STUDY OF "RATIO" AUTOMATICALLY ASSEMBLED STRUCTURES
 FINAL REPORT
 15 JUNE 1963 to 15 JUNE 1964

GDA-DDG64-017

CONTRACT NUMBER NAS7-228

P. Slyeh
G. H. Nowak
J. R. Lloyd
E. J. Kamincki

Prepared by
GENERAL DYNAMICS/ASTRONAUTICS
A DIVISION OF GENERAL DYNAMICS CORPORATION
San Diego, California

1 July 1964

ABSTRACT

This atudy was sponsored by the Office of Advanced Research and Technology, NASA Hedquarters, Wahington, D.C., and wes under the menerent of Ioxmat. Myer, Chief, tivanced Strecturet ond Material Application Space Vehicle Structures Reetereh.

RATIO antomatically otenbled spaceborne etructures conslif of eectionalized, prefabricated panel members which are nested with respect to each other in a tack having an efficient packaging dencity. These structures and an equipment for automatically asserbing then are described.

Preliminary parametric data is developed for the design of RATMO antenan=theretarear

Detalled computer prograns are developed for deternining the stendy otate lond and deflections in the anteana trructuret. Prow grans for computing the effects of these deflections on the far field radiation of the antenna are about half completed.
Page I-1
I. SUMMARY
1.0 GEAERAL 1-1
2.0 " ${ }^{2}$ RATIO" STRUCTURES I-1
2.1 AUTOMATIC ASSEMBLY MACHINERI I-2
2.2 ANTENNA CONFICURATION 1-2
3.0 ANALYTICAL MODELS 1-4
3.1 PLANAR MODEL 1-4
3.2 DETAILED MODEL I-5
4.0 RELATED PROBLEM AREAS 1-8
5.0 OTHER APPLICATIONS FOR "RATIO" STRUCTURES I-8
6.0 RECONQIFNDATIONS FOR FUTURE INVLSTIGATIOMS 1-9
6.1 COMPUTER PROGRAMS FOR STRUCTURAL ANALYSIS 1-9
6.2 PARAMETRIC DATA 1-9
6.3 HLASTIC STABILITY 1-9
6.4 THERGML STABILITY 1-10
6.5 PACKAGING AND AUTOMATIC ASSEMERY 1-10
6.6 OTHE APPLICATIONS FOR "RATIO" STHUCTURES 1-11
 I-11
 114
1.0 ociverat. 11-1
 11-1
2.1 ACTUATOR AND FEED, STOWAGE AND DEPLOMMENT 11-4
2.2 STOUED ANTENNA II-5
3.0 REFLECTOR ASSEBELY PROCEDURE 11-8
3.1 BASIC MOTIONS 1I-8
PAGE
3.2 REFLECTOR CONTOUR II-11
3.3 PANEL FASTENING OF DEPLOYED ANTENNA II-II
3.4 PANDL FASTENING OF STONTD ANTENNA 11-15
4.0 "RATIO" AUTOMATIC ASSEYBLY MACHINERY II-15
4.1 GRIPPER-FASTENER FRAME II-15
4.2 ANTENNA PACKAGE CLAMP SHAFT II-18
4.3 GRIPPER FRAME TRANSPORT ACTUATORS II-18
5.0 OVERALL CYCLIC PERPORMANCE II-19
5.1 MOTION CONTROL PROGRAMMER II-22
5.2 AT COMPLETION OF DEPLOYMEXT II-22
6.0 ASSEMEIT EOUIPNENT POWBR AND WEIGHT 11-23
7.0 ALTERNITE PANEL ASSPMBIIES 11-23
8.0 SUMAIART OF PEATURES OF "RATIO" AUTOMATICALIY ASSENBLED ANTENNA STRUCTURES 11-25
III. PRELIMINARY ANALYSIS OF A SIMPLIFIED PLANAR MODEL III-1
1.0 GENERAL III-1
2.0 DEFTMITION OF MODEL 1II-1
2.1. SMantify 1II-1
 1) 14
2.3 - MORATION AXESIII-2
2.4, ON-BOARB MLSSES ADD THETE DISTRIBUYION III-6
2.5 LUMPED PARAMETEKS III-7
2.6 SHEAR, RLEXURAL AND TORSIONAL STIFFNESS III-7
2.7 PARASITIC AND LOAB-CARRYING STRUCTURAL MASSES 111-7
2.8 DEFLECTION LIMITED STRUCTURE III-7
PAGE
2.9 VARIABLE STRUCTURAL PROPERTIES III-8
2.10 INERTIAS OF STRUCTURAL AND ON-BOARD MASSES 1II-8
2.11 STRUCTURAL BEAH LEHGTHS 111-8
3.0 METHOD OF ANALYSIS III-8
3.1 DEFINITION OF TERMS III-8
3.2 NON-TAPERED CONFIGURATION III-11
3.2.1 STRUCTURAL PROPERTIES III-11
3.2.2 MASS AND INERTIAL PROPERTIES III-14
3.2.3 LOADING CONDITIONS III-16
3.3 TAPERED CONFIGURATION 111-17
3.3.1 STRUCTURAL PROPERTIES 111-17
3.3.2 MASS AND INERTIAL PROPERTIES 111-24
3.3.3 LOADING CONDITIONS 111-30
3.4 SLEWING AND TURNING RATE LIMITATIONS III-31
3.4.1 OPTIMUM MASSES OF NON-PROPULSIVE POWER AND FLYWHEEL SYSTEMS III-34
3.4.2 FLYWHEES SATURATION 111-37
3.5 RELECTOR DISTORTIONS 1II-38
3.5.1 FLCTORS AFFECTING ANTENNA PEREORMNCE: 111-38
3.5.2 REFLECTOR VBIGHTED RMS DERLBCTIGNS 111-40
3.6 SCALING FACTORS 111-41
3.6.1 ALTERNATE SCALING PROPORTIONS 111-45
4.0 SPECIFIC STRUCTURAL DEFLECTION ANALYSES III_48
4.1 SELECTION OF STRUCTURAL CONFIGURATIONS AND LOADING CONDITIONS 111-48
4.2 DEFLECTION PATTERNS 1II-51
PAGE
4.2.1 MONOTONIC DEFLECTION PATTERNS III-63
4.2.2 PATTERN INFLECTIONS 111-63
4.3 VEIGHTED RHS DERLICTIONS III-64
4.3.1 AFFECTS OF STRUCTURAL TAPERING AND ACTUATOR DISTRIBUTIONS1II-71
4.3.2 AFFECTS OF STRUCTURAL MASS FRACTIONS III-72
4.3.3 affects of illumination functions III-72
4.3.4 0-A axis vS. O-B ROTATION III-79
4.3.5 SCALING OF d VS. L 111-82
4.4 TURNING AND SLEWING RATES 111-82
4.4.1 TRADE-OFES OF REFLECTOR DISTORTIONS turining rates and slewing rates 1II-89
4.5 LMMITATIONS ON DERLECTIONS 111-89
4.6 SUMMARY OF RESULTS 1II-90
IV. DETAILED "RATIO" MODEL analysis IV-1
IV-A. STRUCTURAL LOADS IV-1
1.0 GENERAL IV-1
2.0 GEOMETRY OF STRUCTURE IV-1
3.0 REACTION LOADS IV-3
4.0 FLIWIVES AND ANTEANA TURNING RATES IV-4
5.0 MODH. FONCTIONS FOR ANTENNA TURNIKG RATES IV-7
6.0 APPLIED TORQUES IV-8
7.0 INERTIA OF DISH IV-10
8.0 REACTION FORCES OF FEED IV-11
9.0 SUMMARYIV-12
PAGE
10.0 STATUS IV-13
11.0 CONCLUSION IV-13
IV-B. RADIATION PATTERNS IV-15
1.0 INTRODUCTION IV-15
2.0 ASSUMPTIONS IV-16
3.0 FAR FIELD REPRESENTATION IV-17
4.0 PHASE FUNCTION IV-22
5.0 THE UNIT VECTORS $\overline{\mathrm{n}}$ and $\overline{\mathrm{s}}$ IV-24
6.0 NORMALIZED RADIATION INTENSITY IV-27
7.0 NUMERICAL INTEGRATION IV-28
6.0 COMPUTETIONAL PROCEDURE IV-35
APPENDIX A STRUCTURAL ANALTSIS A-1
1.0 GENERAL A-1
1.1 GENERAL APPROACH A-1
1.1.1 NOMENCLATURE A-2
2.0 STIFFNESS DETERMINATION 1-5
2.1 STIFFNESS MATRIX OF A SINGLE BLEMENT $1-5$
2.2 STIFFNESS MATRIX OF A BAY -10
3.0 NETHOD OF ANALYSIS A-12
3.1 MATHEMATICAL FORALLATION OF THE ANALYSIS A-12
4.0 THERMAL LOADIAG 1-15
5.0 LOADS NOT APPLIED AT THE JOINTS A-18
6.0 MEMBERS WITH NON-UNIFORM PROPERTIES A-19
Page
APPENDIX B - THERMAL DISTORTIONS B-1
1.0 GENERAL B-1
2.0 THERMAL GRADIENT B-3
3.0 INDUCED DISTORTIONS B-6
3.1 EFFECTS OF ($\mathrm{V}_{\mathrm{sT}} / \mathrm{V}_{\mathrm{ct}}$) ON EUASTIC RIGIDITY B-10
4.0 DEPENDENCE OF $V{ }_{c T} / V_{\text {at }}$ ON THE SUBDIVISION OF A STRUCTURAL VOLUME B-11
5.0 INTERPRETATION OF RESULTS B-13
APPENDIX C - SIMPLE BEAM APPROACH C- 1
1.0 STRUCTURAL, MASS AND INERTIAL PROPERTIES C-2
2.0 BEAM DEFLECTIONS C-5
3.0 WEIGHTED RMS DEFLECTIONS C-9
4.0 CONCLUSIONS C- 13
APPENDIX D - SIMRLE STRUCTURAL-BEAM APERTURE D-I
APPENDIX E - MEASUREMENT OF "RATIO" APERTURE DISTORTIONS E- 1
APPENDIX F - CONTROL SYSTEM CONSIDERATIONS F-1
1.0 INPRODUCTION F-1
2.0 CONTROL IXES F-1
 $p-5$
4.0 METHOD OP ANALTSIS $\mathrm{F}-7$

TABLE OF FIGURES

FIGURE		PAGE
1-1	RATIO automatically assembled antenna.	I-3
I-2	Outline of computer programs.	I-6
11-1	Schematic of a Ratio antenna.	11-2
II-2	Structural panel, including an inertial actuator and feed action.	11-3
II-3	Outline of antenna package.	II-6
II-4	Four basic assembly motions, stack A stationary.	I1-9
I1-5	Four basic assembly motions, assembled panel B stationary.	11-10
II-6	Assembly program for emplacing panels.	II-12
11-7	Locations and ofientations of male or female fastener sections on panel.	11-13
II-8	RATIO automatic assembly machinery.	11-16
II-9	Gripper-fastener assembly.	II-17
11-10	Operations cycle diagram.	11-20
III-1	Ratio antenna, panel construction.	III-3
111-2	One quadrant of a planar model showing grid coordinates for rotation about the 0 - A axis.	H1-4
1II-2a	One quadrant of wodel showilg grid coordinatee for rotation about the $0-\mathrm{B}$ axis.	111-5
111-3	Bean crossection.	111-13
III-4	Normalized force $F_{O_{A}} /{ }_{A}{ }^{L M}$ at structural junctiona in Fig. III-2.	III-18
III-4a	Normalized forces $\mathrm{F}_{\mathrm{OB}} / \mathrm{a}_{\mathrm{A}} \mathrm{LM}(0.707)$ at structural junctions in Fig. IIl-2a.	III-19
111-5	Reaction forces due to individual on-board masses and torques due to individual attitude actuators for cases 1 to 4.	111-20

III-40	Ratio of dor $0-B$ to d for $0-A$ axis rotation, non-tapered structure, $L=300$.	III-81
III-41	Ratio of scaled to computed values of dat $L=300$ for $0-A$ axis rotation.	III-83
III-42	Normalized maximum turning rate, non-tapered structures.	III-84
III-43	Normalized maximum turning rate, tapered structures.	III-85
III-44	Normalized slewing rate, non-tapered structures.	III-87
III-45	Normalized slewing rate, tapered structures.	III-88
I II-46	Limitations on frequency, reflector size, and rems distortions.	III-91
111-47	Influence of changes in independent parameters.	III-92
IV-1	Paraboloidal geometry.	IV-18
A-1	Designations for displacements at two ends of an element.	A-6
A-2	Stiffness matrix of a generic element.	A-8
A-3	An elementary bay.	A-11
4	Forces of thermal loading.	A-17
B-1	Assuned structural model.	B-4
B-2	Deflection parameterv. va, $/ \mathrm{V} \boldsymbol{\mathrm { T }}$.	E89
D-1	Struetural beal-aperture model	D-2
D-2	Normalized power pattern.	D-3
E-1	Instrumentation of nodal deflections along a straight line.	E-3
E-2	Structural grid.	E-4
F-1	Control axes.	F-3
F-2	Diagram of attitude control system.	F-6

I. SUMMARY.

GENERAL .

The purpose of this study is to investigate the application of RATIO automatically assembled structures to spaceborne paraboloidal, antennas. The study investigates the available trade-offs in the antenna structural properties to achieve given $r-f$ and maneuverability characteristics in the antenna. Epphasis is placed on developing and simulating the relationships between the antenna structural, maneuverability, and $r-f$ parameters. Specific attention is given to the influences of material properties, structural configuration, antenna r-f geometry, slewing rates and on-board masges on the etructural properties of the RATIO antennas.

Because of necessary minimum investments in weight of automatic assembly equipaents, it is estimated that the RATIO antennas are attractive, from a weight point of view, for reflector sizes in excess of 20 to 30 feet. Antenna sizes as large as 10,000 feet are considered.
2.0 "RATIO" STRUCTURES.

RATIO autounaticaliy assembled etructures, described in Section II, are subdivided into panel sectione which are aested with respect to each other in a stack having a Mighly efficient packaging dengity. The nested panels, which gount such subsystems as the antenna r-f feed and the attitude controllers, re-enforce one another to minimize the structural rigidity needed to handle the boost-phase shock and vibration loads. Because of this, primary attention is given to the loads imposed on the orbited and deployed structure and to the investigation
of the effects of these loads on structural distortions. These distortions are evaluated in terms of the $r-f$ performance of the RATIO antennas.

In orbit Ratio structures are basically deflection limited. It is estilated that the greatest structural deflections will result from the steering torques generated by the attitude controllers. Accordingly, the greatest attention is given to these deflections. Structural errors due to manufacturing tolerances, assembly tolerances and thermal distortions which also influence the antenna performance are given only secondary consideration at this tiae.
2.1 AUTOMATIC ASSEMBLY MACHINERY.

Autosatic assembly machinery described in Section II, is attached to the stack of panels. When the stack has been orbited, the machinery, operating at low speeds and with negligible driving accelerations, assembles the antenna. A typical configuration of the machinery, may or may not be man supervised, is shown in Fig: I-1.
2.2 ANTENNA CONFIGURATION.

An easily analyzea antenna coniguration is chosen in which the dscedolea refleetor comithts of a gria of Biructural menbers an bhomin 1n Fis. 1-1. A tetrapod straeture supportsthe thef feed ana
electronice, The attitude control actrators, in the form of etts of three orthogonal flywheels or equivalent, are located on the backside of the structure where they do not interfere with the $r-f$ performance of the antenna.

3.0 ANALYTICAL MODELS.

In Section III analyses are made of bimplified, planar parametric models of RATIO antemas. More detailed models are analyzed in Section IV.
3.1 PLANAR MODEL.

To perform preliminary analyses discrete-parameter structural and $r-f$ models are assumed for the RaTIO antennas. These models are planar with the reflector mass, the masses of the attitude actuators (plus the associated non-propulsive power supply), and the masses of the r-f feed system (plus its electronics and power supply) concentrated at the reflector structural junctions.

The ptanar model is accelerated about a control axis and the reaction forces are computed at each of the structural junctions. In putting these forces into the GD/A structural analysis program, the deflections are computed at each of the structural junctions. Typical deflection patterns for the deflection conponents perpendicular to the pianar surface end parallel to the r-f axiseare ohown in fige. III-17 to III-20. The other five deflection conponente at each of the junctions $\{1.0$. 140 orthogonal Iinear and thiree arthogonal retery de (lections) aro nestected in this case.

The res of the computed normal deflections vs. reflector size are displayed in Fige. MIM-27 to IM-32, and the dependence or these deflections on the structural mass fraction $\left(k_{S}\right)$ is shown in Figs. III- 33 to III-38.

The choice of parameters to minimise the normalized rms deflections do not generally correspond with the choice of parametera to waximize the allowable turning and lewing rates. Figs. III-42 to III-45 indicate turing and slewing rates va. structural mase fractions. Fig. III-47 indicates the influence of changes in independent parameters on the deflections and turning and slewing rates.
3.2 DETAILED MODEL.

As in the case of the planar model a lumped-constant spring-mass system is assumed for the detailed structural model. Also, in the detailed r-f model the phase distortions across the aperture (due to structural distortions) are considered at discrete areas on the aperture. These phase errors are summed together with other geometric factors to establish the far field radiation of the antenna.

As a result of this study, 7090 computer programs have been developed for the detailed analyses of the reaction loads and torques at the structural junctions (due to prescribed attitude maneuvers) and the resultant structural deflections. Prograts for computiag the far field radiation patterns and finally for automatically plotting these patterns on a SC 4020 eicrofile recorder are in approximately a 50 percent completion etage. Fig. I-2 outines these programe.

The prograil inputs in Fig. I-2 include:
Structural geometry: the grid spacing of the structural beams, type of feed support structure, number of panels, location of feed, etc.

Fig. I-2, Outline of computer prograns.

Actuator distributions: the number of actuator and the locationa of the actuators.

Actuator torque constanta: the torque-to-mase ratios of the actuators.

On-board mase fractions: the ration of the masses of the feed, actuators, non-propulsive power system, etc. to the over-all antenna mass.

Slewing rates: steady state angular accelerations about one or more control axes.

Antenna geometry: the focal-length-to-diameter ratio, location of feed with respect to focal point, aperture blockage, reflector contour, etc.

Manufacturing tolerance and thermal distortions: these affect the far field radiation and must be added to the deflections caused by the reaction torques and loads.

The major program outputs are the radiation patterns from which the gain, side lobes, nulls and bean factors can be deterwined.

The eccuracy of the structural and $r-f$ models, and methods of analyeis depend on the fineness and accuracy ot the struetural subdivisions. It is possible by refining subdivisions to ieprove the accuracy and to eventually approach an error-free analysis of the structural deflections. Likewise, by increasing the detail in the subdivision of the aperture, the far field radiation can be established with increased accuracy. Matrix partitioning methods make it possible to substantially extend the capabilities of the 7090 for these computations.

4.0 REIATED PROBLEM AREAS.

The appendix of this report sumarizes the work done in various areas that are related with RATIO structures.
5.0 OTHER APPLICATIONS FOK "RATIO" STRUCTURES.

Because the investigated RATIO antennas have paraboloid of revolution reflectors the results of this atudy are applicable; in part, to solar collectors. The major differences between the structural requirements of spaceborne antennas and concentrators arise from (1) the generally greater parasitic weights of the continuous concentrator reflector surfaces compared to screen mesh antenna reflector surfaces, (2) the need to primarily control reflector surface angular deviation tolerances on the concentrator reflector surface rather than the linear tolerances which are more significant in the case of the antenna.

RATIO automatically assembled structures may also be used to deploy large solar panele, as well as cylindrical, spherical, lenticular or toroidal otructural conifigurations which ang eerve as space stations, re-entry bodies, of lunar shelters. This, study does not consider these RITIO appilications.

6.0 RECOMMENDATIONS FOR FUTURE INVESTIGATIONS
 6.1 COMPUTER PROGRNMS FOR STRUCTURAL ANALYSIS

The computer programe for loads and deflections on the detailed ratio antenna structure are complete and the prograns for the far field radiation and pattern plotting are about haif complete. It is recomended that the incomplete programs be completed so that benefit can be derived from the work done in formulating them.

In combination these programs provide a powerful tool for the analysis and evaluation of various antenna structures under the influence of mechanical loads.

6.2 PARAMETRIC DATA

When the detailed computer programe are completed it is possible to generate data on the tradeoffs between the antenna structural and r-f performance parameters. It is recomended that this data be developed and that it include the parameters considered in Section 111 ae well as the many onitted parameters, as spelled out in Section III. The development or this data serves to (1) tent the validity of the resulte in Section III, (2) provide data on the etructural paranetert that need to be further remearched or optinisod.

6.3 ELASTIC STABILITY

Because of the minimal loads imposed on the RATIO antenaa structures due to boost-phase shock and vibration, and because the deployed etructares are deflection limited, it follow that extrenely light weight, efricient etructuren can be used. These Itructuren are fundanentally limited by the allomble
minimum cross sectional wall thickness that can be used in the structural members. It is recomended that sample sections as applied to RATIO antennas be teated to study the structural aterial and configurational factors that influence the elastic stability of these sections.

6.4 THEPMAL STABILITY

For the same reasons that RATIO structures and be linited by elastic ingtability they may also be limited by thermal instability. It is recomended that the existing computer program for analyzing structural deflections due to mechanical loads, be extended to include thermal loads. It is also reconmended that influence of spectral surface qualities and configuration factors on structural thermal gradients be investigated. with knowledge about the thermal gradiente, and prograns to evaluate the ctructural dietortions they induce, it will be possible to effectively investigate RaTlo thermal stability problems.

6.5 PACKAGING AND AUTOMATIC ASSEMBLY

Further study of alternate means for subdividing the antenna structure into panels that can be nested and then automatically aseribled would contribute to a better understanding of the pros and cons of namio antenna structures. It 18 recomended that alternate antomatic ansembly methoin anarill an competitive unfurling and inflating methods be invegtigated on a copparative bagiato deternine the range of antenna sizes, reflector surface tolerances, packaging densities, specific structural weights, etc. for which the different methods are most applicable.

The square grid structure considered in the study is inherently less stable than a triangular grid structure. It is recomended that automatically assemblable structures using triangular panels be investigated.

6.6 OTHER APPLICATIONS FOR "RATIO" STRUCTURES

As a result of the work on RATIO antenna structures it has been found that the RATIO structures and automatic assembly methods can be applied to solar concentrators, and large solar panels, as well as to cylindrical, spherical, lenticular, and toroidal structures for space station, re-entry body, or lunar shelter applications. It is proposed that these applications be investigated.

As in the case of the antennas, means for sectionalizing, packaging, and automatically assembling the structures should be studied. Investigations should also be made of pressure sealing of the enveloped atructures (for space station and lunar shelter applications) by extensions of the automatic assembly process. The assembly process could be used for roll sealing, or triggering tne explosive sealing of mating panel edges. Manual methods for sealing the joints, after the structure has been assembled, should also be looked into.

6.7 STRUCTURAL ANALYSIS TECHNIQUES

Inevitably atructural analyais of ruture large RATIO atructures will require solving oy हtems of sinultaneous equations mumberins tayy times thowe which. may be solved in the current state of the art (this is about 1500 or 2000).

Competer technology seeme unlikely to fiford a solution to this problem. Core sise, which now is the limiting factor, appears to be staying in the 30-40 K region.

It is therefore recomended that effort be expended to face this prob-

lew along thege lines:

(a) Full exploitation of the Structural Principles of Symetry and Anti-Symetry.
(b) Further development of the metnod of substructures.
(c) Exploitation of the innerent symmetry of structural analysis matrices in devising methods of solution-i.e.. improving inversion and solving subroutines.

II "RATIO" AUTOMATICALIY ASSEMBLED STRUCTURES

(By P. Slysh)

1.0 GENERAL

This mection demariben an idealized RATIO antenna syeten including its structures, ettitude actuators, feed deployment, and im-orbit automatic assembly maninery. The described antenna nas been chosen because of its relatively, symetrical and easy-to-analyze structure. This description serves as the first step in defiaing the RaTIO structures that are analyed in Section III and IV。

A specific 100-foot-reflector-diameter antenna is assumed for the description. RATIO atomatically assembled structures are nowever applicable to many other antena configurations rancing from aproximetely 30 to 1000 feet in dianeter and greater.

2.0 STRUCTURAL CONFIGURATION

The selected antenna configuration shown schenatically in Figo l consiste of a sectionalized reflector, feed, tetrapod feed support, and a four-flywheel inertial (attifude) actuator system. Tne Iour actuatore are lecated on the back of the reriector at the junction between the feed rupport and the refleetor:

THe Feflector is ceetionalized into the eeni-nat pridi conilgiration an outlined in Fic. 2. The four panels that Fount the Tred and actuator esctions, hov in Fis. 2 , are relatively masive and rigid structures. The renaining 198 panels that form the reflector are fitted with a screen mesh suitable for reflecting r - energ and are (relatively) oignificantiy leas masive and rigid. With the use of thin-wire-fine-mest screens (weighing

Fig. II-1. Schematic of a RATIO antenna.

- pheromen Sprime on SFODL
0.003 to 0.007 pounds per square foot) it is possible to obtain reflector surface adequate for operation at frequencies up to 10 Gc and corresponding structures plus reflector surface that nave on the order of 80 to go percent open area. Because of this open area the thermal gradients fron the front to back or edge to edge on the reflector gtructure tend to be minimized.

The structure in Fig. I has a uniforin depth back structure. It is possible however to vary this depth as a function of distance from the center or any part of the reflector.

2.1 ACTUATOR AND FEED, STOWAGE AND DEPLOYMENT

As indicated in fig. 2, the actuators consist of a fymeel, fyweel drive and an actuator position control drive. For stowage, the actuator is pivoted about pivot axis parallel to the reflector face.

Each of the feed sectione, consist typically of a feed horn, and sections of the receiver, transmitter or non-propulsive power systems. The feed section is pivoted about axis 2 mich is parallel to the reflecter face.

A notor or opring driven erection mechanism in provided for pivoting the actuator aseembly abont astel 1 toward the back aide of the reflector and for simultaneously pirotime the reed oection about axib Z_{2} toward ine-front olde.

