases the flow rate, 
0 

If no heat 

(9) 

If heat is removed at the boudzwfes of the slab, steady 

states can develop I f  the rate of heat generation does 

not exceed the rate of heat rensval. The condition for 

the existence of steady states depends on the value of 

the criterion 3 
deacribed by the parameter kl. 

end the themnal boundary conditions 

Numerical solutions forthe time dependen* cen- 

tpal plane texraperatures for a range of constant stresses, 

9 a and t h e m 1  boundary conditions are shown i n  
v fQwe 3 in which the time scale is % v  or - 

a 

%lQ 
0 

c 
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e 

Figure 2 shows the corresponding time dependent, apparent 

fluidities (reciprocal viscosit ies),  Notice i n  both of 

these figures that curve nuzrtber 1 lies above curve num- 

ber 2 even though the stress level is higher for curve 

2, 

conditions overriding the effect  of stress, 

thatviscameters made of different materials, say glass 

or plastic as comparedl with m e t a l ,  could give somewhat 

different rehlulte, 

This I s  an exanaple of the  effect of thermal boundary 

T h i s  suggests 

Curves 1 and 2 +so exeqlify the development of 

steady states, 

cosity, however,, is seen t o  be strongly dependent on the 

stress and thermal boundary conditions. Effects of this 

type are often observed in creep experiments (7). 
For steady flow a t  constant stress, equation 7 re= 

The magnitude of the steady apparent vis- 

which has been solved fn closed form for the case of 

isothermal boundaries (9 ) .  

flow is not possible when the reduced temperature on 

the central. plane, $, exceeds 1.187. This reduced 

steady temperature is rela%ed to the reduced stress 3 
in the manner shown i n  figure 3, derivable from reference 

9. The m i m u m  value of 5 is 3.52. 

It is shown that steady 
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THE COMSTAHT RATE’ OF STRESS RKREASE CASE 

If the plants shearing stzess Increases linearly 

with t-e, r = r o T  , equation 7 takes the 

forma 

H e r e ,  no steady states are possible because the heat- 

ing rate constantly increases. 

the energy equation becomes 

If no heat I s  =moved, 

which can be integrated to  give 

- 4  9 - Y 3  - - I - &  
3 (13) 

and it may be seen that the temperature becomes un- 

bounded when 

Notice that the adiabatic stress level at this  time i a  

given by 

I 

i 
I 
~ 

I 
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T h a t  is, the experiment I s  terminated by thermal 

catastrophe a t  a s t r e s s  which increases as the cube 

root of the loading rate. If the onset of thermal 

icstabil i ty is viewed as a yield- procesa, t h i s  

result is i n  general agreement withmang rheological 

experiments , 
0 The detai led numerical solutions of equation 11 

for the reduced temperature on the cent ra l  plane of 

the slab of' l iqu id  a m  shown i n  figure 4, 

again, that the effect  of thermal boundary conditions 

can override the e f fec ts  of stress. Figure 5 shows 

the inverse of the apparent viscosi ty  as a function 

of time. The time scale in figure 5, as well as i n  

figure 4 IS 5'" o r  Y / Y $  , Thermistor 

analog solutions of equation 11 are discussed i n  a 

la ter  sec t  Ion , 

Notice, 
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THE CONSTANT RATE OF BOUNDARY MQVwIIEbJT CASE 

If the average reduced shear rate, V, In the slab 

of liquid is held constant, the Instantaneous value of 

the stress I s  defined by the equations 
I 

Equation 7 then takes the form 

since 

This case is different from the constant stress 

case because as the process goes on and the liquid 

becomes hotter, the stress decreases. Thus the Pate 

of heat Input decreases. 

If no heat I s  removed, the temperature In the slab 

I s  Inaependent of f , and the adiabatic energy equation is 

Separating the variables and integrating leads to 

The Instantaneous adi4batic stress I s  then given by 
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Eere vm I s  not an adiabatic catastrophe tirae but 

rather the tizree requirea for the stress t o  decay t o  

one half I t a  initial value. Motice, however, that 

the adiQbatic temperature can increase t o  any value 

if the q r i r P e n t  &a run long e-. The decaJr of 

atreas  r i t h  deformation i n  thla case, which can be 

very abrupt I f  the ahear rate I s  high, can be asso- 

ciated wlth the rheological phenomenon of yield and 

poaslbly with imcture .  

a 

IT heat is  removed fron the boundaries of the 

f l u i d  which I s  subjected t o  a constant average shear 

rate, 8teady states can develop. 

described by solutlonp of 

Theare arteady states, 

must be Identical  with the ateady states developed in 

the constant stress caae and eubject t o  the 8ame lirni- 

ta t ions of' and stress. For the case of Ideal bsQthePmP1 

bokmdariea, theae 1iBaitatIons are exhibited in figure 

3. This I s  the rather important polnt that I s  not 

mentioned In reference 4. 
* 
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To obtain closed form solutions f o r  the steady 

state, isothermal wall, constant boundary velocity 

casetwe begin with the energy equation (cf equation 4). 

integrating once we obtain 

since - d+ = 0 f o r  = 4 v 
4% 2 ’  

Now, If 23 is combined with equations 1 and 2 

using 6, it becomes 

- 4 2  +u 
4% 

v 
(24) --(z k 
which can be integrated again to give 

since Cp = o when LA= 0. 

If the conditions on the central plane 4 = 4, 
and K =  are now substituted into 25, an equa- 

tion similar to that in reference 4 is obtained. 
2- 

0 

This equation is conIpatible with those derived 

for the steady state, isothermal wall, constant stress 

case except that the range of its applicability is not 

defined. 
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When the requirement t h a t  +c & 1.187 generated 

for the constant stress ease is  applied, an upper limit 

on V for steady flow between isothermal walls sppeaps 

A typ ica l  value of the thermal conductivity of 

organic l l w l d s  I s  1.6 X 103 (ergs/sec cm2)(oC/cm). 

When the i n i t i a l  v i scos i ty  I s  one poise, a typical 

value of a I s  0.08 OW1. It follows that the maxi mu^^ 

allowable boundary gelbclty fop s t e a e -  f l o w  m l d  be 

T h i s  c r i t i c a l  value of Vm decreases as the i n i t i a l  

v i scos i ty  lnoreasea. The point I s  that measurements 

made i n  the middle ranges wlth m r  commercial vis- 

cometers are outside of the range of steady flow. Notice 

that below t h i s  veloci ty ,  temperature e f f e c t s  are not 

necessar i ly  negligible.  For example, c lose t o  th i s  value 

of Vm, thefia -2) parent, viscosi ty  d i f f e r s  from TD by the 

f a c t o r  { d'df = 2.27 . I 0 
0 



Returning to the main thread of the discussion, 

numerical solutions of equation 17 for the tempera- 

ture on the center plane are presented in figure 6. 

