

LIQUID HYDROGEN FILM COOLED PRESSURE TRANSDUCERS

By J. Delmonte

Prepared under Contract No. NAS3-2754 by ELECTRO-OPTICAL SYSTEMS, INC. Pasadena, California

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . DECEMBER 1964

NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:

- A.) Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B.) Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with NASA, or his employment with such contractor.

Requests for copies of this report should be referred to

National Aeronautics and Space Administration Office of Scientific and Technical Information Attention: AFSS-A Washington, D.C. 20546

CASE FILE COPY

CONTRACTOR REPORT

LIQUID HYDROGEN FILM COOLED PRESSURE TRANSDUCERS

By J. Delmonte

Prepared under Contract NAS3-2754 Electro-Optical Systems, Inc. 300 North Halstead Street Pasadena, California

December 1964

.

Technical Management

Mr. James W. Norris

Lewis Research Center

Cleveland, Ohio

9

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONTENTS

Page

	SUMMARY					
1.	INTR	ODUCTION		1		
2.	TECH	NICAL DISC	USSION	3		
	2.1	Prototype pressure líquid hy	program for 300 ⁰ K to 20 ⁰ K operational transducer capable of being cooled by drogen	3		
	2.2	Work acco	mplished between March 15 and April 25	8		
	2.3	Review of	Statement of Work	13		
3.	RECO	MMENDAT ION	S	16		
	3.1	Mechanica	1 features of EOS PT15C-2 design	16		
	3.2	Four-acti	ve-element silicon chip beam	17		
	3.3	Thermal E	nvironment: Transient and Steady State	17		
4.	CONC	LUSION		18		
	APPE	NDIX I	-LIST OF ABBREVIATIONS			
	APPE	NDIX II	-FABRICATION OF SINGLE CHIP BEAMS IN SILICON			
	APPE	NDIX III	-TABLES 1, 2, 3 and 4			
	APPE	APPENDIX IV -PT15C-2 PARTS LIST				

4270-Final

iii

ILLUSTRATIONS

Figure		Page
1	PT15C-2 pressure transducer	2
2	Layout of diffused four-active arm silicon strain gage beam chip	4
3	Silicon chip with full bridge diffused into surface. Size 0.040 in. x 0.060 in.	5
4	Four-active arm silicon chips on 304 SS, some silicon chips bonded, some suspended off the metal bar	7
5	Multiple element silicon chip mounted on Invar constant stress beam	7
6	Top assembly - Pressure Transducer model PT15C-2	9
7	Installation and calibration - Ser. No. 2, PT15C-2	10
8	Installation and calibration - Ser. No. 3, PT15C-2	11
9	Installation and calibration - Ser. No. 4, PT15C-2	12
10	Laboratory and field test apparatus and pressure system	14
11	EOS developed PT15B combustion pressure transducer with coolant flow in operation just prior to flame impingement	19
12	Oxy-hydrogen flame impingement directly on diaphragm of PT15B combustion pressure transducer	20
13	Preliminary information on installation of film cooled (H ₂ 0) combustion pressure transducer PT15B-2	21

v

The first generation construction and test of three cryogeficcooled combustion pressure transducers capable of transducing steady state as well as high frequency pressure pulses have been successfully accomplished. These are embodied in Electro-Optical Systems pressure transducers PT15C-2, Serial Nos. 2, 3, and 4, as outlined in Print B 500160-2 Revision 3 of subject contract. Figure 1 is a photograph of the finished transducer.

SUMMARY

Optimization of electrical output, leading to improved performance specifications, and reassessment of installation details, reflecting in increased handling strength and field reliability, will result in accurate, rugged, and reliable instrumentation capable of surviving combined environment extremes, with increased output.

The efficiency of film cooling the PT15C-2 transducer with liquid hydrogen is yet to be proven under combustion pressure and temperature conditions. Static tests performed to date indicate that bridge-type solid state pressure transducers are capable of creditable performance to at least LH₂ temperatures with controllable output (sensitivity) and zero shift. Size adaptability, low weight, good output strength, and electrical simplicity are salient features of this type of pressure instrumentation.

1. INTRODUCTION

11004

This document constitutes the final report on NAS3-2754 contract. It covers the specific span of time from March 15, 1964 through the week ending April 25, 1964, as well as documents and summarizes the results of the entire contract work. It includes recommendations and conclusions based upon the experience and results obtained.

To Messrs. S. Kaye of the Semiconductor Department and Wm. McLellan of the Mechanical Engineering Department is due much appreciation for the expediency in developing the highly-doped four-active arm silicon strain gage configuration and tests thereon, within their respective laboratories at Electro-Optical Systems, Inc. Mr. J. Frassrand of the Electro-Optical Systems, Inc. transducer laboratory exhibited unusual skill in fabrication and assembly techniques.

4270-Final

FIG. 1 PT15C-2 PRESSURE TRANSDUCER

2. TECHNICAL DISCUSSION

2.1 Prototype program for 300[°]K to 20[°]K operational pressure transducer capable of being cooled by liquid hydrogen.

Phase I: From basic technologies previously pursued at Electro-Optical Systems and its subsidiary, Micro Systems, Inc., the diffused four-active element solid state piezoresistive gage beam had been successfully proven and transducer tested.

However, to span the temperatures required of this project an exhaustive literature search had to be instituted by the Semiconductor Department under Mr. S. Kaye, and many intensive trail and error tests accomplished within a relatively short time to produce acceptable silicon strain gage elements with the proper mechanical configuration, electrical resistance, temperature coefficient of resistance, and gage factor. Handling characteristics for contacting an ultimate bonding had to be reduced to the level of the skill of average assembly technicians.

A best compromise condition resulted in relatively high P dopant level diffusion into the bulk silicon, a lowered gage factor of about 50, at room temperature, and a relatively low temperature coefficient of resistance for the four individual resistances. Mr. Kaye has prepared a section on fabrication of single chip beams in silicon, having four active strain gage arms. See Appendix II in which four significant references are cited.

Final chip configuration is illustrated in Fig. 2; an actual photograph of the four-active element gage is to be seen in Fig. 3.

Phase II: Testing the silicon element from the transducer viewpoint of end use:

This involved the mechanical, thermal, and electrical integration of the silicon chip with a suitable pressure summing device. The latter, an integrally machined clamped diaphragm, was already defined, size-wise, not to exceed 0.115 inch diameter, because of previous constraints imposed by the available entry geometry to the rocket combustion chamber.

*Electro-Optical Systems Patent application pending.

4720-Final

FIG. 2 LAYOUT OF DIFFUSED FOUR-ACTIVE ARM SILICON STRAIN GAGE BEAM CHIP

FIG. 3 SILICON CHIP WITH FULL BRIDGE DIFFUSED INTO SURFACE. SIZE 0.040 IN. X 0.060 IN.

I

ľ

I

Integrity of the silicon chip was assured by shock testing to LH₂ and intermediate temperatures, repeatedly, and recording the changes in its four resistances, in the unbonded and bonded condition. This was accomplished both at EOS's transducer laboratory and at the Norco facility of Wyle Laboratories. Typical data accumulated from these tests is shown in Table 1 of Appendix III.

Figure 4 shows the 304 SS test setup.

Figure 5 depicts the chip mounted on Invar constant stress beam.

Knowing that the silicon element responds either more or less linearly with its original "clamping" stress (a function of the adhesive used, the cure temperature, and the difference in thermal contraction between silicon and the diaphragm metal), we decided to bracket thermal expansion coefficient of the silicon chip by mounting it on a 300 series stainless steel diaphragm and comparing the results with that of an Invar steel diaphragm.

> The following set of conditions was investigated: Silicon chip bonded to 304 SS: flat bar; diaphragm Silicon chip bonded to Invar: constant stress beam; diaphragm Silicon chip bonded to NiSpan C: diaphragm

Tests were conducted at $LO_2 - LN_2$, CO_2 and LH_2 temperatures, repeatedly. Typical data is tabulated in Tables 2 and 3, Appendix III.