The feed aection and the proforged eprint on which 11 is eupported ust pass through a cutout in the reflector face. The cutout is flankad by two llaps when epring close to form a contimuous reflector surface when the feed section has been erected.

The feed section is driven by areformed spring into assenby at the Tocus. As shown in Fig. 2, the apring, would in the flat on apool, assumes a circular cross-ection when unrolled. Guidance for the spring is provided
at the transition from the flat to circular form to direct the motion of the unfurling feed section toward the focus. When the four feed sections have reached the focus, a magnetic or mechanical latching may be used to guide and fasten the sections together.

The stored energy in the rolled spring is used to actuate the unrolling action and the rate of unrolling may be controlled by a motor or rotary damper. If motors are used they may be employed when the antenna is assenbled to adjust or continuously control the position of the feed relative to the reflector.

2.2 STOWED ANTENNA

The chosen panel chapes, and the maner in which the actuators and feed sections are mounted on four of these panels allow the entire antenna to be stowed as shown in Fig. 3. The numbers in Fig. 3 refer to sequence in mich the panels are assembled, per Fig. l, and label the riblesa corner fpoint X in Fig. 2) of the panels.

The ttack height in Fig. 3 is based on a $1 / 8$ inch panel thickrese in a direction perpendicular to the reflector aurface and a stacking heicht of 12 inches for the four panele on which the reed and attitude actuator fertions Are mountel.

The Ieme Ior Tastemiug the antenna parels to Each other may require that local fagteners be attaened to edged and corners of the panels. These fanteners my have a minimul cross section dimension that is greater than the panel thickness. To prevent the fasteners from increasing the over-all stacking height, they are located at staggered positions along the panel edges and corners, and cutouts are appropriately provided along the edges and

Fig. 11-3. Outline of antenna package.
corners such that the fasteners and cutouts dovetail when the panels are stacked. The loss in structural rigidity due to these cutouts can be kept gmall by building up the panel structure around cutoutgo

Since the 66 foot panels are relatively enall sections of the 100 foot paraboloid, their curvature has a negligible effect on the neight of the stack. Stand off bosses on the back side of the panel faces may be used to compensate for the reflector curvature in the stacked condition.

Excluding the four panele that mount the actuators and feed sections, approximately 85% of the material in the face and ribs of each panel is cutout to reduce weight. The cutont face sections are replaced with very light weight screen mesh. The cutout rib sections are rigidized, where possible, by edge flanges. Flanges on rib edges parallel the reflector face and are turned out, away from the rib and face.

Using the above cutouts and aluminu as the construction material, the total estimated weight of the reflector panels is under 2000 lbs. (i.e. about 0.2 lbs. per square foot). This reflector can be built with a surface accuracy of at least 0.08 feet wich make it applicable for frequencies up to 1.2 lme. The heavier it is made or the tighter the aurface tolerances, the higher the operating Irequency.

Ainvie that the antennus must turn at maximum rate of 10^{-2} fad. per secs and tint the flymeels having a radiun of fration of l. 7 feet are made of eteel with a 100,000 psi yield strength. Then the weight or the actuator eystem will be under 400 lbs.

The volume allocated in the four feed sections allows for at least 2400 pounds of such equipment as a four horn monopulse feed, comanication and tracking receiver, conmand control transmitters, ground link commnication equipment, solar cell non-propulsive power system, a thermal control system, and data processing equipment.

3.0 REFLECTOR ASSEMBLY PROCEDURE

The kinematics of the RATIO assembly procedure is explained in this section. The mechanisn for carrying out the procedure is described in Section 4.0.

3.1 BASIC MOTIONS

Four basic assenty motions of the panels are used to assemble the refiector. These are shown in Figs. 4 or 5. Fig. 4 outlines the basic motions with as the moved panel, and as the stationary stack. In effect is the position of B before the motion has taken place. The motions to achieve the indicated relative panel positions are defined as $1,1 R$, II and IIR. Motions I and II consist of linear translations of B with respect to A, unile motions IR and IIR consist of linear and rotary tranglations. The same fotions are gnown in Fig. 5 with the B stationary and A experiencing the relatire. motiono

In Figs. 4 and 5 , point a, on etack A corresponds vith the point b, on panel b before B, ias removed fron A, The point c ls fixed with respect to A, and, in fig. $5, c^{\prime}$ is the initlal position of c before the assembly motion nas taken place.

A rotary actuator at point c, and attached to the stack A, carries an extendable boom which moves a second rotary actuat or from point a to point bl. The second rotary actuator rotates the panel about a_{1}, as a_{1} moves toward b_{1}.

Fig. II-6. Four basic assembly motions, assembled panel B stationary.

II-10

An example of the use of the basic motions to assemble a simple square panel is shown in Fig. 6. The panels are numbered in the order they are assembled. The manner in which the assembly grows can be visualized by fixing the panels B as in Fig. 5. It is seen that notion Is used for the right-to-left emplacements, and motion II for the left-to-right emplacements. IR is used for the transition from 1 to II, and IR for the transition from II to I.

3.2 REFLECTOR CONTOUR

It is evident, because of motions IR and IIR, that the panel rows must sequentially terminate in pairs. This serves to explain the bhape of the reflector contour shown in Fis. 1. The limitations that this imposes on the Bnoothness of the reflector contour can be reduced by contouring the edge panels. Thus, if such panels as $1,7,16,27,40,69,85,118,134,163$, 176, 196 and 202 in Fig, 1 , are contoured, the edge irregularity can be, if desired, greatly reduced. The contouring is facilitated by the minimum requirements for rib re-enforcement of the edge panelso

3.3 PANEL FASTENING OF DEPLOYED ANTENNA

Looking at the face of a panel, see Fig. 7, identify the two ribs as rib i and rib 2, where rib 2 is clockwise fith respect to rib 1 . $A-1, A-2 ;$ will refer to the face edges that border on ribs 1 and 2 ; and $a-1$, $a-2$ to the face edges on the opposite sides of and parallel to ribs 1 and 2 . $A-A$, and $B-B$ will denote the corners along which the two ribs intersect, and $1 \mathbf{- 1}, \mathbf{2} \mathbf{- 2}$ the other two rib edges parallel to A-A or B-B. The letters a and are used to designate the moving panel (per Fig. 5) and B and b the stationary panel.

CODE:
(1). (2) - DESIGNATES THE SGQUENCE OF PANEL EMPLLICEAIATSS. $\longrightarrow 1$, II, IR, 1 IR, INDICATES THE mOTION TYPES.
O- INDICATES FASTENING ACTION APTER MOTION I, IR, II OR II HAS TAKEN PLACE.
X - Indicates initial fastening action before motion has taken place.

Fig. II-6. Assembly program for emplacing panels.

Fig. II-7. Locations and orientations of male or female fastener sections on a panel.

The panela may be fastened together between the face edges (i.e. between A-1 or A-2 and b-1 or b-2, also between B-1 or B-2 and a-1 or a-2), and between the ribedges (ioe., between $A-A, 1-1$, or 2-2, and 1-1 or 2-2, also between 1-1, or 2-2, and $B-8,1-1$, or 2-2).

The fastenings that take place before and after emplacement of the panels, are indicated in fig. 6. For example, in the case panel 1, fastening occurs at r and s between face edges $A-1$ and $b-2$, and at between the rib edges $A-A$ and 2-2. This action takes place after panel 1 has been removed from the stack located by the position of panel 2 。

In the case of panel 12, the fastening action, v, along a-1 and u along 1-1 takes place when panel 12 is initially emplaced and panel 13 has not moved. The fastenings at x, y, z on panel 12 occur after panel 13 has been emplaced.

The fastening actions may be accomplished by locally actuated fasteners, such as latches, captive nuts, bolts, rivets, explosive edges, etco or by non-locally actuated fasteners, such as bayonet fittings, clips, keying sections, etc. as explained in Section 4.0. A panel frame that mounts the panel grippers are used to fixture each panel as it is transported according te basic wotions $1,1 R$, II or IIR The panel grippers may alao be enployed to locally actuate fastoners. In the case of the mon-locally actuated fasteners the fastening forces are applied through the equipment that transport the gripper frave.

It is evident from Fig. 6 that to achieve the various fastening actions, matching male and remale sections of the fasteners mast be appropriately positioned on the panels. Fig. 7 indicates the 14 possible locations and orientations for the male or female fastener sections. Fig. 7 also shows
that at any one time, either six or three fastening actions can be used on the peripheral panels, and that six fastening actions can always be used on each internal panel.

3.4 PANEL FASTENING OF STOWED ANTENNA

Some of the panel fasteners, used for assembling the deployed antenna may also be adapted for fastening the panels to each other in the etowed cundition. These fasteners would logically be of the locally actuated type such that they may be disengaged to release the panels before panels are transported to their emplacement positions.

The fastenings between panels in the stowed condition can significantly contribute to re-enforcing the structure for handing boost-phase shock and vibration loads:

4.0 "RATIO" AUTOMATIC ASSEMBLY MACHINERY

One Iorm of RATIO automatic assembly machinery is outlined in Figs. 8 and 9. Inis machinery hat the following components:

4.1 GRIPPER-FASTENER FRAME

Thie mounts four actuated panel grippers whichengage the panel at the bottom of the untenna pacirage. Then the engaged panel has been transported to its aseenbly position, via the fripper frane, the panel is secured in its emplaced position and the grippers disengage allowing the frame to return for another panel.

If locally actuated fasteners are used the grippers first serve to disengage the fasteners that hold the lowest panel to the tack. Then

when the panel has been transported to its assembly position the grippers act to secure it there.

4.2 ANTENNA PACKAGE CLAMP SHAPT

Whether, or not locally actuated fasteners are used to nold the antenna package together it may be desirable to maintain adidional integrity in the package by clamping it together. The clamp shaft with a lug at its lower end and passing through the antenna package serves this purpose. The clamp shaft passes through clearance holes in each panel and the lug at its end engages the lowest panel in the antenna package, Rectangular or key shaped cutouts, through which the lug can pass are provided in each panel. The orientations of the cutouts are alternated between adjacent panels such that when the lug has passed througn one panel it cannot pass through the succeeding one without being turned about the clamp shaft axis.

In operation the clamp shart releases one panel at a time to the gripper fastener assembly.

4.3 GRIPPER FRAME TRANSPORT ACTUATORS

The linear and rotary actuators 1 through 5 , in. Figes. 8 and 9 , cooperate to transport the filipper frane such that banic motions I, IR, II and IIR can be generated.

The gripper frame is mounted on actuator 1 and pivot 1 corresponds to point a, or b, in Figs. 4 and 5. Likewise pivot 4 of actuator 4 corresponds to point cin these rigures. The Iinear notion between a, or b, and c is generated by actuator 2 .

The actuator 3 pivots the gripper frame to initially beparate the lowest panel from the antenna package. When the panel has been transported to its assembly position the pivot motion is reversed to align the edges of the mating panels. Arter the panel has been assombled actuator 3 further pivots the gripper frame so that the grippers, on their return motion, can pass over the rib of the assembled panel.

As the panels are removed from the antenna package the gripper-fasten assembly must be moved up to remain at the correct level with respect to the lowest panel in the stack. The support boom driven by actuator 5 serves this function。 At the completion of each basic motion actuator 5 advances the boom by one panel thickness. In the case of the panels that mount the feed and attitude control actuatora the boom is advanced a distance equal to the length of the feed or actuator package.

As the panels are removed from the antenna package, the initial lateral position of the gripper frame with respect to the boom may change to properly position the sripper frame with respect to lowest panel in the packase. It in possible to acnieve this initial position by linit suitch controlling actuator 2 on its return motion. Semeors that contact ine Luwest panel may be used to activate these limit switches.

5.0 OVERALI CYCLIC PIERFORMANCE

The (basic) motions I, IR, II, IIR and associated gripper fastener events are described as a function of time in Fig. 10.

The angular rotations of actuators $1,3,4$ and 6 are denoted by RA1, RA3, RA4, and RAG, and linear motions of actuators 2 , 5 and 6 by LA2, LA5, and LA6, as shom in Fig. 9.

The states of the gripper-fastener assembly are denoted as wrelease", "grip", "fasten", and are referenced with respect to the sides of the panel on which they occur. Thus B-1, B-2, b-1 and b-2, as explained in Section 2.3 (and Fis. 7), designate the aides of the panel on wich the fastening takes place. Here when the fastening action is indicated along a panel face edge it is underatood to be accompanied by fastening action on one of the closest rib edges.

The following sequence of actuator motions and gripper-fastener evente occur for basic motion I (see Fig. 10).
(o to t_{1}) The actuators are initially at their starting positions, and the gripper fastener mechanism is in a state "grip". The first motion is RA6 of the clamp enaft to release a panel at t_{1}
(t_{1} to t_{2}) Between t_{1} and t_{2} the boom and clamp shaft are advanced a panel thickness by LA5 and LA6, and the actuator motions RAI, LA2, RA3, and RA4 cycle to carry a panel fron the antenna stack to its asselibly position. The small RA3 motions are used to depress and then ralee the level of the panel during the time it in being tranalated and rotated-by Lig, int and PA4. The over-shoots in Ril and RI4 produce a butting final approach between watint panela.
$\left(t_{2} t 0 t_{3}\right) A t t_{2}$ the panel has been emplaced. At t_{3} the gripperfastener releases the assembled panel and commences to return to its starting position. Since it must now pass by a panel rib the rotations RAS are relatively large. Both the forward and reverse motions of actuators 1 to 4 are
synchronized to avoid interference with the antenna package． At t_{6} ，at the completion of the return motion，the＂grip＂ state exists and the cycle can now be repeated．

5．1 MOTION CONTROL PROGRAMMER

It is possible to control the actuator and gripper－fastener cycles by a pro－ gramer．The programer may select the cycle（i．e．，motions I，II，IR，or IIR）and initiates the first phase of the cycled Sensors may monitor the termination of each phase。 In the event that a motion or event is not com－ pleted due to a malfunction，the programmer may initiate an override or a recycling of that motion or event．The override is permissible when the malfunction does not affect panel handling or when the failure，as in a fastener，does not undernine the integrity of the assembled structure。 Redundancy in the grippers，fasteners and drive motors may be provided to ennance reliability。

The programer may also be used to recycle one or more complete basic motions that precede one in which a failure has occurred．Thus if the ＂fasten＂state does not occur，possible due to improper panel aeating，the complete recycling of the previous basic motion may regult in proper seatine and allow for successrui depleyment．

5．2 AT COMPLETION OF DEPLOYMENT

When the reflector assembly has been completed the assembly equipment may be driven away from the last panel by chemical or mechanical means or if it does not interfere witn the antenna perforance it may remain attached to the last assembled panel．

6.0 ASSEMBLY EQUIPMENT POWER AND WEIGHT

The peak power requirement for an individual actuator occurs when the inertia of the assembled antenna, as it appears at the actuator axis, is equal to the inertia of the unassembled antenna package. Assuming nonconservative drives it is desirable to minimize this power by using the lowest possible assenbly opeed that avoids coulomb friction (or atiction) in the drives and is consistent with the antenna operational requirements.

Assuming a one minute cycle time to install a panel, or an over-all assembly time of about four hours, approximately 800 watt-hours are required to handle the assembly inertial loads and 200 watt-hours are estimated for the fastening actions.

A 30-pound silver zinc battery pack should be adequate for these energy requirements.

It is estimated that the over-all weight of the RATIO automatic assembly equipment, including the battery pack, is under 150 pounds. This is approximately 7.5 percent of the reflector structure.

7.0 ALTERNATE PANEL ASSEMBLIES

Tue deceptsa penel asedbly procedure rebuits 1 t the eequence of panel emplacerente that follor a serpentime. This and alternate assonbly equences are shom in Pise 11 .

An examination of square and square spiral assembly sequences, ehown in Figs. 11b, and lle, indicate that only two rows or two columps of panele may be emplaced with a continuous back rib structure if only four basic motions are used. In the case of the square spiral, the number of basic motions, must be increased to six to produce continuous rib-to-rib buttinge

(c) SQUARE SPIRAL

(d) CIRCULAR SPIRAL

Fig. IL-11. Alternate panel assenbly sequence.

The circular spiral sequence in Fig. lld suffers from: (a) irregular sections which do not readily stack, (b) continuously different (although closely related) assembly motions, and (c) a discontinuous back rib structure.

The serpentine sequence in Fig. 11 has none of the disadvantages of the otner panel assemblies.

8.0 SUMMARY OF FEATURES OF "RATIO" AUTOMATICALLY ASSEmBLED ANTENNA STRUCTURES

(a) The packaging density can be very high. Theoretically, if no cutouts are used on the panels (in which case the panels could be made much thinner), the packaging denaity is equivalent to the density of the structural material.
(b) In the stowed or packaged state the panels are nested, and can be fastened together, to greatly minimize the structural rigidity needed to handle shock and vibration loads during boost.
(c) In deploying the antenna no flexing in the structural members is required. The structural panels which are prefabricated to fit together in a stress free condition againet a ground mold are assenbled in a streas free condition in orbit.
(d) The assembly achinery operates at very lom aped and very 10 w driving accelerations. The dynamics of the machinery in term of the eachinery developuent or the loads it imposes on the antensa structure (during assembly) are negligible.
(e) The assembled antenna has a systematic, easy-to-analyze back rib structure. The panel ribs may be varied to taper the over-all structure or to smooth the contour.
(f) The sizes of the antenna structures are considerably in exceas of sizes acnievable for comparable antennas for unfurling and inflating methods.
(g) The estimated weight of the assembly equipment (including its power supplies and controls) for a single-package, 100-foot, 2800pound antenna is under 150 pounds.
(h) Unlike the unfurlable and inflatable approaches the same deployment concept applies to a wide range of structural sizes.
(i) The structure and the assembly equipment uses available materials, and components.
(j) There are only four basic assesbly motions with wich the antenna is aseembled. These systematic motions may be open-loop controlled by limit switch and relay logic.
(k) The reliability of the assembly equipment may be enhanced by redundant drives and simple mechanical components.
(1) The dimensional integrity is generally not effected by micrometeorite bombardment.
(m) The large mechanically open structural area ninimizea thermal gradients due to solar radiation.
(n) on board equipernt, such as inertial octuators, may be permaneatiy mounted, the pemels tobe in a proper operating position when the antenna is deployed.
(o) The assenbly equipnent could be controlled or supervised by a man in orbit to significantly ennance its reliabilityo (Note: The structure is likely to be so fragile that the man would best handle
it by means of the assembly equipment in the event of a partial equipment failure.)
(p) The antenna assembly is a repeatable and reversible process. The ful1-scale antenna can be assembled and dimensionally checked out on a (ground based) paraboloidal frame or mold. The fits between the panels can be adjusted so that the antenna lies on the mold in an unstrained condition.
III. PRELIMINARY ANALYSIS OF A SIMPLIFIED PLANAR MODEL (By P. Slysh, deflection computations by E. J. Kaminski) 1.0 GENERAL.

Before proceeding with the detailed analysis of RATIO antenna structures it is desirable to perform a preliminary investigation of these structures to determine: (a) where possible, the qualitative or quantative characteristics of the structures in terms of their effects on the antenna $r-f$ performance and maneuverability, (b) the significant and negligible parameters, and (c) the types and ranges of structural and $r-f$ parameters that should be investigated.

In the following sections simplified models are defined, the methods of analysis are outlined and justified, and preliminary parametric data on the trade-offs beyween the structural and $r-r$ performance features are displayed.
2.0 DEFINITION OF MODEL.

One quadrant of a simplified, planar model of the RATIO antenna, to be used in the analysis of the next section, is shown-in Fige. III-2 and III-2n. This model tas the following features:

2.1 SIAMETRY.

The periphery of the reflector has been chosen to give the structure eight-way diametral symetry. This symetry significantly minimizes the complexity of the structural deflection analysis. The actual reflector configuration (Fig. III-1) has only two-way symetry because of geometrical factors in the procedure for autonatically assembling the reflector panels.

FIXED NUMBER OF PANELS.

The antenna in Fig. III-1 has 202 panels (i.e. squares) in the reflector structure and in Fig. III-2 there are 208 panels. Approxidately these numbers of panels are necessary, based on preliminary considerations in Ref. (1), to cause the stowed stack of reflector panels to roughly form an equal-sided parallelopiped. In practice, it is possible that panel thickness variations or specific packaging requirements, say for a non-equal-sided parallelopipeds (i.e. possible due to specific envelope limitations of booster nose cone), may effect the number of panels that should be used. To reduce the total number of in-orbit assembly operations, it may also be desirable to reduce the number of panels to the smallest possible number (ir this does not unreasonably complicate the automatic assembly equipment).

While the above and other factors influence the number of panels into which the reflector should be subdivided (and entail tradeoff studies of their omn it has been decided, at thia time, to hold the intmber of reflector panels in Fig. III-2 at 208.

2.3 ROTATHON ATES

Por purposes of this atudy the antenna is actuated about either the $0-1$ or $0-B$ axis by a reaction flywheel syeter in which the spin axes of the flywhels are parallel to either the $0-A$ or O-B axis. There will be no gyroscopic torques acting on the structure. The actuation about the $0-A$ and $0-B$ axes will generate representative structural deflection patterns.

Fig. III-1. RATIO antenna, panel construction.

Fig. III-2. One quadrant of a planar model showing grid coordinates for rotation about the $0-A$ axis.

O. LOCATIONS FOK ATTITUDE ACTUATORS
L LLNGTH UF GRID
$\mathrm{m}_{1}, \mathrm{n}_{1}$ GRID COOKDINATES

Fig. III-2a. One quadrant of model showing grid coordinates for rotation about the $0-13$ axis.

ON-BOARD MASSES AND THEIR DISTRIBUTION.
The mass of the r-f feed, its support structure, and its electronics, as well as the attitude actuators plus their controls and non-propulsive power supply are included in the locations for the attitude actuators shown in Fig. III-2. Four typical distributions for these masses will be considered:

Case 1, All of the masses located at the (1,1) grid coordinate point (in Fig. III-2).

Case 2, The masses equally distributed at the $(3,3),(-3,3)$, $(3,-3)$, and $(-3,-3)$ points.

Case 3. The masses equally distributed at the $(5,5),(-5,5)$, $(5,-5)$, and $(-5,-5)$ points.

Case 4, The wasses equally distributed at the $(3,3),(-3,3)$, $(3,-3),(-3,-3),(5,5),(-5,5),(5,-5)$, and $(-5,-5)$ points.

The inclusion of the feed mass with the actuator mass is, in part, justified by the fact that the feed eupport structure is likely to be noumted on the feflector at the give etructural junctione on which the actuators are Iounted, (H_{n} cose 1, a pyion feed aupport is implied; in Cases 2 and 3 , tetrapod supports are ipplied; and in Case 4 , an octapod support is inplied.) This first order accounting for the mass of feed is assumed, at this time, to be dissociated from such factors as the focal-iength-todiameter ratio, the possible use of actuators located on the feed or feed support structure, etc.

The chosen locations for the actuators are auch that approximately equal mass moments of inertias result about the turning axes in the plane of the aperture.

2.5 LUMPED PARAMETERS

A Iumped constant spring-mass system is assumed for the structure in Fig. III-2. The structural masses, as well as the mass of the attitude actuators, feed, etc., are lumped at the structural junctions. Massless, uniform-crossection beans are assumed between the structural junctions.
2.6 SHEAR, FLEXURAL AND TORSIONAL STIFFNESS.

The chogen beam properties are such that the beam stiffness due to deflections in shear is negligible compared to the flexural stiffness about the beam principal axes. The torsional stiffness of the beam and the flexural stiffness at right angles to the beam prinicipal axis are also negligible.

2.7 PARASITIC AND LOAD-CARRYING STRUGTURAL MASSES

Parts of the structure are taken to be parasitic, or non-load carrying, These include, the screen on the refiector surface, the Web eections of the begen, bolting sections, and fasteners. The flange sections for ing i-beaw thirough the strueture are assumed to be the load carrying sections.
2.8 DEFLECTION LIMITED STRUCTURE.

Reflector distortions way be caused by structural deflections due to actuator reactions, manufacturing and aseembly tolerances, thermal stress, and creep in the structural material. Only
structural deflections due to actuator reactions are considered here. The structure is deflection limited. The operation stress levels are assumed to be so low that possible web crippling in the beans can be ignored.
2.9 VARIABLE STRUCTURAL PROPERTIES.

The beams in Fig. III-2 can have the same or varying crossectional properties over the entire structure. However, between any two structural junctions the properties are assumed constant.
2.10 INERTIAS OF STRUCTURAL AND ON-BOARD MASSES.

The angular inertias of the lumped masses (including the actuators and feed) about their centers or ass are neglected.
2.11 STRUCTURAL BEAM LENGTES.

A11 beams have the same length. This is consistent with the procedure for automatically assembling the antenna in Ref. (1). The equivalent of structural beam length variations can be obtained by varying the beam croseections:
3.0 METHOD OF ANALYSIS.