Notice that curves 5 and 6 for which heat is removed 
from the boundaries, lie above curve 7 which is for 
the uncooled case. 

as functions of time are shown in figure 7. 
apparent viscosities shown by curves 5 and 6 are higher 

than the adiabatic values, more power is available than 

The reduced apparent viscosities 

Since the 

in the adiabatic case to support the higher temperaturns. 

The nature of the instability involved in this 

case is suggested by the plots of the evolving tempera- 

ture and velocity profiles (figure 8) in an "experiment" 

which has no steady state, 

gradient tends to rise in the center and fall near the 

walls, 

could account for the low drag on lubricated bearings 

as well as some of the differences between standing 

and sliding friction since the drag depends on the wall 

Notice how the velocity 

The latter effect, which is quite dramatic, 

This also velocity gradient 6 = 9 B( $) WLL 

explains how the use of a lubricant with a high visco- 

sity (+) can lead to a low drag. 
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THE THgRIUIISTTOR.ANALOQ 

The faat that the resistance of a typical ther- 

lnistor depends on temperature in the same way as the 

vlscoelty of a typical liquid (8) permists the eaag- con- 

struction of an electrical analog for the solution 

of flow problems with thermal feedback. As an exam- 

ple, the response of a thermistor to the saw tooth 
voltage program 

8 

t 

is shown in figure 9. 

When the voltage amplitude is low, the current 

varies linearly with the voltage and, since the heat- 

ing is neglfgible, the ascending and descending branches 

of the current-voltage curve nearly coincide. 

voltage amplitude Increases, the temperature rise in the 

thermistor reduces the resistance and introduces a non- 

linearity In to  the ascending bra,nch. The stored heat 

changes the shape of the descending branch, opening a 

hysteresis loop,and causing a drift on cycllng. 

quency dependence is also exhibited. 

a 
As the 

A fre- 

i 

i 
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CONCLUDIW DISCUSSION 

The general relevance of these computations t o  

rheology need not be defended because stress and t i m e  

dependencies of' apparent viecosi t ies  are very commonly 

observed (4). 

ate the "anomolies" due t o  heating from those due t o  

changes i n  molecular configurations i n  the stress f i e l d  

(6). 

the "exclusively" Newtonian behavior of low viscosl ty  

f lu ids  such as air and water which is often c l ted  (4). 

In these cases the regime of NewtonIan behavior is ac- 

tually limited by the t rans i t ion  t o  turbulence. 

convective circulat ions mong the streamlines are  assumed 

t o  be related t o  the or igin of turbulenoe, and i f  atten- 

t i o n  is  given t o  the influence of viscosi ty  on the develop- 

ment of convective circulations (7), the present treat- 

ment suggests that, i n  the case of a i r  and water, the 

temperature gradients necessary f o r  the onset of convec- 

It is  important i n  these cases t o  s e w -  

e 
A further point can be made i n  connection w i t h  

If 

t i o n  may be lower than those required for the development 

of' discernible changes i n  viscosity. 
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The thermal feedback occurring in ideal Couette 

flow is the simplest example of a phenomenon which 

can occur in al1,real mechanical, electrical and mag- 

netic processes, 

yield, flow stability, cavitation and lubrication dis- 

cussed above are likely to be usef’ul, this model can 

also serve as an element of composite models and can 

be used to represent other types of processes. 

example, application to the breakdown of dielectrics ( g ) ,  

and the limiting strength of solids (10) (11) have 

While the general insights into creep, 

For 

been described. 

viscoelastic materials subjected to cyclic loading 

have been discussed by Shapery (12). 

gation problem has been considered by Petrof and 

Qratch (13) and many other questions can be considered, 

Special thermal effects arising in 

The wave propa- 
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ABSTRACT 

As p a r t  of a general  study of t h e  behavior of materials w i t h  

temperature dependent proper t ies ,  a simple m o d e l  of a v i s c o e l a s t i c  

s o l i d  is  considered here. I d e a l  experiments a t  constant stress 

and constant rate of deformation a re  examined. The ana lys i s  leads  

t o  y i e l d  and f r a c t u r e  c r i t e r i a  which i n  the  usual theory are 

regarded as experimentally determined quan t i t i e s .  a Rate of s t r a i n  

and s i z e  e f f e c t s  are a l s o  deduced and a phenomenon resembling s t r a i n  

hardening can develop. The treatment is independent of ,  but comple- 

mentary t o ,  t h e  atomic scale theor ies  of t he  deformation of so l id s .  

The temperature coe f f i c i en t  of v i scos i ty  which i s  introduced i n t o  

t h e  continuum theory] here, is r e l a t ed  t o  t h e  energy of a c t i v a t i o n  

f o r  t he  flow process which i s  access ib le  t o  the  atomic s c a l e  theory. 

The apprec ia t ion  of t he  temperature f i e l d  i n  which motions of t h e  

atoms occur could improve t h e  pred ic t ions  based on d i s loca t ion  theory. 



NOTAT ION 

temperature coef f ic ien t  of t h e  v i s c o s i t y  of t h e  working mater ia l .  

t h e  temperature independent, volumetric heat capacity of t he  

working matctial. 

a convenient non-dimensiona1,group of parameters, o r  s i m i l a r i t y  

c r i t e r i o n ,  which defines the  source s t r eng th  i n  t h e  reduced 

energy equation. 

t he  temperature independent volumetric thermal conductivity of 

t he  working material. 

t he  thermal conductivity of t h e  i n s u l a t i o n  used t o  r egu la t e  t h e  

thermal boundary conditions relative t o  that of t h e  working ina te r ia l .  

t h e  thickness of t h e  s lab  of material. 

t he  deformation rate i n  the  constant rate of deformation case. 

current r e a l  time. 

cur ren t  l o c a l  temperature. 

an i n i t i a l  o r  reference temperature. 

t he  l o c a l  ve loc i ty  i n  them€er ia l  r e l a t i v e  t o  t h a t  a t  

t h e  space coordinate i n  the  s lab .  

the  r e l a t i v e  cur ren t  boundary displacement of t h e  s l a b  of 

material. 

t he  m a x i m u m  or  equilibrium displacement of t h e  v i s c o e l a s t i c  

s l a b  f o r  a constant applied stress. 

