COLLEGE OF ENGiNEERING

DEPARTMENT OF MECHANICAL ENGiNEERING heat transfer and thermodynamics laboratory

Tachnical Report No. 1
Transient, Laminar, Free-Convection Heat and Mass Transfer in Closed, Particilly Filled, Liquid Containers

5 0 i
JOHN A. CLARK
HUSSEIN Z. BARAKAT
A \rightarrow
XEHOX FICROHILM
Under contract with:
National Aeroneutics and Space Administration George C. Marstall Space Flight Center Contract No. NAS-8-82S
Hunisville, Alabama

\qquad

OFFICE OF PESEACH ADMIISTRATION. AWNARBDR

THEUNIVERSITYOFMICHIGAN COLLEGE OR ENGINEERING
Department of Mechanical Engineering He.ut Transfer and Thermodynamics Laboratory-

Technical Report No. i

TRANSIENT, LAMINAR, FZRPSCOMYECTION HEAT ANE WAS TRANSFEr? IN CLOSED, PARTIALITY FILED, LIQUID CONTAINERS

John A. Clark
Hussein Z. Barakat

ORA Project 04268
under contract with:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACe FLIGHT CENTER
. CONTRACT YO. TTAS-8-825
HUNTSVILLE, ALABAMA
administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

ж
$\%$
Faze:
NCMEMCLATURE v
ASSTRACT vii
I. INGODUCTICN
II. REVIER OF THE LITERATURE i
A. Araiyticai Studies 3
B. Experimental Studies 8
III. THEORETICAL ANALYSIS 13
A. Pormulation 13

1. Statement and physics of the problem 13
2. General model 14
3. Simplified model 18
B. The Solution 22
C. Finite-Difference Approximations 23
D. Stability and Convergence 27
IV. RESULTS 34
A. The Effec's of Gride Size 37
4. Comparisor with Experiment 38
V. CONCLIUSIONS 40
ACKNOWLEDGMENTE 41
REFERENCES 42
AFUENDIX. COMPUTER PROGRAM 45
a half the width of the container
b the inftial height of the liquid
C_{p} constant pressure specific heat, $\mathrm{Bta} / 1 \mathrm{bm}^{\circ} \mathrm{F}$
Gr Grashof number $=g \beta\left(T_{S}-T_{0}\right) a^{3} / y^{2}$
g the acceieration of gravity, ft/sec ${ }^{2}$
$h_{f g}$ latent heat of evaporation or condensation Btu/lbm
k thérmal conductivity, Btu/hr ft ${ }^{\circ} \mathrm{F}$
p pressure
Fr Prandti number $=\gamma / \alpha$
Ra Rayleigh number (GrPr)
$(q / A)_{w}$ heat flux at the walls of the tank per unit area, Btu/hr/ft ${ }^{2}$
T temp R
t time, sec
u x-component of the velocity, ft/sez
$v y$-component of the velocity, ft/sec

U dimenstonless x-component of the: velocity
V dimensionless y-component of the velocity
x axial distance, ft
X dimensionless x
y transverse, or normal distance measured from center line, it

Y dimensionless y
$w=\frac{a^{2}}{b^{2}} \frac{\partial^{2} \psi}{\partial X^{2}}+\frac{\partial^{2} \psi}{\partial x^{2}}$
α thermal diffusivity, $\mathrm{ft}^{2} / \mathrm{sec}$
β coefficient of thermal expansion
ρ densi.ty, $1 \mathrm{bm} / \mathrm{ft}^{3}$
μ viscosity, lbm/ft/sec
v kinematic viscosity, $\mathrm{f}^{2 / 5 e c}$
ϕ dissipation function for two-dimensional incompressible flow is given by

$$
\phi=4\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)^{2}
$$

τ dimensionless time
Θ dimensionless temperatura
ψ stream function
λ an eigenvalue

Subscripts

c cold wall.
g vapor
h hot wall
s saturation or liquid surface
i,j denotes position in the space grid

- denotes initial conditions
y wall

Superscript

n denotes the time level

The two-dimensional, laminar, transient, natural convection heat and mass transfer in a slosed rectangular container with a free surface is studied. The x-momentum, the y-momentum, and the continuity equations are coupled to obtain the vorticity transport equation, which is integrated numerically using the finite-difference approximation. The problem of stability, which is associated with the difference equations, is studied. The convergence of the solution of the difference equations so that of the differential equation is examined. Results of the calculations for different boundary conditions are given. Comparison of the theoretical results with two experimental measurements from the literature irdicate qualivative agreement.

This report presents the initial results of a program of research dealing with transient, free convection inside closed containers. The problem reported is the first phase of a program directed at an understanding and prediction of fluid behavior in closed containers subject to vartous disturbances, inciuding those of ambient heat flux, change in wail tempersture, pressurization, change in gravitational field, and liquid discharge. The objectives of the general prcgram are the preaiction of transient velocity profiles, temperature stratification, and pressure histories in such containers.

The present report treats laminar transient free convection in a twodimensional container having a liquid-vapor interface. Transient processes are introduced b_{j} a sudden increase in the temperature of the concainer wall and by a sudden application of heat flux to the external surfaces of the container. For a system at constant pressure and at normal gravity the resulting transient flow patterns and temperature stratirication are computed.

The problem is formulated from the complete Navier-St.)kes equations coupled with those from the First Law of Thermodynamics and the Conservation of Mass. Bcundary-layer approximations are not made since the geometry and boundary conditions invalidate complete boundary-layer flow and require additional momentum consjderations not usually found in boundary-layer calculations. Reduction of the governing equations is done by numerical procedures usjag
an IBy 7090 aigital computer. Special attentior \therefore g given to the probien 0 : convergerce and stability of the numerical scinituon,
rombinec witi the experimentsl prograi presently under way, these resuits wili aic in the establisnment of eriteria for the onaet of transtion flow in tre suntainer, the start $\sigma=\{$ surface boiling, and wiil se usefui in fomilating the sciutior for the case $-f$ iurbuitit sonvection.

II. PEVIEN OF THE LITERATURE

In the past, considerabie effort has been given to the study of natural convecticr heat and mass transfier. Many vroblems have been solvea under difIerent conditions oi geometry and arrangements. These stuaies have been of an anajyicai as wein as an experimentai neture. An extensive survey of interature showet that the probler of naturai convection in cicsedu-enö tubes with a free surface has not been consilered anaigtinaily, however, some probLems with reiated Eeometwies have been sonsiciered. The extrapolation of the resuits cỉ these studies to other geometry can give misleacing results owing to the complicated nature of transient free-convection phenomena.

A. AKALYTICAL STUDIES

The case of a vernical element immersed in an infinite fluid initiaily at rest ias received the most attention of me:y investigators. The rimesteady lamiaa= flow equations were first, solved by Pohlhausen ${ }^{25}$ for air. The experimental $x \in s u l t s$ of Schmidt and pockman ${ }^{2}$ are in good agreement with Fohlhausen's solution. Later, Ostrach ${ }^{20}$ solved the same problem using nunerical methods with high-speed digital computer for different values of Prandtl number ranging from $0.0 \pm$ to 1000.

The transient free convection"from verticai flat plates, with and without appreciabie thermal capacity and variable fluid properties, has been studied by different investigators for different boundary conditions. $8,29,30,33,34$

Leitzke ${ }^{16}$ considered the steady-state naiural convection between two
parcliel, infinite flat plates oriented in the direction of body force in whici one plate is heated and the other is cooled uniformly. The measured temperature distribution across the fluid is in good agreemenc with the theory, 4 generalization of the same problem was carried on by Ostrach, ${ }^{20,21}$ in winch the plates are maintained at constant temperatures not necessarily equal, and the effect of heat sources and frictional neating was included. As ancticipated, the effect of leat sources and viscous heating increases the tempsratures and the velscities between the plates. The transient free convection in a duct formed by tw infinite parallel plates with arbitrary time variations in the wall temperature anu the heat generation was studied by Zeiberg and Mueller. 37

The two-aimensionei steady-state convection in a lerg rectangle, or which the two long sides are vertical boundaries held at different temperature and the two horizcntal bouncaries either insulated or have linear temperature distributicn, was considered by Batchelor. ${ }^{1}$ He did not sol.ve for the velocity or temperature distribution, but he considered the determination of the rate of heat transfer beiween the two vertical boundaries and the type of different flow regimes that occur for a given value of Rayleigh's number and aspect ratio. For Rayleigh's numbers less than 10^{3}, Batchelor uses a power series expansion in terms of Rayleigh's number Ra for the dimensionless temperature θ and the stream function. On substitution of the power series in the governing differential equations and equating coefficients of the like powers of Ra , the problem is reduced to the solution of a series of linear partial differential equations. The Nusselt number, defined as

$$
N U=(q / A)_{W} / K\left(T_{h}-T_{C}\right),
$$

is estimated to be of the order

$$
N U=\ell / d+10^{-8} \mathrm{Ra}^{2}
$$

where d is the distance between the plates and ℓ the height of the duct. For the case of $l / \alpha \rightarrow \infty$, he argues that for the regions nct near the ends the temperature and the stream function take their asymptrtic values, which are given by the solution of two infinite parallel plates, one heated and the other cooled. For infinite values of Ra, he postulates that there is an isothermal core having constant vorticity. He found that the governing equations for the general case could not be represented by a polynomial of small degree nor could they be handled by the Oseen type of linearization. Foots ${ }^{26}$ solved the same problem handled by Batchelor. He obtained a numerical solution based on the use of orthogonal polynomials for the solution of the governing differential equations. Following Batchelor, the stream function and the nondimensional temperature were assumed to be represented by the compiete double series of orthogonal furctions