In the following sections the approximate model is derined in greater detail and relationships are established for trade-off studies $0 f$ the sore significant structural and r-f parameters. DEFINITION OF TERMS.
$a_{A}, a_{F W}, r a d / s^{2}$, angular accelerations (slewing rates) of the antenna and flywheel about the $0-A$ or $0-B$ axis A, in. ${ }^{2}$, load carrying crossection of structural beam B, in., total depth of structural beam
D. in., average diameter of the reflector
d, in., weighted rms deflections at the structural junctions in the direction of a normal to the plane of the aperture

E, psi, modulus of elasticity of structural material
F, lbs, force acting at structural junction
s, in./sec ${ }^{2}$, gravity acceleration $=387$
G, psi, shear modulus
I, in. 4 principal section moment of inertia of beam
$I_{0}, I_{1}, i n .4$ at respectively the center and edges of a reflector

I ${ }^{\prime}$ Ion ToB' in-1b-aec ${ }^{2}$ mont of inertia of the antenna about the $0-A$ and $0-B$ axes
K. $1 b s / t^{2}$, average weight per unit of reflector surface area for the load-carrying and parasitic parts of the antenna structure
$H_{A}-M_{A} M_{T} K_{F}=M_{P}, k_{S}=M_{S} / M_{T}$ the fractions of the total antenna mass, Mo in the masses of the actuators, M_{A}. feed, H_{p}, and structure, $M_{S},\left(k_{A}+k_{F}+k_{S}=1\right)$

$$
\mathbf{X}_{\mathbf{H}}^{\prime}=\left(\mathrm{H}_{A}+M_{T}\right) / M_{S}=\left(1-k_{S}\right) / k_{S}
$$

$$
\mathbf{k}_{s 1}=M_{s 1} / M_{T} \mathbf{k}_{S 2}=M_{S 2} / M_{T} \text {, the fractions of the }
$$

parasitic mass of the structure to the load carrying mass of the structure

$$
\mathbf{k}_{S 1}=M_{S 1} / M_{S}=M_{1} / M_{1} k_{S 2}=M_{S 2} / M_{S}=M_{2} / M_{1} \text { the }
$$

fractions of structural mass in the masses $M_{S 1}$ and $M_{S 2}$
k_{2}, the number of structural members that meet at a stiructural junction
$k_{0}=r_{0} / B$, principal normalized radius of gyration of beain crossection
L. in., length of a grid member
*. n, coordinate designations for the structural junctions when the antenna is driven about the $0-A$ axis, see Fig. $2 ; \mathbf{m}_{1}, n_{1}$, see Fig. 2a
$M=M_{1}+M_{2}, I b-\sec ^{2} / i n .$, mass of half of a beam including the associated parasitic mass, M_{1}, and load carrying mass, M_{2} $M_{A}=M_{W}+M_{p}, 1 b-\sec ^{2} / i n .$, the mass of the attitude actuator system which is equal to the mass or the flywheel. MPW, and the mass of the non-propulsive power supply plus drives and control systemelectronics, M_{P}
$M_{F}, 1 b-e^{2} / i n .$, mass of the $r-f$ feed system, which includes its associated efectronics, non-propulsive power supply, telemetry. comand and control, data processing, ete.

is equal to the parasitic mase, $H_{s i}$ and load carryint ans, $H_{S 2}$

P. horsepower, power developed in the shaft connecting the flywheel to the actuator drive

$$
p_{S}, P_{F W}, \quad 1 b-s e e^{2} / i n{ }^{4} \text {, mass density of structural and }
$$ flywheel aaterial

$r_{\text {FW }}$ in., radius of gyration of flywheel
r_{0} in., radius of gyration of bean crossection e. Ibs/in. 2 , maximm hoop stresa that can be developed in the flywheel material

T, in-1b, torque developed by attitude actuator
t, in., flange thickness of beam crossection
W, in., flange width of bean crossection
W_{A}, $W_{\text {rw }}$ rad/sec, angular speed of the antenna and flywheel about the $0-A$ or $0-B$ axis

3.2 NON-TAPERED CONPIGURATION.

Non-tapered and tapered depths for the structural beams are to be considered. In the non-tapered configuration all beana have the asme depth. In the tapered configuration the beam depths are function of their radial distance from the center of the aperture.

3.2.1 STRUCTURAL PROPERTIES.

A bed crocetection that results from the aseembly of the Cticrable paneln (per Ref. 1) 1 w chow, in Fis. III-3.

In the upper filige the butted (and fadeten d tegether) sections are considered to for onecontinuot cronactetion.

The flange dimension, w, is parallel to the reflector surface.

The area of the crocsection assumed responsible for carrying flexural leads is, based on the proportions in Fis. III-3,

$$
\begin{equation*}
A=3 B^{2}(w / B)^{2}(t / W) \tag{1}
\end{equation*}
$$

the depth of the bean is,

$$
\begin{equation*}
B=2 M_{2} / 3 L P_{S}(w / B)^{2}(t / w)^{1 / 2}, \tag{2}
\end{equation*}
$$

and the principal section moment of inertia is,

$$
\begin{equation*}
I=(0.75) k_{0}^{2} B^{4}(w / B)^{2}(t / w) \tag{3}
\end{equation*}
$$

The proportions in the crossection ω / B and t / \bar{w} are to be chosen, together with values for $k_{S 2}$ or $k_{S 1}$, such that (for the anticipated operating etress levels) the web buckling distortions are negligible.

The k_{0} in Eq. (3) depends on the W / B and t / W. However, in this study, $k_{0}=0.9$ is used and its dependence on w / B and t / w is negrected.

The parasitic mass M_{1} or $M_{s 1}$ includes the mass of the bean Web section. The web ie assuned to carry no load. The stiff nesses due to deflections in sheat and torsion are neglected.

The beam crosecctions that can be chosen are not limited to the flanged-bean crossection chosen here. The beam may take the form of a truss, and the flat flanges may be substantially reduced. The chosen crossection is, however, compatible with

Fis. 111-3. Bear crossection.
the proposed RATIO approach to stacking and automatically assembling the structural panels.
3.2.2 MASS AND INERTIAL PROPERTIES.

Sumping up the area of the reflector surface from Fig. III-2 and multiplying by the structural weight per unit of reflector surface, K, the total structural mass is,

$$
\begin{equation*}
M_{S}=0.00362 L^{2} K \tag{4}
\end{equation*}
$$

and, since there are 896 half-length beame,

$$
\begin{equation*}
M=M_{S} / 896 \tag{5}
\end{equation*}
$$

The mass moments of inertia of the model about the $O A$ and OB axes are obtained by adding the products of the masses at each structural junction and the squares of the corresponding normals from the junctions to, respectively, the $O A$ and $O B$ axes. The mass at a structural junction depends on the number of beams that met at the junction and, if an actuator is mounted there. on the conbined mass of the actuator feed, electronics, etc. Accountiag for all of the antenna assean in this way the vass moments of inertias for the casea defined in section 2,4 are,

$$
\begin{equation*}
I_{O A}=M L^{2}\left(15,040+V k_{A F}^{\prime}\right) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
I_{O B}=M L^{2}\left(15,810+V k_{A F}\right) \tag{7}
\end{equation*}
$$

Where, V has the following valvee,

Cane	\mathbf{v}
1	0
2	3,584
3	14,300
4	8,960

Uaing Mfroe Eq. (5), Eqs. (6) and (7) can also be written,

$$
\begin{equation*}
I_{O A}=L^{4} E\left(0.0615+V_{0} k_{A F}^{\prime}\right) \tag{6a}
\end{equation*}
$$

$$
\begin{equation*}
I_{O B}=L^{4} \leq\left(0.0645+v_{0} K_{A P}^{\prime}\right), \tag{7a}
\end{equation*}
$$

where,

Case	V
1	0
2	0.00146
3	0.05830
4	0.03620

3.2.3 LOADING CONDITIONS.

The inertial reaction forces at the structural junctions act normal to the plane of the aperture. The reaction force at a junction, located at a distance $(n-1)$ Lrom the $0-A$ neutral axis, and having k_{2} beams per junction is,

$$
\begin{equation*}
F_{O A}=(n-1) k_{2} a_{A} L M_{1} \tag{8}
\end{equation*}
$$

and forfrotation about the $0-B$ axis,

$$
\begin{equation*}
F_{\mathrm{OB}} \equiv\left(n_{1}-1\right)(0.707) k_{2} a_{A}-1 \tag{9}
\end{equation*}
$$

Since the angular acceleration, a_{A}, the beam length, L, and the mass per half beam length, M, are the oame at each junction, it is evident that the force, F, changes only with
the number of beams per junction, k_{2}, and its coordinate location n or n_{1}. Figs. III-4 and III-4a indicate the forces at the junctions normalized with respect to a, ML.

For each of the cases described in Section 2.4 the individual metuators are assumed to generate the same torque when operating about axes parallel to either $0-A$ or 0 - B. The on-board mass associated with the individual actuators is the same for each case. Using these assumptions, the forces and torques are described in Fig. III-5. The forces in Fig. III-5 are in addition to the forces described in Figs. III-4 and III-4a.

Note that the inertias OA and $_{\text {OB }}$ in Fis III-5 are also a function of the cases defined in Section 2.4 and Eqs. (6) and (7). 3.3 TAPDRIN CORTICURATION.

A structural configuration is assumed in which the principal section monents of inertia of the beams are reduced as a linear function of their dietance fron the center of the aperture. A first order aseesment is to be made of the effects on structural efficiency of this form of tapering as compared with no tapering.

3.3.1 SHEVCTHPAT PROPRRIIES.

Dofining I as the principal cection moment of inertin at
 (and at $n=9,=1$) then the section inertia at the other junction is,

$$
\begin{equation*}
I=I_{0}-\left(I_{0}-I_{1}\right)\left[(n-1)^{2}+(n-1)^{2}\right] / 8 \tag{10}
\end{equation*}
$$

$$
\begin{aligned}
& \text { O-A AXIS ROTATION O-B AXIS ROTATION } \\
& \frac{n+1}{1} \frac{1}{T_{1}, F_{1}}-\frac{5}{1} \frac{n_{1} m_{1}}{T_{11}, F_{11}} \\
& 3 \quad \mathrm{~T}_{2}, \mathrm{~F}_{2} \quad 5 \\
& 5 \quad T_{21}, F_{21} \\
& 5 \\
& \mathrm{~T}_{3}, \mathrm{~F}_{3} \\
& 9 \quad \mathrm{~T}_{31}, \mathrm{~F}_{31} \\
& \begin{array}{ll}
F_{1}=Y_{1} M_{S} a_{A} L K_{A F}^{\prime} & F_{11}=Y_{1}(1.41) M_{S} a_{A} L k_{A F}^{1} \\
3 & 21 \\
& 31
\end{array}
\end{aligned}
$$

Fig. 111-5. Reaction forces due to individual on-board masses and torques due to individual attitude actuators for cases 1 to 4.

The bean crossection proportions (t / W), (W/B), indicated in Fis. III-3, as used for the non-tapered structure, are to be applied to the tapered structure. Eliminating B and I from Pqe. (1), (3) and (10), and solving for A,

$$
\begin{equation*}
A=3.46(w / B)(t / w)^{1 / 2}\left\{I_{0}-\left(I_{0}-I_{1}\right)\left[(n-1)^{2}+(n-1)^{2}\right]^{1 / 2} / 8\right\}^{1 / 2} / k_{0} \tag{11}
\end{equation*}
$$

and from Eqs. (3) and (10),

$$
\begin{equation*}
B=\left[I_{0}-\left(I_{0}-I_{1}\right)\left(m^{2}+n^{2}\right)^{1 / 2} / 8\right]^{1 / 4} /\left[0.75 k_{0}^{2}(w / B)^{2}(t / w)\right]^{1 / 4} \tag{12}
\end{equation*}
$$

It is evident from Eq. (11) that the crossection area, $A_{\text {, }}$ at a junction varies as the square root of the junction distance from the center of the aperture. And from E_{4}. (12) it is meen that the bean depth at junction; B, varies as the fourth root the didtance.

The values of $I_{0} A_{0}$ and B_{0} at the center of the aperture are obtuined froupq. (10) to (12) by Eetting nen=1.

The wriage weight per unit of reflector aurface area, K, is
to be the same for the tapered and non-tapered structures.
Therefore from Ba, (4),

$$
\begin{equation*}
M_{S 2}=0.00362 L^{2} \times k_{S 2} \tag{13}
\end{equation*}
$$

Assuming that the beam properties at each junction remain constant for one half of a beam length from the junction, then $M_{S 2}$ can be determined by suming the masses at each junction,

$$
\begin{equation*}
M_{S 2}=p_{S}(L / 2) \sum_{m=n=1} k_{2} A \tag{14}
\end{equation*}
$$

where the summation is over the junctions in all four quadrants.
Substituting A from Eq. (11) into Eq. (14), then equating Eqs. (14) and (13), and solving for I_{0}.

$$
\begin{align*}
& I_{0}=\left(0.0021 L k_{0} k_{S 2}^{\prime}\right)^{2} /(t / w)(w / B)^{2} \\
& {\left[P_{S} \sum_{m=n=1} k_{2}\left\{1-\left[1-\left(I_{1} / I_{0}\right)\right]\left[(m-1)^{2}+(n-1)^{2}\right]^{1 / 2} / 8\right\}_{/}^{1 / 2}\right]^{2}} \tag{15}
\end{align*}
$$

I from Eq. (15) ean now be substituted into Eqs. (11) and (12) for the evaluation of A and B or A_{0} and B_{0}.

It is noted that the opecial case in which $\left(X_{1}\right)=1$ corresponds to the non-tapered structure.

In this case $\left(I_{0}\right)=0.2$ is to be assumed. With this assumption, Fig. III-6 shows the values of the quantity $k_{2}\{ \}_{1}^{y}$ in Eq. (15) at the junctions in one quadrant. Summing these values for the four quadrants,

$$
\begin{equation*}
I_{0}=(1.32) 10^{-11}\left(k_{0} L k_{S 2}^{\prime}\right)^{2} / P_{S}^{2}(W / B)^{2}(t / W) \tag{16}
\end{equation*}
$$

01 01(15).
01

121
 3

- ba in $\}_{1}^{1 / 2}$
4
3.35
3.32
3.20
3.05
2.83
2.59
2.30
1.96
0.77
the quantity $k_{2}\{$Values of the quantity k_{2} \}
Bl
3.55
3.52
3.38
3.20
2.98
2.72
2.45
2.10
1.26Fig. III -6.
01 $\stackrel{n}{\square}$

Substituting Eq. (16) into Eq. (11), the values of the load carrying crossection area, A, are determined for each structural junction. The A's between adjoining junctions are then obtained by taking averages of the $A^{\prime} s$ at the adjoining junctions. These average $A^{\prime} s$ in normalized form are presented in Fig. III-7.

By a similar procedure the average normalized crossection moments of inertia of the beams between junctions are computed and presented in Fig. III-8.

3.3.2 MASS AND INERTIAL PROPERTIES.

The mass properties for the non-tapered structure, as per Eqs. (4) and (5), also hold for the tapered structure.

The mass moment of inertia in the case of the tapered structure, as in the case of the non-tapered structure, is equal to the inertia of the structure, plus the inertia of of the actuator and feed. Designating the latter inertia by IA 1, the inertia about the 0 a axis is,
substituting A from Eq. (11) and I from Eq, (16) into Eq. (17),

$$
\begin{equation*}
I_{O A}=(6.4) 10^{-7} L^{4} k \sum_{n=1}^{n}(n-1)^{2} k_{2}\left\{\int_{1}^{1 / 2}+I_{A 1},\right. \tag{18}
\end{equation*}
$$

\[

\]

$$
\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & \infty & 0 & 0 & 1 \\
1 & 10 & 10 & 0 & 10 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{llllllll}
1 & \infty & 0 & 0 & 0 & 0 & 0 \\
1 & H & 0 & 0 & \infty & 0 & -1 \\
i & 0 & 0 & 0 & n & 1 & 1 \\
i & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

where $\left\}_{1}^{1 / 2}\right.$ is defined in Eq. (15).
As before using (I_{1} / I_{0}) $=0.2$, values for the quantity $n^{2} k_{2}\{ \}_{1}^{k}$ are given in Fig. III-9 for the junctions in one quadrant. Summing these values for the four quadrants,

$$
\begin{equation*}
I_{O A}=(0.0460) L^{4} K+I_{A 1} \tag{19}
\end{equation*}
$$

In a similar manner, using the values in Fig. III-10,

$$
\begin{align*}
& I_{O B}=(L / 2) p_{S} \sum\left(y_{2}\right)\left(n_{1}-1\right)^{2} L^{2} k_{2} A+I_{B L} \\
& m_{1}=m_{1}=1 \\
& =(6.4) 10^{-7} \mathrm{~L}^{4} \mathrm{~K} \sum\left(\mathrm{n}_{1}-1\right)^{2} \mathrm{k}_{2}\left\{\left[1-\left(1-\left(\mathrm{I}_{1} / I_{0}\right)\right)\right]\right. \\
& n_{1}=m_{1}=1 \\
& \left.\left[\left(m_{1}-1\right)^{2}+\left(m_{1}-1\right)^{2}\right]^{1 / 2} / 8\right\}_{2}^{1 / 2}+I_{B 1} \\
& =(0.0540) \mathrm{L}^{4}+I_{B 1} \tag{20}
\end{align*}
$$

An examination of Figs, $114-9$ and $111-10$ indicates the contributions of the structural mass at the different junctions to the inertias $I_{O A}$ and $I_{O B}$.

$$
\infty 10 \begin{array}{ccc}
\infty & 0 & 0 \\
0 & 0 & 0
\end{array} \infty
$$

$$
\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{ll}
0 \\
0 & \\
0 \\
0 & \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}
$$

$$
\begin{array}{ccccccc}
101 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 0 \\
& -1 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{r}
-8 \\
0 \\
0
\end{array}
$$

$$
\begin{aligned}
& 0 \\
& 8
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& 8
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& 8 \\
& \infty
\end{aligned}
$$

-

$$
-1+\infty+\infty \quad \infty \quad \infty \quad \infty \quad \infty
$$

The values $I_{A 1}$ and $I_{B 1}$, in Eqs. (19) and (20), depend on the actuator-distribution case definitions given in Section 2.4. Using these definitions the mass moments of inertia are finally given by,

$$
\begin{align*}
& I_{O A}=L^{4} K\left(0.0460+v_{o} k_{A F}^{\prime}\right), \tag{21}\\
& I_{O B}=L^{4} K\left(0.0540+v_{0} k_{A F}^{\prime}\right), \tag{22}
\end{align*}
$$

where v_{0} has the values given in Section 3.2 .2 .
A comparison of Eqs. (21) and (22) with Eqs. (6a) and (7a) indicates that, for the same L and K, the tapering has reduced the contribution of the structural mass to the inertia by a factor of 1.2 to 1.3. Since the over-all structural mass is the same for the tapered and non-tapered structures the contribution of the masses of the actuators and feeds to the inertia is not chanked.

3.3.3 LOADING CONDITIONS.

The reaction force at a junction, located at a distance
$(n-1)$ i. from the neutral axis, and having k_{2} beams per junction is,

$$
\begin{equation*}
F_{\mathrm{OA}}=(n-1) k_{2} a_{A} L P_{S}(L / 2) A \text {, } \tag{23}
\end{equation*}
$$

and for rotation about the $0-B$ axis,

$$
\begin{equation*}
F_{O B}=(0.707)\left(n_{1}-1\right) k_{2} a_{A} L P_{S}(L / 2) \tag{24}
\end{equation*}
$$

Placing If from Eq. (15) into Eq. (11), performing the indicated summation and then substituting A from Eq. (11) into Eqs. (23) and (24),

$$
\begin{align*}
& F_{O A}=(6.3) 10^{-6} a_{A} \times L^{3}(n-1) k_{2}\{ \}_{1}^{1 / 2} \tag{25}\\
& F_{O B}=(4.5) 10^{-6} a_{A} \mathrm{KL}^{3}\left(n_{1}-1\right) k_{2}\{ \}_{2}^{1 / 2} \tag{26}
\end{align*}
$$

where $\left\{\begin{array}{l}\}^{5 / 2} \\ 1 \text { is given in Eq. (15), and }\left\}_{2}^{1 / 2} \text { is given }\right.\end{array}\right.$ in Eq. (20).

Using Eqs. (25) and (26), the normalized forces at the junctions for rotation about the $O-A$ and $O-B$ axes are computed and shown in Fige. III-II and III-12.

A conparison of Fige, III-11 and III-4, and IIT-12 and III-4a, indicutes that the reaction forees at the junctions are aubstantiol$1 y$ reduced by tapering the structure.

The reaction forces due to on-board masses and the torques generated by the attitude actuators as presented in Fig. III-5 (for the non-tapered structures) also apply to the tapered structure.
3.4 SLEWING AND TURNING RATE LIMITATIONS.

A11 on-board, non-structural masses are contained in M_{A} and M_{F}. The M_{F} (mass of the feed) is taken as an independent variable.

$$
2 i \quad 0 \quad \text { nे } n \rightarrow \text { n }
$$

$$
\begin{array}{lllllll}
\mathrm{N} & 0 & 0 & 0 & 8 & 0 & 2 \\
\hline & 0 & 0 & 0 & 0 & 0 & 0 \\
& i & 0
\end{array}
$$

$$
\underset{ \pm}{ \pm}
$$

$$
01
$$

$$
\therefore \quad \begin{array}{ll}
0 \\
\infty & t \\
i & n \\
i
\end{array}
$$

$$
\begin{array}{lll}
\stackrel{1}{5} & 0 & 0 \\
0 & 0 & 0
\end{array}
$$

$$
\begin{array}{lll}
0 & 10 & 0 \\
\infty & 0 & 0 \\
0 & -1 & 0 \\
-1 & 1
\end{array}
$$

$$
\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 1 & 0 & 1
\end{array}
$$

$$
\begin{array}{llll}
1 & 0 & 0 & 0 \\
n & n & 0 & 0
\end{array}
$$

$$
\begin{aligned}
& 11.92 \\
& 13.60 \\
& 14.65 \\
& 14.70 \\
& 10.12
\end{aligned}
$$

$$
-11
$$

$$
\begin{array}{r}
0 \\
10
\end{array}
$$

$$
\begin{array}{ll}
\rho \theta & 0 \\
0 & 0
\end{array}
$$

$$
12.32
$$

$$
\begin{aligned}
& \frac{3}{6} \\
& \frac{1}{2}
\end{aligned}
$$

$$
-1
$$

$$
\begin{aligned}
& 0 \\
& 3.80 \\
& 7.10 \\
& 10.62 \\
& 12.32 \\
& 14.12 \\
& 15.20 \\
& 15.41 \\
& 10.81
\end{aligned}
$$

$$
\begin{array}{ll}
15.20 & 15.00 \\
15.41 & 15.25 \\
10.81 & 10.61
\end{array}
$$

${ }_{E}^{E}$ $\cdots N \quad M \quad \leftrightarrow \infty$ $n \infty \quad \infty$

$$
\begin{aligned}
& =1 \\
& \text { - } \\
& ?
\end{aligned}
$$

$$
\begin{aligned}
& \text { E } \\
& \rightarrow N 000 \\
& \sim \infty \\
& 0-7 \\
& 0
\end{aligned}
$$

However, the M_{A} (mass of the actuators), is equal to the mass of the flywheels, $M_{F w}$, plus the mass of the non-propulsive power supply, M_{P}. And $M_{F W}$ and M_{P} are dependent on the required antenna slewing and turning rates. Expressions will now be developed for M_{P}, and $M_{F W}$.
3.4.1 OPTIMUM MASSES OF NON-PROPULSIVE POWER AND FLYWHEEL SYSTEMS.

Fig. III-13 summarizes the weight-power characteristics of the commonly considered non-propulsive power systems for space applications. Based on the data in Fig. III-13, and adding a weight penalty of approximately 30% for the mass of the drives and control system electronics, the shaft power developed by the actuator is conservatively estimated to be,

$$
\begin{equation*}
\mathrm{P}=3.25 \mathrm{M}_{\mathrm{P}}^{1.43} \tag{27}
\end{equation*}
$$

The power P is used to accelerate the inertias of the drivemotor armature, the drive gearing, the fywheel, and the antenna. Assumigg that half of the power goes into accelerating the armature and gear train inertias (which would result in maxinut shart power delivered to the antenna) thon the torque delivered to the antenna is,

$$
\begin{equation*}
I_{A} a_{A}=(P / 2) 6600 /\left(w_{F W}+w_{A}\right) \tag{28}
\end{equation*}
$$

Assuming that the beam properties at each junction remain constant for one half of a beam length from the junction, then $M_{S 2}$ can be determined by suming the masses at each junction,

$$
\begin{equation*}
{ }^{M_{S 2}}=p_{S}(L / 2) \sum_{m=n=1} k_{2} A \tag{14}
\end{equation*}
$$

where the summation is over the junctions in all four quadrants. Substituting A from Eq . (11) into Eq . (14), then equating Eqs. (14) and (13), and solving for I_{0}.

$$
\begin{align*}
& I_{0}=\left(0,0021 L \mathrm{~K}_{0} k_{S 2}^{\prime}\right)^{2} /(t / w)(w / B)^{2} \\
& {\left[P_{S} \sum_{m=n=1} k_{2}\left\{1-\left[1-\left(I_{1} / I_{0}\right)\right]\left[(m-1)^{2}+(n-1)^{2}\right]^{1 / 2} / 8\right\}_{f}^{1 / 2}\right]^{2}} \tag{15}
\end{align*}
$$

I. from Eq. (15) can now be substituted into Eqs. (11) and (12) for the evaluation of A and B or A_{0} and B_{0}.

It is noted that the special case in which $(I / 1,0)=1$ corresponds to the non-tapered structure.

In this case $\left(I_{1}\right)=0.2$ is to be assumed. With this assumption, Fig. III-6 shows the values of the quantity $k_{2} \int_{1}^{1 / 2}$ in Eq. (15) at the junctions in one quadrant. Summing these values for the four quadrants,

$$
\begin{equation*}
1_{0}=(1.32) 10^{-11}\left(\bar{K}_{0} L^{k_{S 2}^{\prime}}\right)^{2} / p_{S}(w / B)^{2}(t / w) \tag{16}
\end{equation*}
$$

```
Therefore, if \(59 \%\) of the actuator mass is used for the non-propulsive power system (or \(41 \%\) for the flywheels) the product of the antenna angular acceleration and turning rate in maximized. These percentages, wich essentially result from the assumptions in Eq . (27), have an estimated tolerance of \(\pm 10 \%\) depending on the specific non-propulsive power system and antenna configuration.
```

From Eqs. (31) and (33),

$$
\begin{equation*}
a_{A}=2100 M_{A}^{2.43} r_{F W}^{2} / I_{A}^{2} \tag{34}
\end{equation*}
$$

$$
\begin{align*}
& \text { The a, in Eq, (} 34 \text {) is limited by the maximum allowable } \\
& \text { distortions which may be induced in the structure. These are } \\
& \text { on }
\end{align*}
$$

lsing Eqs. (35) and (30) in Eq. (29),
max $_{\text {max }}=\left(s_{\mathrm{FW}} / \mathrm{P}_{\mathrm{FW}}\right)^{12} M_{\mathrm{FV}} \mathrm{F}_{\mathrm{F}} / 1 A_{A}$

It is evident from Eas (34) and (36) that wind a are increased by increasing the $r_{F W}$. In this study, $r_{F W}=1 / 3$ is to be used so that the flywheel cin be mounted on and stowed with a structural panel. If necessary, flywhecls with rfiz L may be deployed. However, the weight penalty for this deployment would have to be evaluated and justified.