t h e  temperature dependent l o c a l  v i s c o s i t y  i n  t h e  viscous p a r t  

of t he  v i s c o e l a s t i c  model, 

‘W 
A 

f = 0. 
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T8 

(P 

t h e  v i s c o s i t y  a t  t he  reference temperature. 

t h e  sp r ing  constant  i n  the e l a s t i c  part of t he  v i s c o e l a s t i c  

model. 

t h e  reduced space va r i ab le .  

t h e  cur ren t  value of t he  shear stress on the viscous p a r t  of the  

model. 

t h e  i n i t i a l  value of t he  s t r e s s .  

t h e  cu r ren t  s t r e s s  on the  e l a s t i c  element i n  the  constant  r a t e  

of deformation case.  

the  cu r ren t  value of t he  t o t a l  stress i n  t h e  constant  r a t e  of 

deformation case.  

t he  cu r ren t  s t r e s s  on the viscous element i n  t h e  cons tan t  r a t e  

of deformation case.  

t h e  reduced time. 

t h e  mechanical r e l axa t ion  t i m e ;  or the  t i m e  a t  which t h e  i s o t h e r m 1  

viscous stress has decayed t o  l / e  of i t s  i n i t i a l  value.  

t he  t i m e  a t  which the  ad iaba t i c  s t r e s s  has decayed t o  112 i t s  

i n i t i a l  value i n  the  constant r a t e  of deformation case.  

the  reduced temperature. 

t he  c r i t i c a l  temperature,  c h a r a c t e r i s t i c  of the  m a t e r i a l ,  a t  

which f r a c t u r e  is expected. 

t h e  maximum steady s t a t e  value c# can reach. 

t he  reduced temperature on the center  plane.  



I '  THERMAL EFFBCTS IN'MODEL VISCOELASTIC SOLIDS 

INTRODUCTION 

All mechanical processes involving real materials are to some extent 

The irreversible and, therefore, must be accompanied by thermal effects. 

irreversibility is complete in the flaw df viscous fluids. 

of heat generation in one dimensional (Couette) flaw of ideal viscous liq- 

uids have recently been explored (1). Criteria were established for esti- 

mating the significance of the heating effects which are useful for under- 

standing apparent departures frcm Newtonian behavior. 

The consequence 

In the present report, the exploration of the consequences of heating 

has been extended to include the deformatkKls of model viscoelastic solids 

made by combining an ideal elastic element with the viscous model of ref- 

erence 1. The use of such a model, or of any homogeneous isotropic, contin-. 

uum model, ignores a great deal that is known about the physics of solids. 

However, it will be seen that this treatment is altogether complementary to 

the elegant and compelling atomic scale descriptions of the deformation of 

solids involving the theory of the imperfect crystal and the configurational 

changes of polymer molecules. 

The existence of heating effects accompanying the deformation of solids 

has often been noted and is sometimes conspicuous (2) (3) (4) (5) ( 6 ) .  

Because the deformations can be both exothermic and temperature sensitive, 

regenerative feedback can occur. 

could lead to instability. 

of very high temperatures can be averted by convective 

0 
This would enhance the thermal effects and 

In the case of stressed liquid, the development 
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c i r c u l a t i o n s ,  turbulence and cav i t a t ion  which consume l a r g e  amounts 

of energy from the flow. I n  t h e  case of s o l i d s ,  convective processes 

cannot occur, but thermal catastrophe can be averted by y ie ld ing  and 

f r a c t u r e  . 
When t h e  temperature dependence of t he  viscous e lanent  is acknaw- 

ledged, y i e l d  and f r a c t u r e  criteria follow as l o g i c a l  consequences. 

Rate of loading and s i z e  e f f e c t s  a l s o  appear i n  a n a t u r a l  manuer and a 

phenomenon resembling s t r a i n  hardening can develop. Furthennore, t h e  

in t roduct ion  of t h e  temperature coe f f i c i en t  of v i s c o s i t y  i n t o  the theory 

of t he  continuum, by i t s e l f ,  provides a bridge t o  t h e  atomic scale events 

through the  concept of t h e  energy of ac t iva t ion .  

While the r e s u l t s  of t h i s  study of t h e  continuum model are of i n t r i n -  

sic i n t e r e s t ,  t he  importance of t h i s  po in t  of view is l i k e l y  t o  be g r e a t e r  

when i t  is used t o  supplement the so l id  state physics approach t o  the  prob- 

l e m  of deformation, With an apprec ia t ion  of t h e  temperature f i e l d  i n  which 

atomic scale movements occur, the  microscopic theory can be sharpened and, 

hopefully,  b e t t e r  co r re l a t ions  w i t h  experiment w i l l  be obtained. 

DISCUSSION OF ANALYSIS 

I n  t h e  ana lys i s  given below, the responses of a simple p a r a l l e l  

arrangement of an  i d e a l  e l a s t i c  element and an i d e a l  viscous element t o  

a constant stress and t o  a constant rate of deformation are examined. 

The i d e a l i z a t i o n s  that are made a r e  that the  spr ing  constant,  t he  heat 

capac i ty ,  the  thermal conductivity and the  dens i ty  are independent of 

temperature. I n  addi t ion ,  dynamic e f f e c t s  are neglected. Furthermore, 

a 
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t h e  problem of shape changes accompanying the  deformations is  avoided 

by considering only plane shears i n  an i n f i n i t e  s l a b - o r ,  equiva len t ly ,  

t o r s i o n  i n  a t h i n - M W  tube. 

The deformations are measured by t h e  r e l a t i v e  p a r a l l e l  displace- 

ments of t h e  boundaries of t h e  s lab .  The r e s t r a i n t s  are t h e  shear 

displacement dependent elastic forces and displacement rate dependent 

viscous forces.  The viscous forces  a re  computed from the  so lu t ions  of 

approximate energy and momentum equations as i n  re ference  1. 

e 
Even wi th  the  above s impl i f ica t ions ,  t he  problem wi th  heat gene- 

r a t i o n  and heat conduction is somewhat involved and unfamiliar. To 

assist i n  t h e  i n t e r p r e t a t i o n  of t he  numerical  r e s u l t s  obtained using 

an IBM 7094 computer, comparisons a re  made w i t h - t h e  f ami l i a r  i so the r -  

m a l  and wi th  the  simple ad iaba t i c  behavior of the  model. 

I n  t h i s  model, t he  displacement of t h e  two elements are always 

iden t i ca l .  The instantaneous value of t h e  shear stress on t h e  viscous 

e l e m e n t , r  , i s  r e l a t e d  t o  the  t o t a l  stress, CT , by 

0- =s rT - P" 
P 

i n  w h i c h p i s  t he  spr ing  constant,  E i s  the  relative boundary 
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displacement and 1 i s  t h e  thickness  of t he  s l ab .  