$$
G=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{n m} \sin n \pi x \sin m \pi y
$$

and

$$
\psi=\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} B_{n m} X_{n}(x) Y_{m}(y)
$$

where the A and B are constants which were evaluated numericaily. The governing differp:ntial equations were reduced to two coupled algebraic equations to be solved simultaneously. Ine functions $X_{n}(x)$ were chosen to satisfy the fourth order Sturm-Liouville system end the orthogonality property. The method of sclution is tedious, and the calculations are practically impossible for Rayleigh: s numbers greater than 10^{4} and aspect ratios greater than 4 . The ro-
 Thare is an isothermai core having uniform temperature; there is also a constent vorticity in.the ccre. In the region between the core and the cavity walls, the temperat,ure and the stream function oscillate once near the core and then tend sncoitiy to their appropriate vaines at the cavity wall? The boundary iayer is continucas between the wail and the core, righihill ${ }^{18}$ examined natural convection flows generated by large eentrifugai forces in a tube ciosei at one erd and open at the other end to an Infinite reservoir, where the tube walls are maintained at a constant temEerature Such a situation exists in cooling gas-turbine tiaĩes. He predicted that one of the following three regimes may exis+, depending upen the profuct of Grashof number and the radius-to-length ratio of the tui $=$. The assumed flow regines are:
S. Similarity flow For small vanues of this product, i es, for large valugs of iength-tomadius ratio for a given Grashof number, the boundary layer fills the tube. The velocity and temperature profiles are fully developed. He predicted that for this type of flow, the velocity and temperature distribution are similar at each section of the tube, cnly their scale is

Encreasire as the orifice is approached. Assuming that the velocity and temperature vary inneariy aiong the tube, he scncluded that there is an aspect ratio for wixnh the temperature changes from its raiue at the orifice us the ralic at ti:e botom. Exiencing the tube beyond the length determined by the atcve ratic, tif additional leagth is filled with fluid at rest at the wall's temperature.
2. Eoudsm-lever tyon of flow. For high vaiues of the product of Grashoi numer anc radius-io. iength ratio, i.e., for short tubes, the flow Es of boundary-layer tyce. In the extreme case, wher the boundary bayer filis a negingible gortion of the tuive area, the flow aproximates the freeconvection flow up a flat pate.
3. Yu-simiarity regime, This is the type of flow predicted to exist for values of length-ir,-raijus ratic winch lie between the values corresponding to the first arul tie third ase. The brinalary layer fiils a large portion of the tuta' sertion. He "sen hae Squire technique to solve the first and the third cases.

Hamitt ${ }^{9}$ considered the sase oî a cicse? rertica: sylinder with internal heat generation: He usea the righthill technique, maficd to account for the neat sourees. The agseement betineer the caiculated and measured values of Nusseti's number is not good. Thiz is prodably due to some of the inevitable assumption which are made: (1) snell inertia forces compared to
 layers is the same, (3) the boundary-iayer approximations apply. The first assumption is valid for large Prandtl numbers; the second is valid for

Prandtl numbers near unity. The aisadvantage of this method of solution is that it is in capable of detalled examination of the end concitions.

Following Eighthill, Ostrach and Thornton ${ }^{22}$ considered a geometricaliy similar case with a linear wall temperature. In Ostrach's paper, as well as in Lighthill's paper, attention was given to the stagnation of natural convection flows at the closed end. The same probiem considered ty lightrili was solved by ievy, ${ }^{17}$ usirg integial mathods. He assume that the upward rlow consists of a layer of thickness ε near the wall, the remainder of the tube being filied with cold fluid flowing downard. He assumes three regimes of flow similar to those postulated by lighthill. If the tube length is less than or equal to a length l, the stagnation region does not exist and the upflow convective layer ircresses with x. For axial distance $x>i$, ε reaches a constant value d, and such a flow occurs for $2_{1}<x<l_{2}$. For $x>t_{2}$, there is a stagnation region at the closed section of the tube

Rcmonvr, ${ }^{28}$ also using integral techniques, solved the some problem considersd by Lighthill and Ievy. His calculations agree with those of Lighthill for infinite Prandtl namber, but they differ considerably for Pranăt numbers near unity. The measured and the calculated temperatures are in a good agreement for different wall temperatures.

B. EXPERIMENTAL STUDIES

A larg: number of experimental studies have involved flat plates inmersed In an infinite fluid at rest and either heaced or cocled. In general, there has been good agreement between theory and experimant. Consjderable exper-
wental work has been gone in the fieid of natural convection in tubes and enciosures. This work has coneerned speciaitied applications and particular configurations. Most of the experiments were in connection with cooling gasturbine biades and nuclear reactor applications. Although most, if not all, of tress dareriments are not applicable to this study, they will be helpfu: in inaicating the general trend and the type of experimental equipment required.

Probably the most comprehen-ive experimental studies of natural convecticn in thermosyphons are those conducted by Martin ${ }^{19}$ in an attempt to check the theoretical work of Lighthill. His results agree qualitatively, although the measured heat-transier coefficients are nearly twice as large as those predicted by Lighthiil. The three regimes predicted by Lighthill were identified from measurements of heat transfer rates. The heat transfer rate was greatest for large values of theproduct of Grashof number and the radius-to-length ratio. The rate was highest at the bottom of the tube, which indicates that there is boundary-layer type of flow. At small values of the product, theheat fransfer varied linearly from the orifice to zero at the bottom of the tube, from which Martin concluded that there is a similarity regime. A regior of instabilities, characterized by ncnsinusoidal osciilatory flow, occurred between the above two steady regimes.

Siegel and Norris ${ }^{31}$ shed some light on the oscillatory flew mentioned by Martin by exploring the air flow patterns in the space between two heated, wide plater, closed at the bottom, open at the top, and insulated at the sides. For spacing of 0.28 of the plate height, the flow pattern we.s summetric, with
pward fowing boundary iayers near each plate surface and downflow ir be－ －ween，Wher the spacing was reauced to 0.21 of the heignt，the flow pattern cecame asymmetric，with nalf the cross section cocupied by upward（near one piate and the nals near the other plate oseupied by downard fiow for smailer apacings，the asymmetria pattern presisted with periodic non－sinu－ soidai reversal inflow đirectior ara temperature fiuctuationa．

Curru and Zaiobox ${ }^{4}$ nonducted an experimental investigation to dettrmine tise effect of lengti－to－dizuleter retio cf こiosed end soolant passages on ratural－converticn water cooling of gas turbines．They reported no sigaif－ IGant difference in the heat transfer for the diざferent Iengti－to－diameter ratios inves＂igated rarging from 5.1 to 25．5：1．Fcr the largest lerigth－to－ diameter ratio，25．5：1，the boundary iayer filis 87% of the tube cross secticn。

The visuai studies of Sparrcw and Kauffmari ${ }^{36}$ of free convection of water in a narrow vertical erclosure，nooled sit the top through a copper surface and open ay the buttom to a heated reservoir；revealed that the flow pattern is nct steady．No ragion of the enclosure is permanently a region of upflow or of downilow．The size of the rariors unflow and dnufiow regions varied slong the length of the ecciosure at a giver time，Tke num－ ber ard size of upflou and downflow regiors aiso varied with time However， end effects were observed，and a contimus downflow took place in a 3／4－ inch band adjacent to both wails．Generally，the dominating character of the flow was instability，

Hartnett，et $0 . i, 10,11,15$ studet the free－convection heat transfer for
the gecmetry postulated by Lizhthiil, but with a constant heat flux at tine tube nazi and abter and mercury as working fixis. The effect of inclining the tube ras also investigated. Temperature oscillations of the same naturs as thost reported by dartir and Siegel a:d Norris were observed. Contrary to the results reported b: Surren ana lalabak, the heat transfer was considerably infiauenced t_{y} length-to-radius ratio. A decrease in iength-to-radius ratie from 22.5 to 15 results in approximately 100 percent increase in the Nusseits nmbers.

Skipper, et al., 32 studies the natural-convection fllw pattern in viscous oil in rectangular tanks heated at the center by vertioal ooil heater. The flow pattern consisted of a narrow chimney of hot di rising vertically around and above the heater surface, and a horizonta? layer of hot oil at the free surface separated by a sharp vertical graaient from the remaining cold oil below. . The not oii layer had a small vertical temperature gradient, with maximum temperature $a t$ the top. The hot oil jayer at the surface became increasingly thick with continued reat:. The hot oil was found to flow downward at the walls of the tank, while there vere suggestions of circulating currents at the side of the rising chimney. The flow pattern shown sicgests that a vortex was formed at the free surfase near the center line where t. . hot rising chimney is bifurcated and spread horizontally along the surfscef Eichhorn ${ }^{6}$ observed similar vortices. These vorticies were formed at the free surface of water near the walls of a cylindrical tube 2 inches diameter and 5-inches long, uniformly heated at the walls ard open at the top.

Sone of the litelature pertaining to the problem at iand will be mentioned later in this study where its application is more important.