3.5 RELECTOR DISTORTIONS.

3.5.1 FACTORS AFFECTIVG ANTENAA PERFOIMANCE.

The far field radiation pattern of a RATIO antenna is, In part, function of the number of wavelengths in the aperture, tire aperture ampliture illumination function, the illumination intensity at the edge of the aperture, the aperture blockage due to the feed and feed support structure and the phase distortions
 generully spectited te achieve ceftain far fieli railation per formance objectives: Thus, to haximize the pain or ximintife the

Beanuidth of the main lobe, the nuwber of wayelengths in the
aperture are increased. to feduce the side lobe level, the enge
illomination intensity aperture blockageg and phase distortions
are reduced, while the illuminatinn is tapered fron a maximum at
the center of the aperture to a minimum at the edge of the aperture.

The requirements for maximum gain, in some cases, conflict with the requirements for minimum side lobes. For example, reducing the edge illumination and increasing the illumination taper reduces the gain as well as the side lobes. Further, increasing the illumination taper implies an increase in the aperture blockage brought about by eniarging of the feed. But aperture blockage reduces the gain and increases the side lobes. Therefore illumination tapering has an undesirable secondary affect on the gain as well as the side lobes.

However, by reducing the reflector caused phase distortions both the gain and side lobe performance are improved. The improvement depends upon the number of wavelengths in the aperture, the aperture blockage, the illumination taper, etc. As a rule of thumb, for greater than 20 wavelengths in the aperture and uniform or tapered illumination, phase distortions one-twentieth of a wavelength or less are negligible. Distortions at this level can be readily controlled on reflectors say 20 to 30 feet in diameter that operate at about one-foot wavelengths. However, in the typical ease of one-hundred foot and greater refiectors that operate at wavelengths of a few inches such negligible distortions are not readily obtained. It is assumed in this study that the distortions are generally large enough to affect the antenna performance.

5.5.2 REFLECTOR WEIGIITED RMS DEFLECTIONS.

Different RATIO structural configurations and loading conditions are assumed in this study for which the elastie deflections are copated at each of the structural junctions. It is desirable to eompare the influence of the defiections, and therefore the influence of these configurations and loading conditions; on the antenna performance.

The far field radiation pattern is predominantiy a function of the radiation from each part of the reflector surface. Secondarily it depends on the radiation from the reflector back structure, feed support, feed housing, and the surfounding environment. Ignoring these secondary influences, the affecte of the reflector deflections on r-f radiation can be assessed, on a first order basis, by determining d, the rms of the deflections weighted by the function describing the distributions of the $r-f$ illumination intensity over the aperture. For purposes of this approximation oniy the deflections norial

main lobe of the radiation patiera) are constitered. Diviouly
the freater this rus deflection the sfinter tie deterioration
of ridiation performance, the radiation performance of
different struetural configurations and loading conditions can
therefore be compared on the basis of their ris deflections.
It is interesting to note that, if the derlections tend to
be larger at the edges than at the center of the reflector, as
they would be especially for tapered structures, then tapering the illumination produces a lower ras deflection than no tapering.

The rms deflection can serve as a guide to the minimum wavelength at which the antenna may be expected to operate satisfactorily.

Two types of weighting functions are to be considered. One based on uniform illumination across the aperture, and one based on cosine illumination. The weighting factors at the structural junctions for the cosine illumination to be used is given in Fig. III-14.
3.6 SCALING FACTORS.

In the definition of the structural model the following independent parameters are used:

K, reflector unit weight
L, length of grid
$a_{\text {A }}$. antenna angular acceleration
$\mathrm{P}_{\mathrm{S}} \cdot \mathrm{P}_{\mathrm{FW}}$, density of structural and flywheel materials
F_{t} modulus of elasticity
$\mathbf{k}_{\mathbf{S} 1}^{\prime}, \mathbf{k}_{\mathbf{S} 2}, \mathbf{k}_{\mathrm{S}}$, structural mass fractions
\mathbf{k}_{A}, actuator mass fraction
$W / B, t / W$, beam crossection proprtions
$5_{\text {Fw }}$, flywheel stress
$0-A$ or $\theta-\mathrm{B}$ rotation axis
Actuator distribution case per section 2.4
01

$\infty 1$
 $7=0$
0
0
0
0

01 | x | 0 |
| :--- | :--- |
| | 0 |
| | 0 |
| 0 | 0 | 0.5890

0.5284 0.4384 0.3272 0.2079 0.0698 2
$1-2$
-2
0
0

$$
\nabla 1
$$

0.8536
0.8090
0.7108
0.6428 0.5284
0.3907 0.2419 - 15 $\frac{10}{6}$
$\frac{0}{0}$
$\frac{0}{0}$ 3
3
0
0 0.7120 3
$\frac{3}{2}$
9
$\$.4340$

$\frac{3}{5}$
$\frac{6}{3}$
factorm.
1 0.7660 0.9397
0.9245

$E 1$
E

 0,9
0
0
0
0 $\frac{10}{\frac{9}{0}}$ $\frac{\square}{\frac{2}{5}}$ $2=9$
$\frac{2}{6}=\frac{2}{2}$
6 $\frac{1}{6}$
$\frac{5}{5}$
$\frac{1}{2}$,

of these, $K, L, a_{A}, p_{S}, E, k_{S}, P_{F W}, s_{F W}$, the rotation axis, and actuator distribution are to be the most significant and generally varied parameters in this study. For a given k_{S}, rotation axis, and actuator distribution, as well as given values for the other independent parameters, the following scaling factors are determined for the more important dependent variables in terms of $K, L, a_{A}, p_{S}, p_{F W},{ }_{F W}$. These factors follow from the derivations in the preceding sections.

$$
\begin{align*}
& M_{,} M_{S}, M_{A}, M_{P}, M_{F W}, M_{T}, M_{F} \sim L^{2} K \tag{37a}\\
& B \sim\left(L K / p_{S}\right)^{1 / 2} \tag{37b}\\
& I \sim\left(L K / p_{S}\right)^{2} \tag{37c}\\
& I_{A} \sim K L^{4} \tag{37d}
\end{align*}
$$

$$
\begin{equation*}
{ }^{T_{F W}} \sim \mathbf{L} \tag{37e}
\end{equation*}
$$

$$
\begin{equation*}
w_{A} \sim k^{0.43} / a_{A} L^{1.14} \tag{371}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{\mathrm{A} \text { max }} \sim\left(\mathrm{s}_{\mathrm{FW}} / \mathrm{P}_{\mathrm{FW}}\right)^{0.5} / \mathrm{L} \tag{37~g}
\end{equation*}
$$

$$
\begin{equation*}
F_{1} F_{1}, F_{2}, F_{3} \sim L^{3} K a_{A} \tag{37~h}
\end{equation*}
$$

$A \sim L K / P_{S}$

In view of the definitions in Section 2.6 the major defiection-ifiniting-structural stiffness is due to fiexure about principal axes of the beame. For this condition the local structural deflections, and therefore the weighted rms deflections, d scale approximately as,
$d \sim L^{4} a_{A} p_{S}^{2} / E X$.

The scaliug of d with L^{4} in Eq. (37k) has a probable accuracy of $\pm 50 \%$. This is due to the presence of L and L^{2} terms (in addition to the predominant L^{3} terms) in the stiffness matrix of a generic structural element. The greater the L the better the accuracy. The data in Section 4.3 .5 indicates the actual dependence of d on L.

The other scaling factors in Eq. (37k) are completely valid within the constraints set by Section 2.6 .

It is evident from Eq. (37k) that d is minimized by minimizing p_{S}^{2} / E. The following are typical values of p_{S}^{2} / E for some comon structural materials,

$$
\left(g^{2} p_{S}^{2} / E\right) 10^{-9}
$$

$$
\text { Steel } \quad 2.60
$$

$$
\text { Aluminum } \quad 1.00
$$

$$
\text { Magnesium } \quad 0.64
$$

$$
\text { Ceramics } \quad 0.60
$$

$$
\text { Phenolics } 1.00
$$

Ceramics and magnesium have an apparent advantage over the other materials in this case. It is however pertinent that dimensional stability of the material under other influences, such as thermal gradients and creep, aust be considered before a final material selection is made. It is also pertinent that the parasitic weight penalties (i.e. as for fasteners) are not expected to be the same for the different materials, and need to be evaluated in making the material selection.
3.6.1 ALTERNATE SCALING PROPORTIONS.
Due to chosen proportions in the beam crossection the beam depth, B, scales with $\left(K_{L}\right)^{1 / 2}$. As a result the deflections, d, scale with $\mathrm{L}^{4} \mathrm{~K}^{-1}$.
If it is assumed that B scales linearly with L and is
independent of K, then
$A \sim L K / P_{S}$.
$I \sim L^{3} K / P_{S^{\prime}}$

$$
\begin{aligned}
& M \sim L^{2} K \\
& F \sim L^{3} X A^{\prime}
\end{aligned}
$$

and

$$
\mathrm{d} \sim \mathbf{L}^{3} a_{A} P_{S} / E .
$$

In this case does not depend on K. Apparently, while increasing the K increases the I the F is also increased by a like amount. Hence there is no advantage gained by increasing the mass of the load-carrying structure.

Likewise, if it is assumed that B does not scale with L or K, but is held constant,

$$
\begin{aligned}
& A \sim L K / p_{S} \\
& I \sim B^{2} L K / p_{S}
\end{aligned}
$$

$$
M \sim L^{2} \mathrm{x}
$$

$$
F \sim L^{3} K a_{A}
$$

and

$$
d \sim L^{5} a_{A} p_{S} / B^{2} E
$$

4.0 SBITETION OF STMUCTURAL CONFIGURATIONS AND LOADING CONDITIONS.

Three tapered dnd three non-tapered structural configurations, havint tho following basic parameters, have been selected and are deecribed in Figs. 15 and 16.

For perpooes of this analyses the following paraieters have been chosen. Theae parameters are common to all the configurations.
$L=300,200,100$
$k_{S}=0.80,0.65,0.50$
Actuator Cases 1, 2, 3, 4 (per Section 2.4)
$X=0.1$
$a_{1}=0.01$
$(18)=0.14$
$(t / 7)=0.01$
$P_{\text {Fin }}=7.3 \times 10^{-4}($ Steel $), p_{S}=2.59 \times 10^{-4}$ (alum.)
$r_{\mathrm{F}}=5 \times 10^{4}$ (Stee1)
$k_{12}=0.75$
$k_{0}=0.9$
$F_{F}=0.05$
$\left(I_{1} / I_{0}\right)=1.0$, for non-tapered structures
$\left(I_{1} / I_{0}\right)=0.2$, for tapered structures
$E=10^{7}$, for aluminut

Figs. 15, 16, and the above describe six different configurations for each of wich, because of the chosen values for k_{S} and corresponding actuator distribution cases, there are

Again d is independent of K. The added stiffness added by increasing K is again negated by the increased loads.

Continuing along the same lines, the thickness of the web and flange sections of the bean crossection can be assumed to be held constant. In this case the depth of the beam would scale linearly with $K L$ and,
$d \sim L^{3} \quad a_{A} P_{S} / E K^{2}$.

Here a pronounced advantage is gained by increasing K.
It is believed that beam proportions chosen in Section 3.2.1 produce the most realistic scaling factors. While possible alternate structural proportions may result in more desirable scaling factors as indicated above, they do not directly take into account the proportions that effect the compliances due to local flange or web buckling. As such they are not realistic.

 (N-T) NON-TAPERED
(T) TAPLKED Conifgurational und loadils condition factors for tapered and non-tapered structures, $L=300$, $k_{F}=0.05, k=0.1$.

twenty different loading conditions.
The loading conditions (i.e. reaction forces, F, and torques, T, at the structural junctions) are obtained with the aid of Fige III-4, III-4a, and III-5 for the non-tapered structures, and Figs. III-11, III-12, and III-5 for the tapered structures.

The scaling factors for the configuration and loading conditions, in Fig. III-16, are computed with Eqs. (37a) to (37j).

While the weighted ras deflection, d, is expected to scale accurately with respect to a_{A}, P_{S}, E, and $K_{\text {, }}$ as discussed in connection with Eq_{q}. (37K), specific values for $\mathbf{a}_{A}, \mathbf{p}_{\mathbf{S}}, \mathbf{E}_{\text {, }}$ and K have been selected in the above for computational purposes.
4.2 DENLECTION PATTBRNS .

The loading conditions plus crossectional and mass properties computed in Section 4.1 are used as input data for the GD/A (IBM7090) deflection analysia program.

Input data for the following specific structural configurations and loading conditions used:

Confinuration

I

II

III
I T

III T

Loading Conditions

1 to 20
1 to 10

1 to 10
1 to 10

1 to 10

The results presented in this and the following sections are based on these data.

In addition to the above data a minor-axis moment of inertia of 10 in. has been used to satisfy the progran input requirements. This inertia has not been scaled as I or, I for the other configut rations. Therefore for the smaller $(L=100)$ configurations, it is comparable with the principal-axis inertia. However, because of the nature of the loading conditions the influence of the anoraxis inertia on flexural rigidity is not significant.

The program conputes the three orthogonal linear and angular deflections at the junctions, as well as the coordinate forces and torques acting on each of the structural mepbers.

Dere we are only concerned with the linear deflections normal to the reflector surface (i.e. nominally in the direction of the axis of the main lobe in the radiation pattern). In the more complete r-i radiation (IBM7090) program, described in the second quarterly report, Ref. (4), all linear and angular deflections are taken into account.

Normalized deflection patterns are presented in Figs. III-7 to III-26 for the tapered and non-tapered structures under the different loading conditions. The dark vertical lines in these figures represent the normal components of the deflections at the junctions in one quadrant of the structure.

The computed normalized deflection patterns in Figs. III-17
to III-27 are not affected by load level changes.

O ACTUATOR LOCATIONS

Fig. 11I-21. Normalized deflection patterns, non-tapered structures, loading cunditions 15, 16,17

Fig. III-23. Normalized deflection patterns, tapered structures, loading conditions, 1, 2, 3, 4.

Fis. III-24. Normalized deflection patterns, tapered structures, loading conditions 3.

4.2.1 MONOTONIC DEFLECTION PATTERNS.

It is noted in Figs. III-17, III-20, III-22, III-23, and 111-26 that the deflection patterns are very similar for the nontapered structures under loading conditions 1, 2, 3, 4, 11, 12, 13, 14, 18, 19, 20, as well as for the tapered structures under loading conditions $1,2,3,4,8,9,10$. These are the conditions in which the actuators are located at or near the center of the reflector (i.e. actuator distribution cases 1 and 2), or in which the masses and output torques of the individual actuators are reduced and have a maximum distribution over the structure (i.e. actuation distribution case 4). For these conditions the reaction forces and applied torques corporate to produce deflections that continuously increase with distance from the neutral axis.

4.2.2 PATTERN INFLECTIONS.

When the actuators are deployed at a substantial distance from the neutral axis, as in the actuator distribution case 3, there is a tendency for the actuator torques to deflect the structure between the actuators and neutral axis in a direction opposite to that normally caused by the reaction forces at the junctions. As a result, there generally are inflections in the patterns for loading conditions $5,6,7,15,16,17$. An exception to this for the tapered structures under loading condition 5 is noted in Fig. III-24. However, when the loads are increased in this case, Fig. III-25 indicates that an inflection does take place in the deflection pattern.

It is possible that inflections may be avoided or induced by adding or subtracting local stiffness in the vacinity of the actuator mononts. The desirability of changing the atiffnes. would have to be evaluated in terms or the affects on the veighted ras deflections considered in Section 4.3.

It is interesting that the res deflections, rather than individual peaks in the deflection pattern, have a major influence on the r - radiation performance of a reflector.

The deflection patterns in Figs. III-17 to 111-26 approximate the mode shapes at the fundamental resonant frequencies of the structure.

There is tendency for inflections to develop in cases 2 and 4, however, because of the loading conditions or configuration properties they do not. A comparison of the patterns in Figs. III-19 and III-22 for case 4 actuators indicates the influence of O-A ve. O-B loading conditions on inflections.

WEIGHTED RNS DEFLECTIONS.
A computer progral was set up to determine the weighted rus deflections, d, for each of the sixty loading conditions and five configurations described in Section 4.2. Figs. III-27 to III-29 show the nromalized rms deflections vs. reflector size for cosine illumination, the four actuator distribution cases, 0 - A axis rotation, three values of k_{S}, and non-tapered and tapered structures. Figs. III-30 to 111-32 show the deflections for uniform illumination, the other parameters being the same.

Fig. III-27. Normalized reflector distortions vs. reflector size.

$d\left(K E / a_{A} p_{B}^{2} s^{2}\right) 10^{-9}$

Fig- II-28. Normalized reflector dis
tortions vs. reflector size.
100

							-	-		T		
							,					
		-			,	0	Ax 19			-		
							-					
	,	,					,					
			,									

10

$d\left(K L / a_{A} p_{g}^{2} \varepsilon^{2}\right) 10^{-9}$

2.0
1.0
0.8
0.6
0.4

Fig. III-30. Normalised retiecter distortion vo. reflector ises.

Fig. III-32. Normalized reflector distortions vs. reflector size.

The ress deflections, d, may be used with the information in Section 4.5 to nominally select the allowable operating r-f frequency. An approximate evaluation of the influence of d on antenna directivity, and side lobe level, may then be typically obtained with Referencea (2) and (3).

It is relevant that the radiation analysis program, developed in part under this study, makes use of the individual deflections at the structural junctions, rather than d, to compute the far field radiation pattern. Once the pattern has been computed and plotted (automatically with the SC4020) the directivity and side lobe information is available. This approach; it is believed, yields mach more useful and accurate results than available in the literature based on the d values.
4.3.1 AFFECTS OF STRUCTURAL TAPERING AND ACTUITOR DISTRIBUTIONS.

It is noted in Figs. III-27 to III-32 that the chosen actuator distribution cases have a pronounced affect on d. For the nontapered structures the rms deflections progressively decrease from case 1 to 4. For the tapered structures the ras deflections decrease in the case order $1,2,4,3$. The lowest deflections are obtained with the chosen non-tapered structure and case 4 actuator distribution.

Structural tapering increasos d in cases 1 and 4 and generally decreases d in cases 1 and 3. In case 4, where the actuators have their maximu dintribution, the tapering is most detrimental. In case 1 , where only one actuator is uced at the
apex of the reflector, tapering is most beneficial. This indicates that the tapering and actuator distributions must be considered collectively to maximise their individual contributions 40 reducing d.
4.3.2, AFFECTS OF STRUCTURAL MASS FRACTIONS.

Because the actuator masses are lumped, and are assumed to have no angular moment of inertias about their centers of mass, changes in k_{S} (the structural mass fraction) in case 1 , have no effect on d. For the other cases the $\mathbf{k}_{\mathbf{S}}$ values have an effect on d as displayed in Fige, III-33 to III-38, for $L=300,200,100$, and cosine and viffor illuminatione.

It in evident from fige. III-33 to III-38 that in most cases, the normally expected, the reduction of atructural compliances, (i.e. the reduction of k_{S}) results in reduced $r-f$ performance (i.e. increased d valves). In some of the cases, however, the opposite is true. It is expected that this latter occurrence is explained in part by the tendency in these cases for an inflection or an incipient inflection in the deflection pattern.

White uniform illumination generally increases the values of d. it does not aignificantly change the character of the d vs. k_{S} curves.
4.3.3 AFFECTS OF ILLUMINATION FUNCTIONS.

The chosen cosine illumination reduces the d values on the order of one-third of the d values for the uniform illumination. This follows from the nature of the loading conditione which

Fig. III-33. Normalized reflector distortions vs. $\mathbf{k}_{\mathrm{S}}, \mathrm{L}=300$, cosine illumination.
$d\left(k T / a_{A} p_{G}^{2} \mathrm{t}^{2}\right)^{10^{4}}$
1.0
0.3
0.3
(

d(MW/a $\left.A_{B}^{2} 8^{2}\right) 10^{-8}$

3. 15
0.10

Fig. III-35. Normalized reflector distortions vs. $k_{S}, L=100$, cosine illumination.

Fis. 111-36. $\begin{aligned} & \text { Normalized reflector distortions vs. } k_{s}, \\ & \mathrm{~L}=300 \text { uniform illumination. }\end{aligned}$

1
 0

2
 w

Fig. III-37. Normalized reflector distortiors vs. \mathbf{k}_{S}, $L=200$ uniforn illumination.
$\mathrm{d}\left(\mathrm{KE} / \mathrm{A}_{\mathrm{A}} \mathrm{P}_{\mathrm{S}}^{2} \mathrm{~S}^{2}\right) 10^{-\theta}$

Fig. III-38. Normalized reflector distortions vs. k_{S}, $L=100$ uniform illumination.
generally cause the junction deflections to increase with distance from the neutral axis, particularly when there are no inflections in the deflection pattern.

Fig. III-39 shows the ratio of d values for unifore illunnation to the d values for cosine illunination. The ratios in Fig. III-39 indicate that the greatest improvement due to the cosine illumination generally takes place for the non-tapered structures.
4.3.4 O-A AXIS VS. O-B AXIS ROTATION.

Fig. III-40 shows the ratios of d for $0-B$ to d for 0 -A axis rotation with cosine and unifor illumination. These ratios are based on the deflection data for the non-tapered structure with $L=300$.

The small ratios, in Fig. III-40, for case 3 (compared to case 4) may be explained by the deflection pattern inflections which take place for both the $0-A$ and $0-B$ axis-rotations (see Figs. III-18 and III-21). In case 4, there are inflections in the O-A rotation axis patterns (see Fig. III-19) and none in the 0-B rotation-axis patterns (see Fig. III-22). Since d tends to be larger when there are no inflections than when there are inflections it follows that the ratios in Fig. III-40 should be larger for case 4 than for case 3 .

Also there are no inflections in the patterns for cases 1 and 2, and $0-A$ and $0-B$ axis rotation (see Figs. III-17 and III-20). By the above reasoning the d-ratios for case 4 are greater than corresponding the d-ratios for cases 1 and 2.

LOADING CGMUITION	ACTUATOR DISTRIBUTION CASE	NON-TAPERED			TAPERED	
		$\mathbf{L}=\mathbf{3 0 0}$	$L=200$	$L=100$	$\mathbf{L}=300$	$L=100$
1.	1	2.73	2.70	2.60	2.68	2.68
2	2		3.50	3.42	3.06	3.06
3	2	3.60	3.25	3.40	3.06	3.02
4	2	3.75	4.40	3.56	3.06	2.95
5	3	3.60	3.80	3.45	2.02	2.06
6	3	3.50	3.40	3.44	1.75	1.75
7	3	3.50	3.40	3.46	1.68	1.78
8	4	2.40	2.55	2.67	2.70	2.65
9	4	2.35	2.60	2.00	2.72	2.70
10	4	2.32	2.31	2.20	2.67	2.70
11	1	2.67				
12	2	3.26				
13	2	3.18				
14	2	3.23				
15	3	1.46				
16	3	2.60				
17	-3	2.82				
18	4	2.94				
19	4	2.72		\%		
20	4	2.60				

Fig. III-39. Ratio of d for uniform illunination to dor cosine illumination, $0-\mathrm{A}$ axis rotation.

$\begin{aligned} & \text { LOADING } \\ & \text { CONDITIONS } \end{aligned}$	aCTUATOR DISTRIBUTION CASES	COSINE ILlumination	UNIFORM ILLUMINATION
1,11	1	1.54	1.54
2, 12	2		
3, 13	2	1.90	1.68
4, 14	2	2.10	1.82
5, 15	3	1.00	0.45
6, 16	3	0.77	0.58
7, 17	3	0.63	0.52
8, 18	4	5.40	6.50
9. 19	4	3.24	5.40
10, 20	4	3.29	2.54

Fig. III-40. Ratio of dor O-B to d for O-A axis rotation, non-tapered structure, $\mathrm{L}=300$.

The differences in the d-ratios for caen 1, 2, and 3 connet be reedily explained.

Ereept for part of cene 4, the C-ratien $1 n$ FIt- III-40 are enallef for the unifore illumination then fer the cosiop 111unination. No timple explanation can be fonn for this occurrence.

Toreional rigidity in the structural membere heo been neglected in the calculations. Thie rigidity, if included in the analyain, would have a greater influence in reducing the O-B deflections then in reduciag the o-A derlectione, and my therefore minimise the discrepmecies hown in Fis. III-40.

SCALLAOOF TBLL.
It ie stated with reapect to Ea. (37i) that there in a probable error in the ecalinc of d with ${ }^{4}$. The ertent of thi error if indicated in Fis. HI-41. Here the values of d at $\mathrm{L}=300$ are obtained by L^{4} ecaling of the values at $L=100$. The ratio is then taken of these values to the actually computed d raluen at $L=300$. The arailable date allome for the compatation of theap ration only for o-A axis rotation, monown in Fis. III-AL.

It can be ceen in Fig. IMI-4I thet the greatest cealing errore occur for the non-tapered tructures. This is explained in part by the greater tendency for derlection-pattern inflection in the came of the non-tapered atructures.
4.4 TURNING AND SLENING RATES.

Fige. III-42 and III-43 the the normalized maximme turning rates $\boldsymbol{T A}_{4}$ vax \mathbf{K}_{8} for the non-tapered and tapered otructuren, and

COSINE ILLUMINATIGN

CASE	${ }^{\mathbf{k}}$	TAPERSD	NON-TAPERED	TAPERED	NOA-TAPER
1	0.80	0.98	1.60	1.00	1.50
2	0.80	1.05		1.00	
2	0.65	1.00	1.23	0.99	1.47
2	0.50	1.00	1.22	0.97	1.16
3	0.80	1.01	0.85	1.01	0.82
3	0.65	0.99	0.88	1.00	0.89
3	0.50	1.00	0.96	1.00	0.95
4	0.80	0.99	1.03	0.98	1.14
4	0.65	1.00	1.57	1.00	1. 37
4	0.50	0.99	1.33	1.00	1.37

Fig. III-41. Ratio of scaled to computed values of d at $L=300$ for $0-A$ axis rotation.