T h e  displacement is r e l a t e d  t o  the viscopLs stress h i s t o r y  by the  

d e f i n i t i o n  

0 i n  which y is t h e  ‘space va r i ab le ,  U. is  the l o c a l  v e l o c i t y  r e l a t i v e  t o  

the  boundary a t  y = 0 , a d  t is the current  time. 

The a p p l i c a t i o n  of the  Newtmian ~ i scmtky  $law .wtth expoa+m&i&fly 

dkpeadent viscosity fsee r e f .  I) 

then  l eads  t o  

i n  which ylo is t h e  v i s c o s i t y  a t  the temperature Ta; 7 
t h e  l o c a l ,  instantaneous values  of t h e  v i s c o s i t y  and temperature and d 

is  t h e  temperature c o e f f i c i e n t  of v i scos i ty .  

and a r e  

The instantaneous l o c a l  temperature is computed from t h e  approxi- 

m a t e  energy equat ioa  

i n w h i c h  c and k are the  volumetr ic  heat capac i ty  and thermal doaduc- 

t i v i t y  respec t ive ly .  The s o l u t i o n  of equat ion 5 depends on the  momentum 



equation (equation 3) and the thermal baundary conditions defined i n  

terms of the rd t i - .  .t€nkmal cqmduct’ivity of layera of iElgUlPti*, material, kl, 

encasing the slab of working material. 

the thickness of each ef .these layers is assumed to be one third of the 

thickness of the slab, and their outer boundaries are held at the ini- 

tial temperatures 

In the illustrative examples, 

Using reduced variables its in referen- I ,  

equation 5 becomes 

in which 

Equation 4 becomes 

0 0 

and equation 1 can be mitten I 
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CREEP - 
If at Y = 0, a total stress, C0 , is applied to the parallel 

arrangement of the elastic and viscous elements and held constant, 

equation 10 shows that the stress on the viscous element will have 

the initial value 6 rT = Cb . At later times, 6 L c0 and 
an equation for 6 can be obtained from equation 10 by differentia- 

0 t ion with respect to time to get 

which upon separation of variables and integration gives 

This can be substituted into equation 7 to give 

in which 

- 
T v w L  - ~p QL 

which together with appropriate thermal boundary conditions can be 

solved numerically. 

of this report. 

The results are described in a later section 

In order to facilitate the understanding of the general numeri- 

cal solutions of the creep equation, it is useful to inspect the 
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b ideal isothermal behavior of the model, In this case, 9 

12 is independent of 1 and equal to one. 
in equation 

Thus, equation 12 becomes 

so that the stress on the viscous element and thus, the rate of dis- 

placement,decays to zero at a rate determined by the mechanical relaxa- 

tion time, Ym . 
The instantaneous displacement for the isothermal case; from 

equation 1, can be written 
w -- 2 k - d  - &-(\-a r-) 

(16) 
€ =  - 

P 
is the maximum or equilibrium displacement. in which Et,,,, -60 JL 

F 
These results, familiar to rheo1ogists)are plotted together with the 

solutions using equation 7 whenever they are appropriate, 

An appreciation of the ideal adiabatic creep behavior of the 

model can also contribute to the understanding of the general nmeri- 

cal solutions of the creep equation. 

for the adiabatic case is smewhat more complicated and less familiar 

The development of the equations 

9 A value of 4 can now be obtained from the adiabatic form of 

dQ equation 7 

dv 
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which can be subst i tuted in to  equation 17 t o  give 

Separating var iables  and integrating leads t o  the  re la t ionship  

between the  temperature and the  s t r e s s  on the viscous element 

since 9 = 0 when 6 -C 60 . 
Notice t h a t  when 6- 0 , 43 reaches i t s  maximum value so 

The solut ion can now be completed by subs t i tu t ing  from 

equation 20 i n t o  18 using 21 leading t o  

or  

Here the var iables  can b e  separated and w e  have 

= v r  

The in t eg ra l  i n  equation 24 can be convert& t o  a well-known 

tabulated function ( the exponential in tegra l ,  E\(d by the subst i -  

t u t ion  



e- 
. 

whence 

So that the adiabatic time temperature relation is 

The adiabatic &placmiemt history can be obtained from 

equation 20, 2X &XI 1. 

-..- - 
The adiabatic creep deformation history of the model, . _  

computed as indicated above using tables of E L  (X), is compared 
with the more familiar isothermal deformation history in figure 1. 

Notice that if the value of 

tic and isothermal curves are quite close together. 

the approach to 

+- is small ( &,, 4. 0.1) the adiaba- 

0 As **increases, 

E ,  is much more rapid in the adiabatic case. 

The adiabatic creep temperature history is plotted in figure 2. 

The use of */+- as a temperature scale tends to exaggerate the 

temperature effects at l o w  *-and contracts them at high values of 4,. 
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A graphica l  r ep resen ta t ion  of the a d i a b a t i c  creep displacement- 

temperature r e l a t i o n s h i p  ( equa t i aa  28) is  given i n  f i g u r e  3 toge ther  

w i th  a curve for a case wi th  heat conduction. The poin t  of th i s  

f i g u r e  is t h a t  while in t h e  ad iaba t i c  case the temperature reaches 

i ts  maximum when the s t ra in  reaches i t 6  m a x h ,  i n  t h e  real case 

the  rate of heat  generation becomes SO slow when 6 approaches Gm 

that t h e  conduction process can eawse the t a p e r a t u r e  t o  f a l l .  0 
The desc r ip t ion  of t h e  creep behavior of the model w i th  both 

heat genera t ion  a d  heat  coIPductian*camrot be discussed (except qua l i -  

t a t i v e l y )  without t h e  mmerical so lu t ions  of equat ion 11. The machine 

so lu t ions  f o r  the  d e f o m t i o n  M s t o r y  f o r  var ious  values  of 

are presented i n  f i g u r e s  3 and 4. 

t u r e  on t h e  center plane of t he  viscous element f o r  +,= 2-5 and 25 f o r  

var ious  values  of k l  are Shawn i n  f igures  5 and 6. 

kl 

The computed va lues  of the tempera- 

This  model is only s u i t a b l e  f o r  descr ib ing  w h a t  has been c a l l e d  

Secondary creep can be b e t t e r  descr ibed i n  terms primary creep (7). 

of t h e  viscous element by i t s e l f  as is mentioned i n  re ference  1. 

dura t ion  of the primary creep phase is regula ted  by the value of Q 
qm and t h e  thermal boundary conditions. 

of whether t he  material w i l l  surv ive  the primary creep phase. 

temperature attained i n  the  sample exceeds some critical va lue  character- 

i s t i c  of t he  material, say  (p 
creep is complete. 