That the silicon chip geometry did not require altering and its electrical characteristics and performance with a variety of metals behaved according to prediction attests to the fundamental integrity of the semiconductor element, the contacting and bonding methods employed. (TCB-aluminum contacting leads were used to join to the silicon element in all the above tests.)

Phase III was the actual buildup of a small group of complete pressure transducers, testing and electrically compensating for operation between LH_2 and room temperature.

4270-Final

FIG. 4 FOUR-ACTIVE ARM SILICON CHIPS ON 304 SS, SOME SILICON CHIPS BONDED, SOME SUSPENDED OFF THE METAL BAR

FIG. 5 MULTIPLE ELEMENT SILICON CHIP MOUNTED ON INVAR CONSTANT STRESS BEAM

Figure 6, Drawing D-427021, shows the top assembly construction of the EOS PT15C-2 combustion pressure transducer.* Installation and calibration information is included in Figs. 7, 8, and 9. Actual calibration test details for Serial Nos. 2, 3, and 4 are included in Appendix III, Table 4. Appendix IV tabulates a complete parts list.

2.2 Work accomplished between March 15 and April 25:

The buildup and final calibration runs of four transducers were partially accomplished during this period. Three of the four survived intact calibration through liquid nitrogen temperatures at EOS. They were PT15C-2 Serial Nos. 2, 3, and 4.

For field calibration runs to LH_2 , we elected to partially pot the compensation network with a coating of RTV silastic resin to protect the final cable interconnect wires, balance, zero shift, and sensitivity compensating resistors, from humidity changes and vibration fatigue effects. However, upon testing the units at LH_2 for the first time at the Norco facility of Wyle Laboratory, all these units developed minor difficulties which were not correctable in the field.

> Unit No. 2: bridge intact; compensation network open Unit No. 3: bridge intact; compensation network intact; gold seal leak

Unit No. 4: bridge intact; compensation network open

Upon returning to EOS, all three were made operational and checked again at LN_2 . All closely repeated their original drift, sensitivity, and linearity characteristics from RT to LN_2 , and return to room temperature. This time no potting was used to protect the compensation network other than brush coating with a heat-cured furane thermoset adhesive. Placement of the fixed bridge compensation resistors so that they would be protected against gross shock mishandling was emphasized.

* Note that the original 0.170-inch front diameter was further reduced to 0.150 inch. This change would aid in the installation entry machining problems by presenting a transducer dimension less than the minor diameter of the threaded 10-32 boss (0.156 inch) and still reduce the area of direct heat impingement in the combustion zone.

4270-Final

			i	ł	ł	ł	-	1		PROFILE THE PARTY OF
							LIST OF M	VTERIALS		
		UNLESS OF	THERWIS	Ē	19 19	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		LECTRO-OF	NCAL SVETEMS	MG.
			Ì	ł	1	•		sadana, Californi	+ MUrrey 1-4071, SY	camere 5-9881
		1 THE COMMUNIC			63-63-67		1 1			
		1	PARTICULAR CONTRACT	I	3		JAES	SURE	INANSUU	CER
		:	# 1/ 1	•					DTIEC 3	
					ž	- A	-		LINC L	1
		The second	CONTINUE							
		VAA1 31 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	to start	198.66	100			ALABORATION IN		1
NONE	MA 4270					_			0 427(
	140 UNIN 441	CANCEL VIEW			ij	Í	100 TO 1			
ORIGINAL	APPLICATION		-				12705		- × +	

2
r.
š
È.
<u> </u>
딜
8
ž
2
Ξ
В
Ā
N S
S
Ë.
5-1
R
B
ŝ
E
Б
ī
~
F.
Ę.
E
ŝ
A
പ
õ
Ч
G
Ц
Ē

T	-		-	ł	1
		BLAST TUBE ASSY.		-	-
		INST. HOUSING ASSY		~	-
		CABLE ASSY.		е	-
ME TAL		O-RING		4	1
SST	2-56 X 1/4	SCR-MACH-HEX HD.		5	4
sst	2-56 X V2	SCR-MACH-HEX HD.		9	3
		RESISTOR		7	-
		RESISTOR		8	1
		RESISTOR		6	-
	OIO DIA.	WIRE		2	AR
	SST SST METAL Mena	2-56.X.1/2 SST 2-56.X.1/4 SST 2-56.X.1/4 SST METAL METAL	recipionary recipi	RESISTON RESISTON RESISTON RESISTON RESISTON CRAMOHEKHO. 2:66 X 1/3 SCRMOHEKHO. 2:66 X 1/4 SCRMOHEKHO. 2:66 X 1/4	3 mc.so.um 5 7 Resistion 256.x 1/2 551 6 SCRMOHHER HD 256.x 1/3 551 5 SCRMOHHER HD 256.x 1/3 551 4 O-RING 256.x 1/3 551 3 CABLE ASSY McTAL 1 BLAST HOLE ASSY McTAL 1 BLAST HOLE ASSY McTAL

	÷
1	Γ.
	127721

				5%	
				54 % 56 V3	
SLEEVING	DUST CAP	DUST CAP	DUST CAP	SOLDER	
15	Ŧ	13	2	=	
AR	-	-	-	AR	

< • • • •

(DO NOT GROUND)

-OUTPUT BLACK - INPUT GREEN + INPUT

WHITE RED ć

SENS

SHEPO

۲

٤

٢

₹₹

۲

POUTPU

FIG. 7 INSTALLATION AND CALIBRATION - SER. NO. 2, PT15C-2

4270-Final

On the second series of tests at Norco on April 22, all three units were successfully calibrated at LH_2 temperatures without mishap. High pressure helium gas was the pressurizing medium and was simultaneously introduced into the dead weight testing lines and into the LH_2 submerged transducer coolant tube, then through the transducer into a fixed stainless steel trapped volume which was threaded on the 10-32 threads, and pressure sealed against the 0.400-inch diameter flange area (see Fig. 10).

Final checkout at EOS disclosed no internal moisture condensation problem and complete return to normal room temperature calibration condition. All three transducers were thoroughly cleaned, vacuum dried, open tube endings capped and made ready for shipment to the contractor.

2.3 Review of Statement of Work:

In the design, fabrication and test of three cryogenic film cooled pressure transducers, the following statements are made in a numerical sequence to coincide with the specific Work Statement, item for item:

- The only construction materials in contact with liquid hydrogen are stainless steels (300 series), nickel steel (NiSpanC), copper, and copper brazing alloys.
- 2. Sensing element is the piezoresistive type strain gage constructed upon high purity elemental silicon.
- 3. All the transducers will withstand pressure to 2,000 psig without recalibration and without causing permanent change in transducer characteristics.
- Active working diameter of the flush-mounted transducers is
 65 mils exposed to the rocket chamber environment.
- 5. Mounting: as described in B-500160 drawing (Fig. 6)
- 6. Pressure range: 0 to 1500 psig.
- Frequency response: flat from dc to 10 kc; undamped natural frequency by calculation is > 100 kc.