Fig. III-42. Normalized maximum turning rate non-tapered structures.

III-84

Fig. III-43. Normalized maximum turning rate, tapered structurcs.
the different actuator distribution cases. Figs. III-44 and III-45 show the normalized slewing rates t, va. $\mathbf{k}_{\mathbf{s}}$ for the sme structures and cases. Fige. III-42 and III-45 are based en the data In Fig. III-15 and the caling equations, Eqs. (378) and (37r).

It follows from an examination of Figs. III-42 to III-45 that:
(1) The $\mathrm{m}_{\mathrm{max}}$ and a_{A} in all cases increase with k_{s}, and for any given k_{S}, case, and rotation asis; and \mathbf{w}_{A} max and a are larger for the tapered than for the non-tapered etructures. Thee characteristics follow firstly from the predominantly greater increase of M_(in Eq. (36)) with k_{S} thon the ${ }_{A}$ with k_{s}, and secondly becmese I_{A} in maller Tor the tapered etructures than for comparable non-tapered structures.
(2) The A_{A} and a for 0 an axis rotation are maller than these values for 0 -A axis rotation in the tapered structures and for case 1 of the non-tapered etructures. At other times war and a for O-B axis rotation are greater than for $0-4$ axid rotation. These occurrences are Largely explained by the valuet of I_{A} in the different configurations and cases.
(3) The \boldsymbol{v}_{A} max and a performance is improved in the case order 3, 4, 2, 1.
(4) The greater the $\mathrm{m}_{\mathrm{w}} / \mathrm{P}_{\mathrm{F}}$ L ratio the greater the m_{A} max Aleo the greater the $\left[0.43 / \pi L^{1.14}\right.$ ratio the greater the a. It in noted that X dees not influence $A_{\text {a max }}$

Fig. III-44. Normalized slewing rate, non-tapered structures.
$a_{A}\left(W_{A} L^{1.14} / N^{03}\right) 1 U^{4}$

Fis. III-45. Normalized siewing rate, tapered structures.
does have an effect on a_{A}.
4.4.1 TRADE-OFFS OF REFLECTOR DISTORTIONS TURNING RATES AND SLEWING RATES.

A comparison of the d values in Figs. III-27 to III-38 and the $\sigma_{\text {A }}$ and an alves in Pige. III-42 to III-4s indicate the tradeoffs available in the selection of $\mathbf{k}_{\mathbf{S}}$, case, L, etc. to achieve given performance objectives. The following observations are made on the basis of the information in the above figures:
(1) While low values of k_{S}, and cases 1 and 2 compared to cases 3 and 4 result in relatively high values of © max and a_{A} they also result in high d values.
(2) Increasing the K and reducing L reduces d, and increases a_{A} and ω_{A} max ${ }^{*}$
(3) If the dowmard or level trend of d vs. k_{S} is maintained for preferred rotation axes in cases 2 and 4 (as shown in Figs. III-33 to III-38) then lowering the valves of $\mathbf{k}_{\mathbf{S}}$, for these axes and cases, improves the $d_{\text {, }} w_{A}$ max: and a_{A} performance. Therefore cases 2 and 4 would be the most logic choices if the rotation axes are limited respectiveIy to $0-A$ and $0-B$. It is, however, not usually practical to use only one rotation axis.
(4) The tapered structures provide consistently better $\boldsymbol{W}_{\mathrm{A}}$ max and a_{A} performance but do not always provide better d performance.

LIMITATIONS ON DEFLECTIONS.

The computer program for determining deflections is based on small deflection theory. It is estimated that the theory is valid
for the distortions, and corresponding frequencies and reflector sizen, Indicated in Fig. III-46.

The valuen in Fig. HII-46 exceed the usual 1000 vaveleagths-in-the-aperture upper 11 nit and $1 / 10$ to $1 / 30$ of-a-wavelength-aperturedistortion lower 1imit. The upper limits on aperture distortions in Fig. III-46, which are critical to the accuracy of the deflection analysis progra, are also excessively large. SUMMARY OF ROSULTS.

Fig. III-47 sumerises the positive and/or negative influences of designated changes in the independent etructural and operational parameters on designated changea in $d_{1} A_{A}$, and $\boldsymbol{m}_{\text {n max }}$ The influences of an individual parareter is asaumed to take place while the other parameters are held fixed. Therefore a \pm sign in Fig. III-47 indicates that a positive or negative influence can take place depending on the values of associated parameters. When no signs appear in Fig. III-47 the independent paraneters have no influence on the dependent parameters.

The + signs in Fig. III-47 generally indicate the desirability of the independent parameter change, and a - ign the undesirability of the change. It is evident that the influences on a_{A} and w_{A} max mot alwaye compatible with the influences on d. Quatitative data on the above is contained in this report.

$\begin{array}{c}\text { WAVLLLENGTHS } \\ \text { IN APERTURE }\end{array}$
600 to 5,000
300 to 5,000
50 to 2,000
10 to 1,000

$\substack{\text { Frequency } \\ \text { Mc }}$
20,000
10,000
1,000
100

Fig. III-46. Limitations on frequency, reflector size, and rms distortions. ,

REFERENCES

(1) "Antenna Engineering Handbook", H. Laeik McGram Hill, 1961.
(2) "Physical Limitations on Antennas", J. Ruze Technical Report 248, Oct. 1952, Research Laboratory for Electronice, MIT.
INFLUENCE OF:
CHANGING TEDN O-A
TO O-B ROTATION AXIS
CHANGING FDON NON-
TAPEVED TO TAPPUAD STRUCTURES
CHANGINE, PRON UNIPORM
TO NONLD IPORE
ILHUMINATION
CHANGLNG Piow

Pis. III-47. Influence of changed in independent parameters.

IV. DETAILED "Ratio" mODEL aNalysis IV-A. STRUCTURAL LOADS

(By G. H. Nowak, checked by P. Slysh)

1.0 GENERAL

Attitude mancuvering of the chosen RATIO antenna is achieved by inertial (including gyroacopic) reactions againat the flywheela. The imposed torsional loads on the structure, due to the actuators, give rise to aet linear inertial loads and finally te diatribation of elastic deflections over the entire structure. In this atudy only the steady state loads are consifered.

The study of the dynamie performance of Ratio structures as part of the over-all attitude control gotem must atart with the steady state analysis. It ia tentatively entimated that the results of the abject steady state analysis will be valid for matio systema in which the resonant frequency of the structure is approximately an octave higher than the highest characteristic frequency of the attitude controller.

2.0 GEOMETRY OF STRUCTURE

For purposea of initially aimplifying the analysis of the component forces and torquen it is asamed that the panel structure forms a grid of equal length and constant cross-aection beams. The distributed mass of the reflector structure is lumped at the junctions of the grid. The weighta of the inertial actuatora (each of which include sets of three orthogonal flywhels) are also lumped at the junctions, where, likewise, the lega of the tetrapod feed structure are assused to be mounted.

An x, y, z coordinate syctem is asgumed with its orisin at the anov of the paraboloid and its z-axis coincident with the focal axis. The chosen strueture is such that a junction corresponds with the apex.

The coordinates, x, y, , of the mass at the junction of the mat column and ne row of the grid are given as solutions to,

$$
\begin{align*}
& \text { nL } / f=\log _{e}\left(x / 2 f+r_{1}+(x / 2 f)^{2} \gamma^{1 / 2}+r_{x} / 2 r\right] r_{1}+(x / 2 f)^{2}{ }^{1 / 2} \tag{1}\\
& n L / f=\log _{e}\left[y / 2 f+r_{1}+(y / 2 f)^{2} y^{1 / 2} 1+r_{y} / 2 f 7 r_{1}+(x / 2 f)^{2} p_{1}^{2}\right. \tag{2}
\end{align*}
$$

$$
41 z=x^{2}+y^{2}, r,<x^{2}+y^{2}
$$

where is the focal length, and L is the length of the grid.
If it in assumed that the antenna rotates about the center of gravity of the antenna structure then the coordinatea of the mass are described in new coordinate system, r_{1}, r_{p}, r_{ρ} with the origin of the new coordinate system at the chosen center of mase,

$$
\begin{equation*}
r_{1}=x_{0} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{r}_{3}=\mathbf{v}_{0} \tag{5}
\end{equation*}
$$

$$
\begin{align*}
r_{3}= & \left(x^{2}+y^{2}\right) / 4 r-\left\{\left\{\left[\left(1+r_{0}^{2} / 4 f^{2}\right)^{5 / 2}-1\right](3 / 5) /\left[\left(1+r_{0}^{2} / 4 r^{2}\right)^{3 / 2}-1\right]\right.\right. \\
& -1\} 1+\left(m_{1} / k \bar{A}\right) \sum_{i=1}^{N}\left\{\left[\left(x_{T}\right)_{i}^{2}+\left(y_{T}\right)_{i}^{2}\right] / 4 r\right. \\
& \left.+M_{F} z_{F} / k \bar{A}\right\} k \bar{A} /\left(N_{m_{1}}+M_{F}+k \bar{A}\right) \tag{6}
\end{align*}
$$

where
r_{0}, the mean radius of the aperture,
x_{T}, y_{T}, coordinates of a torque actuator set,
${ }^{m} 1$, mass of a torque actuator set,
N, number of torque actuator sets,
k, mass density of the surface of the reflector,
${ }^{M} F$. mass of the feed system,
' ${ }_{F}$, distance of the feed from the apex of the paraboloid,
\bar{A}, the area of the paraboloidal reflector,
$\left.\bar{A}=(8 \pi / 3) f^{2}\left\{r 1+\left(r_{0} / 2 f\right)^{2}\right\}^{3 / 2}-1\right\}$.

Since the Euler equations govern the motion, the angular rate components of the antenna in the mass-centered-coordinate system, $\boldsymbol{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}$, are interdependent time functions.

3.0 REACTION LOADS

To develop typical loaring conditions it is assumed that the given initial angular rates about the r_{1}, r_{2}, r_{3} axes are $w_{10}=w_{20}=0$ and $w ; 0$;
and the required, final (atendy atate) angular rateo are mand 2 The 3 - if afemed to ranifh. The Iinal angular rates ere appresehed Eymptotien117, and the same time constant, $/$, In used te dencribe the exponentinl enguler rate increaee or tecrene abont the three eret.

Under the ateve ceniltione, and ne eonesquene of the rarying gyrescopic and inertial reaction, the maximen reaetien fereen at the etructural junctiens are develeped at mome time after the infich attitnde control terques are applied and before the fingl anglar rates are achieved. The componente of these minum reachon forcen at ench of the etractural junetionn are,
where U is the mane concentrated at the (i, n) junction.

4.0 FLYWHEEL AND ANTENNA TURNTMG RATIS

Three orthegonal flyweel seta at each of the actater statione (of the chosen model) are replaced by a minge aet of orthoconal ilyweele. These Ilyheele are taken to have angular rates $n_{1}, n_{2} n_{3}$, about their apin axes recpectively in the x, y, , directions. The three flymbels are anamed te have the same inertial propertien. If the three flywheln tera with
angular rates n_{1}, n_{2}, n_{3} then $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are functions of these flywheel rate functions according to the set of Euler equations,

$$
\begin{align*}
\dot{n}_{1}+n_{3} w_{2}-n_{2} w_{3}= & -\dot{w}_{1}\left[1+\left(J_{1}+2 J_{B}\right) / J_{A}\right]-w_{2} w_{3}\left(J_{0}-J_{1}\right) / J_{A} \\
& +\left(J_{B} / J_{A}\right)\left(n_{A} w_{B}-n_{1} w_{A}\right) \tag{9}\\
\dot{n}_{2}+n_{1} w_{3}-n_{3} w_{1}= & -\dot{w}_{2}\left[1+\left(J_{1}+2 J_{B}\right) / J_{A}\right]-w_{3} w_{1}\left(J_{0}-J_{1}\right) / J_{A} \\
& +\left(J_{n} / J_{A}\right)\left(n_{1} w_{3}-\dot{n}_{3} w_{1}\right) \tag{10}\\
\dot{n}_{3}+n_{2} w_{1}-n_{1} w_{2}= & -\dot{w}_{3}\left[1+\left(J_{1}+2 J_{B}\right) / J_{A}\right]+\left(J_{B} / J_{A}\right)\left(n_{2} w_{1}-m_{1} w_{2}\right) \tag{11}
\end{align*}
$$

where,
J_{A} is the inertia of the composite flywheel about its spin axis,
J_{B} is the inertia about an axis perpendicular to the spin axis,
J_{0} is the inertia of the reflector about the focal axis,
J_{1} is the inertia about an axis perpendicular to the focal axis.
Under the steady state conditions,

$$
\begin{equation*}
\dot{n}_{1 \infty}={\dot{n_{20}}}_{2 \infty}-{\dot{n_{3}}}_{3 \infty}=\dot{\bar{w}}_{10}=\dot{ष}_{2 \infty}=\dot{\nabla}_{3 \infty}=0 \tag{12}
\end{equation*}
$$

Using the values in Eq, 9, 10, 11; hal 12,

$$
\begin{align*}
& -n_{2 \infty} \nabla_{3 \infty}+n_{3 \infty} \nabla_{2 \infty}=\nabla_{2 \infty} w_{3 \infty}\left(J_{0}-J_{1}\right) / J_{A}, \tag{13}\\
& n_{1 \infty} \nabla_{3 \infty}-n_{3 \infty} w_{1 \infty}=w_{1 \infty} w_{3 \infty}\left(J_{0}-J_{1}\right) / J_{A}, \tag{14}\\
& -n_{1 \infty} w_{2 \infty}+n_{2 \infty} w_{1 \infty}=0 . \tag{15}
\end{align*}
$$

The deternintat of the syater of Eqs. 13, 14, 15, in,
therefore, volutions for ${ }^{1} 1$. ${ }^{2}$, exiet if the equatione are hompeneous, or when,

$$
\begin{equation*}
\nabla_{1-}=v_{20}=0, \quad v_{3-} \neq 0, \tag{A}
\end{equation*}
$$

or,

$$
\begin{equation*}
\nabla_{30}=0, \quad \quad_{10} \not 0, \nabla_{20} \neq 0 \tag{B}
\end{equation*}
$$

The condition (A) characterises the case in which the diah is tarning about ite focal axim. The conditima (B) if for the cane in wheh the dich is turnias about an aris perpondicular to the foeal anis.

Considering Case (B), $1 t$ followe that,

$$
\begin{equation*}
n_{2} / n_{10}=v_{2 \infty} / v_{10}, \tag{17}
\end{equation*}
$$

and,

$$
\begin{equation*}
n_{3 \infty}=0 \tag{18}
\end{equation*}
$$

5.0 MODEL FUNCTIONS FOR ANTENNA TURNING RATES

From the energy consideration expressions can be found for $n_{1 \infty}$ and $n_{2 \infty}$ in term of the steady state values ${ }_{1 \infty}, \nabla_{2 \infty}$, and the initial values $n_{10}, n_{20}, n_{30}, \nabla_{10}, \nabla_{20}, \nabla_{30}$

$$
\begin{align*}
& n_{1 \infty}=-\left[1+\left(J_{1}+2 J_{B}\right) / J_{A}\right] w_{1 \infty}+H^{1 / 2 \omega_{1}} /\left(\nabla_{1 \infty}^{2}+w_{2 \infty}^{2}\right)^{1 / 2}, \tag{19}\\
& n_{2 \infty}=-\left[1+\left(J_{1}+2 J_{B}\right) J_{A} 1 w_{2 \infty}+B^{1 / 2}{w_{2}}_{\omega} /\left(\nabla_{2 \infty}^{2}+w_{1 \infty}^{2}\right)^{1 / 2},\right. \tag{20}
\end{align*}
$$

where,

$$
\begin{align*}
R & =\left\{n_{10}+\left[1+\left(J_{1}+2 J_{B}\right) / J_{A}\right] \nabla_{10}\right\}^{2} \\
& +\left\{n_{20}+\left[1 \div\left(J_{1}+2 J_{B}\right) / J_{A}\right] \nabla_{20}\right\}^{2} \\
& +\left\{n_{30}+\left[1+\left(J_{0}+2 J_{B}\right) / J_{A}\right] \nabla_{30}\right\}^{2} \tag{21}
\end{align*}
$$

The angular rates w_{1} and z_{2} are constant only when w_{3} is zero. This allows the choice of a simple set of model functions for σ_{1}, w_{2} and σ_{3} is,

$$
\begin{align*}
& w_{1}=\sigma_{1}\left(1-e^{-a t}\right) \text {, } \tag{22}\\
& w_{2}=\sigma_{20}\left(1-e^{-a t}\right), \tag{23}
\end{align*}
$$

$$
\begin{equation*}
w_{3}=w_{30^{-a t}} \tag{24}
\end{equation*}
$$

where/a is the time conetant dependent mainly on the time conotast of the motor-inertia-fied combination. The chosen set of functions, Eq. 22, 23, 24, is only one of a large fanily of posible seta.

With a given set of medel functions, the EqE. 0,10 , 11 have to be solved to find the corresponding time functions n_{1}, m_{2}, n_{3} of the flywheels. Eqs. 9, 10, 11, with $\mathbf{w}_{1}, \mathbf{F}_{2}, \mathrm{~m}_{3}$ from Hq. 22, 23, 24 represent the attitede control equations of the inertia-wheel-driven gario antemn.

6.0 APPLIED TORQUES

The torquen, T_{1}, T_{2}, T_{3}, applied to the antenna are deseribed by the Euler equations,

$$
\begin{align*}
& T_{3}=\dot{\Phi}_{3} J_{0}=\sum_{m, n}\left[\left(r_{m n}\right)_{1}\left(P_{m n}\right)_{2}-\left(r_{m n}\right)_{2}\left(P_{m n}\right)_{1}\right] \tag{27}
\end{align*}
$$

since w_{1}, \mathbf{w}_{2} and $\mathbf{w}_{3}($ fromequ. $22,23,24$) are known functions of time, T_{1}, T_{2}, T_{3} are functione of time and represent the torque loade on the etructare.

For purposes of studying the structural deflection the maximum torque

 magnitude,$$
\begin{equation*}
T_{\max }=\left(T_{1 \max }^{2}+T_{2 \max }^{2}+T_{3 \max }^{2}\right)^{1 / 2} \tag{28}
\end{equation*}
$$

is taken to exist at the time $t=t_{0}$, when,

$$
\begin{equation*}
T_{1 \max }\left(d T_{1} / d t\right)+T_{2 \max }\left(d T_{2} / d t\right)+T_{3 \max }\left(d T_{3} / d t\right)=0 \tag{29}
\end{equation*}
$$

Evaluating Eq. 29 using Eq. 25, 26, 27, yields,

$$
\begin{equation*}
t_{0}=1 / a \log \left\{(3 / 4)\left[1+(1-8 A / 9)^{1 / 2}\right]\right\} \tag{30}
\end{equation*}
$$

where,

$$
\begin{equation*}
A=1+\left[e^{2} /\left(J_{0}^{2}-J_{1}^{2}\right)\right]\left[J_{1}^{2} / w_{30}^{2}+J_{0}^{2} /\left(w_{1-}^{2}+w_{2 \infty}^{2}\right)\right] \tag{31}
\end{equation*}
$$

For $t=t_{0}$ the component a of the maximum torque are,

$$
\begin{align*}
& T_{1} \max =\nabla_{1 \infty} J_{1}+(1 / 16) \nabla_{2 \infty} \sigma_{30}\left(J_{0}-J_{1}\right)\left[1-(0-8 A)^{3 / 2}\right] \\
& {\left[3+(9-8 A)^{3 / 2}\right] \text {, }} \tag{32}\\
& T_{2} \max -w_{2 \infty} J_{1}+(1 / 16) w_{10} \omega_{s o}\left(J_{0}-J_{1}\right)\left[1-(0-8 A)^{1 / h}\right] \\
& {\left[3+(9-8 A)^{1 / 2}\right] \text {, }} \tag{33}
\end{align*}
$$

$$
\begin{equation*}
T_{3-2}--_{30}=J_{0}\left[3+(9-81)^{k}\right] / 4 \tag{34}
\end{equation*}
$$

Abeuming there are Netructeral Junctiono occupied by a eet of three llyweels, then the total number of liyweele are sN, and the terqued applied to the diah per liywheel are,

$$
\begin{equation*}
t_{1}=T_{1=1} / N_{2} \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
t_{2}-T_{2 \max } / \Lambda_{1} \tag{36}
\end{equation*}
$$

$$
\begin{equation*}
t_{3}-T_{3 \max } / \mathrm{H}_{1} \tag{37}
\end{equation*}
$$

7.O INERTLA OF DISA

The locetione ter the I flymeele are abritrary. The It flywet'e coorilnates are,

$$
\begin{equation*}
\left(x_{T}\right)_{i},\left(y_{T}\right)_{1},\left(x_{T}\right)_{i}=\left[\left(x_{T}\right)_{1}^{2}+\left(y_{T}\right)_{i}^{2}\right] / 4 e^{2} \tag{38}
\end{equation*}
$$

where,

$$
1=1,2, \ldots \pi
$$

Using these notations the moments of inertia of the dish about its principal axes are,

$$
\begin{align*}
J_{0}= & m_{1} \sum_{i=1}^{N}\left\{\left(x_{T}\right)_{i}^{2}+\left(v_{T}\right)_{i}^{2}\right\}+\left(64 \pi k f^{4} / 15\right)\left[1-(1+h / f)^{3 / 2}\right. \\
& (1-3 h / 2 f)] \tag{39}\\
J_{1}= & \left(m_{1}\right) \sum_{i=1}^{N}\left\{\left[\left(x_{T}\right)_{i}^{2}+\left(y_{T}\right)_{i}^{2}\right] / 4 f-z_{0}\right\}^{2} \\
& -4-k f^{4} / 105\left\{(1 + h / f) ^ { 3 / 2 } \left[35\left(1+\eta_{0} / f\right)^{2}\right.\right. \\
& \left.-42\left(1+Z_{0} / f\right)(1+h / f)+15(1+h / f)^{2}\right] \\
& \left.-15+7\left(1-5 \ell_{0} / f\right)\left(1+z_{0} / f\right)\right\}+J_{0} / 2+M_{F}\left(M_{F}-Z_{0}\right)^{2}, \tag{40}
\end{align*}
$$

where h is the depth of the dish $\left(h=r_{0}^{2} / 4 f\right)$, m_{1} is the case of one flywheel set, and z_{0} is the distance of the antenna center of mage from the apex of the dish. That is,

$$
\begin{align*}
\%_{0}= & {\left[k \bar{A} /\left(N_{1}+M_{F}+k \bar{A}\right)\right]\left\{f \left\{{ }^{3 / 5}\left[\left(1+r_{0}^{2} / 4 f^{2}\right)^{5 / 2}-1\right] /\right.\right.} \\
& {\left.\left[\left(1+r_{0}^{2} / 4 f^{2}\right)^{3 / 2}-1\right]-1\right\}+(m / k \bar{A}) \sum_{i=1}^{N}\left[\left(x_{T}\right)_{i}^{2}\right.} \\
& \left.\left.+\left(y_{T}\right)_{i}^{2}\right] / 4 f+M_{F} Z_{F} / k \bar{A}\right\} . \tag{41}
\end{align*}
$$

8.0 RUACTION FORCES OF FEED

In addition to the above force and torques a set of forces exist between
the junction of the structural bay (tetrapod) and the reflector. These forces can be determined from the forces F_{1}, F_{2}, F_{3} (in the r_{1}, r_{2}, r_{3} directions) acting on the reedas,

$$
\begin{align*}
& F_{1}=M_{F}\left\{1 w_{31}\left(Z_{F}-z_{0}\right)+w_{21}\left(z_{F}-z_{0}\right)\right\} \tag{42}\\
& F_{2}=M_{F}\left\{w_{21} w_{31}\left(z_{F}-z_{0}\right)-w_{11}\left(z_{F}-z_{0}\right)\right\} \tag{43}\\
& F_{3}=M_{F}\left(w_{11}^{2}+w_{21}^{2}\right)\left(Z_{F}-Z_{0}\right) \tag{44}
\end{align*}
$$

where ${ }_{11}$, 12 , 13 and their derivatives are values for wich Eqs. $32-34$ are a maximme that in,

$$
\begin{align*}
& w_{11}=w_{20}(1 / 4)\left[1-(9-8 A)^{1 / 2}\right] \tag{45}\\
& 21 \tag{46}\\
& w_{31}=w_{30}(1 / 4)\left[3+(9-8 A)^{1 / 2}\right] \tag{47}\\
& w_{11}=w_{1 \infty}(a / 4)\left[1-(9-8 A)^{1 / 2}\right] \tag{48}\\
& 21
\end{align*}
$$

In Eqe. (45) to(48) when (9-BL) in negative, then

9.0 SUMMARY

The steady state forces (Eq. 8) and the steady state torques (Eqs. 32, 33, 34) have been established using a given set of model functions for antenna turning rates (Eqs. $32,23,24$). The forces and torques are based on the derined system inertias (Eqs. 39, 40 , etc.), on the masses of the feeds and
inertia wheels, as well as on the initial and final angular rates and accelerations of the flywheels and antenna.
10.0 STATUS

The equations describing the forces and torques acting on a reflector structure have been programed for a 7090 computer. This program has been applied to determining the structural-junction coordinates, as well as the component forces and torques at the structural junctions for cases up to 5 in Table 1. Also listed in Table 1 are the structural bean properties (corresponding to the indicated k values) which constitute one of the inputs to the structural deflection analysis. The bean properties are defined by,
$I_{x x}=$ the maximum section moment of inertia,
$I_{y y}=$ the minimum section moment of inertia,
A = the cross-section area.
11.0 CONCLUSION

From the work done to date we are satisfied that the computer progran for determining structural loads performs atisfactorily.