A. FORMITATION

1. - Statement and Physics of the Problem

A closea container is partially iilled with a cryogenic liquid. Initiaily the liquid and the vapor which fills the ullage volume are assumed to re in equilibrium $a t$ the temperature T_{o}, the stauration temperauure corresponding to the iritial pressure P_{0}. Previous tests indicate that boilj.ng due to heat leaks from the ambient is a surfece phenomeron only: vapor bubble formation is confined to very near the surface; the rest $n f$ the liquid does not contain vapor bubbles, and a mall change in the ull ge pressure is suificient to cause bciling to ceaser, Prom this initial conditior, the wall of the vesse? is assumed to undergo a step change in-temperature or is assumed to be subjected to a uniform heat fiux. Simultaneousiy, the pressure in the ullage volume is changed to P_{S}, whivk may te equsl to or greater than P_{0}. The measurements reported in Refs. 3 and 7 indicate that the interface temperature rises very rapidly to T_{S}, the saturation temperature corresponding to the pressure P_{S} in the uliage space for these conditions. Buoyant forces, caused by density variations in the liquid, set up natural convection currents. The liquid-rapor system tends to adjust to the new non-equilibrium condition by transferring mass and energy across the interface. The controlling factor is the interface temperature, and each region transfers heat independently of the buik temperature of the othex region. An imbalanee of the


```
phose, iater fine frobiew is simpifiei, mekin& it t:actabie ic: mnalysis
witicut sermucusy {mpairacg its umijity.
```


 -Tre initian heiger of the liguia is b,
 and the jepth of ine vaper is c. The origin of the ccordinate system is cairen at the midale of the tank boittom with x positive in the directicn of the liquid, The g-level is supficiently hegh so that the effect of surface tension can be neglected. The location of the liquid-vapor interface et ary one time is giver by $\left.x=X_{(}^{\prime} t\right)$. The twodimensional transient sonãitions wil.1 be considered.

The differential equations governing the velocity and temperature distribiation in the liquid and vapor regions are:

The x-momentun equation:

$$
\begin{gather*}
0\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right)=-\rho g-\frac{\partial p}{\partial x} \\
+\frac{\partial}{\partial x}\left[\mu\left\{2 \frac{\partial u}{\partial x}-\frac{2}{3}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial v}\right)\right\}\right]+\frac{\partial}{\partial y}\left[u\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)\right] \tag{1}
\end{gather*}
$$

The y-momentum equatic":

$$
\begin{gather*}
\partial\left(\frac{\partial y}{\partial x}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}\right)=-\frac{\partial p}{\partial y}+\frac{\partial}{\partial x}\left[\left(\frac{\partial u}{\partial y}+\frac{\partial y}{\partial x}\right)\right] \\
+\frac{\partial}{\partial y}\left[+\left\{\frac{\partial v}{\partial y}-\frac{2}{3}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\right\}\right] \tag{2}
\end{gather*}
$$

The energy aquation:

$$
\begin{align*}
\rho C_{p}\left(\frac{\partial T}{\partial t}\right. & \left.+u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}\right)=\frac{\partial P}{\partial t}+u \frac{\partial P}{\partial x}+v \frac{\partial P}{\partial y} \\
& +\frac{\partial}{\partial x}\left(\kappa \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(\kappa \frac{\partial T}{\partial y}\right)+\mu \phi \tag{3}
\end{align*}
$$

where, $\phi=$ dissipation function (see Nomenclature)

The continuity equation:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\partial(\rho u)}{\partial x}+\frac{\partial(\rho v)}{\partial y}=0 \tag{4}
\end{equation*}
$$

$$
\begin{gather*}
T(x, y, 0)=T_{g}(x, y, 0)=T_{0} \tag{5}\\
u\left(x, y, 0,=v^{\prime}(x, y, 0)=u_{g}(x, y, 0)=v_{g}(x, y, 0)=0\right. \tag{6}
\end{gather*}
$$

Doundary conditions:
(́a) Velocity boundary conditions.

Assuming the no-slip ccndition to prevail at the tank ralls, the following boundary conditions are siciained:

$$
\begin{gather*}
u(0, y, t)=u(x, \pm a, t)=0 \tag{7}\\
v(0, y, t)=v(x, \pm a, t)=0 \tag{8}\\
u_{g}(h, y, t)=\dot{m}_{g} f(P g \cdot A) \tag{9}\\
\cdot \tag{10}\\
u_{g}(x, \pm a, t)=v_{g}(x, \pm a, t)=v_{g}(r, y, t)=0
\end{gather*}
$$

Assuming zero shear stress at the liquid-vapor interfano; the interfacial boundarj conditions could be stated as:

$$
\begin{align*}
u(x, y, t) & =u_{g}(x, y, t)=\frac{3 x}{d t} \tag{11}\\
\frac{\partial r}{\partial x}(x, y, t) & =\frac{\partial v_{g}}{\partial x}(x, y, t)=0 \tag{12}
\end{align*}
$$

From the geometric symmetry of the configuration with respect to the y -
axis, it is assumed that the y-component of the velocity vector is zero at the axis of the tank and that the x-component of the velocity is an even fundLion of y, ̇.e..

$$
\begin{gather*}
v(x, 0, \dot{t})=0 \tag{13}\\
\frac{\partial u}{\partial y}(x, 0, t)=0 \tag{14}
\end{gather*}
$$

(b) Thermal kundary conditions.

The bottom and the upper surface of the tank are either insulated, subjested to a uniform heat flux, or kept at a constant temperature. The walls are either subjected to a uniform heat f? Owing to symmetry, the temperature will be an even function of Y.

$$
\begin{align*}
& \text { (1) } \tag{15}\\
& \frac{\partial T}{\partial y}(x, 0, t)=\frac{\partial T_{g}}{\partial y}(x, c, t)=0 \\
& \text { (2) - a. } \frac{\partial T}{\partial x}(0 . y, t)=\frac{\partial T}{\partial x}(h, y, t)=0 \\
& \text { i. } k \frac{\partial T}{\partial x}(0, y, t)=k_{g} \frac{\partial T g}{\partial x}(h, y, t)=(q / A)_{w} \\
& \text { c. } T(0, y, t)=T_{g}(h, y, t)=T_{W} \tag{16}\\
& \text { (3) -a. } k \frac{\partial T}{\partial y},(x, \pm a, t)=k_{g} \frac{\partial T_{g}}{\partial y}(x, \pm a, t)=(q / A)_{w} \\
& \text { b. } T(x, \pm a, t)=T_{g}(x, \pm a, t)=T_{W} \tag{17}
\end{align*}
$$

(4)

$$
\text { - a. } T(X, y, t)=T_{\varepsilon}(X, y, t)=T_{S}
$$

$$
\begin{equation*}
\text { b. } \frac{\partial T}{\partial x}(b, y, t)=\frac{\partial T g}{\partial x}(b, y, t)=0 \tag{18}
\end{equation*}
$$

Any case considered in this work is a combination of the thermal boundary condition, given by Eq. (15), and one of each of the other threa boundary conditions given by Jqs. (16), (17), and (18).

Applying the conservation of energy across the interface

$$
\begin{equation*}
p h_{f g}\left(\frac{d x}{d t}\right)=k\left(\frac{\partial T}{\partial x}(X, y, t)\right)-k_{g}\left(\frac{\partial m_{g}}{\partial x}(x, y, t)\right) \tag{19}
\end{equation*}
$$

In addition to the boundary conditions stated above, we have the equation of state $P=f(\rho, T)$ for the vapor region. Also, an overall energy and mass bellance, considering the system composed of the vapor and liquid regions, is autcmatically satisfied by any exact sclution; it provides a means of checking assumptions or simplifications introduced later in this analysis. As another sheck on the solution, the net rate of fluid flow across any section of the liquid tank is equal to zero, i.e., $\int_{-a}^{a} u d y=0$
3. Simplifịed Model

Due to the complexity of the problem, only the liquid region is considered, for which a simplified model is adapted. In reality, the amount of evaporation or condensation i, \underline{s} small; therefore, the interfacial displacement is neglected, and the Interface is assumed to be always at $x=b$. The pressure of the vapor is considered to be constant; consequently the interface temperature is constant. Constant fluid properties $\mu, C_{p, k} k$ anc ρ are assumed. Density varia-
tions are ailowed in the x-momentum equation only. The pressure terms and the dissipation function in the energy equation are negi.ectea.

Initially the pressure throughout the tank is the hydrostatic pressure. The variations in pressure and density caused by the fluid motion and temperature gradienta from initial values are expected to be small. Therefore the followirg assumptions are introduced:

$$
?=P_{0}+P^{\prime}
$$

and

$$
\rho=\rho_{0}+\rho^{t}
$$

where P_{0} is the initial hydrostatic pressure, P^{\prime} the change in pressure from the initial value, ρ_{O} initial density, and ρ : the change in density.