The 

9’ 

Another matter is t h e  ques t ion  

0 I f  t h e  

f r a c t u r e  can be expected before  primary 2 ’  
Obviously, t h i s  cannot happen i f  #mC (#k 
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However, even i f  qw 
boundary conditions are such as t o  prevent from exceeding . 

Another example or: t h e  type of experiment t o w h i c h  these  compu- 

~ f r ac tu re  need not occur i f  the  thermal 

t a t i o n s  would be appl icable  are, pkrhaps, those r e l a t i n g  t o  t h e  shear 

s t r e n g t h  of adhesive o r  brazed jo in ts .  There have been many s t u d i e s  

which have shown that t h i n  j o i n t s  can be stronger than t h i c k  j o i n t s  

as predic ted  by t h e  ana lys i s  (8) (9). 

CONSTANT RATE OF BE LATZVE BOUNDARY DISPLACEMENT 

When t h e  model s o l i d  consisting of a simple elastic element and 

a simple viscous element i n  p a r a l l e l : . i s  deformed a t  a constant rate, 

G = y f ,  t he  t o t a l  stress is t h e  sum of t h e  independent stresses on each 

of t h e  elements (equation 1). Although t h i s  "experiment" i s  more com- 

p l i c a t e d ,  i n  p r inc ip l e ,  than the  creep experiment, it i s  more commonly 

used f o r  t he  eva lua t ion  of t he  '!properties" of so l id s .  Here, t he  prob- 

l e m  of t he  instantaneous appl ica t ion  of a stress does not ari'se. 

Furthermore, by t h e  regula t ion  of t h e  deformation rate,  the  t i m e  required 

f o r  t h e  completion of a test can be var ied  over a wide range. This 

experiment is  always terminated by yield or  f r ac tu re .  Thus, i t  provides 

a value of t h e  "strength" of t he  material. 

I n  t h i s  experiment, t h e  stress on t h e  elastic element increases  
a 
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T h e  stress on the  viscous element deformed a t  a constant rate i s  some- 

w h a t  more complicated. 

ence 1 where i t  w a s  s h a m  t h a t  

This matter w a s  discussed i n  d e t a i l  i n  r e fe r -  

so that t h e  t o t a l  stress obtained by combining equations 29 and 30 a 
becomes 

The values of 4 and t h e  i n t e g r a l  of 9 then are obtained from the  

so lu t ions  of equation 7. Because of t h e  independence cf t h e  viscous 

and elastic stresses, t h e  numerical so lu t ions  of equation 7 presented 

i n  f i g u r e s  6 and 7 of re ference  / and the  discussion t h e r e i n  a r e  

d i r e c t l y  applicable.  However, before considering t h e  s ign i f i cance  

of equation 31, the  more f ami l i a r  isothermal and a d i a b a t i c  stress 

h i s t o r i e s  of t he  model w i l l  be examined. 

I f  t he  temperature throughout the material a l w y s  has t h e  i n i -  

t i a l  va lue ,  t h e  value of ehe i n t e g r a l  i n  equation 31 i s  unity.  The viscous 

stress then has the  constant value 

o v =  - Y  % 
e 

and t h e  t o t a l  stress is  given by 
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Thus, f o r  the isothermal case, the relationship between the stress and 

the time (or deformation) can be represented by a s t r a igh t  l i n e  w i t h  t h e  

slope c ?  a d  the intercept a t  V== 0 of 5 Y . This  i s  a relat ion-  

ship famil iar  t o  rheologists and i t  is shown together with examples of 
k R 

the  adiabat ic  re la t ionship i n  f igure 8. 

In  the absence of heat conduction (adiabatic case) the vaiue of 4 
i s  a l so  independent of f , but the appropriate value of e6 i s  given i n  

reference 1 as 
0 Y 

4L = \ + -  
'ye 

i n  which 

The adiabat ic  viscous stress i s  then time dependent according t o  

Equation 31 f o r  the t o t a l  stress then has t he  form 

or 
Y =  + r-r t CY- 

6, = - 
.Q 

While the f i r s t  term of t h e  expression on the r igh t  hand s ide  of 

0 equation 37 increases l inear ly  with deformation (or t i m e )  as before, 

the second term decreases. I f  t h i s  r a t e  of decrease i s  high, the t o t a l  

stress can a l so  decrease w i t h  deformation producing an e f f ec t  similar t o  

yield. On the  other hand, t h e  rise of the f i r s t  term can arrest t h i s  

decline and produce an e f f ec t  similar to work hardening. 
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Examples of t h e  a d i a b a t i c  and i so thermal  r e l a t i o n s h i p s  between 

t o t a l  stress and deformation a r e  p lo t t ed  i n  f i g u r e  8 toge ther  w i t h  

t h e  curves  f o r  t h e  s e p a r a t e  elements of t h e  composite model. 

Returning now t o  t h e  problem of t h e  numerical  s o l u t i o n s  of equa- 

t i o n  31 for t h e  t i m e  (or deformation) dependent stress on the  model 

sub jec t ed  t o  a cons t an t  deformation ra te ,  i t  i s  seen  t h a t  t h e  t o t a l  

stress is  composed of that on t h e  viscous element,  a l r e a d y  presented  

i n  r e f e r e n c e  1, p lus  a l i n e a r  term. I n  any p a r t i c u l a r  s i t u a t i o n ,  0 
t h e s e  terms can  be assembled. The a d i a b a t i c  curves  shown i n  f i g u r e  8 

are  typ ica  1. 

It may be seen t h a t  when t h e  value of Y@ i s  low, a h igh  i n i t i a l  

stress and a pronounced d i p  or y i e l d  can  be expected. This  i s  a l s o  

t h e  c o n d i t i o n  t h a t  l eads  t o  t h e  r ap id  development of a h igh  tempera- 

t u r e  i n  t h e  m a t e r i a l  t h a t  could  l e a d  t o  f a i l u r e  a t  low va lues  of t h e  

displacement ( b r i t t l e n e s s ) .  I f  f a i l u r e  does no t  occur promptly, a t  

y i e l d ,  t h e  stress c a  r ise a g a i n  before t h e  " l e tha l "  temperature  i s  

reached,  t hus  producing t h e  s t r a i n  hardening e f f e c t .  This  a n a l y s i s  can 

a l s o  account  f o r  t h e  s t r o n g  dependence of y i e l d  on s t r a i n  rate 

t h a t  h a s  o f t e n  been observed experimental ly .  