TABLE I
INPUT PARAMFTERS FOR STRUCTURAL ANALYSIS

Input Parameter	Parameter Dimensions	Case 1	Case 2	Case 3	Case 4	Case 5
r_{0}	in.	600	600	600	600	3000
1	in.	60	60	60	60	300
f	rad./sec.	960	960	960	960	4800
a	rad./sec.	1.0	1.0	0.1	0.1	0.1
* 30	rad./sec.	1.0	1.0	0.1	0.1	0.1
${ }^{10}$	rad./sec.	1.0	1.0	0.1	0.1	0.1
20	rad./sec.	1.0	1.0	0.1	0.1	0.1
k	1b, -sec. $/ 1 n^{3}$.	(7) 10^{-6}	(7) 10^{-6}	(1) 10^{-6}	(7) 10^{-6}	(7) 10^{-6}
N	-	4	4	4	4	8
M_{1}	1b.-sec./in.	0	0	0	1	4
${ }_{1}$	1b.-sec./in.	1	1	1	1	2
Actuator	-	± 2	± 5	± 5	± 5	$\pm 3 \pm 6$
Location n	-	± 2	45	± 5	15	$\pm 3 \pm 6$
Beam Properties						
${ }^{1} \times$	in.	31	31	31	31	3600
$1_{y y}$	in.	1	1	1	1	10
A	in.	0.8	0.8	0.8	0.8	4.0

IV-B. RADIATION PATTERNS

(By G. H. Nowak, checked by G. A. Burns and P. Slysh)

1. INTRODUCTION

The formation of antenna radiation patterns by reflectore from ecatteriag and diffraction are of fundamental importance in antenna theory. There are several approximate methods of analyzing radiation patterng. Exact aolutions of the scatterinc problen have been obtained for only a limited number of casea involving simple primary fields and reflectors of simple geometry, euch as spheres and cylinders. These problens are treated in standard works on electromagnetic theory, to which the reader is referred for the results. In treating reflectors of shapes other than epherical or cylindrical it is necessary to resort to approximate techniques. Several auch methods, which yield very good resulte at high frequencies, are the (1) geometrical-optics method, (2) current density-distribution method, (3) aperture-field method, and (4) scalar diffraction method.

Both the current-distribution and aperture-field methoda led to a calculation of the scattered field as arising from a distribution of sources over an open-murface, the boundary of which is defined by the systen of roflected rays. In contrast to the geometrical-optics method, the field at any point my be found as the mperposition of contributions from all elements of the source distribution. In general, therefore the latter two methods will lead to nonsero field intensities in the region of space not covered by the system of rays; also, in the region of rays, the fields will differ from those obtained on the basis of geometrical scattering. These deviations from

[^0]geometrical propagation of the scattered field lead one rather naturally to the scalar diffraction method.

Dxperiments have shown that whenever the dimensions of an apertare are larse compared with the waveleacth, the diffraction effecte are minimed an the majer portien of the Ifeld pattert is concentrated in the region covered by the ray trom the aperture. On the banis of this fact a comen highfrequency approximation technique is used for all probleme of the type involving a parabolic reflector. The mathenatical detaile have been developed, and re need only sumarize here the general ideas in the application of the results to our problen. In the case of a parabolic reflector the aperture area is associated with a mriace Σ of infinite extent which divides all epace into two erparate regions. The problen is than equitalent to that of an operture in In Infinite fcreen on the mrifee Σ. It In amoned that the field over Σ ie tero overymbere exeept over the aperture area; in effect, it is assumed that difiraction effecta at wide ancles with respect to the aperture-ray sy tet are negligible. In the cade of parabolic reflector it is assumed that the aperture field is producsd by geonetrical reflection or refraction of the rare from the primary feed.
2. ASSUIPTIONS

In many antense the field over the aperture is almost completely linearly polarized, only a small fraction of the energ beimg in the crossedpolarization component of the field. If the latter is neglected, the calculation of the diffraction field is mimplified; by use of the hightrequency approximations, considered previously, the problem can be reduced to sealar diffraction problem.

[^1]The analyais presented berein is for a parabolic aperture of infinite conductivity; the aperture will be taken in the $x y$-plane an shown in Figure IV-1, and the electric field will be taken to be polarized in the x-direction. Purther, in man antennae, where, although the dietiance to the primary feed is not large, the geometry of the boty is auch that the amplitude of the scattered wave at the primary feed is mall. Hence, multiple scattering may be neglected in the analyais of the total field. This essentially says that one is neglecting the effect of the reflector on the general impedance characteristics of the antenna.

3. FAR FIBLD REPRESENTATION

The diffraction field of an aperture area, A, is given by the scalar integral formala,

$$
\begin{equation*}
u_{p}=-(1 / 4 \pi) \int_{A}(v \partial u / \partial n-u \partial \psi / \partial n) d S \tag{1}
\end{equation*}
$$

where u_{p} is the electrongnetic scalar potential at the field point, $P(x, y, z)$, defined by the locus vector \mathcal{R}_{1}, as shom in Figure $I V-1 ; \partial / \partial n$ represents the normal derivative with respect to the parabolic eurface; the unit vector $\boldsymbol{H}_{\text {, }}$ normal to the u urace, taken to be in the positive outward direction; $u(x, y, z)$ is the scalar potential of the electromagnetic field at the surface of the reflector due to the source field and in defined by.

$$
\begin{equation*}
u(x, y, z)=A(x, y, z) \exp [-j k, L(x, y, z)] \tag{2}
\end{equation*}
$$

where $A(x, y, z)$ and $L(x, y, z)$ are the anplitude and phase functions of the source field respectively; k_{0} is the wave number and equal to $2 \pi / \lambda_{0}$ where $\lambda_{\text {e }}$

Fig. IV-1. Paraboloidal geometry.
is the free-space wavelength, and is the scalar potential of a field point on the reflector gurface given by,

$$
\begin{equation*}
\omega=\exp (-j k r) / r \tag{3}
\end{equation*}
$$

where r is the distance from the field point to the reflector element on the surface.

It will be recognized that Equation (1) is the Kirchhoff scalar diffraction formula used in physical optics. This equation can be regerded as the mathematical expression of Haygen's principle for a scalar wave; the resultant wave amplitude at the field point $P(x, y, z)$ being expressed as a sum of contributions for the elements of surface dS. The first part of the integral 18 summation of terms of the form $[\exp (-j k r) / r](\lambda u / \lambda n) d S-a$ sumeation of the amplitudes of isotropic mpherical wavelets arising from sources of strength proportional to $(\partial u / \partial n) d S$ on the surface elements dS. The second part of the integral can be interpreted similarly.

The derivative of u with respect to the surface normal, \bar{n}, is,

$$
\begin{equation*}
\lambda_{u} / \partial n=\bar{n} \cdot \nabla u=-j k_{0} u \bar{n} \cdot \nabla L+(u / A) \partial A / \partial n \tag{4}
\end{equation*}
$$

If the wavelength is short, k. is large and the second term on the righthand side of (4) is negligible in comparison with the first term. Therefore,

$$
\begin{equation*}
\partial u / \partial n \approx-j k_{0} \mathbf{u} \bar{n} \cdot \nabla L \tag{5}
\end{equation*}
$$

[^2]Let be a unit vector in the direction of the ray at the chosen point shom in Figure IV-1. If the wavefronts associated with the rays through the aperture are the surfaces $l(x, y, z)$ equal to a constant, then the required phase diftribution ie $k_{e} L(x, y, 0)$. Thus,

$$
\begin{equation*}
\mathbf{K}_{\cdot} \nabla_{L}=\mathbf{L} \mathbf{E} \tag{6}
\end{equation*}
$$

where k is the wave number and equal to $2 \pi / \lambda$ where λ is the wavelength at the aperture. Applying this results to (5) yields,

$$
\begin{equation*}
\partial u / \partial n \approx-j k u n \cdot E \tag{7}
\end{equation*}
$$

where the quantity $(\mathbf{m}$. F) is the cosine of the angle between the and \bar{B} unit vectors.

With regard to $\partial Y / \partial n$, it is observed from (3) that,

$$
\partial v / \partial n=\bar{n} \cdot \nabla v=(d / d r)(\exp -j k r)(1 / r)\left(\bar{n} \cdot \bar{r}_{2}\right)
$$

or,

```
#v/*n=-(1/r}\mp@subsup{r}{}{2})(exp-jkr)(jkr+1)(\hat{n}\cdot\mp@subsup{r}{1}{})
```

In the Fraunhofer region or the far-zone, the distance r is large compared to a wavelength for all points on the surface so that the last tern in the above equation is negligible in comparison to the first. We then have, ag an approximation valid in the far-zone, that,

$$
\begin{equation*}
\partial \psi / \partial n \approx j k[e x p-j k r](1 / r)\left(\bar{n} \cdot \bar{r}_{2}\right) \tag{8}
\end{equation*}
$$

where the quantity (\bar{n}, F_{1}) representa the cosine of the angle between the normal unit vector \bar{n} and F_{1}, the unit vector from the point on the aperture to the field point $P(x, y, z)$.

With the aid of Equations (2), (3), (7), and (8), Equation (1) can be written as,

$$
\begin{equation*}
u_{p}(x, y, z)=(j k / 4 \pi) \int_{A}(A / r)[\exp -j k(r+L)]\left(\bar{B}+\bar{r}_{1}\right) . \bar{n} d S \tag{9}
\end{equation*}
$$

From Figure IV-1, it can be seen that,

$$
\begin{equation*}
\overline{\mathbf{r}}=R \bar{R}_{2}-\bar{\rho}, \tag{10}
\end{equation*}
$$

from which it follows,

$$
r=(\bar{F} \cdot \bar{F})^{1 / 2}=\left(R^{2}+\rho^{2}-2 R \bar{R}_{1} \cdot \bar{\rho}\right)^{1 / 2},
$$

or,

$$
\begin{equation*}
r=\left(R^{2}+\rho^{2}\right)^{1 / 2}\left[\left(1-2 R \bar{R}_{1}\right) /\left(R^{2}+\rho^{2}\right)\right]^{1 / 2} \tag{11}
\end{equation*}
$$

In the far-zone field the customary approximations are made with regard to distance. For R very large $r \approx \mathbb{R}-\bar{R}_{1} . \bar{p}$ and $\bar{F}_{1} \approx \bar{R}_{1}$. Equation ($\left.\mathbf{~}\right)$,
therefore, becomes,

$$
\begin{equation*}
u_{p}=(j k / 4 \pi R)[e x p-j k R] / A(x, y, z)\left[e x p-j k\left(L(x, y, z)-\bar{n}_{1}, \bar{p}\right)\right] \tag{12}
\end{equation*}
$$

$$
\pi \cdot\left[\bar{R}_{2}+\bar{E}\right] d s .
$$

4. PHASE FUNCTIOM

Attention will now be directed to the phase function $L(x, y, z)$ appearing in Equation (12). Since the reflector aurface is distorted parabeloid then,

$$
\begin{equation*}
\bar{p}=\bar{p}_{0}+\Delta \bar{p} \tag{13}
\end{equation*}
$$

chere.

$$
\begin{equation*}
\bar{p}_{0}=\bar{i} x+\bar{j} y+\bar{k}\left(x^{2}+y^{2}\right) / 4 r \tag{14}
\end{equation*}
$$

represente the undiatorted surface and,

$$
\begin{equation*}
\Lambda_{\overline{0}}=\vec{I} \Delta x+\vec{j}+\overline{\mathbf{x}} \Delta z \tag{15}
\end{equation*}
$$

Is the distortion vector relative to the undistorted eurface.
The unit vector, \bar{R}_{1}, is conveniently represented by the spherical cordinates θ and ϕ of Figure IV-1 as,

$$
\begin{equation*}
\overline{\mathbf{R}}_{1}=\overline{\mathbf{i}}(\cos \theta)(\cos \theta)+\bar{j}(\cos \theta)(\sin \theta) \mathbf{x}(\operatorname{sia} \theta) \tag{16}
\end{equation*}
$$

The location of the primary source field is given by,

$$
\begin{equation*}
\bar{f}=\mathbf{f} \bar{k}+\Delta \bar{f} \tag{17}
\end{equation*}
$$

where,

$$
\begin{equation*}
\Delta \bar{f}=\bar{i} \Delta x_{f}+\bar{j} \Delta y_{f}+\bar{k} \Delta z_{f} \tag{18}
\end{equation*}
$$

represents the feed misalignment and f is the local length of the paraboloid measured in the z-direction.

Since,

$$
\begin{equation*}
L \bar{s}=\overline{\mathbf{F}}-\overline{\boldsymbol{p}}, \tag{19}
\end{equation*}
$$

it follows that,

$$
\begin{equation*}
L=\left(f^{2}+p^{2}-2 \bar{f} \cdot \bar{p}\right)^{1 / 2}, \tag{20}
\end{equation*}
$$

or with the aid of Equations (13), (14), (15), (17), and (18),

$$
\begin{align*}
L=1 & =\left[(x+\Delta x)^{2}+(y+\Delta y)^{2}+\left(x^{2} / 4 f+y^{2} / 4 f+\Delta z\right)^{2}\right. \\
& +\left(\Delta x_{f}\right)^{2}+\left(\Delta y_{f}\right)^{2}+\left(f+\Delta z_{f}\right)^{2}-2(x+\Delta x) \Delta x_{f} \tag{21}\\
& \left.-2(y+\Delta y) \Delta y_{f}-2\left(x^{2} / 4 f+y^{2} / 4 f+\Delta z\right)\left(f+\Delta z_{f}\right)\right]^{1 / 2} .
\end{align*}
$$

From (13) through (16) it follows that,

$$
\begin{aligned}
\bar{R}_{1} \cdot D= & (x+\Delta x)(\cos \theta)(\cos \phi)+(y+\Delta y)(\cos \theta)(\sin \phi) \\
& +\left(x^{2} / 4 r+y^{2} / 4 r+\Delta z\right) \text { sin } \theta .
\end{aligned}
$$

Let the phase function or the exponent of the exponential function (L - $\overline{\mathbf{R}}_{1}$ - $\overline{\text { O }}$) in the integral of Equation (12) be designated as $M(x, y)$. Then,

$$
\begin{align*}
M(x, y)= & {\left[(x+\Delta x)^{2}+(y+\Delta y)^{2}+\left(x^{2} / 4 f+y^{2} / \Delta f+\Delta z\right)^{2}\right.} \\
+ & \left(\Delta x_{f}\right)^{2}+\left(\Delta y_{f}\right)^{2}+\left(f+\Delta x_{f}\right)^{2}-2(x+\Delta x) \Delta x_{f} \\
& \left.-2(y+\Delta y) \Delta y_{f}-2\left(x^{2} / 4 f+y^{2} / 4 r+\Delta x\right)\left(f+\Delta x_{f}\right)\right]^{1 / p} \tag{23}\\
& -(x+\Delta x)(\cos \theta)(\cos \theta)-(y+\Delta y)(\cos \theta)(\sin \phi) \\
& -\left(x^{2} / 4 f+y^{2} / 4 f+\Delta z\right) \sin \theta
\end{align*}
$$

5. THE UNIT VECTORS \bar{n} and \bar{E}

The unit vector \bar{E} frow (19), wing (13), (14), (15), (17), and (18), is,

$$
\begin{align*}
\bar{B} & =(1 / L)\left\{\bar{i}\left(x+\Delta x-\Delta x_{f}\right)+\bar{j}\left(y+\Delta y-\Delta y_{f}\right)\right. \\
& \left.+E\left(x^{2} / 4 f+y^{2} / 4 f-r+\Delta z-\Delta z_{f}\right)\right\} . \tag{24}
\end{align*}
$$

To determine the unit vector \bar{n}, normal to the distorted surface, we start by intersecting the paraboloid $z=x^{2} / 4 f+y^{2} / 4 f$ by the planes $x=x_{m}, y=y_{n}$ to obtain the parabolas of intersection $4 f z-y^{2}-x_{m}^{a}=0$, and $4 f z-x^{2}-y_{n}^{2}=0$. Lines tangent to these parabolas define a plane tangent to the paraboloid. Let us denote \bar{p} and \bar{q} as unit vectors tangent to the two intersected parabolas. The component representation of these vectors are,

$$
\begin{align*}
& \overline{\mathbf{p}}=\left[\bar{i}+\left(x_{\mathrm{m}} / 2 f\right) \bar{k}\right]\left[1+\left(x_{m} / 2 f\right)^{2}\right]^{1 / 2}, \tag{25}\\
& \bar{q}=\left[\bar{j}+\left(y_{n} / 2 f\right) \bar{k}\right]\left[1+\left(y_{n} / 2 f\right)^{2}\right]^{-1 / 2} \tag{26}
\end{align*}
$$

From the structure analysis, the angular distortion $\Delta \phi_{p}$ in the \bar{p} direction, and $\Delta \phi_{q}$ in the \bar{q} direction are to be determined. As a result, the unit vector \bar{p} and \bar{q} are modified as,

$$
\begin{align*}
& \overline{\mathbf{p}}^{*}=\overline{\mathbf{p}}+[(\overline{\mathbf{p}} \times \overline{\mathbf{q}}) /|\overline{\mathbf{p}} \times \overline{\mathbf{q}}|] \Delta \phi_{\mathbf{q}}, \tag{27}\\
& \overline{\mathbf{q}}^{*}=\overline{\mathbf{q}}+[(\overline{\mathbf{p}} \times \overline{\mathbf{q}}) /|\overline{\mathbf{p}} \times \overline{\mathbf{q}}|] \Delta \phi_{\mathbf{p}}, \tag{28}
\end{align*}
$$

The unit vector normal to the distorted surface is,

$$
\begin{equation*}
\bar{n}=\left(\bar{p}^{*} \times \overline{\mathbf{q}}^{*}\right) /\left|\overline{\mathbf{p}}^{*} \times \overline{\mathbf{q}}^{*}\right|, \tag{29}
\end{equation*}
$$

or in component form,

The components in (30), of (27) and (28), using (25) and (26), are,

$$
\begin{aligned}
p_{1}^{*} & =\left[1+x_{m}^{2} / 4 r^{2}\right]^{-1 / 2}-\left(x_{m} / 2 r\right) \Delta_{q}\left[1+\left(x_{m}^{2} / 4 r^{2}\right)\right. \\
& \left.+\left(y_{m}^{2} / 4 r^{2}\right)\right]^{1 / 2}
\end{aligned}
$$

$$
\begin{equation*}
p_{a}^{*}=\left(y_{n} / 2 f\right) \Delta A_{q}\left[1+\left(x_{n}^{2} / 4 r^{2}\right)+\left(y_{n}^{2} / 4 r^{2}\right)\right]^{1 / 2}, \tag{32}
\end{equation*}
$$

$$
p_{s}^{*}=\left(x_{m} / 2 f\right)\left[1+\left(x_{m}^{2} / 4 r^{2}\right)\right]^{1 / 2}
$$

$$
\begin{equation*}
+\Delta \phi_{q}\left[1+\left(x_{m}^{2} / 4 r^{2}\right)+\left(y_{n}^{2} / 4 r^{2}\right)\right]^{1 / 2}, \tag{33}
\end{equation*}
$$

$$
\begin{equation*}
q_{i}^{*}=-\left(x_{m} / 2 r\right) \Delta \phi_{p}\left[1+\left(x_{m}^{2} / 4 f^{2}\right)+\left(y_{n}^{2} / 4 f^{2}\right)\right]^{1 / 2} \text {, } \tag{34}
\end{equation*}
$$

$$
q_{a}^{*}=\left[1+y_{n}^{2} / 4 r^{2}\right]^{-1 / 2}-\left(y_{n} / 2 f\right) \Delta \phi_{p}\left[1+\left(x_{2}^{2} / 4 r^{2}\right)\right.
$$

$$
\begin{equation*}
\left.+\left(y_{n}^{2} / 4 f^{2}\right)\right]^{1 / 2} \tag{35}
\end{equation*}
$$

$$
\begin{aligned}
& \bar{n}=\left[\bar{i}\left(p_{2}^{*} \mathbf{q}_{3}^{*}-p_{3}^{*} q_{i}^{*}\right)+\bar{j}\left(p_{3}^{*} q_{i}^{*}-p_{i}^{*} q_{3}^{*}\right)\right. \\
& +\bar{E}\left(p_{i}^{*} q_{*}^{*}-p_{1}^{*} q_{i}^{*}\right]\left[p_{1}{ }^{*}+p_{p}^{*}+p_{3}^{*}\right) \\
& \left.\left(q_{1}{ }^{*}+q_{3}^{*}{ }^{*}+q_{3}{ }^{\circ}\right)-\left(p_{1}^{*} q_{1}^{*}+p_{3}^{*} q_{3}^{*}+p_{3}^{*} q_{3}^{*}\right)^{2}\right]^{1 / 2} .
\end{aligned}
$$

$$
\begin{align*}
q_{3}^{*} & =\left(y_{n} / 2 f\right)\left[1+\left(y_{n}^{2} / 4 f^{2}\right)\right]^{-2 / 2} \\
& +\Delta \theta_{p}\left[1+\left(x_{m}^{2} / 4 f^{2}\right)+\left(y_{n}^{2} / 4 f^{2}\right)\right]^{-1 / 2} \tag{36}
\end{align*}
$$

6. normalized radiation intensity

Since only the relative field potential is of interest the factor

 before the integral in (12) can be set equal to unity, and the integral can be written as,$$
\begin{align*}
\bar{u}_{p}= & \int_{A} A(x, y, z)[\operatorname{exp-jkM}(x, y, z)] \pi \cdot\left(\bar{R}_{1}+\bar{B}\right) \\
& {\left[1+\left(x_{m}^{2} / 4 f^{2}\right)+\left(y_{n}^{2} / 4 f^{2}\right)\right]^{1 / 2} d x d y } \\
= & \int_{A} A(x, y, z) \cos k M(x, y, z) \bar{n} \cdot\left(\bar{R}_{1}+\bar{s}\right) \\
& {\left[1+\left(x_{m}^{2} / 4 f^{2}\right)+\left(y_{n}^{z} / 4 f^{2}\right)\right]^{1 / 2} d x d y } \tag{37}\\
& -j \int_{A} A(x, y, z)[\sin k M(x, y, z)] \bar{n} \cdot\left(\bar{R}_{1}+\bar{B}\right) \\
& {\left[1+\left(x_{m}^{2} / 4 f^{2}\right)+\left(y_{n}^{2} / 4 f^{2}\right)\right]^{1 / 2} d x d y=U-j y, }
\end{align*}
$$

where,

$$
\begin{gather*}
\left.U=\int_{A} A(x, y, z) \Gamma \cos k M(x, y, z)\right] \bar{n} \cdot\left(\bar{R}_{1}+\bar{s}\right) \tag{38}\\
{\left[1+\left(x_{n}^{2} / 4 f^{2}\right)+\left(y_{n}^{2} / 4 f^{2}\right)\right]^{1 / 2} d x d y}
\end{gather*}
$$

and,

$$
\begin{align*}
& V=\int_{A}(x, y, z)[\sin k M(x, y, z)] n_{1}\left(\bar{n}_{1}+E\right) \tag{39}\\
& {\left[1+\left(x^{2} / 4 r^{2}\right)+\left(y_{n}^{2} / 4 r^{2}\right)\right]^{1 / 2} d x d y}
\end{align*}
$$

The magnitude of the normalized radiation intensity at the field point P (x, y, z) is therefore,

$$
\begin{equation*}
I=v^{2}+v^{2} \tag{40}
\end{equation*}
$$

7. NUMERICAL INTEGRATION

The coordinates of the structural junctions $x_{m} ;(m=1,2, \ldots N)$ and $y_{n} ;(n=1,2, \ldots N)$ are given as solutions of,

$$
\begin{align*}
& n \ell / f=\log _{e}\left[x_{n} / 2 f+\left(1+x^{2} / 4 r^{2}\right)^{1 / 2}\right]+\left(x_{n} / 2 f\right)\left(1+x_{n}^{2} / 4 r^{2}\right)^{1 / 2}, \tag{41}\\
& n \ell / f=\log _{e}\left[y_{n} / 2 f+\left(1+y_{n}^{2} / 4 r^{2}\right)^{1 / 2}\right]+\left(y_{n} / 2 f\right)\left(1+y_{n}^{2} / 4 f^{2}\right)^{1 / 2} . \tag{42}
\end{align*}
$$

Equations (38) and (39) asst be evaluated for each of the structural junctions.
a. Gaussian Method of Integration.

For the assumed integral,

$$
\begin{equation*}
I=\int^{b} F(x) d x \tag{43}
\end{equation*}
$$

one applies the transformation,

$$
\begin{equation*}
x=(b-a) / 2 \xi+(b+a) / 2 \tag{44}
\end{equation*}
$$

obtaining,

$$
\begin{equation*}
I=[(b-a) / 2] \int_{-1}^{+1} F[\xi(b-a) / 2+(b+a) / 2] d \xi . \tag{45}
\end{equation*}
$$

Defining the quantity,

$$
\begin{equation*}
(b-a) / 2 F[\xi(b-a) / 2+(b+a) / 2]=G(\xi) \tag{46}
\end{equation*}
$$

then,

$$
\begin{equation*}
I=\int_{-1}^{+1} G(\xi) d \xi \tag{47}
\end{equation*}
$$

For the sequence $\left(x_{i}\right) i=1,2, \ldots N,\left(y_{i}\right)$, exists such that,

$$
\begin{equation*}
y_{i}=F\left(x_{i}\right),(i=1,2, \ldots N) \tag{48}
\end{equation*}
$$

From these sequences, two new sequences $\left(\xi_{i}\right) i=1,2, \ldots N$ and (η_{i}) $i=1,2, \ldots \mathrm{~N}$ can be defined as,

$$
\begin{align*}
& \xi_{i}=\left[2 x_{i}-(a+b)\right] /(b-a) \tag{49}\\
& \Pi_{i}=(b-a) y_{i} / 2=G\left(\xi_{i}\right) \tag{50}
\end{align*}
$$

All values 5_{i} obey the inequality,

$$
\begin{equation*}
-1 \leq \xi_{2} \leq 5_{2} \leq \ldots \leq 5_{M} \leq+1 \tag{51}
\end{equation*}
$$

In order to express $G(5)$ by an approximation, which assumes values ${ }^{7}$ i at s_{i}, one can apply the Lagrange polynomial.

$$
\begin{equation*}
G(\xi) \approx \sum_{i=1}^{M} \pi_{i} \phi(\xi) /\left(\xi-\xi_{i}\right) \phi^{\prime}\left(\xi_{i}\right) \tag{52}
\end{equation*}
$$

where $n(\xi)$ is a polynomial of No order with zeros at $\xi=5$ for $i=1,2, \ldots$, suck as,

$$
\begin{equation*}
\phi(\xi)=\prod_{j=1}^{M}\left(5-s_{j}\right) . \tag{53}
\end{equation*}
$$

Substituting Equation (52) into (47) yields,

$$
\begin{equation*}
I=\sum_{i=1}^{N} \pi_{i} p_{i} \tag{54}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{i}=\left[1 / \phi^{\prime}\left(\xi_{i}\right)\right]_{-1}^{+1}\left[\sigma(\xi) /\left(\xi-\xi_{i}\right)\right] d \xi \tag{55}
\end{equation*}
$$

are the weights and are independent of $G(\xi)$. These weights, p_{i}, can be computed for a specific set of $\left(\xi_{i}\right)$ and used for different integrands.