4270-Final

WHITEY

APPARATUS AND PRESSURE SYSTEM USED AT E.O.S. TRANSDUCER LABORATORY AND AT WYLE LAB. (NORCO) FACILITY

FIG. 10 LABORATORY AND FIELD TEST APPARATUS AND PRESSURE SYSTEM

4270-Final

- Combined accuracy: L-H and R = < 1 percent F.S. (at steady state temperature condition).
- 9. Full scale output: > 60 mvdc, unamplified.
- 10. Excitation voltage: < 10 vdc Constant current: < 15 Ma Bridge impedance: < 1000 ohms</p>
 See individual calibration sheet, Figs. 7, 8, and 9 and Table 4, Appendix III.
- 11. Liquid H₂ has heat of vaporization = 194.22 Btu/1b, at one atmosphere pressure; and
- 12. By forcing liquid H_2 through the unit at greater than combustion pressures and at a rate of 1 to 2 gallons a minute, the four-active arm silicon sensor should survive and not heat up under large heat fluxes. Liquid coolant must be passed through the transducer at least 30 to 60 seconds before combustion is initiated to stabilize the active bridge and fixed compensating network. Coolant must continue to flow after combustion cutoff until motor casing cools below $300^{\circ}F$.
- 13. Bridge zero-drift and bridge sensitivity drift have been examined at LN_2 and LH_2 . Whereas it is possible to achieve \pm l percent full scale per 100°F at one cryogenic temperature (LH₂); it seems more practical to open this specification slightly until testing at LH₂ becomes more commonplace. See individual calibration sheets, Figs. 7, 8, and 9, and further remarks under Section D, Recommendations.

In summation, three pressure transducers have been designed, built, and tested for operation at LH₂ conditions to a specific entrymounting geometry and have successfully fulfilled all the basic requirements of the contract Work Statement.

3. RECOMMENDATIONS

3.1 Mechanical Features of EOS' PT15C-2 Design

3.1.1 Although it can be demonstrated that a geometry employing 10-32 threads in the mounting area is not unreasonable to achieve, it is more realistic to admit that it is also too easy to damage these threads by inadvertent overtorquing. The LH_2 cooled combustion pressure seal must be metal, and the natural tendency is to overtighten. We recommend that where possible a motor chamber internal threaded boss of 7/16-20 size be used and threaded to a controlled depth, thence to a small through bore into the combustion chamber. This would have the result of distinct improvement in field handling and reliability of the transducer installation.

3.1.2 The internal cryogenic coolant seal and the external combustion gas seal areas should be upgraded to handle high pressure and thermal shock loading beyond the present scope of the contract. Present design is capable of withstanding cryogenic thermal shock and full scale static test pressures. Combustion thermal conditions, as they would affect the mounting boss area, have not yet been considered. Multiple chevron (metal, teflon, metal) or K-seals are recommended for testing. Special sizes are required.

3.1.3 Diaphragm burnout conditions should be considered, and escape of combustion gases should be restricted. Multiple internal pressure baffling and possible threaded cable cap construction should be reviewed.

4270-Final

3.2 Four-active-element Silicon Chip Beam

3.2.1 Change in electrical resistance of the individual elements of the silicon chip beam with from zero to full scale distributed pressure on the diaphragm indicates that the compression gages (position 2 and 4) (see Table 2, Appendix III) are contributing only a small amount in the way of output. It should be possible, without overdriving the diaphragm, to redesign the silicon chip to increase the full scale output to at least 100 mv. Increased output would: (1) decrease the L-H and R error band and (2) decrease thermal effects (sensitivity change and zero drift). Also further geometrical changes in the gage layout should be investigated to enhance the output and reduce the normal bridge electrical imbalance.

3.3 Thermal Environment: Transient and Steady State

3.3.1 By submerging the transducer completely in cryogenic fluid to a depth beyond the cable cap (see Fig. 6), thermal equilibrium is quickly achieved, both in the diaphragm area as well as in the electrical bridge compensation area. If both areas are not at identical temperatures nor achieve it simultaneously, transient thermal output could be large and the electrical compensation for thermal effects either slow to stabilize or never quite achieved. To achieve fast stability, submersion technique was employed. In terms of field (or flight) tests, this latter procedure is probably unrealistic. Relocation of the passive compensation elements to the liquid cooled region of the transducer is desirable.

3.3.2 To achieve a realistic thermal environment error band of \triangle S and \triangle Z for the PT15C-2, testing over the entire cryogenic temperature range is believed necessary. Tests were conducted at LN₂ and LH₂; however, ambiguities in the results (see calibration sheets) indicate a need for further investigation in this area. The problem here is probably related to the passive compensating components used in the three subject transducers. Further component testing should correct this situation.

4. CONCLUSION

Modification to Electro-Optical Systems' novel combustion pressure transducer^{*}, commerically available in two sizes, the PT15C-3 for a minimal access geometry problem, and PT15B-2 (Figs. 11, 12, and 13) for insertion in an AND 10050-4 boss geometry, such that it could be cooled by LH_2 , has resulted in a useful first generation device.

The results prove the feasibility of the use of a solid state silicon four-active-arm piezoresistive element, arranged as a Wheatstone bridge, over a large temperature span, 20° K to > 300° K, with good output for direct recording and within a transducer geometry utilizing the sensor's inherent small size, fast thermal response, and linear characteristics. These transducers, identified as model PT15C-2, can provide the electromechanical means for measuring static (0 to 1500 psig) and dynamic (flat dc to 10 kc) pressures under combustion environment, flush within a liquid rocket cryogenic-cooled motor.

* Patent pending

FIG. 11 EOS DEVELOPED PT15B COMBUSTION PRESSURE TRANSDUCER WITH COOLANT FLOW IN OPERATION JUST PRIOR TO FLAME IMPINGEMENT

FIG. 12 OXY-HYDROGEN FLAME IMPINGEMENT DIRECTLY ON DIAPHRAGM OF PT15B COMBUSTION PRESSURE TRANSDUCER

FIG. 13 PRELIMINARY INFORMATION ON INSTALLATION OF FILM COOLED (H₂O) COMBUSTION PRESSURE TRANSDUCER PT15B-2 APPENDIX I LIST OF ABBREVIATIONS

APPENDIX 1

List of A	bbr	eviations
т'N	=	tension gage
C'N	=	compression gage
TCB	=	thermo-compression bonded
F.S.	=	full scale
S	=	sensitivity (output over the full scale pressure range)
RT	=	room temperature
S _{RT}	=	sensitivity at room temperature
$\Delta \mathbf{S}$	=	change in full scale output over temperature range
Z	=	zero balance of the transducer electrical bridge
۵Z	=	change of zero balance over temperature range
R	=	resistance
∆ R	=	change of resistance
v	- =	voltage (dc)
Т	=	temperature $\Delta \mathbf{R}$
G.F.	. =	gage factor = $\frac{R}{\epsilon}$
e	=	strain, inches per inch
ىلم	=	micro, one millionth
Ω	=	ohms
UP	=	increasing pressure steps (as during a calibration run)
DN	=	decreasing pressure steps (as during a calibration run)
Eo	=	voltage output
E _{IN}	=	voltage input
I	=	K = constant current
v	=	K = constant voltage
L-H & R	=	combined accuracy; linearity, hysteresis, and repeatability
SS	=	stainless steel

4270-Final

٠

I-1

APPENDIX II FABRICATION OF SINGLE CHIP BEAMS IN SILICON, HAVING FOUR-ACTIVE STRAIN GAGE ARMS

Author: Stephen Kaye

4270-Final

,

•

FABRICATION OF SINGLE CHIP BEAMS IN SILICON, HAVING FOUR-ACTIVE STRAIN GAGE ARMS

S. Kaye

1. Design

The design of the silicon diaphragm for use in pressure measurements, where the silicon is intended to be bonded to a clamped metal diaphragm of 60 mils diameter, was undertaken.

It was decided to use a diffused construction where the gages were p-type diffused into an n-type 20 ohm cm silicon substrate. The substrate material selected had a [110] orientation and gages, each of which has an active area of 10 x 1 mils, were oriented with their long dimensions parallel to the [110] direction lying in the plane of the slice. In this way the strain transverse to the gage was in a [100] direction where the piezoresistive coefficient is negligible (Ref. 1).

0. N. Tufte and E. L. Stelzer (Ref. 2) have shown that the piezoresistive properties of a diffused layer are characterized by the surface concentration, once a particular distribution of impurities is assumed. Their data, which assures complementary error function distribution of impurities, was used in estimating the gage factor.