CONCLUDING DISCUSSION 

The a n a l y s i s  of thermal  e f f e c t s  i n  a model s o l i d  given above i s  
a 

p a r t  of a con t inu ing  s tudy  of t h e  behavior of materials w i t h  tempera- 

t u r e  dependent p r o p e r t i e s .  

conse rva t ion  of energy on mechanical behavior i n  a s imple but  fundamental 

manner. It i s  no t  intended t o  apply t o  any p a r t i c u l a r  m a t e r i a l  b u t  

r a t h e r  t o  d i s p l a y  t h e  p o t e n t i a l  of a somewhat d i f f e r e n t  type  of pheno- 

menological  d e s c r i p t i o n  of deformation and f r a c t u r e .  The p o i n t  of view 

It explores  t h e  gene ra l  consequences of t h e  
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is  not a l toge the r  new. Zener (2) and o thers  have remarked on adia- 

b a t i c  i n s t a b i l i t y  i n  deformation. Se i tz  (10) remarks on t h e  possi-  

b i l i t y  of regeneration i n  t h e  movement of d i s loca t ions  i n  m e t a l s .  

The e s s e n t i a l  novelty seems t o  be tha t  t h e  ques t ion  of thermal feed- 

back i s  t h e  f o c a l  po in t  of the  present study. 

The r e s u l t s  teach t h a t  an extremely pr imi t ive  model can account 

f o r  a number of d e t a i l s  of t he  behavior of real so l id s ,  I n  t h e  t r a -  

d i t i o n a l  treatments which neglect thermal feedback, t he  processes of 

y i e l d  and f r a c t u r e  and t h e i r  time and s i z e  dependencies r equ i r e  r a t h e r  

i n t r i c a t e  r a t iona l i za t ions .  The possibility of exchanging the  usual  

y i e ld  and f r a c t u r e  criteria by some more bas i c  notions of w h a t  con- 

t r o l s  t h e  responses of materials to s t r e s s  could be use fu l  both i n  

design problems and i n  materials development. 

Of f u r t h e r  i n t e r e s t  is t h e  p o s s i b i l i t y  of strengthening t h e  s o l i d  

state physics approach t o  the  deformation problem. From t h e  atomic 

s c a l e  po in t  of view, t h e  energy of ac t iva t ion  f o r  t he  movement of d i s -  

l oca t ions ,  which appears d i r e c t l y  i n  the  temperature dependence of t h e  

process,  i s  an access ib l e  q u a d t y .  Thus, a new bridge over t h e  gap 

between the  atomic scale and continuum view of t h e  mechanics of s o l i d s  

may be provided. 

F ina l ly ,  it may be noted that t h e  d i scuss ion  and ana lys i s  of r e f -  

erence 1 i s  a spec ia l  v i s c o e l a s t i c  case i n  which t h e  e l a s t i c i t y  is negl i -  

gible.  The importance of t he  e l a s t i c  e f f e c t  depends on t h e  value of both 

3 and y-. Whenever "*, is s u f f i c i e n t l y  small, t h e e k s t i c  e f f e c t  i s  

But even f o r y - s m a l l ,  i f  9 is s u f f i c i e n t l y  high t h e  viscous 

dominatgp! 
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CAPTIONS FOR FIGURES 

#2 

#3 

f 4  

#6 

f 7 

#8 

& 
evn 

The reduced, time dependent ad iaba t ic  creep deformation ( -  ) f o r  

var ious  values of t he  reduced maximum temperature he 

The reduced, time dependent ad iaba t ic  creep temperature ((8/@,)' 

f o r  various values of t h e  reduced maximum temperature a,. 
The reduced temperature dependent creep deformation ( 1- =)2  

Gn 
f o r  t h e  a d i a b a t i c  case and f o r  a case wi th  heat conduction (9=5, Tw=\~ kl= LO) 

The reduced, time dependent creep deformation f o r  

various thermal boundary conditions.  (9 = 5, v', = 

The reduced, time dependent creep deformation f o r  8,1 25 and f o r  

var ious  thermal boundary conditions, (3 
Detail near t h e  o r i g i n  of t he  reduced time dependent temperature 

%/4,, f o r  9 = 5,  Y,= 

boundary conditions. 

Detail near t h e  o r i g i n  of the  reduced time dependent temperature 

qflm f o r  %=SI vm=\o) (&,=IS) and f o r  various thermal 

boundary conditions, 

= 2.5 and f o r  

9- 
5, 7- = I 0 ). 

A 

-+- 
( qb=L5) and f o r  various thermal 

A+-- 
A 

6 
Examples of t h e  r e l a t ionsh ip  between t h e  stress (-) and t h e  time 60 

CT 
(o r  deformation) (- ) f o r  t he  constant rate of boundary displace- 

m e n t  case e 
%m 
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ABSTRACT 

A s  part of a general study of the behavior of mater- 

ials with temperature dependent properties, combined ther- 

mal and geometric effects in ideal viscous materials are 

explored analytically. The responses of cylinders to con- 

stant axial loads and to constant rates of axial deforma- 

tion are computed. This continuum analysis is independent 

of, but complementary to, the contemporary solid state phy- 

sics approach to the problem of the mechanical behavior of 

solids. The temperature coefficient of viscosity can be re- 

lated to the atomic scale theory through the concept of the 

energy of activation for the flow process. 

Non linear feedback effects occur both as a result of 
tk.er-L 

heating, and of shape change. 

destabilizing. In the compressive case the geometric effects 

are stabilizing and the heating effects are destabilizing. 

In the tensile caseAare both 

One result of the analysis is therefore the prediction that 

the compressive deformation of a cylinder can occur rapidly 

at first, due to thermal feedback, and then be arrested due 

to geomekric feedback. This is an effect familiar to stu- e 
dents of metal forming processes. 



NOTATION 

a - the temperature coefficient of viscosity of the 
working material. 

A - the current cross section of the sample. 

A. - the initial cross section of the sample. 

c - the temperature independent volumetric heat capacity 
of the material. 

L - the current length of the sample. 

Lo - the initial length of the sample. 

- the reduced length of the sample. 

- the reduced length in the adiabatic case. 

- the reduced length in the isothermal case. %; 
p - 

- the initial load on the sample. 

- the load in the adiabatic case. 

- the load in the isothermal case. 

- the rate of increase of $ in the constant rate of 

the current load on t h e  sample (e 4 ) -  

Po 
pa 

pa 
r 

deformation case. 

t - the current time. 