Since the pressure variations are small, the density changes due to pressure are negligibie, and density variations are caused mainly by temperature changes. Then ρ^{\prime} can be slosely approximated by

$$
\begin{equation*}
\rho^{\prime}=\rho-\rho_{O} \approx \rho_{0} B\left(\cong_{O}-T\right) \tag{22}
\end{equation*}
$$

where β is the coefficient of thermal exponsion. Similarly,

$$
\begin{equation*}
\frac{\partial p}{\partial x}=-\rho_{0} g+\frac{\partial p^{\prime}}{\partial x} \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial P}{\partial y}=\frac{\rho P^{\prime}}{\partial y} \tag{24}
\end{equation*}
$$

Substituting the above expressions in the momentum equations:

The x-momentum:

$$
\begin{equation*}
\rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right)=\rho_{0} B g\left(T-T_{0}\right)-\frac{\partial p^{1}}{\partial x}+H\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \tag{25}
\end{equation*}
$$

The y-monientum:

$$
\begin{equation*}
\left(\frac{\partial y}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}\right)=-\frac{\partial P}{\partial y}+w\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right) \tag{26}
\end{equation*}
$$

The continuity equation:

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=c
$$

The energy equation:

$$
\begin{equation*}
\frac{\partial T}{\partial t}+u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}=a\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right) \tag{20}
\end{equation*}
$$

The substitutions necessary to reduce the above differential equations to nondimensionalized fcrms are:

$$
\begin{array}{ll}
u=\frac{\alpha b}{a^{2}} U & , v=\frac{\alpha}{a} V \\
T-T_{0}=\frac{v O b}{B g a^{4}} \theta, & t=\frac{a^{2}}{\alpha} T \\
x=b X & , y=a Y \tag{29}
\end{array}
$$

S Substituting Eq. (29) in the differential equations, differentiating the x-momentum equation with respect to y and the y-momentum equation with respect to x, combining the two equations, and introducing the stream function, the fcllowirg equations are obtained:

$$
\begin{align*}
& \frac{\partial}{\partial r}\left(\frac{a^{2}}{b^{2}} \frac{\partial^{2} \psi}{\partial X^{2}}+\frac{\partial^{2} \psi}{\partial Y^{2}}\right)+\frac{\partial \psi}{\partial Y} \cdot \frac{\partial}{\partial X}\left(\frac{a^{2}}{b^{2}} \frac{\partial^{2} \psi}{\partial X^{2}}+\frac{\partial^{2} \psi}{\partial Y^{2}}\right)-\frac{\partial \psi}{\partial X} \cdot \frac{\partial}{\partial Y}\left(\frac{a^{2}}{b^{2}} \frac{\partial^{2} \psi}{\partial X^{2}}+\frac{\partial^{2} \psi}{\partial Y^{2}}\right)= \\
& \quad=\operatorname{Pr} \frac{\partial \theta}{\partial Y}+\operatorname{Pr}\left[\frac{a^{2}}{b^{2}} \frac{\partial^{2}}{\partial X^{2}}\left(\frac{a^{2}}{b^{2}} \frac{\partial^{2} \psi}{\partial X^{2}}+\frac{\partial^{2} \psi}{\partial Y^{2}}\right)+\frac{\partial^{2}}{\partial Y^{2}}\left(\frac{a^{2}}{b^{2}} \frac{\partial^{2} \psi}{\partial X^{2}}+\frac{\partial^{2} \psi}{\partial Y^{2}}\right)\right] \tag{29a}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial \theta}{\partial \tau}+\frac{\partial \psi}{\partial Y} \frac{\partial \theta}{\partial X}-\frac{\partial \psi}{\partial X} \frac{\partial \theta}{\partial Y}=\frac{a^{2}}{b^{2}} \frac{\partial^{2} \theta}{\partial Y^{2}}+\frac{\partial^{2} \theta}{\partial Y^{2}} \tag{30}
\end{equation*}
$$

where the stream function ψ is defined by

$$
\begin{aligned}
& U=\frac{\partial \psi}{\partial Y} \\
& V=-\frac{\partial \psi}{\partial X}
\end{aligned}
$$

The initial conditions

$$
\begin{align*}
& Q(X, Y, 0)=0 \tag{31}\\
& \psi(X, Y, O)=0 \tag{32}
\end{align*}
$$

and the bour lary conditions are:

$$
\begin{align*}
& \psi(X, 1, r)=\frac{\partial \psi}{\partial X}\left(X, 1, \tau ;=\frac{\partial \psi}{\partial Y}(X, 1, r)=0\right. \tag{33}\\
& \psi(0, Y, \tau)=\frac{\partial \psi}{\partial X}(0, Y, \tau)=\frac{\partial \psi}{\partial Y}(0, Y, \tau)=0 \tag{34}\\
& \psi(I, Y, \tau)=\frac{\partial^{2} \psi}{\partial X^{2}}(1, Y, \tau)=\frac{\partial^{2} \psi}{\partial Y^{2}}(1, Y, \tau)=0 \tag{35}\\
& \psi(X, 0, \tau)=\frac{\partial^{2} \psi}{\partial X^{2}}(X, 0, \tau)=\frac{\partial^{2} \psi}{\partial X^{2}}(X, 0, \tau)=0 \tag{36}\\
& \frac{\partial \theta}{\partial X}(C, Y, T)=\frac{\partial \theta}{\partial Y}(X, O, T)=0 \tag{37}\\
& \frac{\partial \theta}{\partial Y}(X, i, \tau)=G r^{*} \text {, or } \\
& \theta(X, 1, \tau)=\theta_{W} \tag{38}\\
& \theta(1, Y, T)=\theta_{S}, \text { or } \frac{\partial \theta}{\partial X}(1, Y, \tau)=\nu \tag{39}
\end{align*}
$$

where:

$$
\begin{gather*}
G r^{*}=(a / b) \operatorname{Pr} g \beta a^{4}(q / A)_{W}\left(k v^{2}\right) \tag{40}\\
\theta_{S}=\frac{a}{b}\left(T_{S}-T_{O}\right) \operatorname{Pr} g \beta a^{3} / v^{2}=(a / b) \cdot \operatorname{Pr} \cdot G r \tag{41}
\end{gather*}
$$

From the above system of equations and bourdary conditions, clearly U, V, and θ are functions of $\bar{x}, y, \tau, a / b, \operatorname{Pr}, G r$, and $G r^{*}$.

B. THE SOLUMION

The nonlinear, fourth order system of Eq. (29a) and (30) is not amenable to mathematicai treatment using classical methods. Furthermore, Ostromov ${ }^{24}$ and Batchelor ${ }^{1}$ found that neither the successive approximation method nor the series expansion is suitable for handling such a system of equations for any
arbitrary Pr and $G r$. Therefore it was decided to employ a numerical method for the solution; the finite-difference approximation was chosen for the work in this report. The advantage of this method over cther numerical methods is that the boundary-layer assumption is no longer necessary. Instead, the full Navier-Stokes equations can be solved. The results obtained by this method can be used to check the validity of the simplifying assumptions made by others.
C. FINITE-DIFFEREMCE APPROXIMATIONS

The fourth order, noniinear systen of Eq. (29a) and (30) is transformed to a second order, nonlinear system as follows:

Let

$$
\begin{equation*}
w=\frac{a}{b} \frac{\partial^{2} \psi}{\partial X^{2}}+\frac{\partial^{2} \psi}{\partial Y^{2}} \tag{42}
\end{equation*}
$$

Upon substitution in Eq. (29a), the following equation is obtained:

$$
\begin{gather*}
\frac{\partial w}{\partial \tau}+U \frac{\partial w}{\partial X}+V \frac{\partial W}{\partial Y}=\operatorname{Pr} \frac{\partial \theta}{\partial Y}+\operatorname{Pr}\left[\frac{a^{2}}{b^{2}} \frac{\partial^{2} w}{\partial X^{2}}+\frac{\partial^{2} w}{\partial Y^{2}}\right] \tag{43}\\
\frac{\partial \theta}{\partial \tau}+U \frac{\partial \theta}{\partial X}+V \frac{\partial \theta}{\partial Y}=\frac{a^{\dot{c}}}{b^{2}} \frac{\partial^{2} \theta}{\partial X^{2}}+\frac{\partial^{2} \theta}{\partial Y^{2}} \tag{44}
\end{gather*}
$$

By definition, w is twice the negative of the vorticity, and Eq. (43) is known as the vorticity transport equation. For convenience U and V are substituted for $\partial \psi / \partial Y$ and. $-\partial \psi / \partial X$. By this transformation, the system of Eq. (30) and (31) is reduced to three second-order, nonlinear equations which are
easier to handle ry difference methods compared to the two nonlinear, fourth order Eqs. (29a) and (30).

The differential Eqs. (42) (43), and (44) are approximated by a system of difference equations. Each first order term in Eas. (43) and (44) can be expressed in forward, backward, or central differences. The choice of the type of difference approximation is Betermined by whether implicit or explicit difference method is desired and by the stability requirements, to be discussed later. From the beginning of this analysis, explicit methods were Felt to be more suitable for handing Eqs. (43) and (44), because the principal interest jis in transient phenomena for small physical time. This implies that, for better accuracy, small time steps should be used from the beginning of computation. Desinberre ${ }^{5}$ showed that explicit methods are supericr to implicit methods as far as accuracy is concerned; he also found that the accuracy requirement restricts the size of the time increment, in the case of implicit metnods, to values smaller than required by stability corsiderations. When explicit methods are used, the nonlinear terms $U(\partial w / \partial X), V(\partial w / \partial Y), U(\partial \theta / \partial X)$, and $V(\partial \theta / \partial Y)$ have to be approximated by forward difference when the sign of the velocity is negative, and by backward difference when the velocity is positive. 35 Central differences are used if implicit schemes are desired. Since the velocity components change sign in the domain ofinterest, four different sets of finite-difference equations are required, and the appropriate set of equations at each location or nodal point is determined ascordingly. The four sets of aifference equations corresponding to differential Eqs. (43) and (44) are:

$$
\begin{align*}
& \frac{w^{\prime} i, j-w_{i, j}}{\Delta T}+U_{i, j} \frac{w_{i, j}-w_{i}-1, j}{\Delta X}+V_{i, j} \frac{w_{i, j}-W_{i, j-1}}{\Delta Y} \\
& =\operatorname{Pr} \frac{\theta^{\prime} i_{, j} \theta^{\prime}{ }_{i, j-1}}{\Delta I}+\operatorname{Pr}\left[\frac{a^{2}}{b^{2}} \frac{w_{i+1, j}-2 w_{i}, j^{+w_{i-1, j}}}{(\Delta X)^{2}}+\frac{w_{i, j+1}-2 w_{j}, j * w_{i, j-1}}{(\Delta Y)^{2}}\right]_{(45 a)} \\
& \frac{\theta^{\prime}{ }_{i}, i^{-\theta_{i, j}}}{\Delta T}+U_{i, j} \frac{\theta_{i, j}-\partial_{i-1, j}}{\Delta X}+V_{i, j} \frac{\theta_{i, i}{ }^{-\theta_{i, j}-1}}{\Delta Y} \\
& =\frac{a^{2} \theta_{i+1, j}-\hat{2} \theta_{i, j}+\theta_{i-1, j}}{(\Delta X)^{2}}+\frac{\theta_{i, j+1}-2 \theta_{i, j}{ }^{+\theta_{i}}, j, 1}{(\Delta Y)^{2}} \tag{46a}\\
& \text { (ii) } U \geq 0, V \leq 0 \\
& \frac{w^{\prime}{ }_{i, j}-w_{i, j}}{\Delta T}+U_{i, j} \frac{w_{i, j}-w_{i}-1, j}{\Delta X}+v_{i, j} \frac{w_{i, j}+1^{-w_{i, j}}}{\Delta Y} \\
& =\operatorname{pr} \frac{\theta^{\prime}{ }_{i, j} j^{-\theta}{ }_{i, j-1}}{\Delta Y}+\operatorname{Pr}\left[\frac{a^{2}}{b^{2}} \frac{w_{i+1, j}}{-2 w_{i, i}+w_{i-1, j}}(\Delta X)^{2} \quad \frac{w_{i, j+1}-2 w_{i, j}+w_{j, j-1}}{(\Delta I)^{2}}\right]_{(4, b)} \\
& \frac{\theta^{\prime}{ }_{i, j}{ }^{-\theta} \theta_{i, j}}{\Delta T}+U_{i, j} \frac{\theta_{i, j} \theta^{-\theta} \theta_{i-1, j}}{\Delta X}+V_{j, j} \frac{\theta_{i, j}, j^{-\theta} \theta_{i, j}}{\Delta Y} \\
& =\frac{a^{2}}{b^{2}} \frac{\theta_{i+1}, j-2 \theta_{j, j+\theta_{i-1, j}}}{(\Delta X)^{2}}: \frac{\theta_{1, j+1-2 \theta_{j}, j+\theta_{i}, j-1}}{(\Delta Y)^{2}} \tag{46b}
\end{align*}
$$

$$
\begin{align*}
& \frac{w_{i}^{i}, j^{-i} i, j}{\Delta T}+U_{i, j} \frac{w_{i+1, j^{-w}}}{\Delta X}+v_{i, j} \frac{w_{i, j} j^{-w_{i}}, j-1}{\Delta Y} \\
& =\operatorname{Pr} \frac{\theta^{\prime}{ }_{i, j} j^{-\theta^{\prime}}{ }_{i, j-i}}{L Y}+\operatorname{Pr}\left[\frac{a^{2}}{b^{2}} \frac{w_{i+1, j}-2 w_{i, j}+w_{i-1}, j}{(\Delta X)^{2}}+\frac{w_{i, j+1}-2 w_{i, j}+w_{i}, j-1}{(\Delta Y)^{2}}\right] \\
& \frac{f_{i, i^{-\theta}} \theta_{i, j}}{\Delta T}+J_{i, j} \frac{\theta_{i+1, j^{-\theta_{i}}, j}}{\Delta X}+V_{i, j} \frac{\theta_{i, j} j^{-\theta_{i}, j-i}}{\Delta Y} \\
& =\frac{a^{2}}{b^{2}} \frac{\theta_{i+1, j}-2 \theta_{i, j}+\theta_{i-1, j}}{(\Delta X)^{2}}+\frac{\theta_{i, j+1}-2 \theta_{i, j}+\theta_{i, j-1}}{\left(\Delta Y i^{2}\right.} \tag{46c}\\
& \text { (iv) } u \leq 0, v \leq 0 \\
& \frac{w^{1}{ }_{i, j}-w_{i, j}}{\Delta T}+U_{i, j} \frac{w_{i+1, j}-w_{i, j}}{\Delta X}+v_{i, j} \frac{w_{i, i}+l^{-w_{i, j}}}{\Delta Y} \\
& =\operatorname{Pr} \cdot \frac{\theta^{i}{ }_{i, j}{ }^{-\theta}{ }_{i, j-1}}{\Delta Y}+\operatorname{Pr}\left[\frac{a^{2}}{b^{2}} \frac{w_{i+1, j^{-2 v}}, j^{+w_{i}}-1, j}{(\Delta X)^{2}}+\frac{w_{i, j+1}-2 w_{i}, j^{+w_{i, j-1}}}{(\Delta Y)^{2}}\right]_{(45 a)} \\
& \frac{\theta^{\prime}{ }_{i, j} j^{-\theta} i, j}{\Delta T}+U_{i, j} \frac{\theta_{i+1, j-\theta_{i, j}}^{\Delta X}}{\Delta T}+V_{i, j} \frac{\theta_{j, j+i}-\theta_{i, j}}{\Delta Y} . \\
& =\frac{a^{2}}{b^{2}} \frac{\theta_{i+1}, j^{-2 \theta} \cdot, j+\theta_{i-1}, j}{(\Delta X)^{2}}+\frac{\theta_{i, j+1}-\hat{c} \theta_{i, j}+\theta_{j, j-1}}{(\Delta Y)^{2}} \tag{4.6d}
\end{align*}
$$

The prime refers to the velue of the variables at the present tino step, and the unprimed variacle. correspond to those at the previous time step.

The two-dimensional space domain of interest is bounded by $0 \leq \mathbb{X} \leqq 1$, $-1 \leqq Y \leqq 1$. Oniy the region to the right of the x-axis is considered necause of geometricai symmetry with respect to this axis. The integers ind and note the x and y positicn respectively, with $i=2, j=2$ as the origin, $X=(i-\bar{c}), \Delta x$ and $Y=(j-2)$.

D. STIABILTTY AIND CONVERGENCE

The method used in this section follows that of Refs. 27 and 12. The theoretical backrround for the nethod may be found in Ref. 2., which presents an excellent disc'ission of the sumject.

Stability is a necessary condition for the solution of the difference equations to converg, to the solution of the differential equations as the size of the increments Δx, Δy, and $\Delta \frac{1}{z}$ tend to zerc. In other words, it is important to identify the behavior of the approximation error as the size of the increments goes to zerc and to estabiish the restrictions to be imposed on the difference equations in order that the error will tend to zero as the increments $\Delta x, \Delta y$, and Δt go to zero. This requires that there be no unlimited anplification of the error as the conputing cycles become infinite in the limit.

The Von Neumann method of stability analysis is used in this problem. This method is sirictly valid for conctant-coeffisient cifference ecuationc while the equations involved have variable coefficients U and V; however,
very good approximation for the stab: lity criterion is obtained by treating the variable soefficients as constants throughout the analysis and then léting the variable coefficients take on their most adverse values in determining the restriction on the time increment size. The fundamentals of the arpiication of this method of stability analysis are best illustrated by the problem in hand. The method will be applied for the case $U \geq 0, V \geq 0$. The stabinity criterion holds irrespective of the sign of U or V. The absolute value of U and V most be useä in the equations or inequalities describing the stability criterion, and the appropriate difference equations must be used according to the sign of U and V, as described earijer.

The solution of the cifference equations can be uritten as a Fourier series, the form of which is: ${ }^{27}$

$$
\begin{equation*}
w_{i, j}^{(n)}=\sum_{K_{1}} \sum_{K_{2}}(n) e^{i\left(K_{1} X+K_{2} Y\right)} \tag{47}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{i, j}^{(n)}=\sum_{K_{1}} \sum_{K_{2}} \mu^{(n)} e^{i\left(K_{1} X+K_{2} Y\right)} \tag{48}
\end{equation*}
$$

where K_{I} and K_{2} are integers, n is a superscript denoting the nth time period, and ξ and μ are functions of K_{1} and K_{2}. Substituting the system of Eas. (47) and (48) into Eqs. (45a) and (46a), the following equations are obtained after some algebraic manipulations:

$$
\begin{aligned}
& \sum_{K_{1}} \sum_{K_{2}}\left\{\begin{array}{l}
f(n+1)-\xi^{(n)}\left(a_{1}+a_{2} e^{-i K_{1} i X}+a_{3} e^{-i K_{2} \Delta Y}+a_{4} e^{i K_{1} \Delta X}+a_{5} e^{i K_{2} \Delta Y}\right)
\end{array}\right. \\
& +a_{6} \mu^{(n+1)} e^{i\left(K_{1} X+K_{2} Y\right)}=0 \\
& \sum_{K_{2}} \sum_{K_{2}}\left\{H^{(n+1)}-\mu^{(n)}\left(2 c_{1}+c_{2} e^{-i K_{1} \Delta X}+c_{3} e^{-i K_{2} \Delta Y}+c_{4} e^{i K+\Delta X}+c_{5} e^{i K_{2} \Delta X}\right)\right\} \\
& x e^{\frac{i}{}\left(K_{1} X+K_{2} Y\right)}=0
\end{aligned}
$$