Since the gages are designed to work down to 20° K, it was necessary to select a surface concentration sufficiently large that the gage resistance would not vary significantly over the temperature range of interest.

From Morin and Maita's data (Ref. 3), it appears that p-type material, having boron concentrations in excess of 1.5×10^{19} atoms/C.C. has a resistivity almost independent of temperature in the range of 15° - 300° K. It was decided, therefore, to aim for a surface concentration of 10^{20} atoms/C.C.

- Ref. 2 O. N. Tufte and E. L. Stelzer, "Piezoresistive Properties of Diffused Silicon Layers," J.A.P. Vol. 34, p. 313, February 1963
- Ref. 3 F. J. Morin and J. P. Maita, Phys. Rev., Vol. 96, p. 28, October 1, 1962

4270-Final

Ref. 1 - O. N. Tufte, et al., "Silicon Diffused Element Piezoresistive Diaphragms"; J.A.P. Vol. 33, p. 3322, November 1962

Under the diffusion conditions used, it was expected that a gaussian distribution of impurities would result. It was decided to use a μ junction depth. Using Irvin's data (Ref. 4), it was found that this would give a sheet resistance of 40 ohms/square, and hence a gage resistance of 400 ohms per element.

Using the curves in Ref. 1, a gage factor of 65 was predicted. Values were also calculated for a surface concentration of 5 x 10^{19} . This gave a gage resistance of 800 ohms/square, and a gage factor of 75.

The stress distribution expected in a clamped diaphragm is such that it is desirable to place two gages close to the center of the diaphragm where they will be in tension, and two close to the edge where they will be in compression. It was decided to make each element 10 mils x 1 mil, and the configuration shown in Fig. 2 of the main text of this report was used. In order to avoid unwanted stiffening of the diaphragm by soldered contacts, it was decided to use 1 micron of aluminum evaporated and alloyed to form ohmic contacts to the active elements, and then attach external leads by bonding or welding to contact pads placed on approximately the neutral axis of the diaphragm.

2. Fabrication Techniques

Table I lists the major process steps in the fabrication of the silicon chips.

Steps 1-27 are carried out on complete slices each having approximately 60 units. Steps 28 and 29 are on individual units.

Ref. 4 - J. C. Irvin, "Resistivity of Bulk Silicon and of Diffused Layers in Silicon," B.S.J.T., Vol. XLI, p. 387, March 1962

4270-Final

II-2

TABLE I

1.	Procure silicon - 20 ohm cm n-type $\lfloor 110 \rfloor$ orientation with (100) face marked by a flat ground on one edge. Slices 1" $\pm 1/8$ diameter, .010" thick.
2.	Polish etch - remove approximately 2 mils.
3.	Oxidize - 1200°C 2 hours, wet oxygen.
4.	Coat with photoresist and align mesa pattern with (100) edge.
5.	Expose, develop, and bake resist.
6.	Etch mesas - approximately 1 mil deep.
7.	Remove photoresist, clean, slice, and remove oxide.
8.	Reoxidize - 1200°C l hour, wet oxygen.
9.	Coat with photoresist and register gage pattern.
10.	Expose, develop, and bake resist.
11.	Etch oxide.
12.	Remove resist and clean slice.
13.	Predeposit boron - $1050^{\circ}C$ 20 minutes $B_2^{\circ}O_3$ source
14.	Drive in - 1050°C 30 minutes.
15.	Coat with photoresist and register contact pattern.
16.	Expose, develop, and bake resist.
17.	Etch oxide.
18.	Remove resist and clean slice.
19.	Check gage resistance.
20.	Evaporate aluminum - $l\mu$ thick.
21.	Coat with photoresist and register inverted contact pattern.

4270-Final

.

II-3

.

- 22. Expose, develop, and bake resist.
- 23. Etch aluminum.
- 24. Alloy aluminum.
- 25. Check gage resistance.
- 26. Mount for etching face down.
- 27. Etch back of slice to separate and reduce gage thickness to .0005".
- 28. Demount, clean, and visual inspect.
- 29. Bond leads.

II -4

APPENDIX III

.

TABLES

1	R	versus	Т
---	---	--------	---

2 304 Data

Invar Data

- 3 NiSpan C Diaphragms
- 4 Calibration Data (Series 2, 3 and 4)

4270-Final

	_	Unbonde	<u>ed</u>		Bond	led to	<u>304 SS</u>
	T OK	S-G 4B Ga Compression Gage	Tension Gage		Compression	Gage	Tension Gage
	296	498.8Ω	460.1 Ω	(EOS)	488.3 Ω		390.0Ω
ln ₂	77	390.3	356.5	T	343.7		256.5
lo2	90				348.7		259.8
co ₂	195	443.4	407.7		411.4		312.0
	296	499.2	460.6		, 489.3		391.0
,	7 7	390.3	356.6		343.7		256.5
	90				348.7		299.8
co ₂	195	443.0	407.4		411.3		311.9
	296	499.2	461.2 (EOS)	488.3		389.9
	300	500.7	462.4	Wyle	Lab) 491.0		392.3
LH2	20	372.7	340.2	f	329.7		247.4
	30 0	499.1	462.8		492.4		393.7
	20	372.7	341.1		329.9		247.4
	300	500.6	465.2		492.9		394.2
	20	372.9	342.3		330.0		247.5
	300	502.4	466.8		495.1		396.3
	20	372.8	342.5		33 0.1		247.6
	300	501.9	466.8		494.7		396.6
	20	373.0	342.7		330.1		247.5
	300	503.6	468.8 (1	Wyle	Lab) 495.7		396.8
	297	500.0	465 .3 (1	EOS)	491.4		392.6
Boil H _. 0	370		(1	EOS)	552.1		454.0
ک	2 97		(1	EOS)	491.4		392.7

Typical resistance readings of individual elements of a silicon beam chip vs. temperature as read by the wheatstone bridge method; 1-1/2 VDC power.

4270-Final

Table 1

III-1

.

Table 2

Typical bonded silicon chip, individual element resistance changes with temperature:

I <u>30</u>	04 S.S. Dia	phragm		
т, ^о к	R , Ω	R, Ω	R, Ω	R, Ω
297	415.7	5 33. 0	430.0	486.7
77	270.6	374.0	279.2	337. 5
297	414.7	531.9	429.1	485.7
77	270.7	374.1	279.2	337.3
297	416.0	533.0	430.1	486.4
297	414.2	531.8	428.8	485.4

II Invar Steel Diaphragms

Typical bonded resistance change with temperature:

Т, ⁰ К	R , Ω	R , Ω	R , Ω	R , Ω	R , Ω	R , Ω
297	471.1	597.4	474.1	503.8	468.4	559.8
77	359 .3	464.3	3 62.2	3 87.0	359.5	440.2
297	469.5	595.6				
195	416.5	531.7				

All the above resistance elements were pressure cycled while at the indicated temperature.

III Typical resistance changes with temperature before and after bonding to Invar constant stress beam and when strained to 1000 microinches.