- a convenient group of parameters having the dimensions 
of time. It is the time that would be required for the 
length to double in the adiabatic, no-shape change case. 

a convenient group of parameters having the dimensions 
of time. It is the time that would be required for 
the temperature to become unbounded in the adiabatic, 
no shape change case. 

a0 
t 

I - 
t o o  

l- - the current lolira1 temperature 

- the initial or reference temperature 
T o  

0~ - a convenient group of parameters, the value of which 
indicates the relative importance of the thermal effects 
in the constant rate of deformation cases. 
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d' - 

B -  

'1. - 

I 

I ? -  

r -  

4 -  ~ e 

a convenient group of parameters, the value of which 
indicates the relative importance of the thermal effects 
in the constant load cases. 

the initial strain rate in the constant load case. 

the temperature dependent, current, local viscosity. 

the viscosity at the reference temperature. 

the current value of the strc:;sP-'' 

the reduced temperature. 
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COMBINED THERMAL AND GEOMETRIC 

EFFECTS IN VISCOUS MATERIALS 

INTRODUCTION 

The flow and deformation of materials is a pro- 

cess which is at once exothermic and temperature sen- 

sitive. Under these conditions regenerative feedback 

(a chain reaction effect) is possible which can enhance 

the thermal effects and lead to instability. Some con- 

sequences of thermal feedback in selected, highly 
0 

idealized model mechanical experiments have been dis- 

cussed in earlier reports (1, 2). It was shown that 

thermal feedback could lead to yield and fracture in 

solids and to turbulence and cavitation in liquids. 

Feedback effects and instability in mechanical 

experiments can also arise from purely geometric con- 

siderations. For example, when a constant tensile load 

is applied to a sample of material, the elongation is 

accompanied by reduction in cross section so that the 

stress tends to increase producing positive feedback. 

A 

4 

Conversely, under a constant compressive load the stress 

tends to decrease so  that the feedback is negative or 

degenerative. 

a 
In the present report, combined geometric and ther- 

mal effects are explored. The study of the combined 

effect is one of the many elaborations of the simple 

theory of thermal feedback in mechanical processes which 
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might be undertaken. It turns out to be of some special 

interest because under selected conditions the feedback 

processes oppose one another. Experiments and processes 

in which this occurs may be particularly suitable for 

applying and testing the  theory. 

The model that is used in the analysis below is a 

cylinder of homogeneous, isotropic, incompressible vis- 

cous material subjected to a constant axial load or a 

constant axial elongation rate. The static adiabatic and 

isothermal behavior of this model are contrasted. The 

use of this model or of any homogeneous, idtropic conti- 

nuum model ignores a great deal that is known about the 

physics of solids. However, it will be seen that this 

treatment is altogether complementary to the elegant and 

compelling atomic scale descriptions of the deformation 

of solids. One connection between the continuum and atomic 

scale theories is made through the temperature coefficient 

of the viscosity which is related to the energy of acti- 

vation for the flow process. Another is through the appre- 

ciation of the temperature field in which the atomic scale 

events associated with the deformations occur. 

0 

0 

The omission of elasticity, which can perhaps be re- 

medied in the manner suggested in reference 2; is somewhat 

extravagant. On the other hand, geometric effects are not 

influential except for large deformations in which rever- 

sible or elastic effects are often n o t  very significant. 
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The omission of heat conduction keeps the temperature 

and stress fields uniform. With heat conduction the 

interior of the cylinder would be hot,ter than che sur- 

face which might contribute to size effects and special 

surface effects which have often Seen Qoted in experiments. 

Of the results given here, perhaps the most interest- 

ing relates to the compression of the nodel cylinder. 

There the stabilizing effect of the increase in cross  

section must overtake the destabilizing effect of the 

heating at some fraction of t h e  original length of the 

cylinder. This may be related to what actually happens 

in certain forming operations applied to metals. 
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DISCUSSION OF THE ANALYSIS 

In the earlier work (l), (2),  geometric effects 

were avoided by discussing on ly  the plane shear defor- 

mation of an infinite slab. The axial deformation of 

a cylinder which involves shape changes and which is 

considered in this report is also a viscometric experi- 

ment (3). The shear viscosity “2 is related to the 

axial load P by the equation e 

in which A is the current uniform cross section of the 

cylinder, the factor 3 converts the shear viscosity to 

the tensile viscosity, r is the current stress, t 

is time and d i s  the current reduced length which is de- 

fined in terms of the current length, L , and the initial 
length, Lo, by 

in which the incompressibility condition is applied. 
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CONSTANT RaTE OF DEFORMATION 

If i n  an  isothermal  experiment ( "2 =?  ) t h e  

J 

0 

r a t e  of change of length  is a cons tan t ,  

the c u r r e n t  value of the load p. i s  given by 

dx - Y  - 
A t  

1 L ' l  

I n  the  compression experiment, r is  negat ive and 

p i  i s  a l w a y s  g r e a t e r  t han  Po. 

I f  now the deformation is considered t o  be adia- 

b a t i c  and t h e  v i s c o s i t y  depends on temperature (as i n  

r e fe rence  (1) according t o  

i n  which T i s  t h e  cu r ren t  temperature, To i s  the i n i t i a l  

temperature,  & i s  the  temperature c o e f f i c i e n t  of the 

v i s c o s i t y  and i s  a reduced temperature def ined by 

equat ion 4, the cu r ren t  load has the value 

The value of can be obtained from the energy 

balance equat ion,  which equates the mechanical work 

done t o  the l o c a l  s to red  thermal energy 

i n  which c i s  t h e  volumetric hea t  capac i ty ,  o r  



- 6  - 
in which the variables can be separated to give 

in which 

but since * = O  for t = 0 

9 \ -p ( \ + c i ) v t  s . =  
\ t r t  

\ in which t - 
PteO 

Whence it follows that 

gives the adiabatic load history at constant rate of 

elongation or compression. 

The load-deformation (or time) curves for tension 

are plotted in figure 1 f o r  various values of o( . 
The isothermal case corresponds to oc = 0 . The 

load-deformation curves for compression are plotted in 

figure 2. Temperature histories for the two cases are 

shown in figures 3 and 4 ,  In figure 1 it is seen that 

thermal feedback accentuates the load reduction due to 
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the geometric effect. When w is sufficiently high 

the feedback due t o  geometric effects becomes negli- 

gible and the problem is similar to that discussed in 

reference 1. 