From the above equations, it is concluded that the difference equations are satisfíeả if

$$
\begin{equation*}
\xi^{(n+1)}=\xi^{(n)}\left(a_{2}+a_{2} e^{-i K_{2} \Delta X}+a_{3} e^{-i K_{2} \Delta Y}+a_{4} e^{i K_{2} \Delta Y}+a_{5} e^{i K_{2} \Delta Y}\right)+a_{6} \mu \tag{49}
\end{equation*}
$$

and

$$
\mu^{(n+1)}=\mu^{(n)}\left(c_{1}+c_{2} e^{-i K_{2} \Delta X}+c_{3} e^{-i K_{2} \Delta Y}+c_{4} e^{i K_{1} \Delta X}+c_{5} e^{i K_{2} \Delta Y}\right)
$$

where:

$$
\begin{aligned}
& a_{1}=1-\left(2 \frac{a^{2}}{b^{2}} \frac{\operatorname{Pr}}{(\Delta X)^{2}}+2 \frac{\tilde{H}_{r}}{(\Delta Y)^{2}}+\frac{\left|U_{i, j}\right|}{\Delta X}+\frac{\left|v_{i, j}\right|}{\Delta Y}\right) \Delta T \\
& a_{2}=\left(\frac{a^{2}}{b^{2}} \frac{P r}{(\Delta X)^{2}}+\frac{\left|U_{i, j}\right|}{\Delta X}\right) \Delta T \\
& a_{3}=\left(\frac{\operatorname{Pr}}{(\Delta Y)^{2}}+\frac{\left|v_{i, j}\right|}{\Delta Y}\right) \Delta T
\end{aligned}
$$

$$
\begin{aligned}
& a_{4}=\frac{a^{2}}{b^{2}} \frac{\operatorname{Pr}}{(\Delta X)^{2}} \Delta T \\
& a_{5}=\operatorname{Pr} \frac{\Delta T}{(\Delta Y)^{2}} \\
& c_{1}=1-\left(2 \frac{a}{b} \frac{1}{(\Delta X)}+\frac{2}{(\Delta Y)}+\frac{\left|J_{i, j}\right|}{\Delta X}+\frac{\left|V_{i, j}\right|}{\Delta Y}\right) \Delta \tau \\
& e_{2}=\left(\frac{\mathrm{a}^{2}}{(\mathrm{~b} \Delta \mathrm{X})^{2}}+\frac{\left|U_{i_{+i}}\right|}{\Delta \mathrm{X}}\right) \Delta r \\
& c_{3}=\left(\frac{1}{(\Delta Y)^{2}}+\frac{\left|V_{i_{x}, j}\right|}{\Delta X}\right) \Delta T \\
& c_{4}=\left(\frac{a}{(b \Delta X)}\right)^{2} \cdot \Delta T \\
& c_{5}=\frac{\Delta T}{(\Delta Y)^{2}}
\end{aligned}
$$

No definition has been given to a_{6} since it has no effect on this analysis.
The system of Eqs...(49) and (50) are of the for:

$$
\begin{align*}
& \xi^{(n+1)}=a_{11} \xi^{(n)}\left(K_{1}, K_{2}\right)+a_{12} \mu^{(n)}\left(K_{1}, K_{2}\right) \tag{51}\\
& \mu^{(n+1)}=a_{21} \xi^{(n)}\left(K_{1}, K_{2}\right)+a_{22} \mu^{(n)}\left(K_{1}, K_{2}\right) \tag{52}
\end{align*}
$$

In the matrix notation, the above equalities can be written as

$$
\binom{\xi^{(n+1)}}{\mu^{(n+1)}}=\left(\begin{array}{ll}
a_{11} & \alpha_{12} \tag{53}\\
\vdots & \\
a_{21} & a_{22}
\end{array}\right)\binom{\xi^{(n)}}{\mu^{(n)}}
$$

The quantity between the Sirst parentheses on the right-hand side of Eq. (53) is called the amplification matrix. The Yon Neumann condition necessary for stability is: $\left|\lambda_{\max }\right| \leq 1$, where λ max is the largest eigenvalue of the amplification matrix. The eigenvalues are giver by

$$
\left|\begin{array}{ll}
a_{11}-\lambda & a_{12} \\
a_{21} & a_{22}-\lambda
\end{array}\right|=0
$$

Substituting the veiues of ain, $a_{12}, \ldots e t c$. in the above determinant and solving for λ, we get

$$
\begin{align*}
\lambda_{1}= & a_{1}+a_{2} e^{-i K_{1} \Delta Y}+a_{3} e^{-i K_{2} \Delta Y}+a_{4} e^{i K_{1} \Delta X}+a_{5} e^{i K_{2} \Delta Y} \tag{54}\\
& \tag{55}\\
\lambda_{2}= & c_{1}+c_{2} e^{-i K_{1} \Delta X}+c_{3} e^{-i K_{2} \Delta Y}+c_{4} e^{i K_{1} \Delta X}+c_{5} e^{i K_{2} \Delta Y}
\end{align*}
$$

The coefficients $a_{1}, a_{2}, \ldots, c_{1}, c_{2} .$. etc. all are positive except a_{1} and c. which may be positive or negative. The largest absolute values of λ_{1} and λ_{2} : occur when all the terms in Eqs. (54) and (55) are real, i.e., when $K_{1} \Delta X$ $K_{1} \Delta X=K_{2} \Delta I=2 \pi$ then,

$$
\begin{align*}
& \lambda_{1 \max }=a_{1}+a_{2}+a_{3}+a_{4}+a_{5} \tag{56}\\
& \lambda_{2 \max }=c_{1}+c_{2}+c_{3}+c_{4}+c_{5} \tag{57}
\end{align*}
$$

Substituting the vallies of $a_{1}, a_{2}, \ldots, c_{1}, \ldots, c_{5}$ in λ max

$$
\begin{equation*}
\lambda_{1} \max =\lambda_{2} \max =1 \tag{58}
\end{equation*}
$$

Therefore, we can conclude that, λ max will not exceed unity and will not impose any stability restrictions. If there be any restrictions, they are to prevent the minimum vaiue of λ from becoming less than -1 .

The minimum of the eigenvalues oceurs when $K_{1} \Delta X=K_{2} \Delta Y=\pi$ and is given by

$$
\begin{aligned}
& \lambda_{1} \min =a_{1}-a_{2}-a_{3}-a_{4}-a_{5} \\
& \lambda_{2} \min =a_{1}-c_{2}-c_{3}-c_{4}-c_{5}
\end{aligned}
$$

or

$$
\begin{gather*}
\lambda_{1} \min =1-2 \Delta T\left(2 \operatorname{Pr}\left(\frac{a}{b \Delta X}\right)^{2}+2 \frac{\operatorname{Pr}}{(\Delta Y)^{2}}+\frac{\left|U_{i, j}\right|}{\Delta X}+\frac{\left|V_{i, j}\right|}{\Delta Y}\right) \tag{59}\\
\vdots \tag{60}\\
\lambda_{2 \min }=1-2 \Delta T\left(2\left(\frac{a}{\Delta X}\right)^{2}+\frac{2}{(\Delta Y)^{2}}+\cdots \frac{j_{n} j \mid}{\Delta Y}+\frac{\left|V_{i, i}\right|}{\Delta Y}\right)
\end{gather*}
$$

Therefore, for $|\lambda| \leq 1$, the following iner, ainies shold be satisfied:

$$
\begin{gather*}
\Delta T\left(\frac{2 a^{2}}{b^{2}(\Delta X)^{2}}+\frac{2}{(\Delta Y)^{2}}+\frac{\left|U_{i, j}\right|}{\Delta X}+\frac{\left|V_{i, j}\right|}{\Delta Y}\right) \leq 1 \tag{6la}\\
\Delta T\left(2 \operatorname{Pr}\left(\frac{a}{b \Delta X}\right)^{2}+2 \frac{\operatorname{Pr}}{(\Delta Y)}+\frac{\left|U_{i, j}\right|}{\Delta X}+\frac{\mid V_{i, j} I}{\Delta Y}\right) \leq 1 \tag{616}
\end{gather*}
$$

Equations (6la,b) are requisite for stability. For values of Prendtl number less than unity, inequality Eq. (6la) is more restrictive and, therefore, should be used. For higher values of Prandti number, inequality Eq.(61b) must be used.

The numerical solution is carried as follows:

1. The temperature distribution is first calculated using Eq. (45);
2. The advanced vaiues of temperature θ^{\prime} are used in Eq. (46) to calcillate w';
3. The stream function is calculated at each time step, using Eq. (42). The solution cf Eq. ($4 \hat{2}$) is done numerically, using successive row relaxation followed by successive column relaxation. 36

Calculations have been carried out for the case of a containt: with ari insulated bottom whose walls are subjected to a uniform heat flux, and the liquid surface is maintained either at the initial temperature T_{0}, at a temperature, T_{S}, higher than T_{C}, or is adiabatic. The last case is expected to approximate the transient convection in the liquid when exposed to a ronpressurized gas. Different leveis of heat flux were considered, including 10 and $1000 \mathrm{Et} . \mathrm{u} / \mathrm{hr} / \mathrm{ft}^{2}$.