<u>,</u>

Data S=K=Beam

Gage #25 S.G. 6C - Aluminum thermal compression bonded leads

т, ^о к	Step 250 μ in. strain	$\widehat{\mathbb{O}}$ Stra	in Gage Ele	ment Positi	.on			
297		419.9	537.5	429.8	476.9	Unbo	nded	
77		327.3	419.0	333.1	371.8		4	
297		405.8	516.0	415.7	465.8	Bond	led to	
	1	410.8	519.0	420.8	469.1	Inv	ar const	rant
	2	415.8	522.0	425.7	472.3	str	ess bear	ı .
	3	420.9	525.1	430.9	475.8	•		
	4	426.1	528.1	436.1	479.1		•	
77	0	282.3	377. 5	287.4	337.3	0 mj	crostrai	.n "/"
	1	286.7	381.0	291.9	340.9	250	11	•
	2	291.2	384. 5	296.5	344.7	500	11	
	3	296.3	388.3	301.7	348.8	750	11	
	4	302.0	392.4	307.4	353.3	1000	**	
1070	D/ -1		III-2					

4270-Final

Table 3

Nispan C diaphra	igms used in I	riju-z tran	isqucers:		
e C		civ.	4-0	element sili .040" x .0	icon chip 060"
Gag	<u>e No</u> .: (1)	2	3	4	Method
Unit #2					
Unbonded @ RT	463.5 ₂	_م 515.9	467 . 4 മ	564.9 <u>.</u> :	Wheatstone bridge, 1.5v excitation
Bonded* O PSIG at R.T. 1500 PSIG 六 R	457.0Ω 476.0 + 19.0	495.0Ω 492.0 - 3.0	458.0Ω 477.0 + 19.0	541.0 ^Ω : 537.0 - 2.3	Oil dead weight tester and Wheat- stone bridge network 5 VDC excit.
Element #12					
Unit #3					
Unbonded at RT	485 . 0 م	604.1 <u>a</u>	484.1 <u>r</u>	553.9 _{.R}	Wheatstone bridge, 1.5V excitation
Bonded* 0 PSIG at R.T. 1500 PSIG <u>^</u> R	480.0Ω 497.0 + 17.0	583.00 583.0 0	495.0Ω 514.0 19.0	523.0Ω 520.0 - 3.0	Oil dead weight tester and Wheat- stone bridge net- work 5 VDC excit.
Element #5					
Unit #4					
Unbonded* @ R.T.	• 438.3s	524.3 <i>s</i>	44 9. 9 r	564.5 <u>s</u>	Wheatstone bridge, 1.5v excitation
Bonded* 0 PSIG at R.T. 1500 PSIG AR	426.0Ω 443.0 + 17.0	519.00 517.0 - 2.0	437.0Ω 453.0 + 16.0	533.0Ω 529.0 - 4.0	Oil dead weight tester and Wheat- stone bridge network 5 VDC excitation

ļ

Unbonded and bonded resistance of actual 4-element silicon beam chips on NiSpan C diaphragms used in PTL5C-2 transducers:

*To NiSpan C material diaphragm.

Element #9

.

<u>Table 4</u>

′.

- ·

CALIBRATION TEST DATA

			PT15C-2 S	erial #3	PT15C-2 S	Serial <u>#2</u>	<u>PT15C-2</u>	Serial #4
1	Т	Pressure PSIG	E _o Up	E _o Dn.	E _O Up	E _o Dn.	E _O Up	E Dn.
	RT	0	+25.2 mv	25.0 mv	24.6 mv	23.2 mv	+16.1 m	v 14.6 mv
	75°F	250	36. 5	34.0	38.0	36.0	27.4	26.0
		500	47.9	45.4	51.4	49.5	38.8	37.4
	(EOS)	7 50	59.4	56.8	65.1	63.9	50.4	49.2
		1000	71.0	68.9	78.5	77.3	62.3	61.5
		1250	82.6	81.2	92.8	91.8	74.4	73.6
		1500	94.6		107.1		86.5	
		S _{RT} =6	9.4mv at I	=K=10 MA	S_{RT}=82.5	at I=K=10 M	1A S _{RT} =70.	4 at I=K=12 MA
)	LN.,	0	+13.3	14.3	+10.6	10.2	+ 4.6	+ 4.6
	2	250	24.7	25.3	23.0	23.0	14.7	14.4
		500	35.7	36.8	36.2	36.1	23.7	23.7
	(EOS)	7 50	47.9	48.3	49.5	49.4	34.9	34.8
		1000	60.0	60.5	63. 5	63.4	46.2	46.0
		1250	73.0	73.0	77.5	77.5	58.0	57.7
		1500	86.5		92.8		70.1	
		s _{LN2} =	73.2mv at	I=K=10 MA	$S_{LN_2} = 82$.	2 at 10 MA	$s_{LN2} = 6$	5.5 at 12 MA
i.	RT	0 psi	lg 2 3. 6 mvD	C	RT O	+3 0.5	RT O	+12.7
		1500 psi	lg 97.6 mvE	C	1500	116.4	1500	83.2
	(Norco)	0 psi	.g 23.6 mvD	C	0	30.5	0	11.7
		0	+ 6.0	6.0	(23.4)	23.7	29.0	29.0
		250	15.6	15.6	35.4	35.6	39.1	39.3
		500	27.7	25.7	47.5	47.3	49.5	47.2
	LH,	750	36.1	36.1	60.0	60.1	59.8	57.8
	(Nõrco)	1000	47.0	47.0	73.3	72.6	70.5	70.6
		1250	58.5	58.5	86.8	86.3	81.8	80.6
		1500	70.3		100.3		93.1	
		s _{LH2} =	=64 .3 mv at	I=K=10 M4	$*s_{LH_2} = 76.6$	mv at 10 M	IA $S_{LH_2} = 64$.1 mv at 12 MA
;	(EOS)	0 psi	ig 22.6 mvI	C	0 psi	g 30.8 mvI	DC Op	sig 11.4 mvDC
	RT	1500 psi	ig 96.6 mvD	C	1500 psi	g 112.3 mvI	DC 1500 p	sig 82.0 mvDC
		0 psi	ig 22.2 mvI	C	0 psi	g 30.8 mvI	ос ор	sig 10.5 mvDC
-	L Zero S % FS/1	RT hift 00°F	to LN ₂ RT - 4.34	to LH ₂ - 4.77	RT to LN ₂ F - 4.28	T to LH, - 1.585	RT to LN ₂ - 4.13	RT to LH ₂ + 4.63
I	Sensit % FS/1	ivity Chang 00 ⁰ F	ge:+1.385	- 2.62	0922	- 2.17	- 1.76	- 1.82
1994-19	Effect o	f Mass Cool	ant Flow					
	on Zer	o Balance,	H ₂ O at 650	psi=.2mv	.2mv		.3mv	
		I=K=10	MĀ	-	I=K=10 MA		I=K=12	MA
)ee	Weight =	85 gms.			85 gms.		85 gms	•
	Final Br	idge Resist	ances:					
		Output	A-B 560	Ω	540 Ω		5700	
		Input	D-C 435		420		3 65	
		-	D-A 360		350		380	
	,		D-B 420		400		440	
					•			

*Several runs made.