The integrand of (55) can be written as,

$$
\begin{equation*}
\phi(\xi) /\left(\xi-\xi_{i}\right)=\left(\xi-\xi_{1}\right)\left(\xi-\xi_{2}\right) \ldots .\left(5-\xi_{i-1}\right)\left(5-\xi_{i+1}\right) \ldots\left(\xi-\xi_{i}\right) \tag{56}
\end{equation*}
$$

or after performing multiplication,

$$
\begin{equation*}
\sigma(\xi) /\left(5-\xi_{1}\right)+5^{N-1}+a_{1} \xi^{N-2}+a_{2} \xi^{N-2}+\cdots+a_{N-8} 5+a_{N-1}, \tag{57}
\end{equation*}
$$

where,

$$
\begin{align*}
& a_{1}=-\sum_{\substack{j=1 \\
j \neq i}}^{N} \xi_{j}=-\left[\xi_{1}+\xi_{2}+\cdots+\xi_{i-1}+\xi_{i+1}+\cdots \xi_{N}\right] \\
& a_{1}=-\sum_{i=1}^{N} c_{1}\left(5_{1}, \ldots 5_{i-1}, 5_{i+1}, \ldots \xi_{N}\right), \tag{58}\\
& a_{2}=\xi_{1} \xi_{2}+\xi_{1} \xi_{3}+\cdots+\xi_{1} \xi_{i-1}+\xi_{1} \xi_{i+1}+\cdots \xi_{1} \xi_{N} \\
& +\xi_{8} \xi_{3}+\xi_{8} \xi_{4}+\cdots+\xi_{3} \xi_{i-1}+\xi_{2} \xi_{i+1}+\cdots+\xi_{2} \xi_{N} \\
& +\xi_{3} \xi_{4}+\xi_{3} \xi_{5}+\cdots+\xi_{3} \xi_{i-1}+\xi_{3} \xi_{i+1}+\ldots \xi_{3} \xi_{N} \tag{59}\\
& +\ldots \ldots+\xi_{N-1} \xi_{N}=\sum^{\prime} c_{a}\left(\xi_{1}, \xi_{2}, \ldots \xi_{i-1}, \xi_{i+1}, \ldots \xi_{N}\right), \\
& a_{3}=\left[\xi_{1} \xi_{3} \xi_{3}+\xi_{1} \xi_{2} \xi_{4}+\cdots+\xi_{1} \xi_{3} \xi_{i-1}+\xi_{1} \xi_{2} \xi_{i+1}+\cdots\right. \\
& +\cdots \xi_{1} \xi_{2} \xi_{N}+\xi_{2} \xi_{3} \xi_{4}+\xi_{2} \xi_{3} \xi_{5}+\cdots+\xi_{3} \xi_{3} \xi_{i-1} \\
& \left.+\xi_{2} \xi_{3} \xi_{i+1}+\cdots+\xi_{3} \xi_{3} \xi_{N}+\cdots+\xi_{N-2} \xi_{N-1} \xi_{N}\right] \tag{60}\\
& =\sum^{\prime} c_{3}\left(\xi_{1}, \xi_{a} \ldots \xi_{i-1}, \xi_{i+1}, \cdots \xi_{N}\right),
\end{align*}
$$

$$
\begin{equation*}
a_{M}=(-1)^{M} s_{i} \xi_{3} \xi_{3} \ldots \xi_{i-1} s_{i+1} \ldots s_{N} \tag{61}
\end{equation*}
$$

The general coefficient is given at,

$$
\begin{equation*}
a_{v}=(-1)^{v} \Gamma^{\prime} c_{v}\left(\xi_{i}, \xi_{2}, \ldots \xi_{i-1} \xi_{i+1} ; \ldots \xi_{1}\right) \tag{62}
\end{equation*}
$$

where,

$$
\begin{equation*}
\Gamma^{\prime} c_{v}\left(\xi_{1}, \xi_{i}, \ldots \xi_{i-1}, \xi_{i+1}, \ldots . \xi_{i}\right) \tag{63}
\end{equation*}
$$

represents the one of products of all elements 5 except \mid i belonging to the combination of tho is class without repetition. The prime at the right of the curation symbol indicates that the value $\overline{5}_{i}$ mat be excluded. Integration of (57) between $\xi=-1$ and $\xi=+1$ results in,

$$
\begin{aligned}
& \int_{-1}^{+1}\left[\phi(\xi) /\left(\xi-\xi_{i}\right)\right] d \xi=\left[1-(-1)^{n}\right] / N+\left[a_{2} /(N-1)\right]\left[1-(-1)^{N-1}\right] \\
&+\left[a_{1} /(N-2)\right]\left[1-(-1)^{n-1}\right]+\cdots+\cdots+2 a_{N-5} / 5 \\
&+2 a_{n-3} / 3+2 a_{N-1}
\end{aligned}
$$

Because,

$$
\begin{equation*}
\phi^{\prime}\left(\xi_{i}\right)=\xi_{i}^{N-1}+a_{1} \xi_{i}^{N-a}+a_{2} \xi_{i}^{N_{i}^{-2}}+\cdots+a_{n-2} \xi_{i}+a_{M-1} \tag{65}
\end{equation*}
$$

$$
\begin{align*}
p_{i} & =\left\{\left[1-(-1)^{N}\right] / N+\left[a_{1} /(N-1)\right]\left[1-(-1)^{N^{-1}}\right]\right. \\
& \left.+\ldots\left[2 a_{N-3}\right] / 3+2 a_{N-1}\right\} /\left[\xi_{i}^{N-1}+a_{2} \xi_{i}^{N-2}+\cdots a_{N-1}\right] . \tag{66}
\end{align*}
$$

If (66) is inserted in (54) and the sumation is performed the integral I, in (43), is evaluated.
b. Numerical Evaluation.

In order to evaluate the integrals in (38) and (39) one variable (e.g., $x=x_{n}$) is held constant and the integration is performed over the other variable by means of (54) and (66).

Integrale U and V can be written in short form as,

$$
\begin{align*}
& x=x_{N}, y=+\bar{y}(x) \tag{67}\\
& \iint_{x=-x_{N}, y=-\bar{y}(x)}^{y(x, y) d x d y,}
\end{align*}
$$

where,

$$
\begin{align*}
\vartheta(x, y) & =A\left(x, y, x^{2} / 4 f+y^{2} / 4 f\right) \sin _{\sin }^{\cos }\left[k M\left(x, y, x^{2} / 4 f+y^{2} / 4 f\right)\right] \\
& \bar{n} \cdot\left(\bar{R}_{1}+\bar{B}\right)\left[1+x^{2} / 4 f^{2}+y^{2} / 4 f^{2}\right]^{1 / 2}, \tag{68}
\end{align*}
$$

and $\pm \bar{y}(x)$ are the boundary values of y for a given value of x.
For a specific value of $x=x_{\ell}$, assume a sequence $\left(x_{i}\right)$ along the $y=0$ axis defining the division points of the structural junctiong in the
x-direction. Along $x=x_{2}$ the surface is divided alons the y-direction. These points are defined by the sequence $y_{i}(i=1,2,3, \ldots$) as anction of x_{ℓ}

Uaing (5A), (67) can be aritten,

$$
\int_{-x_{N}}^{+x_{N}} \int_{-\bar{y}(x)}^{+\bar{r}(x)} \nabla(x, y) d x d y=\int_{-x_{N}}^{+x_{N}} \sum_{i=1}^{T} n_{i}\left(x_{i}\right) p_{i}\left(x_{i}\right) d x \text {, }
$$

where,

$$
\begin{equation*}
\eta_{i}\left(x_{i}\right)=\left(x_{i}, y_{i}\right) \tag{70}
\end{equation*}
$$

and $p_{i}\left(x_{\ell}\right)$ for $(i=1,2,3, \ldots .1)$ are the weighte. For each x_{i} there are $K(a)$ weights.

To complete the integration,

$$
\begin{align*}
& \int_{-x_{N}}^{+N} \sum_{i=1}^{N} \eta_{i}\left(x_{i}\right) p_{i}\left(x_{\ell}\right) d x=\sum_{i=1}^{N} \sum_{i=1}^{N(1)} n_{i}\left(x_{\ell}\right) p_{i}\left(x_{i}\right) p_{i} \\
& =\sum_{\ell=1}^{N} \sum_{i=1}^{x(\ell)} Y\left(x_{\ell}, y_{i}\right) p_{i}\left(x_{\ell}\right) p_{\ell}, \tag{71}
\end{align*}
$$

Where P_{L} are the weights for the division points along the x-axis.
The weight matrix,

$$
\begin{equation*}
p_{i}\left(x_{i}\right)^{p_{2}}=w_{i L} \tag{72}
\end{equation*}
$$

is an urray of numbers obtained as the product of the 2 侐 weight of the integration interval along the Y-axis and the if weight of the integration interval along the axis $x=x_{\ell}$. The etructural junction is designated by ($\ell, i)$. The value $\quad\left(x_{\ell}, y_{i}\right)$ is the integrand at the point (ℓ, i). The approximation for the double integral (67) therefore is the sum of all products formed by the integrand at the structural junctions and the associated element of the weight matrix.
$W_{i \ell}$ remains constant for an antenna with given focal length, diameter, and a given number of structural junctions at which the integrala (38) and (39) are to be evaluated. The integrand $\bar{y}\left(x_{\ell}, y_{i}\right)$ however changes as a function of the distortions in the aperture.
8. COMPUTATIONAL PROCEDURE

For the sets of numerical values given in the RATIO First Quarterly Report GD/A63-0856:
a. Coordinates and Deflections.

1. Compute and store values of x_{m} and y_{n} from (41) and (42).
2. Compute and store $\Delta x, \Delta y, \Delta z$ for each $\left(x_{m}, y_{n}\right)$. $\Delta x, \Delta y, \Delta z$ are defined in (15). Assume $\Delta x_{f}=\Delta y_{f}=\Delta z_{f}=0$ in (18).
3. Compute and store $\Delta \phi_{p}$, and $\Delta \phi_{q}$, as defined for (27) and (28), for each ($x_{m^{\prime}} y_{n}$). Fron the structural analysis, the components (in the x, y, z direction of the angular deflection at each (\mathbf{m}, \mathbf{n}) structural junction are $\phi_{\mathrm{xm}, \mathrm{n}}, \phi_{\mathrm{za}, \mathrm{n}}$, and

$$
\begin{aligned}
& \Delta \phi_{p}=\left[\phi_{x m, n}+\phi_{z m, n}\left(x_{n} / 2 f\right)\right]\left[1+\left(x_{n} / 2 f\right)^{2}\right]^{-1 / 2} \\
& \Delta \phi_{q}=\left[\phi_{y m, n}+\phi_{z m, n}\left(y_{n} / 2 f\right)\right]\left[1+\left(y_{n} / 2 f\right)^{2}\right]^{-1 / 2}
\end{aligned}
$$

b. Weight Punctions.

1. For each value of $x_{\ell}=x_{\text {. }}$ deternine and store $K(f)$, as defined for (69). $\mathrm{K}(4)$ are the number of structural junctions at each $x_{2}=x_{m}$. There are 21 values of x_{2}.
2. $\operatorname{For} t=-\operatorname{in}(49), 5_{i}=y_{i} / f$ and $b=y_{K(L)}$, bere $y_{K}(\ell)$ are the maxime values for y for each x_{i}. Compute and store $5_{y i}(\ell)=$ $y_{i}(1) / Y_{K(1)}$ for each value of $i=-K,-(K-1),-(K-2),-(K-3) \ldots$ $+(K-2)+(K-1)+K$ and each corresponding value of $\ell=-N,-(N-1)$, $-(\mathrm{n}-2) \ldots(\mathrm{N}-2),+(\mathrm{N}-1),+\mathrm{N}$. (Note $\mathrm{I}=\mathrm{K}(\ell)$ from item 1 in Section 8b.)
3. Unine values of $5_{y i}$ (\mathcal{A}) from above compute and store $A_{1 y}, A_{y_{y}} \ldots$ A_{Hy} from (58) to (61).
4. Compute and store $5_{x i}=x_{i} f_{\ell}$ max. and $A_{1 x}, A_{2 x}, \cdots A_{N x}$ from (58)
to (61) for each $\ell=-N,-(N-1) \ldots+(N-1),+N$.
5. Compute and store $p_{i y}, p_{i x}$, and $\boldsymbol{W i f}_{\text {if }}$ from (66) and (72) using the results of item 3 and 4. (Note $p_{i}\left(x_{i}\right)=p_{i y}$, and $p_{i}=p_{i x}$.)

c. Radiation Function

1. Usins the results of items 1 to 3 in Section 8 , compute and store values for $M\left(x^{\prime}, y_{n}\right)$ from (23). θ and ϕ are variables.
2. Dsing the ΔD_{p} and $\Delta \phi_{q}$ fron item 3 in Section 8a compute and store pi, $p_{3}^{*}, P_{3}^{*}, q^{*}, q^{*}, q_{s}^{*}$ from (31) to (36).
3. From (24), (30) and (22),

$$
\begin{aligned}
& \bar{n} \cdot\left(\bar{R}_{1}+\bar{B}\right)=\left[\cos \theta \cos \phi-(k / l)\left(x_{n}+\Delta x-\Delta x_{f}\right)\right] \\
& \left(p_{2}^{*} q_{3}^{*}-p_{3}^{*} q_{k}^{*}\right) / A+\left[\cos \theta \sin \theta-(k / l)\left(y_{n}+\Delta y-\Delta u_{f}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left(p_{3}^{*} q_{1}^{*}-p_{1}^{*} q_{3}^{*}\right) / A+\left[\sin \theta-(k / \ell)\left(x_{2}^{2} / 4 f+y_{n}^{2} / 4 f+\Delta y-\Delta y_{f}\right)\right] \\
& \left(p_{1}^{*} q_{3}^{*}-p_{2}^{*} q_{1}^{*}\right) / A,
\end{aligned}
$$

where,

$$
\begin{aligned}
A & =\left[\left(p_{1}^{* 2}+p_{2}^{* 2}+p_{3}^{* 2}\right)\left(q_{1}^{* 2}+q_{2}^{* 2}+q_{3}^{* 2}\right)\right. \\
& \left.-\left(p_{1}^{*} q_{1}^{*}+p_{2}^{*} q_{3}^{*}+p_{3}^{*} q_{3}^{*}\right)^{2}\right]^{1 / 2} .
\end{aligned}
$$

Compute and store $\bar{n} \cdot\left(\bar{x}_{1}+\bar{s}\right)$ from above and $M\left(x_{n}, y_{n}\right)$ from (23), for $(k / \ell)=1$ and $\Delta x_{\mathbf{f}}=\Delta y_{f}=\Delta y_{f}=0$.
4. Take $A\left(x, y, x^{2} / 4 f+y^{2} / 4 f\right)=1$ and using results of item 3 in Section $8 c$, compute and store $4\left(x_{m}, y_{n}\right)$ from (68).
5. Evaluate, tabulate and plot (71), using results of items 4 and 1 in Section Bc. The equations are to be evaluated at, $\theta=-\pi$, $-(\pi-0.05 \pi),-(\pi-0.10 \pi), \ldots+(\pi-0.10 \pi),+(\pi-0.05 \pi), \pi$ and $t=-\pi,-(\pi-0.05 \pi),-(\pi-0.10 \pi), \ldots+(\pi-0.05 \pi)$, T. The SC 4020 is used for the plotting.

APPENDIX A - STRUCTURAL ANALYSIS

(By J. R. Lloyd and K. C. Valanis)

1.0 GINTRRAL.

In Sections III and IV of this study, use is made of atructural analyais program, currently available in the General Dynamice computer library. The following is a brief outline of the theory underlying this progran as it has been updated for application to RATIO structures. 1.1 GENERAL APPROACH

The analysis method is based on an extension of the well knomm matrix displacement method for the analysie of complex frames. It hat the following features:

1. Tue truaf andivais aylics to an arbitrary threedimensional structure having pinned, elastic, or rigid joints.
\therefore Tile six degrees of freeton at the two ends of the truss members are used to describe structural deformations. shear panels may be accomodated in the analysis.
2. Loads in any of the six degrees of freedom may le introduced at any point on the structure.
3. Curved truss riembers with non-uniform cross sections can be handled, and there is no theoretical limit on the number of members meeting at a joint. (Straight meribers with constant cross sections will Le assumed.)
4. Account 1 ay be taken of thermal loads and roments, due to temperature fields.

The matrix displacement method is particularly applicable to fatio antenna structures in which displacements are the important unknowns. It is also of great value in conputing quasistatic aperture deformation patters fron time-varying loads and for parameteric studies of loads created by the attitude control system.

The analysis has been programed for the 7090 computer, and is a catalogued program at General Dynamics/Astronautics.

Theoretically, the complexity of a structure that can le analyzed on the computer is limited by the computer memory and structural symmetry. The greater the symmetry the greater are the number of structural joints that can be analyzed. At present, a structure with as many as 200 nonsymmetrical joints is being handled. This is adequate for the highly redundant structural arrangement in the full aperture RATIO antennas.

The following assumptions apply to the analysis,

1. The component elements of the structure are straight beams.

ـ. The beam cross-section and length of the beam centroidal axis before and after bending are the same.
3. Shear deformation is small and negligible.
4. Structural equilibrium is not altered by deformation in the structure.
5. The reaction forces and torques are applied at the structural junctions. The mass of the structure is subdivided into lumped masses located at the structural junctions.

2.0 STIFFNESS DETERMINATION*

2.1 STTFFNESS MATRTX OI A SINGIS ELENENT -- Consider an aggregate atructure consisting of straight uniform elements that are capable of withstanding direct load, shear, bending, and torsion. An element or truss member in this stiucture is arbitrarily orientated with respect to fixed reference system of axis, X, Y, Z.
let the axis of the element and the two principal aves of its cross-section define a "local" system of axes denoted by $x, y, z . \quad$ (i.e., one of the local axes is coincident with the longitudinal axis of an element.) Three displacements and three rotations with respect to these axes at each end of the element, indicated in figure 2 (a), completely define the state of deformation of the element. When the structure consisting of many elements is considered, the numerical designations in Figure 2 (b) will be used. In Figure 1 the vectors may represent either displacements or forces, and the right hand screw rule is adopted for the rotation or moments.

For a single member the following expression may the written with respect to the local eyntem:

$$
\begin{equation*}
(p)=(k)(u) \tag{1}
\end{equation*}
$$

where (p) is a vector or a 12 column matrix of the force, (u) is a 12 column matrix of the displacements, and (k) is a 12-by-12 stiffess matrix.

[^3]

Fig. A-1. Designations for dieplacementa at twe ende of an element.

A vector in the reference or fixed system can be transformed to

 the local system by$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{lll}
1_{1} & m_{1} & n_{1} \\
1_{2} & m_{2} & n_{2} \\
1_{3} & m_{3} & n_{3}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

where $1, m$, and n are the direction cosines. From this we obtain,

Fig. A-2. Stiffness matrix of generic element.

Or, in matrix form:

$$
\begin{equation*}
(u)=(c)(u) \tag{4}
\end{equation*}
$$

Where (C) ia a transformation matrix between the "fixed" and "local" axem.

Let (P) be the forces defined with respect to the fixed systems, then

$$
\begin{equation*}
(P)=(C) \cdot(p) \tag{5}
\end{equation*}
$$

where the prime denoten transposition.

From the principle of invariance of the work,

$$
\begin{equation*}
(p)^{\prime}(u)=(P)^{\prime}(0) \tag{6}
\end{equation*}
$$

On qubstituting Pqu. (4) and (5) in (1) or (6) تe get

$$
\begin{equation*}
(P)=(C) \cdot(k)(c)(v) \tag{7}
\end{equation*}
$$

or
$(P)=(L)(U)$.
(L) is the stiffness matrix of the element with
respect to the fixed coordinate systen and is found from the expression

$$
\begin{equation*}
(L)=(C) \cdot(L)(C) \tag{9}
\end{equation*}
$$

2.2 STIFFNESS MATRIX OF A BAY -- The etructure is divided into bays. The aggregate stiffess of bay is identified with the stiffnese of the elements.

Consider a bay in Fig. 3 that consista of six elements, forming a pyramid with 3 joints. The deformation of this bay is defined by 24 displacements and therefore a $24-b y-24$ atiffness matrix. The numerical scheme in Fis. 4 uses circled numbers to identify elements and ordinary numbers to identify displacements.

Let the displacement matrix of the bay be denoted by $\left(U_{b}\right)$ and the displacement matrix of element j by $\left(U_{j}\right)$, then for one element,

$$
\begin{equation*}
\left(U_{j}\right)=\left(a_{j}\right)\left(U_{b}\right) \tag{10}
\end{equation*}
$$

where $\left(a_{j}\right)$ ia a $24-b y-12$ transformation matrix.

Fig. A-3. An elementary bay.

The load relation takes the form:

$$
\begin{equation*}
\left(P_{b}\right)=\left(a_{j}\right) \cdot\left(P_{j}\right), \tag{11}
\end{equation*}
$$

hence the etfifness of the elenent referred to the bay

$$
\begin{equation*}
\left(L_{j b}\right)=\left(n_{j}\right) \cdot\left(L_{j}\right)\left(a_{j}\right) \tag{12}
\end{equation*}
$$

Therefore, the total stiffness matrix (X) of the bay is given by

$$
\begin{equation*}
\text { (X) }=\sum_{j=1}^{m}\left(1_{j b}\right) \tag{13}
\end{equation*}
$$

where is the number of elenents in the bay.
Dy the above procedure the atiltness matrix of all the bays can be compated.

3.0 METHOD OF ANALYSIS

The approach to the analysis is to divide the structure into simple bays. Once the atiffness matrices of all the bays have been obtained, the structure can be analyzed by taking each bay separately, geometrically eliminating the bay fron the structure, and incorporating its elastic effect in the adjacent bay. This procedure is repeated until only one bay is 1eft. The last bay is then analysed by equatins the dieplacements and forces at its joints with the displacements and forces of the adjacent bays.
3.1 MATHEMATICAL FORMULATION OF THE ANALYSIS - Let the bays be designated by the numerals (1), (2), ---(n-1), (n). Consecutively, numbered bays have comon boundaries.

Let $r^{(j)}, R^{(j)}$ and $X^{(j)}$ denote the displacement, force and stirfnems matrices respectively of the $j^{\text {th }}$ bas. Then.

$$
\begin{equation*}
R^{(j)}=K^{(j)_{r}(j)} \tag{14}
\end{equation*}
$$

Partitioning R, r, and K into components, b, on the interconnecting boundary, and components, r, on the rest of the bay,

$$
\begin{align*}
& R=\left[\begin{array}{l}
R_{b} \\
R_{r}
\end{array}\right], \tag{15}\\
& r=\left[\begin{array}{l}
r_{b} \\
r_{r}
\end{array}\right], \tag{16}
\end{align*}
$$

and

$$
K=\left[\begin{array}{ll}
\mathrm{K}_{\mathrm{bb}} & \mathrm{~K}_{\mathrm{br}} \tag{17}\\
\mathbf{K}_{r b} & \mathbf{K}_{r r}
\end{array}\right]
$$

Substituting Eqs. (15), (16), and (17) in Eq. (14),

$$
\left[\begin{array}{l}
r_{b}^{(j)} \tag{18}\\
r_{r}(j)
\end{array}\right]=\left[\begin{array}{ll}
K_{b b}(j) & K_{b r}(j) \\
K_{r b}(j) & K_{r r}(j)
\end{array}\right]-1\left[\begin{array}{l}
R_{b}(j) \\
R_{b}(j)
\end{array}\right]
$$

At the boundary of adjacent bays, equilibrium between externally applied and internal forces must be satisfied; therefore,

$$
\begin{equation*}
R_{b}^{(j)}+R_{b}(j-1)=R_{b}(j, j-1) \tag{19}
\end{equation*}
$$

where $R_{b}(j, j-1)$ are the external forces applied at the boundary joints.

Since compatibility of displacementa must also be satisfied at the boundary,

$$
\begin{equation*}
r_{b}^{(j)}=r^{(j-1)} \tag{20}
\end{equation*}
$$

From Eq. (18), (19), and (20), the following relatione may be derived.

$$
\begin{align*}
& R_{b}^{(j)}=R_{b}^{(j, j-1)}-Z_{b r}^{(j-1)}\left[K_{r r}^{(j-1)}\right]-1 R_{r}^{(j-1)} \tag{21}\\
& K_{b b}(j)=K_{b b}^{(j)}+K_{b b}(j-1)-K_{b r}(j-1)\left[X_{r r}(j-1)\right]-I_{L_{b}}(j-1) \tag{22}\\
& r_{r}^{(j-1)}\left[x_{r r}^{(j-1)}\right]-1\left[R_{r}^{(j-1)}-L_{r b}^{(j-1)} r_{b}^{(j)}\right] \tag{23}
\end{align*}
$$

Eqe. (21), (22), and (23) are uned iteratively to solve for all loads and diaplacements in the structure.

In addition to the above, expressions have been developed for evaluating the effects of thermal loads and loads that are not applied at the jointe. Computer programe are being written for varions structural configuratione that are applicable to the RATIO antenna. These programe account for conventional joiat loade and thermal loade.