For these calculations, the fluid properties chosen were those ${ }^{f}$ inquid nitrogen initially at atmospheric pressure, the initial saturation temperature was 140° R. The fluid properties were evaluated at a temperature equal to the average of the initial temperature and the liquid surface temperature. The values of the liquid properties were taken from Ref. 38 and are sumnarized in Table $I:$ The height of the liquid b, is 1 ft , and the width of the con-

TABTE I

FLUID PROPERTIES
Thermal diffusivity $\alpha, f^{2} / \mathrm{sec}$.
8.62×10^{-7}
Thermal conductivity K, Btu/hr/ft $\mathrm{t}^{2}{ }^{\circ} \mathrm{R}$ 0.0775
Kinematic viscosity $v, \mathrm{ft}^{2 /} / \mathrm{sec}$ 1.68×10^{-6}
Coefficient of thermal expansion, β, A^{-1}
1.33×10^{-3}
Prandsl number
1.91
tainer is $\mathrm{l} / 2 \mathrm{ft}$.
The flow pattern for the case of a constant wall heat flux of 10 Btu/hr/ft ${ }^{2}$ and iquid surface maintained it initial temperature T_{0} is shown in Figs. 1, 2 and 3, using a $21 \times$ cl grid corresponding to $\Delta X=\Delta Y=0.05$. These results show the streamline pattern at different time levels-50 sec, 2 min , and 3.6 mir . respectively. An interesting streamline pattern is observed at the free surface. For a short time after the beginning of heating, the boundary layer rising along the container walls turns smoothly changing its direction frcm upward to downard flow (Fig. 1). The downwardmoving particles near the rising boundary layer reverse direction and join the upward flow, thus giving rise to the vortex near the free surface. The fluid away from the edge of the boundary layer flows nearly to the bottom of the container, where it joins the upward-moving fluid. For greater times following the introduction of the transient, the streamlines rear the free surface show the presence of fluid oscillations (Figs. $\hat{\varepsilon}$ and 3). These oscillations first form near the wall, their amplitude grows with time, and they move towards the centerline of the container. The calculations show that this oscillatory phenomenon is repeated with time in the sequence described (Figs. 2,3,4, and 5).

The effect of increasing the level of heat flux on the flow pattern is clearly shuw in Fig. 4, which shows the flow pattern obtained after heating for 51 sec with a wall filux of $1000 \mathrm{Btu} / \mathrm{hr} / \mathrm{ft}^{2}$ and the surface temperature maintained at the initiel temperature T_{0}. The comparison between Figs. I and 4, which correspond essentially to the same time, shows that the oscillatory
streamline pattern levelops earlier for high heating rates than the low heating rates. Except for the latter effect, the flow nattern at the higner heating rates has the same characteristics as that for the low heating rate. The magnitude of the velocities, of course, is higher for the higher heat flux.

The stremlines for the case of a constant wall heat flux of 1000 Btu/hr/ft ${ }^{2}$ and adiabatic interface are shown in Fig. 7.

Figures 8 and 9 show the streamines and the isothermals, respectively, obtained at $1000 \mathrm{Btu} / \mathrm{hr} / \mathrm{ft}^{2}$ wali heai fllx and the interface temperature maintained at $160^{\circ} R$, which corresponds to the saturation temperature for a pressure of 45 psia. The axial temperature gradient in the boundary layer is negligible for about 70 pervent of the container height at a time of 48 sec. At the upper porticn of the ecntainer, near the free surface, the axisi temperature gradients are considerably greater. On the other hand, the transversal temperature gradient is greater at the lower portion of the tank and becomes smaller near the free surface. The temperature distribution exbibits the same sharacter in all the cases analyzed. These phenomena can be explained as follows: for small times, the fluid near the container walls flows upward in a thin boundary layer. In its upward movement, the hot fluid entrains some of the colo fluid at the edge of the boundary layer, This Isated boundary layer is discharged at and just below the free surface, wrera its transyerse velocity is kighest. To satisfy continuity, the heated riluid Which is discharged at the free surface causes the colder fluid to move downward, thus producing a series of horizontal isotherms. Wi.th time these
isotherms penetrate further beiow the free surface. At the lower portion of the container, the tranisveral temperature gradient is very high near the wall and negligitule in the remainder of the container. It is smaller near the fres surface, where the boundary-layer flow is discharged. The thermal boundary layer fills the entire cross section in this region.
A. THE EFFECT OF GEID SIZE

Calculations were made for the sase of constant wail heat flux of 10 Btu/hr/ft² with the fluid surface at its initial temperature, using $21 \times 2 \mathrm{l}$, 16 x 16 and 11 x Il gride. The streamline patterns are shown in Figs. 1-4, 6. The ascillatory pattern is obtainea in each case, but it is on a smaller scale for the 11×11 grid. The axial velocity distribution obtained at a given time is piotted for various axial positions in Fig. 10. The values ob.tained using i6 x 16 and 21×21 are in close agreement. Figure 10 shows that the difference between the values obtained using different grids is greater near the wali and at the center line; otherwise they are in substantial agreement.

Figure 17 shows the aimensionless wall temperature at a locataon $x=.6$ plotted against dimensionless time. The deviation is gre. est for snall times. The difference decreases with time ard is practically negliginle for dimensionless time of 0.003 , which corresponds to \&bcut 3.6 min .

Figure 12 presents the velocity at different locations as a function of the grid size. Examinatiun of this figure reveals that the velocities change monotonously with the grid size. Their values are expected to converge
to the true soluticn for a number of divisions of the order of 30×30. This is seen from the extrypolation shown as dotted lines in the figures. The rate of convergence is slower near the boundary and at the center than at intermediate positions.

The computations wre done on the IBM 7090 digital computer at the Computing Center of Tre Unıversity of Michigan. The machine tirie required to complete the calculations and to print the results for U, V, T, w, and ψ every 20 steps is $i .7$ sec per time step for the 11×11 grid. The corresponding times fer the 16×10 and the $21 \times 2 l$ grids are 8 and 11 sec, respectively, for printing the resuits every five steps.
B. COMPARISON WITH EXPEKZMENT

An investigation of the literature on natural convection showed that few present resulis are applicable to those reported here. These include the work of E:chhorn ${ }^{5}$ and S. K. Fenster, et al., ${ }^{7}$ there is other literature concerning flow chenomena in free convection, but, except those cited, none included systoms with.a free surface.

Eichhorn conducted visual studies of the natural convection laminar flow of vater using an electrica\&y heated cylinder 2 -inches diameter and 5 -inches iong. His results are shown in Fig. i3. The magnitude of the heat flux was not given. From the discussion it is concluded that the results reprerent the unsteady state. Figures $13 a$ and 13 b show the flnw pattern observed at high heating n.t. . Fig. 13 c shows that obtained at low heating races. At low hating rates, the streamines assume a damped-wave shape. At high heating
rates, annuiar vortices repeatedly form near the free surface, roli up u'til a certain size is reached, whereupon they move away from the cylinder, and arother vortex vegins to form. The comparisos of Fizs. l-8 with the resuits of Fig. 13 shows that the shape of streamlines observed agrees with that ottained from the theoretical solutions presented here.

Fenster, e_{c} al., studied experimentally the transient phenomena associated with the pressurization of iquia nỉrogen initially boiling at corstant neat flux. Although tre initiai temperature distribution agrees with that assumed in this ana? ${ }^{\text {rois }}$, the initial velocity distribution does not. At any instant after pressurization, there was nc difference betwcen the temperature at the tank ceriterine and midway between the centerline and the wall at an axial location beiow 0.6 of the liquid height. These resuits indicate thet the isotherms are horizontal in the core of the tark, which agrees with the calculated isotherms shown in Fig. 9.

Temperature oscillations of the type shown in Fig. 9 were alsc obtained by Foots ${ }^{26}$ for the steady state soiution of the temperature distributior. in a two-dumensional closed savity. In this case, the walls are kept at a constant temprature, ene wall hotter than the other, and the upper and lower surfaces assune a linear temperature distribution. These results are shown in Fig. 14.

Y. CONCLUSIONS

The equations describing the transient, twodimensienal, laminar, netural convection in a rectangular closed container havi:ig a vapor-liquid ínterface have been s.lved using explicit finite-diIference approximations. The velocity and temperature distrikutions indicate that, for smali time periods, the fow is of a bounrary-layer zpe, exeeft near the cottom and the liquid-vapor interface. No indications $0:$ numerical instability were encountered. The size of the time increment was sestricted to small values by stability considerations based on the method of Von Neumann. However, a small time increment is desirable in order to obta, a accurate transient results at small time. On the other hand, if steady state results are desired, the number of computations using the explisit method will be large for fine grins and for systems having a high heat flur. The machine time may be of the order of 2 hours in this case, 12 and the use of implicit methods wouid be superior. However, the application of implicit-cifference methods to this problem and to proviens with cther geometry is being continued.

The results obtained using the present method agree qualitatively with related cases reportec in the literature.

ACKNOTIEDGMENI'

The authors dish to trani. Pross. V. S. Arpaci and W. J. Yang for their valuable suggestions and assistance. The assistance of Erofessor R.C.F. Bartels, Director of the Computing Certer, The University of Michigan, curing the initial stages of this work is gratefully acknowledged.

REFERENCES

1. Batchelor, Quart. Applied Math. 12, pp. 天09-203, 1954.
2. E. Schmidt and W. Beckmann, Forsch Ing-Wes. 1, 391 (1930).
3. J. A. Slark, G. J. Van Wylen and S. K. Fenster, "Pransient, Phenomena Assoclated with the Pressurized Discharge of a Cryogenic Liquid from a Closed Container." Advances in Cryogenic Enfineering, シ̈, pp. 467-480.
4. A. N. Gurren and C. F. Zalabak, "wffect of Closed End Coolant Passages on Natural Convection hater Cooling cf Gas Turbine Blades." NACA RM R55J 18-a.