III-4

APPENDIX IV PT15C-2 PARTS LIST

- - - - ----

4270-Final

•

REV REOD REOD RESCRIPTION 2,702.1 1 1 1 Resure Transiticer Model FT150-2 2,702.1 1 1 Rev Blast Tob Assembly Blast Tob Assembly 6,1232-2 1 1 Rev Blast Tob Assembly Blast Tob Assembly 2,70010 1 1 1 Rev Blast Tob Assembly 2,70010 1 1 1 1 Rev Blast Tob Assembly 2,70010 1 1 1 1 Rev Bolder 2,70010 1 1 1 1 Rev Bolder 2,70010 1 1 1 Rev Bolder 2,70010 1 1 1 Rev Bolder 2,70010 1 1 1 Rev Bolder 2,20010 1 1 1 Rev Bolder 2	**			NE		1 2				
427021 1 7 1 Personer Franeducer Kodei Fr1JG-2 427021 1 1 1 1 1 427010 1 1 1 1 1 427010 1 1 1 1 1 42 1 1 1 1 1 1 42 1 1 1 1 1 1 42 1 1 1 1 1 1 42 1 1 1 1 1 1 427019 1 1 1 1 1 1 427019 1 1 1 1 1 1 427019 1 1 1 1 1 1 427019 1 1 1 1 1 1 427018 1 1 1 1 1 1 427019 1 1 1 1 1 1 427018 1 1 1 1 1 1 427018 1 1 1 1 1 1 427018 1 1 1 1 1	g u	PART	IO. RE	R K	EQ.D	PER /	SSEM	BL≺	DESCRIPTION	
612732-2 1 Hex Blast Tube Assembly 612732-2 1 1 Blast Tube Jiks 4270010 1 1 1 1 427010 1 1 1 1 427010 1 1 1 1 427010 1 1 1 1 427019 1 1 1 1 427019 1 1 1 1 427019 1 1 1 1 427019 1 1 1 1 427019 1 1 1 1 427019 1 1 1 1 427019 1 1 1 1 427019 1 1 1 1 427019 1 1 1 1 427010 1 1 1 1 4271001 1 1 1 1 4271002 1 1 1 1 4271001 1 1 1 1 4271001 1 1 1 1 4271002 1 1 1 1 4271001 1 <		427021							Pressure Transducer Model PT15C-2	
61732-2 1 1 Blaet Tube, Kex 4270010 1 Pate, Deflector 4270010 1 Pate, Deflector 427011 1 1 Blaet, Deflector 427012 1 Pate, Deflector Blaet, Housing Ascembly 612333-2 1 Pate, Coolant Account 427019 1 Pate, Solder Pate, Solder 427019 1 Pate, Solder Pate, Solder 427013 1 Pate, Solder Pate, Solder 427010 1 Pate, Solder Pate, Solder 427013 1 Pate, Solder Pate, Solder 427014 1 Pate, Solder Pate, Solder 427010 1 Pate, Solder Pate, Solder 427010 1 Pate, Solder Pate, Solder 427010 1 Pate, Solder Pate, Solder 427011 1 Pate, Solder Pate, 1 427011 1 Pate, Solder Pate 1 427011 1 Pate, Solde									Hex Blast Tube Assembly	
4270010 1 1 Plate, beflector 46 1 Silver Solder 1 1 Silver Solder 1 1 1 Instrument Housing Assembly 61233-2 1 1 Nusing, Instrument 612018 1 1 Nusing, Instrument 612011 1 1 Nusing, Instrument 611 1		612732-2			-				Blast Tube, Hex	
Ad Ad Stiver Solder 1 1 1 Stiver Solder 1 1 1 Instrument Housing Assembly 612333-2 1 1 Nousing, Instrument 427019 1 1 Nousing, Instrument 427019 1 1 Nousing, Instrument 427019 1 1 Nousing, Instrument 427010 1 1 Nousing, Instrument 427010 1 1 Nousing, Instrument 427010 1 1 Nousing, Instrument 4271001 1 1 Nousing, Instrument 4271002 1 1 Nachor Assembly 4271001 1 1 Nachor Assembly 4271002 1 1 Nachor, Disphregin 4771002 1 1 Nachor, Disphregin 4771001 1 1 Nachor, Staphregin 4771002 1 1 Nachor, Staphregin 4771002 1 1 Nachor, Staphregin 4771002 1 1 Nachor, Staphregin		4270010			1				Plate, Deflector	
427019 1 1 Instrument Housing Assembly 612733-2 1 1 Nusing, Instrument Housing Assembly 612733-2 1 1 1 Nusing, Instrument Housing Assembly 612733-2 1 1 1 Nusing, Instrument Housing Assembly 612733-2 1 1 1 1 Nusing, Instrument Housing Assembly 612733-2 1 1 1 1 1 Nusing, Instrument Housing Assembly 612733-2 1 1 1 1 1 Nusing, Instrument Housing Assembly 6127018 1 1 1 1 1 Nuchor, Assembly 627018 1 1 1 1 Nuchor, Nusing, Instrument Housing, Instrument Houser, Instrument Housing, Instrument Housing, Instrument Houser, In				·	AR				Silver Solder	
Instrument Housing Assembly 612333-2 1 Nousing, Instrument 612333-2 1 Nousing, Instrument 427019 1 Nousing, Instrument 427019 1 Nousing, Instrument 427019 1 Nousing, Instrument 427019 1 Nousing, Instrument 427018 1 Nousing, Instrument 427018 1 Nousing, Instrument 427018 1 Nousing, Instrument 427018 1 Nousing, Instrument 4271001 1 Nousing, Instrument 4771001 1 Nousing, Instrument 4771002 1 Nousing, Instrument 4771001 1 Nousing, Instrument 4771002 1 Nousing, Instrument 4771002 1 1 Nousing, Instrument 4771001 1 1 Nousing 4771002 1 1 Nousing 4771002 1 1 Nousing	1									
Instrument Housing Assembly 612733-2 1 1 Housing, Instrument 427019 1 1 Housing, Instrument 427019 1 1 Nube, Coolant 427019 1 1 Nube, Coolant 427018 1 1 Nube, Coolant 427018 1 1 Nube, Coolant 427018 1 1 Nube, Solder 427018 1 1 Nube, Solder 427018 1 1 Nube, Solder 4271001 1 1 Nube, Solder 4771002 1 1 Nube, Solder 4771002 1 1 Nube, Solder 4771002 1 1 Nube, Solder				 						
612733-2 1 Noueing, Instrument 427019 1 1 Tube, Coolant 427019 1 1 1 Lube, Coolant 427019 1 1 1 1 Lube, Coolant 427019 1 1 1 1 Silver Solder 427018 1 1 1 1 Nachor Assembly 427018 1 1 1 Nachor Assembly 427018 1 1 1 Nachor Assembly 427018 1 1 Nachor Assembly Nachor Assembly 427018 1 1 Nachor Assembly Nachor Assembly 4271001 1 1 Nachor Assembly Nachor Assembly 4771002 1 1 1 Nachor Assembly Nachor Assembly 4771001 1 1 1 1 Nachor Assembly Nachor Assembly 4771002 1 1 1 1 1 Nachor Assembly									Instrument Housing Assembly	
427019 1 1 Nube, Goolent 427019 AB 1 Silver Solder 427018 1 1 Silver Solder 427018 1 1 Diaphraga Assembly 427018 1 1 Diaphraga Assembly 4271001 1 1 Anchor Assembly 4771001 1 1 Anchor Assembly 4771002 1 1 Anchor Assembly Anchor Assembly Anchor Assembly Anchor Assembly Anchor Assembly Anchor Assembly Anchor Assembly	0	612733-2	•						Housing, Instrument	
AR Silver Solder 427018 1 1 4271001 1 1 4771001 1 1 4771001 1 1 4771001 1 1 4771001 1 1 4771001 1 1 4771002 1 1		427019			-				Tube, Coolant	
427018 1 Diaphragm Assembly 427018 1 Diaphragm Assembly 4271001 1 Anchor Assembly 4771001 1 1 Anchor, Assembly 4771002 1 1 Anchor, Diaphragm 4771002 1 Anchor, Anchor, Diaphragm Anchor, Anchor, Diaphragm Vec Anchor, Anchor, Anchor, Anchor, Anchor Anchor Vec <td></td> <td></td> <td></td> <td></td> <td>AR</td> <td></td> <td></td> <td></td> <td>Silver Solder</td> <td></td>					AR				Silver Solder	
427018 1 1 Diaphraga Assembly 4271001 1 1 Anchor Assembly 4771001 1 1 Anchor Assembly 4771002 1 1 1 Anchor Assembly 4771002 1 1 1 1 Anchor Assembly 4771002 1 1 1 1 1 477102 1 1 1 1 1										
427018 1 1 Diaphragm Assembly 4271001 1 1 Anchor Assembly 4771001 1 1 Diaphragm 4771002 1 1 Anchor, Diaphragm 4771002 1 0 Anchor, Diaphragm 477102 1 0 Anchor, Diaphragm	1									
4771001 1 1 Anchor Assembly 4771002 1 1 Diaphragm 4771002 1 1 Anchor, Diaphragm 4771002 1 Anchor, Diaphragm Assembly Non Silver Solder None Non 427021 By R, Pyce Pyce Assembly Anchor, Asseure Tranaducer Model PriSc-2	1 ·	427018							Diaphragm Assembly	
4771001 1 1 Diaphragm 4771002 1 1 Anchor, Diaphragm 4771002 1 1 Anchor, Diaphragm 4771002 1 1 NR 4771002 1 1 Anchor, Diaphragm 4771002 1 1 NR 4771002 1 81/ver Solder VED None 0 ASSEMBLY None None 0 ASS Pressure Transducer Model PTISC-2 P/L 427021						1			Anchor Assembly	
4771002 1 1 Anchor, Diaphraga 4771002 AR 1 Anchor, Diaphraga VED AR Silver Solder VED ASSEMBLY ANC ASSEMBLY None PAGE Interest of the solder R. Pyce P/L AST FLECTRO OPTICAL SYST Pressure Title Pressure	1 1	4771001				7			Diaphragm	
VED VED ASSEMBLY None No. 427021 BY R. Pyce PAGE 1 OF 4 ELECTRO OPTICAL SYSTEMS INC TITLE Pressure Transducer Model PTI5C-2 P/L 427021	0	4771002				7			Anchor, Disphragm	
VED ASSEMBLY None DWG 427021 BY R. Pyce PAGE 1 OF 4 ELECTRO OPTICAL SYSTEMS INC ASSY. Pressure Transducer Model PTI5G-2 P/L 427021				1		A R			Silver Solder	
ASSEMBLY DWG COMPILED R. Pyce PAGE 1 OF 4 None NO. 427021 BY R. Pyce P/L 427021 ELECTRO OPTICAL SYSTEMS INC Title Pressure	0	VED	•	1	}					
ELECTRO OPTICAL SYSTEMS INC ASSY Pressure Transducer Model PTI5G-2 PL 427021		ASSEMBLY	one					DWG.	127021 COMPILED R. Pyce PAGE	1 OF 4
		ELECTRO 0	PTICAL S	YSTE	SW	INC.		ASSY. TITLE	Pressure Transducer Model PT15C-2	27021