In figure 2 it is seen that the feedback effects 

oppose each other, When o( 7 2 , the effects of 
thermal feedback are at first decisive, producing an 

initial load reduction which could appear as a mechani- 

cal instability which is arrested when the deformation 

or cross-sectional area becomes sufficiently high. 

This is a phenomenon which is similar to that which 

occurs when nail heads are formed on a wire. This 

idealized computation is likely to lead to a thinner 

head than is actually observed because, when heat con- 

duction is taken into account, the hammer and anvil be- 

come more effective heat sinks as the axial length be- 

comes smaller. 

a 
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CONSTANT LOAD 

When the load on the viscous cylinder is held 

at the constant value Po, the stress will depend on 

time. In the isothermal case the deformation rate 

is given by (cf equation.)) 

in which a tensile load is counted positive. Whence 

(14)  

where 

thus 

(15) 

since 

or 

(16) 

\ - = p t  & I -  

and +must be determined from the energy equation 

(equation 6) in the form 
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or 

whence, integrating, we find a relationship between 

the length and temperature 

in which 

This can now be substituted into the energy equa- 

tion (equation 19) to obtain a relationship between 

length and time which is the solution to the ideal 

adiabatic constant load problem. We have then 

or separating variables and integrating 
- &' 

4- t =  
&' e* ( 2 3 )  

The indicated integration in equation 23 can be per- 
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which computed from tabulated functions for various 

values of 4' $% to get the relationship between 
A 

x a n d  t. 
a 

For the preparation of Table I we let 

-00 
so that 

It can be shown that f o r  large values of 4' 9. 
-4' t 4' - -  - - 4 

4'" tf, OP 4' L)& (27) 

and f o r  small &' 8 %  

For intermediate values of 4' '$, Table I 

is used. 

a 
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The results of the computations using equation 26 

are shown in figures 5 and 6 for constant tensile and 

constant compressive load respectively. Here again 

the dramatic stabilization of the compressed material 

at some fraction of its original length is shown along 

with the enhancement of the tensile Instability by the 

combined geometric and thermal effects. The correspond- 

ing temperature histories (equation 21) are linear and 

need not be plotted. 

@ 
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CONCLUDING D I S C U S S I O N  AND ACKNOWLEDGEMENTS 

The study presented above is part of a continuing 

program of study of the behavior of materials with tem- 

perature dependent properties. While the model is high- 

ly idealized, the analysis further strengthens the view 

that the application of the first law of thermodynamics 

may be useful f o r  understanding the mechanical behavior 

of real materials. 

0 
it 
A 

Two points are made. First,is shown to be possible 

to rationalize, qualitatively, a technologically impor- 

tant type of deformation of solids. Second, a possible 

way of bridging the gap between the equally elegant but 

isolated continuum and atomistic theories of solid behav- 

ior is suggested. 

This work was made possible by the encouragement and 

support of the Office of Advanced Research and Technology 

of the National Aeronautics and Space Administration under 

Contract NASw 708 monitored by Messrs, Howard Wolko and 

Melvin Rosche'. The author is indebted to his colleague, 

M r .  George Mueller, f o r  helpful discussions and assistance 

in performing the computations. 
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CAPTIONS FOR FIGURES 

#1 The tensile load ( e / p o  ) versus the elongation 
( $ - I  ) in the adiabatic constant rate of 
elongation case f o r  various values of o(. 

The compressive load ( pq/po ) versus the compression 
( I - *  ) in the adiabatic constant rate of compression 
case for various values of 0 ( .  

( *-I  ) in the adiabatic constant rate of elongation 
case for various values of q. 

#4 The reduced temperature ( ) versus the compression 
( 1-2 ) in the adiabatic constant rate of compression 
case for various values of K .  

#2 

#3 The reduced temperature ( +-) versus the elongation 

#5 The reduced length ( ZfL ) versus time ( pt  ) at constant 
tensile load under adiabatic conditions for various values 
of d .  

#6 The reduced length ( ) versus time ( fit ) at constant 
compressive load under adiabatic conditions for various 
values of o(. 
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TABLE I 

a 

a 

-e"<. - AND [ ( d )  FOR INTERMEDIATE VALUES OF oc 
(for f i n d i n g  &(t) w i t h  equa t ion  26) e 

oc 

0 01 
.02 
03 . 04 
.05 
.06 
.07 . 08 
0 09 
.10 
.2 
.3 
.4 
e5 
.6 
-7 
.8 
.9 

1 .o 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2. 
3. 
4. 
5. 
69 
7. 
8. 
9. 
10 m 
11 e 

12. 

99.005 
49.009 
32.346 
24 019 
19 . 024 
15 . 696 
13.3 19 
11.579 
10.154 
9.048 
4.094 
2.469 
1.676 
1.213 
.9147 . 7094 
-5617 
.4517 
.3679 
.3026 
.2510 
.2096 
1757 
1487 
.1256 
.lo75 
.09 18 
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.004579 
.001349 
.0004 13 1 
.0001303 . 00004 194 
00001349 
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.000001518 
.00000051 

e c 4  
Tension 

94.967 
45 -655 
29.387 
21.328 
16.556 
13.401 
11.169 
9 -553 
8.236 
7.225 
2.8709 
1.5636 . 9 734 
-6533 
,4603 
-3356 
-2511 . 19 15 
1484 . 11662 
.09257 
07419 
05948 
-04873 
.03925 
.03281 
-02712 
.02249 
.01876 
,003547 . 000800 
.000201 
0000520 
.0000147 
.00000427 . 00000104 
e 000000383 
D 00000012 
e 00000004 

101.01 
51.01 
34.35 
26.02 
21.03 
17 . 69 
15 -32 
13 -54 

11.05 
12 . 16 
6.107 
4 500 
3 . 729 
3.297 
3 -037 
2.868 
2.782 
2.733 
2.718 
2.731 
2.767 
2.823 
2.897 
2 . 988 
3 -096 
3 . 220 
3 -361 
3.524 
3.695 
6 . 695 
13.649 
29 . 68 
67 . 24 
156.66 
372.63 
900.35 
2202.6 
5443 . 
13562 e 

c-00 
Compression 

-105.02 - 54.32 - 37.22 - 28.63 - 23.39 - 19.86 - 17.33 - 15.41 - 13.90 - 12.67 - 6,929 - 4,802 - 3.834 - 2,843 - 2,267 - 1.803 - 1.445 - 1.111 - ,823 - .5637 - .3246 - .loll 
.1106 
.3135 
.5097 
.7011 
.8890 

1 e 069 
1.260 
3.238 
5,981 
10.50 
18 74 
34.84 
67.75 
137.5 
289 . 6 
628 -4 
1397 a 
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