5: Dusinberre, "A Note on the "Implicit" Method for Finite-Difference Heat Transfer Calculations." ASME Trans, J. Heat Transier, Series Cs pp. Y495, Feb. 1961.
6. R. Eichhorn, "Flow Visualization and Velocity Measurement ir Natural Con:ention with Tellurium Die Method." ASME Tuans, J. Heat Transfex, 83, Series C, pp. 379-381.
7. S. K. Feneter, G. J. Van Wylen and J. A. Clark, "Transient Phenomena Assoicated with the Pressurization of Liquid Nitrogen Boiling at Constant Heat Flux." Advances in Cryogenic Engineering, 5, pp. 226-234.
8. B. Gebnart, "Natural Convection Transieats." ASME Trans., J. Heat Trunsfer, Series C, 85: pp. 184-185. See also J. Heat Transfer, 35, E. 10 and 83, p. 61.
9. F. G. Hammitt, "Heat and Mass Transfer in Closed, Vertical, Cyindrical Vessels with Internal Heat Sources for Homogeneous Reactors." Pr. D. Thesis, Univ. of Mich., Dec. 1957.
10. J. P. Hartneit, W. E. Welch and F. W. Iarsen, "Fres Convection Heat Transfer to Water and Mercuty in an. Enclosed Crlindrical Mube." Nuclear Engineering and Scierce Conference, preprint 27, Session XX, Chicago, March 17-21, 1958.
11. J. P. Hartnett and W. E. Welch, "Experimental. Studies of Free Convection Heat Transfex in a Vertical Tube with Uniform Heat Flux." Trans, ASME, 79, p. 1651, 1957.
12. J. D. Hellums, "Finite-Difference Computation of Natural Corvecticn Flow." Ph.D. Thesis, Uriv. of Mich, Sept. 1960.
13. F. Herzbert, "Effective Jensity of Boiling Liqrid Oxygen." Advances in Cryogenic Engineering, 5 -
14. Landau and Lifshitz., "Fluid Mechanics." Adisun-Wesly, 1959.
15. F. W. Iarsen and J. P. Hartnett, "Effect of Aspe:t Ratic and Tube Or--entation on Free Convection तeat Transfer to Water and Mercuty in Enclosed Circular Tubes." ASME, Trans., J. Heat Transfer, 83, Series C, pp. 87-93.
26. A. F. Leitike, "Theoretical and Experimental Investigation of Heat Transfer by Naturai Convection Between Parallel Flates." NACA Report 1223, 1055.
17. S. Levy, "Integral Methods in Naturai Convertion Flow." ASNE paper No.

i8. M. T. Lighthill, "Theoretical Ccnsideration on Frea Convection in Tubes." Quart. J. Mech. and Appi. Math., 6, pp. 398-439, 1953.
19. B, W. Martin, "Free Convection in an Open Thermosyphea with Syeciai Reference tc mirbulent Flow." Proc. Roy. Soc., Series A, 230, pp. 502530, 1955.
20. S. Ostract, "Ar Analysis of Eeminar Free Convecticn flow and Heat Transfer About a Flat Plate Parallel to the Direction of the Generating Boay Force." NACA Report 111, 1953.
21. E. Ostrach, "Leminar Natural Convection Fiow and Hest Íransfer to Fluids With anawithout Heat Sjurces With Constant Wall Temperature." NACA Tn2863, Dec. 1952.

2?. S. Ostrach, "Combined Natural and Forcea Sonvection Leminar Flow and Heat Transfer to Fuiids With and Without Heat Sources in Channels With Linearly Varying Wali Tenperecure." NACA Tn-3I41, April 1954.
23. S. Ostrack and P. R. Thmnton, "On tre Stagnation of Natural Convection Flours in Closed End Tubes." ASME paper No. 57.-SA-2.
24. G. A. Ostromor, "Free Convection Inder the Conditions of the Internal Problem." NAGA TTA-307.
25. E. Poh Thausen, ZAMM? 115 (192i).
26. G. Poots, "Heat Transfer by Laminar Free Corvection in Enclosed Plane Gas Layers." Quart. J. Mech. and Appl. Math., XX, Pt. 3, pp. 257-27\%, 1958.
27. R. D. Richtmer, "Difference Methods fer Initial Value Problem." Intersaience Publicatior, 1957.
28. A. G. Remonov, "Study of Heat Exchange in a Deal End Channel Under Free Convection Corditions." Izvestiya Akademii Nau, USSR. Otdeleni Tekhnisherkikh, No. 6, pp. 63-76, 1956.
29. P. S. Schechter, "Natural Convection Heat Mransfer in Regions of Maximum F'luid Density." AIChE paper No. 57-HT-25.
30. \therefore Seigel, "Transient Free Convection from a Verticai Flat Plate." ASME paper No. 57-Sa-8.
31. Rr Seigel and R. H. Norris, "mest of Free Convection in a Partiaily Enclose ${ }^{\text {S }}$ Spaces Between Two Heated Vertical Plates." ASME paper No. 56-SA-5.
32. R.G.S. Skipper, I.S.C. Holt and O. A. Saunders, "Natural Convection in Viscous Oil." International Development in Heat Transfer, Pto 5, pp. 1003-1009.
33. E. M. Sparrow and J. L. Gregg, "The Variable Fluid Property." ASME paper No. 5T-A-46.
34. E. M. Sparrow, J. L. Gree, "Similar Solutions for Free Convection from a Nonisothermal Vertical Dlate:" ASME paper No. 57-SA-3.
35. E.M. Sparrow and S. T. Kauimann, "Visual Study of Free Convection in a Narrow Yextical Enclosure." NACA RM E55 I 14-a, Feb. 1956.
36. J. Todd, "Survey of Numerical Analysis." McGraw-Hill, Chap. L1, 1962.
37. S. L. Zeiberg and W. K. Muelier, "Transient Laminar Combined Free and Forced Convection in a Duct." ASME Transa, J. Heat Transfer, 84, Series C, pp. 141-148.
38. "A Compenäum of the Properties of Materials at Low Temperature Phase I and II." R. B. Stewart and V. J. Johnson, Editors.

COMPUTER PROGRAM

The somputer program used for the cases of constant wall flux or constant step change in wall temperature and the interfacial temperature specified is given on the foiluwing pages. The program is written in NAD language The symbcls $\mathrm{U}, \mathrm{V}, \mathrm{T}, \mathrm{W}, \mathrm{T}_{\mathrm{C}}, \mathrm{T}_{\mathrm{S}}, \mathrm{k}, \hat{i}$, and B are the same as in the text. The meaning of the principal symbcis which are not defined in the program. are given below:

```
    Dx = \Deltax
    Dy = i.j
    DT = \DeltaT
    M = NO. of divisions in the k-direction
    N = No. of divisions in the y-direction
    GA = Acceleration due to gravity
    SF = Stream function
    Gm= The value of the stream function at the previous time step
    W = The value of Wat the previcus time step
    WIs = The value of W at the advanced time step
    TL = The value of temperature at the previous time step
    NT. = Total number ~f time steps
    NE = Numb:r of interations
    TJI = Dimensionless wall temperature TM for the case of step change in
        wall temperature
    TI = Dimensioniess interfacial temperature.
```


> Plow Pattern
> wall flux $=10, \mathrm{Btu} / \mathrm{hr} / \mathrm{ft}^{2}$
> surface temp. $=\mathrm{T}_{0}$
> $T=6.785 \times 10^{-4}$
> $\approx 50 \mathrm{sec}$
> $21 \times 21 \mathrm{grid}$

F1g. 1

Fiow Fatter:
~Gll flux $=10$, Btu/hr $/ \mathrm{f} \pm{ }^{2}$
surface temp. $=T_{0}$
$T=2.67 \times 10^{-3}$
$\approx 2 \mathrm{~m} . \mathrm{n}$
$21 \times 21 \mathrm{grid}$

Fig. 2

Fig. 3

Flow Estiern
vai: $\because u x=1000$, Btu'hr/ft2
surface temp. $=T_{C}$
$T=7.27 \times 10^{-4}$
$\approx 51 \mathrm{sec}$
$21 \times 21 \mathrm{grid}$

Fig. 4

Fig. 5

Fig. 6

Stmamline Fattern

wall flux $=1000 \mathrm{Btu} / \mathrm{hr} / \mathrm{ft}^{2}$
adiabatic upper surface
$T=0.00114$
$\approx 3.42 \mathrm{~min}$
11×11 grid

Fig. ${ }^{i}$

Fig. 8

$$
\begin{aligned}
& \text { Isothermale } \\
& \text { wall flux }=1000, \mathrm{Btu} / \mathrm{hr} / \mathrm{ft}^{2} \\
& \text { free surface temp. }=\mathrm{T}_{\mathrm{s}} \\
& T=6.6 \times 10^{-4} \\
& \Rightarrow 48 \mathrm{sec} \\
& 21 \times 21 \mathrm{grid}
\end{aligned}
$$

Fig. 9

dimensionless distance
from centre line
F1g. 10

Fig. 11

71z. 12

(b)

(c)

Fig. 13

$$
\begin{aligned}
\mathrm{Ra} & =10^{4} \\
\frac{a}{b} & =1
\end{aligned}
$$

Streamlineo

Fig. 14