4270-Final

EOS FORM No. 310

ITEM DW ITEM DW NO. Siz 19 20 21 22 23 34 35 36	F PAR 427016 427013 427013 427015 427015 427014						TS LIST Y DESCRIPTION Harness and Strain Gage Assembly Silicon Strain Gage Assembly Silicon Strain Gage Assembly Silicon Strain Gage Assembly Silicon Strain Gage Mase Silicon Strain Gage Assembly Silicon Strain Gage Wire Harness Silicon Strain Gage Wire Harness Insulated Magnet Wire (.003 dia, x 3") Solder (SN 95% AG 5%) Solder (SN 95% AG 5%) Solder (SN 95% AG 5%) Cement (Furane x 5B) Harness Support Block Harness Support Block Gement (Furane x 5B) Solder Tab Solder Tab Solder (SN 95% AG 5%) Solder Tab Solder (SN 95% AG 5%) Solder Tab Solder (SN 95% AG 5%) Solder Tab	
APPRO	VED							
NEXT / TITLE EOS	ASSEMBLY ELECTRO	None OPTICAL	SYS	TEMS	S S S S S S S S S S S S S S S S S S S	DWG NO.	G 427021 BY R. Pycz P	AGE 2 OF 4
EOS FORI	M No. 310						L Pressure Transducer Model PT15C-2	/L 427021

4270-Final

IV-2

) 			NI9	133			ART	
NE N	SIZE	PART		REK	REO	D. PEF	ASSE	MBLY	DESCRIPTION
7	U	4771011							Cable Assembly
38	ပ	4771007							Cap. Cable
39	ပ	4771008							Insulator, Cable
40		4771014							Spring
41					-				Set screw, Hex Hd. No. 0-80 x 1/8 Cup Point
42									Connector (Cannon KPT06F8-4P or equiv.)
3									Solder (SN-60)
4					< 				Epoxy - Clear
45					V				Catalyst
46	A	4771009							Cable
47									
48									
67		427020			1				O-Ring, Metal
50					4				Screw, Machine-Hex Hd. No. 2-56 x 1/4
51					n.				Screw, Machine-Hex Hd. No. 2-56 x 1/2
52									Resistor (Sensitivity)
53					-				Resistor (Balance)
54									Resistor (Zero Shift)
AP	PROV	VED							
¥ i	X T A	ISSEMBLY	None					DWG NO.	427021 COMPILED R. Pycz PAGE 3 OF 4
о́. Ч	S	ELECTRO	OPTICAL	SΥS	TEMS	INC	•	ASSY	Fressure Transducer PT 15C-2

4270-Final

IV-3

EOS FORM No. 310

DISTRIBUTION LIST FOR FINAL REPORT

Contract NAS3-2754

"Liquid Hydrogen Film Cooled Pressure Transducer"

Electro-Optical Systems, Inc.

Report is to be sent directly to the "Recipients" marked with an "X" under the column headed "Designee" on Pages 1 and 2 only. On Pages 3 through 10, the report should be sent to the Technical Librarian of the "Recipient" with a carbon copy of the letter of transmittal to the attention of the person named under the column "Designee". The letter of transmittal should contain the contract number and complete title of the final report.

The distribution list should be included in the final report as an appendix.

COPIES RECIPIENT

DESIGNEE

L	NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: Office of Technical Information	(X)
-		(/
	NASA Lewis Research Center	
	Cleveland, Obio 44135	
L	Attn: Contracting Officer	(X)
	NASA Lewis Research Center	
	21000 Brookpark Road	
_	Cleveland, Ohio 44135	
1	Attn: Patent Office	(X)
	NASA Headquarters	
	Washington, D. C. 20546	
' +	Attn: Mr. Henry Burlage, Jr.	(X)
	Chief, Liquid Propulsion Systems, RPL	
	NASA Headquarters	
	Washington, D. C. 20546	
1	Attn: Mr. Vernon E. Jaramillo	(X)
	Advanced Manned Mission, MTC	

<u>COPIES</u>	RECIPIENT	DESIGNEE
25	Scientific and Technical Information Facility NASA Representative, Code CRT P. O. Box 5700 Bethesda, Maryland 20014	(X)
1	NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: Mr. James W. Norris Mail Stop 500-305	(X)
1	NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: Mr. Gerald Morrell	(X)
1	NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: Mr. R. J. Crowl	(X)
1	NASA Lewis Research Center 21000 Brookpark Road . Cleveland, Ohio 44135 Attn: Mr. C. C. Gettelman	(X)

I

4270, 11-64

NASA FIELD CENTERS

COPIES RECIPIENT

- 2 Ames Research Center Moffett Field, California 94035
- 2 Goddard Space Flight Center Greenbelt, Maryland 20771
- 2 Jet Propulsion Laboratory Calif. Institute of Technology 4800 Oak Grove Drive Pasadena, California 91103
- 2 Langley Research Center Langley Station Hampton, Virginia 23365
- 2 Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135
- 2 Marshall Space Flight Center Huntsville, Alabama 35812
- 2 Manned Spacecraft Center Houston, Texas 77001
- 2 Western Operations Office 150 Pico Boulevard Santa Monica, California 90406

DESIGNEE

Harold Hornby Missions Analysis Division

Merland L. Moseson Code 623

Robert F. Rose Propulsion Div., 38

Floyd L. Thompson Director

Dr. Abe Silverstein Director

Hermann K. Weidner Code R-P&VED

Robert R. Gilruth Director

Robert W. Kamm Director

GOVERNMENT INSTALLATIONS

COPIES	RECIPIENT	DESIGNEE
1	Advanced Research Projects Agency Washington 25, D. C.	D. E. Mock
1	Aeronautical Systems Division Air Force Systems Command Wright-Patterson Air Force Base Dayton, Ohio 45433	D. L. Schmidt Code ASRCNC-2
1	Air Force Missile Development Center Holloman Air Force Base, New Mexico	Maj. R. E. Bracken Code MDGRT
1	Air Force Missile Test Center Patrick Air Force Base, Florida	L. J. Ullian
1	Air Force Systems Command, Dyna-Soar Air Force Unit Post Office Los Angeles 45, California	Col. Clark Technical Data Center
1	Arnold Engineering Development Center Arnold Air Force Station Tullahoma, Tennessee	Dr. H. K. Doetsch
1	Bureau of Naval Weapons Department of the Navy Washington 25, D. C.	J. Kay, Code RTMS-41
1	Defense Documentation Center Headquarter Cameron Station, Building 5 5010 Duke Street Alexandria, Virginia 22314 Attn: TISIA	S
1	Headquarters, U. S. Air Force Washington 25, D. C.	Col. C. K. Stambaugh Code AFRST
1	Picatinny Arsenal Dover, New Jersey 07801	I. Forsten, Chief Liquid Propulsion Laboratory
1	Rocket Research Laboratories Edwards Air Force Base	Colonel Silk

4

Edwards, California 93523

GOVERNMENT INSTALLATIONS

COPIES RECIPIENT

DESIGNEE

- U. S. Atomic Energy Commission Technical Information Services Box 62 Oak Ridge, Tennessee
- 1 U. S. Army Missile Command Redstone Arsenal, Alabama 35809
- 1 U. S. Naval Ordnance Test Station China Lake, California 93557

Dr. Walter Wharton

Code 451 Chief, Missile Propulsion Division

CPIA

 Chemical Propulsion Information Agency Neil Safeer Johns Hopkins University Applied Physics Laboratory 8621 Georgia Avenue Silver Spring, Maryland

4270, 11-64

COPIES	RECIPIENT	DESIGNEE
1	Aerojet-General Corporation P. O. Box 296 Azusa, California	L. F. Kohrs
1	Aerojet-General Corporation P. O. Box Box 1947 Technical Library, Bldg 2015, Dept. 2410 Sacramento, 9, California 95809	R. Stiff
1	Aerojet-General Corporation P. O. Box 1947 Technical Library, Bldg. 2015, Dept. 2410 Sacramento, California 95809	R. D. Wesley)
1	Aeronutronic A Division of Ford Motor Company Ford Road Newport Beach, California	D. A. Carrison
1	Aerospace Corporation 2400 East El Segundo Boulevard P. O. Box 95085 Los Angeles, California 90045	John G. Wilder MS-2293 Propulsion Dept.
1	Arthur D. Little, Inc. Acorn Park Cambridge 40, Massachusetts	A. C. Tobey
1	Astropower, Inc., Subsidiary of Douglas Aircraft Company 2968 Randolph Avenue Costa Mesa, California	Dr. George Moc Director, Research
1	Astrosystems, Inc. 1275 Bloomfield Avenue Caldwell Township, New Jersey	A. Mendenhall
1	Atlantic Research Corporation Edsall Road and Shirley Highway Alexandria, Virginia	A. Scurlock
1	Beech Aircraft Corporation Boulder Facility Box 631 Boulder, Colorado	J. H. Rodgers

4270, 11-64

COPIES	RECIPIENT	DESIGNEE
1	Bell Aerosystems Company P. O. Box 1 Buffalo 5, New York	W. M. Smith
1	Bendix Systems Division Bendix Corporation Ann Arbor, Michigan	John M. Brueger
1	Boeing Company P. O. Box 3707 Seattle 24, Washington	J. D. Alexander
1	Chrysler Corporation Missile Division Warren, Michigan	John Gates
1	Curtiss-Wright Corporation Wright Aeronautical Division Woodridge, New Jersey	G. Kelley
1	Douglas Aircraft Company, Inc. Missile and Space Systems Division 3000 Ocean Park Boulevard Santa Monica, California 90406	R. W. Hallet Chief Engineer Advanced Space Tech.
1	Fairchild Stratos Corporation Aircraft Missiles Division Hagerstown, Maryland	J. S. Kerr
1	General Dynamics/Astronautics Library & Information Services (128-00) P. O. Box 1128 San Diego, California 92112	Frank Dore
1	General Electric Company Re-Entry Systems Department Box 8555 Philadelphia, Pennsylvania 19101	F. E. Schultz
1	General Electric Company Flight Propulsion Lab Department Cincinnati 15, Ohio	D. Suichu

7

.

COPIES RECIPIENT

- Grumman Aircraft Engineering Corp. Bethpage Long Island, New York
- Kidde Aero-Space Division Walter Kidde and Company, Inc.
 675 Main Street Belleville 9, New Jersey
- Lockheed California Company 10445 Glen Oaks Boulevard Pacoima, California
- 1 Lockheed Missiles and Space Company Attn: Technical Information Center P. O. Box 504 Sunnyvale, California
- 1 Lockheed Propulsion Company
 P. O. Box 111
 Redlands, California
- The Marquardt Corporation 16555 Saticoy Street Box 2013 - South Annex Van Nuys, California 91409
- Martin Division Martin Marietta Corporation Baltimore 3, Maryland

1 Martin Denver Division Martin Marietta Corporation Denver, Colorado 80201

- 1 McDonnell Aircraft Corporation P. O. Box 6101 Lambert Field, Missouri
- North American Aviation, Inc. Space & Information Systems Division Downey, California

DESIGNEE

Joseph Gavin

R. J. Hanville Director of Research Engineering

G. D. Brewer

Y. C. Lee Power Systems R&D

H. L. Thackwell

Warren P. Boardman, Jr.

John Calathes (3214)

J. D. Goodlette Mail A-241

R. A. Herzmark

H. Storms

...

<u>COPIES</u>	RECIPIENT	DESIGNEE
1	Northrop Corporation 1001 East Broadway Hawthorne, California	W. E. Gasich
1	Pratt & Whitney Aircraft Corp. Florida Research and Development Center P. O. Box 2691 West Palm Beach, Florida 33402	R. J. Coar
1	Radio Corporation of America Astro-Electronics Division Defense Electronic Products Princeton, New Jersey	S. Fairweather
1	Reaction Motors Division Thiokol Chemical Corporation Denville, New Jersey 07832	Arthur Sherman
1	Republic Aviation Corporation Farmingdale, Long Island, New York	Dr. William O'Donnell
1	Rocketdyne (Library Dept. 586-306) Division of North American Aviation 6633 Canoga Avenue Canoga Park, California 91304	E. B. Monteath
1	Space General Corporation 9200 Flair Avenue El Monte, California	C. E. Roth
1	Space Technology Laboratories Subsidiary of Thompson-Ramo-Wooldridge P. O. Box 95001 Los Angeles 45, California	G. W. Elverum
1	Stanford Research Institute 333 Ravenswood Avenue Menlo Park, California 94025	Thor Smith
1	TAPCO Division Thompson-Ramo-Wooldridge, Inc. 23555 Euclid Avenue Cleveland 17, Ohio	P. T. Angell

9

.

<u>COPIES</u>	RECIPIENT	DESIGNEE
1	Thiokol Chemical Corporation Redstone Division Huntsville, Alabama	John Goodloe
1	United Aircraft Corporation Research Laboratories 400 Main Street East Hartford, Connecticut 06108	Erle Martin
1	United Technology Center 587 Methilda Avenue P. O. Box 358 Sunnyvale, California	B. Abelman
1	Vought Astronautics Box 5907 Dallas 22, Texas	Warren C. Trent
1	Princeton University Princeton, New Jersey	D. Layton

4270, 11-64

ABSTRACT

A film cooled pressure transducer, designed for flush mounting within a rocket combustion chamber has an all silicon piezoresistive bridge network. It senses steady state pressures and has a high flat frequency response. It is capable of being cooled with liquid hydrogen, and will operate at LH₂ temperature with small change in sensitivity and bridge balance. Exposed frontal area is only 0.018 square inch.