4.0 TilmRal loading

Consider a typical member under thermal loading where the temperature is a function of the local coordinates x, y, z. Assume that the meaber is simply supported. The stress in the member is given by the expression,*

$$
\begin{equation*}
c_{y}=-E \propto T+\left(\mathrm{H}_{\mathrm{T}} / \mathrm{A}\right)+\left(\mathrm{H}_{T_{z}} / \mathrm{I}_{z}\right) x+\left(\mathrm{H}_{\mathrm{T}_{z}} / \mathrm{I}_{\mathrm{x}}\right) \mathbf{z} \tag{24}
\end{equation*}
$$

where,

$$
\begin{align*}
& P_{T}=\int_{A} E \sim T(x, y, z) d A \tag{25}\\
& M_{T z}=\int_{A} E * T(x, y, z) x d A, \tag{26}\\
& M_{T x}=\int_{A} E * T(x, y, z) z d A \tag{27}
\end{align*}
$$

The displacenents of the member can be calculated from,

$$
\begin{align*}
& v=(1 / E) \int_{0}^{L}\left(P_{T} / A\right) d y \tag{28}\\
& \left(d^{2} u / d y^{2}\right)=-\mathrm{M}_{T z} / E I_{z} \tag{29}\\
& \left(d^{2} w / d y^{2}\right)=-M_{T x} / \mathrm{FI} x \tag{30}
\end{align*}
$$

*Levy, R. S., Switzky, H.. Torray, M., Newman, M., and Meissner, C. J.. "A Survey of Structural Design Frohlems in a Combined Thermal and Load Lnvironment," Aeronautical Systems Division, Air Force Systems Command, U. S. Air Force, Wright-Yatterson Air Force Base, Ohio, Report 61-645, pp. 777 et. seq.

If axial expansion and rotation of the ends of the member are prevented forces are introduced. The axial end force is found from the expression,

$$
\begin{equation*}
1=(\Lambda / \mu) \int_{0}^{e}\left(P_{T} / \Lambda\right) d y \tag{31}
\end{equation*}
$$

In the $y z$ plane the moments $M_{1 x}$ and $M_{2 x}$ are such that the slopes at the ends of the element are zero. The additional moment distribution due to the end moments is

$$
\begin{equation*}
M_{x}=M_{1 x}+\left(M_{2 x}-M_{1 x}\right) y / \ell \tag{32}
\end{equation*}
$$

Hence:

$$
\begin{equation*}
d^{2} / d y^{2}=-\left[M_{x}+H_{1 x}+\left(M_{2 x}-M_{1 x}\right) y / l\right] / \mathrm{EI}{ }_{x} \tag{33}
\end{equation*}
$$

or

$$
w=\int_{0}^{y} \int_{0}^{y} H_{T x} d y d y+\left(M_{1 x} y^{2} / 2\right)+\left(M_{2 x}-M_{1 x}\right) y^{3} / \ell(3)
$$

Where $M_{1 x}$ and $M_{2 x}$ can be found from the boundary conditions,

$$
\begin{align*}
& w=0, y=L \tag{34}\\
& d w / d y=\bullet, y=L
\end{align*}
$$

M_{12} and $\mathrm{M}_{2 \mathrm{z}}$ may be found by a similar argument.
For a uniform temperature variations along the length of a member,

$$
\mathbf{P}=\mathbf{P}_{\mathbf{T}}
$$

$$
\begin{align*}
& M_{1 x}=-M_{T x}, \tag{36}\\
& M_{2 x}=-N_{T x}, \tag{37}\\
& M_{1 z}=-M_{T z}, \tag{38}\\
& M_{L_{z}}=-M_{T z}, \tag{39}
\end{align*}
$$

The forces and torques exerted by the element on the joints is shown in Figure 4,

FIGURI: A-4
Forces of thermal loading
and give rise to the matrix

$$
(F)=\left(\begin{array}{llllllllllll}
0 & -P_{T} & 0 & M_{1 x} & 0 & { }^{-M_{1 z}} & 0 & P_{T} & 0 & -M_{2 x} & 0 & M_{2 z}
\end{array}\right)
$$

The matrix (P_{j}) of the forces in the direction of the fixed axes is caven by the relation.

$$
\begin{equation*}
\left(F_{j}\right)=\left(c_{j}\right)^{T}\left(F_{j}\right) \tag{41}
\end{equation*}
$$

alme,

$$
\begin{equation*}
\left(1_{j B}\right)=\left(a_{j}\right)^{T}\left(1_{j}\right) \tag{42}
\end{equation*}
$$

Finally the matrix (R) of the external forces appiled at the joints of the bay is given by the relation.

$$
\begin{equation*}
\text { (H) }=\sum_{j=1}^{m} j B \tag{43}
\end{equation*}
$$

5.0 LOADS NOT AIYLIED AT THF JOINTS

Loads that are not appiled at the structural joints can be treated in a manner similar to the thermal loads. Whatever the loading, it can always be resolved into components along the local axes of the element. The joints of the element are, then, frozen and the forces exerted by the loading on the joints are calculated. These forces define the matrix $\left(F_{j}\right)$. The total Ioads on the joints of a bay are given by (30), (31) and (32).

To find the stresses in a member so loaded, two typed of loading must Le considered and their erfects superposed:
(a) The forces in the member arising due to the forces (H) formed from (F).
(b) The self-equilibrating forces on the element itself consisting of the initial loading and the reactions of the frozen joints.

6.0 MEMBERS WITH NON-UNIFORM PIROPERTIES

Divide the member into parts having approximately uniform cross-section and elastic properties. The etiffnesa matrix (K) of the member is then found by the assembly of the smaller parts, in the way already outlined. The ends of the member now form its boundary with the rest of the structure. With the previous notation, we partition K, p and u so that.

$$
\left[\begin{array}{l}
p_{b} \tag{14}\\
p_{r}
\end{array}\right]=\left[\begin{array}{ll}
k_{b b} & k_{b r} \\
k_{r b} & K_{r r}
\end{array}\right]\left[\begin{array}{l}
u_{b} \\
u_{r}
\end{array}\right]
$$

Take the case where $\left(p_{r}\right)=0$. That is, the member is loaded at its end points. Then,

$$
\begin{align*}
& p_{b}=K_{b b} u_{b}+K_{b r} u_{r} \tag{4.5}\\
& 0=K_{r b} u_{b}+K_{r r} u_{r} \tag{46}
\end{align*}
$$

Now eliminate $\mathbf{u}_{\mathbf{r}}$.

$$
\begin{equation*}
p_{b}=\left[K_{b b}-K_{b r} K_{r r}{ }^{-1} K_{r b}\right] u_{b} \tag{47}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{u}_{\mathbf{b}} \overline{\mathbf{K}}_{\mathbf{b b}}=\mathbf{p}_{\mathbf{b}} \tag{48}
\end{equation*}
$$

Comparing (48) with (1) we see that for such an element ($\bar{K}_{b b}$) should be used instend of (K) .
 cedure by friediug Ife lomins. hee

$$
\begin{equation*}
4 \tag{183}
\end{equation*}
$$(33)

Huthatemptick
\square
1+

角
turywide
U-I

 24.

$$
\begin{aligned}
& +3
\end{aligned}
$$

APPENDIX B - THERMAL DISTORTIONS

(By P. Slysh)

1.0 GENERAL

Thermal distortions in RATIO structures, as result of thernal gradiente, are influenced by the following factors:
(1) The etructural configuration, i.e. whether the structure is of a truse or panel type, length-to-radius-of gyration ratios for the truss members, wall thicknesses of the panels, member crosssections, number and sizes of panel or truss members, conditions at the structural junctions, volume of the structural material in the total structural volume, shape of the etructural volume, etc.
(2) Surface coating and construction material properties; i.e. surface emissivity and absorptivity, material modulus of elasticity, coefficient of thermal conductivity, etc.
(3) Angle of incidence of the solar radiation, i.e., the attitude of the structure relative to the sun, and the attitude of the structural members relative to each other.
(4) Intra-structural reradiation paths, i.e., the number of paths through which radiant energy can be transferred within the etructural volume.
(5) Radiation environment, i.e., the solar constant, as well as the albedo background and earth's shadowing as effected by orbital altitude and inclination.
(6) On-board meat sources, which can either ninimize (through a regulation systen) or increase the thermal gradients.
(7) The turning rate of the atructure relative to the and.

In the following analymis a rectangular structural volume is assumed wich is illyinated by the sum on one side. a hypothetical, aggregatemacroscopic structure is taken to occupy this volume and to have the followinc properties;
(a) The structural volume in occupied by an approxinately rectangularlattice, truen frametork with each of the truss members having the same length-to-radius-of-gyration ratio.
(b) The framework is oriented at an arbitrary, average angle with respect to the incident Bolar radiation. The structure is not rotating.
(c) Pin jointe conmect all structural members.
(a) The extinction of the redinnt energy through the atructure in propertional to exp-x, where x is the depth of penetration of the solar radiation in the etructural volume. To some extent, by this means, the intra-structural reradiation effects are taken into account.
(e) Low-earth-orbit solar constant is used, the albedo radiation is neglected, there are no on-board heat sources, and there is no shadowing by the earth.
(f) Thefral gradients are generated only in the direction of the sun's rays. 11 the incident radiant energy fseradiated from the side of the structural volume opposite the side receiving the radiation. The surface thermal properties and material properties of the etructure are constant throughout the structural volue.

For the above conditions, assuming no external constraints, parametric expressions are developed for deflections al ong the length of the structure.

$$
\mathrm{B}-2
$$

These expressions indicate the dependence of the deflection on the thermal, material, and atructural parameters, and eerve as a guide to firat order estimates or ateady state thermal deflections in RaTIO etructures.

2.0 THEREAL GRADIENT

The temperature change, ΔT, acrose the length of atructural volume, Δx, in Fig. 2 can be approximated by,

$$
\begin{equation*}
\Delta T=I A_{c} a_{1}(\Delta x) / k A_{0} \tag{1}
\end{equation*}
$$

where,
A_{e}, f^{2}, is the arerage structural projected area (i.e. illuminated by the sun) in the volume, $2 L d_{1}(\Delta x)$
A_{0}, ft^{2}, the conductive cross-section through the construction material in the direction of the heat flow,
a, aggregate solar absorptivity,
I, Btu/ft ${ }^{2}$, incident solar radiation,
k, Btu-ft/ft ${ }^{2} \cdot{ }_{F}$, coefficient of thermal conductivity.
Assuming (from Lambert's law) that the effective radiation received by a surface is proportional to the square of cosine of the angle between the incident radiation and the surface, the average projected length of a truse member is,

$$
\begin{equation*}
L_{\text {oav }}=\left(2 L_{0} / \pi\right) \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta=L_{0} / 2 \tag{2}
\end{equation*}
$$

Fis. B-1 Assumed structural model
where.

Lo is the length of a truse member.
The ratio of the volume to average projected area of the construction material for a tubular truss structure is, using Eq. 2,

$$
\begin{equation*}
v_{c} / \Lambda_{c}=(\pi / 4) L_{0}\left[d_{0}^{2}-\left(d_{0}-2 k_{2} d_{0}\right)^{2}\right] /\left(L_{0} d_{0} / 2\right)=2 \pi k_{2}\left(1-k_{2}\right) d_{0}, \tag{3}
\end{equation*}
$$

where,
d. is the outside dianeter of the tubular trusi nember,
\mathbf{k}_{2} is the ratio of tube wall thickese to tube outside diameter,
V_{c} is the volume of the construction material.
Prom Fig. 2, assuming an exponential extinction of solar radiation through the structure.

$$
\begin{equation*}
I=I_{0} \exp \left[\left(x / d_{1}\right) \log k_{1}\right] \tag{4}
\end{equation*}
$$

Also, since the conductive path is in the direction of d_{1}, and there are three orthogonal directions for heat flow, assume,

$$
\begin{equation*}
A_{0} \approx v_{c T} / 3 d_{1} \tag{5}
\end{equation*}
$$

and from Eq. (3) take,

$$
\begin{equation*}
A_{c}=x v_{c I} / d_{1} d_{0}^{2 \pi} k_{2}\left(1-k_{2}\right) \tag{6}
\end{equation*}
$$

where,
$V_{c T}$ is the total volume of the construction material.
Substituting Eq. 4, 5 and 6 in Eq. 1 and performing the integration, the temperature drop between $x=0$ and x is,

$$
\begin{align*}
& T_{1}-T_{2}=\left[3 I_{0} a_{1} d_{1}^{2} / 2 \pi k k_{2}\left(1-k_{2}\right) d_{0} \log k_{1}\right]\left\{\exp \cdot\left[x / d_{1}\right) \log k_{1}\right] \\
& \left.\left.r\left(x / d_{1}\right) \log k_{1}-1\right]+1\right\} \tag{7}
\end{align*}
$$

B-5
and between $x=0$ and $x=d_{1}$,

$$
\begin{equation*}
T_{1}-T_{2}=\left[3 I_{1} d_{1}^{2} / 2 n k k_{2}\left(1-k_{2}\right) d_{0} \log _{1}^{2}\right]\left\{k_{1}\left(\log k_{1}-1\right)+1\right\} \tag{8}
\end{equation*}
$$

It is evident from Eqe, 7 and 8 that the thermal gradient ill increase uth decreasing values of 4_{\bullet} and increasing val uee of d_{1}.

In the above it was assumed that k_{1} is independent of d_{1} or the ratio of the volume of the conatruction material, V_{cT}, to the volume occupied by structure, y^{\prime}. If this assumption is not to be made, and if the overlaps in elements of the area A_{c} are taken to be proportional to x then,

$$
\begin{equation*}
1-k_{1}=\left[A_{e r} / 2 \alpha_{1}\right] k_{3}\left(\alpha_{1} /\right)_{1} \tag{9}
\end{equation*}
$$

there.
K_{3} is a proportionality constant indicating the degree of overlap
in elemente of A_{c},
$A_{c t}$ is the total A_{c}.
Substituting Eq. 6 in Eq. 9, for $x=d_{1}$.

$$
\begin{equation*}
k_{1}=1-\left(v_{e T} / V_{S T}\right) k_{3} k_{4} / 2 \pi k_{2}\left(1-k_{2}\right) \tag{10}
\end{equation*}
$$

where,

$$
k_{1}=d_{1} / L
$$

Pron Eqs. 10, 7 and 8 it is seen that the ratio $v_{c T} / V_{\text {or }}$ hae a complex effect on the thermal gradients.

3.0 INDUCED DISTORTIONS

The flexural distortion of a bean can be described by,

$$
\begin{equation*}
\left(E I_{1}\right) d y / d L^{2}=\int_{-d_{1} / 2}^{+d_{1} / 2} d_{1} \operatorname{EBT}(x) x d x \tag{11}
\end{equation*}
$$

where,
y is the beam deflection,
E is the modulus of elasticity of the construction material,
I_{1} is the eection moment of inertia of the truse members,
B is the linear coefficient of thermal expanion,

1. and x are defined in Fig. 2.

Fromeq. 7 take,
$T(x)=\left[3 I_{0} a_{1} d_{1}^{2} / 2 \pi k k_{2}\left(1-k_{2}\right) d_{0} 10 \varepsilon^{2} k_{1}\right]\{$ exp.
$\left.\left\lceil\log k_{1}\left(x+d_{1} / 2\right) / d_{1}\right]\left[\log k\left(x+d_{1} / 2\right) / d_{1}-1\right]+1\right\}$.
The moment of inertia I_{1} can be approximated by,

$$
\begin{equation*}
I_{1}=(1 / 12)\left(A_{0} / d_{1}\right) d_{1}^{3}=(1 / 12) A_{0} d_{1}^{2} \tag{13}
\end{equation*}
$$

Subatituting Eqa. 5, 12, and 13 in Eq. 11, performing the integration and aimplifying,

$$
\begin{align*}
& y_{0} / L^{3}=\left[V_{\mathrm{ET}} / V_{\mathrm{CT}}\right]\left[27 \operatorname{Ia}_{1} B k_{4}^{2} / 2 \pi k k_{2}\left(1-k_{2}\right)\right]\left[k _ { 1 } \left(0.5 \log ^{2} k_{1}\right.\right. \\
& \left.\left.-2 \log ^{2} k_{1}+3\right) / \log ^{4} k_{1}-\left(\log ^{4} k_{1}+3\right) / \log ^{4} k_{1}\right] \tag{14}
\end{align*}
$$

where,
k_{1} in defined by Eq. 10 .
In Eq. $14 \mathrm{~V}_{\mathrm{BT}} / \mathrm{V}_{\mathrm{cT}}$ may be considered the independent variable. The quantity in the second bracket is based on the solar, structural, and material constants. The quantity in the third bracket is a function of $\mathbf{v}_{\mathrm{sT}} / \mathbf{v}_{\mathrm{CT}}$ and the constante.
 te the reductien in the mection monent of inertia, I, Ith imerearincs

 in therefore tentative.

For the conditions that.

$$
\begin{equation*}
0<\left[v_{c T} k_{4} k_{3} N^{2 \pi k_{2}}\left(1-k_{2}\right)\right]<0.3 \tag{15}
\end{equation*}
$$

and,

$$
\begin{equation*}
\frac{V_{T}}{Y_{c T}}>10 \tag{16}
\end{equation*}
$$

Eq. 14 vith k_{1} (riron Eq, 10) eubstituted into it, can be aproximated by,

$$
\begin{align*}
& y \mathrm{de} / 1^{3}=\left[\mathrm{V}_{\mathrm{cT}} / \mathrm{ct}^{1}\left[27 \mathrm{I}_{0} \mathrm{~B}^{2} \mathrm{k}_{4}^{2} / 2 \pi k_{2}\left(1-k_{2}\right\rangle\right]\right. \\
& \left\{0.042-0.059\left[V_{c T} k_{3} N r^{2} k_{2}\left(1-k_{2}\right)\right]\right\} \tag{17}
\end{align*}
$$

The derlection parameter, $\mathrm{J}_{0} / \mathrm{L}^{3}$, from Eq. 17 is plotted as a fumction of P_{N} in Fig. 3 tor the following anmued etructural and enterial conetente:

$$
\begin{aligned}
& 1_{0}=0.82 \times 10^{-3} \mathrm{BYO} / 1 \text { net }^{2} \text {-ece. } \\
& k=0.002 \mathrm{BTU} \text {-in./in. }{ }^{2} \text { © }{ }^{\circ} \text {-eec. (for aluminum), } \\
& B=12.3 \times 10^{-6} \text { in./inion }{ }^{2}{ }^{0} \text { (Tor aluminum), } \\
& \mathbf{k}_{3}=0.7 . \\
& \mathbf{E}_{4}=0.1 . \\
& a_{1}=0.02 .
\end{aligned}
$$

It is evident from Fife 2 that for a given land the deflection increne with $\mathrm{TI}_{\mathrm{I}} / \mathrm{cI}$ and \mathbf{k}_{2}.

To obtain tret order estimate of the effects of (V aT/ cr) on the elastic rigidity of the structure in Fig. 1 , assume that attitude control actuators, having a mass M_{A}, are attached at both ends. Assume for this example that the mans of the structure is included in the mass of the actuators, then the maximum deflection, Y in the structure due to a total applied moment n_{0} ie.

$$
I_{\mathrm{E}}=(0.021) L_{0}^{2} /_{1}
$$

where (as previously defined)
2L is the structure length
E is the modulus of elasticity
${ }^{1} 1$ is the section moment of inertia.
Since $M_{0}=2 M_{A} L^{2}$ (where is the angular acceleration about the center of mans of the structure and actuators), and taking $I_{1}=(1 / 12) d_{1}^{4}\left(v_{c T} / v_{1}\right)$,

$$
\begin{aligned}
& Y_{m}=0.3 M_{A}\left(_{\text {er }} /{ }_{c T}\right) / L_{4}{ }^{4} \\
& \mathbf{k}_{4}=d_{1} / L
\end{aligned}
$$

It is evident that the deflection, Y^{\prime}, increases at least linearly with $V_{s T} / \mathbf{c T}^{\circ}$

The tendency for Y_{m} to increase with $V_{g T} / V_{c T}$ is also estimated for conIiguration in which four or six actuators are distributed along the length of the structure.

The structural properties for minimizing thermal distortions will. tnerefore, alao serve to minimize load deflections.

In the example of Fig. 2 , for $k_{2}=1 / 2, M_{A}=11 b \cdot-\sec ^{2} / i n, \ldots=10^{7} \mathrm{psi}$, and $d_{0} / L^{3}=10^{-6}$ in., the thermal and load deflections are equal when $\quad \mathbf{w}=280$ rad/sec. ${ }^{2}$ Such large angular accelerations are not likely, $(\dot{w}=1$ or 0.1 rad./sec. is more likely) therefore, the thermal distortions will tend to swamp the load deflections.

4.0 DEPENDENCE OF $V_{c T} / V_{\text {gT }}$ ON THE SUBDIVISION OF A STRUCTURAL VOLUME

In Eqs. 14 and $17 \mathrm{~V}_{\mathrm{cT}} \mathbf{N}$, and k_{2} can be chosen independentiy. However, the nuber of subdivisions in the structural volume as well as the length-to-radius-of-gyration ratios of the truss members are affected by these choices.

If it is assumed that the structural volume in Fig. 1 is subidvided into a square lattice truss network such that the ratio of the lengthe of the vertical to the lengths of the horizontal truss membere if proportional to $2 \mathrm{~L} / \mathrm{d}$ then the total number of vertical truss members in the structural volume is.

$$
\begin{equation*}
n_{1}=\left(n^{\prime}+1\right)^{2} n^{\prime} \tag{18}
\end{equation*}
$$

and the number of horizontal truss members is,

$$
\begin{equation*}
n_{2}=2\left(n^{\prime}+1\right)^{2} n^{\prime} \tag{19}
\end{equation*}
$$

there.

n^{\prime} is the number of times each side of the structural volume is subdivided.

If the leagth-to-radiug-of-gyration ration k_{5} for the vertical and norizontal truas (tubular) eembers are the same,

$$
\begin{equation*}
k_{5}=4 L_{0} / d_{0}\left(2-4 k_{2}+4 k_{2}^{2}\right)=4 L_{01} / d_{01}\left(2-4 k_{2}^{2}\right) \tag{20}
\end{equation*}
$$

-nere,
d. and Lo, are the outmide diameter and length of the vertical truss members,

$$
\begin{aligned}
& d_{o l} \text { and Lol are the outaide diameter and length of the horizontal } \\
& \text { truss nembers. }
\end{aligned}
$$

Using,

$$
\begin{align*}
& v_{c T}=(\pi / 4) L_{0}\left[d_{0}^{2}-\left(d o-2 d_{0} k_{2}\right)^{2}\right]_{n_{1}} \\
& \quad+(\pi / 4) L_{01}\left[d_{01}^{2}-\left(d_{01}-2 \Lambda_{01} k_{2}\right)^{2}\right] n_{2} \tag{21}
\end{align*}
$$

and Eqs. 18, and 19,

$$
\begin{align*}
\left(v_{c T} / V_{s T}\right)= & {\left[4 \pi / k_{5}^{2}\right]\left[k_{2}\left(1-k_{2}\right) /\left(1-2 k_{2}+2 k_{2}^{2}\right)^{2}\right] } \\
& {\left[\left(n^{\prime}+1\right)^{2} /\left(n^{\prime}\right)^{2}\right]\left[\left(8 L^{3}+2 d_{1}^{3}\right) / 2 L d_{1}\right] } \tag{22}
\end{align*}
$$

or,

$$
\begin{equation*}
\left.\left(v_{e T} / v_{E T}\right)=(\pi / 4) k_{2}\left(1-k_{2}\right)\left(n^{\prime}+1\right)^{2} d_{0}^{2} L\left(4 L^{3}+d_{1}^{3}\right) / L^{3} d_{1}^{2}\right] \tag{23}
\end{equation*}
$$

where.
k_{5} is the length-ro-radius-or-gyration ratio for the truse members and L and d_{1} are defined in Fig. 1.

Eq. 23 indicates that for a given k_{2}, L, d_{1}, and $d_{0}, V_{s T} / V_{c T}$ decreases
 resulta in analler thermal deflections. The atructural complexity of a large number of cen 11 truss members can, therefore, be traded for reduced
thermal distortions and increased structural weight (i.e. decreased $V_{s T} / V_{c T}$). Ultimately, the finer the mesh of a wire (non-tubular) structure, the smaller the thermal distortions, and the greater the structural weight.

5.0 INTERPRETATION OF RESULTS

Based on the above it appears that the thermal distortions of a structure, whose volume is occupied by an approximately uniform square lattice (aggregate-macroscopic) tubular truss system, are reduced by:
(1) Increasing the tube wall-thickness-to-outside-diameter ratio k_{2},
(2) Increasing the ratio of the volume of structural material to structure volume, $V_{c T} / V_{s T}{ }^{\prime}$
(3) Decreasing the length-to-radius-of-gyration ratio for the truss members,
(4) Reducing the length of the structure or increasing its thickness in the direction of the incident solar energy,
(5) Decreasing the aggregate solar absorptivity, a ${ }_{1}$, of the coating material,
(6) Decreasing the ratio of the linear coefficient of thermal expansion to the coefficient of thermal conductivity, B / k, for the structural material。 $\left(B / k=20.0 \times 10^{-3}\right.$ for hard steel, 10.0×10^{-3} for soft steel, 6.1×10^{-3} for aluminum, 2.2×10^{-3} for copper),
(7) Increase the number and decrease the size of the truss members occupying the structural volume.

The above deductions based on the following assumptions.

Future efforts will be directed toward:
(1) The reradiation within the structure nas been neglected.
(2) Only tubular sections nave been considered.
(3) The bowing of individual truss members due to thermal gradients in the menbers has been neglected.
(4) The same otructural material and surface coating was assumed for all members in the etructural volume.

APPENDIX C - SIMPLE BEAM APPROACH

(By P. Slysh)

In Section III a planar model of a RATIO antenna is analyzed. This model includes a non-uniform contour, that approximates a circular aperture, and locations for actuator and feed masses at distributed points on the antenna structure. It is assumed now that the contour is made square and the number of actuators is increased such that for $0-A$ axis rotation the actuator at each structural junction (depending on the actuator distribution case) is accompanied by actuators at each of the other junctions that lie in a line parallel to the $0-A$ axis. If only $0-A$ axis rotation is considered, and the structure is tapered only in the plane perpendicular to the $0-A$ axis, it is possible, because of the structural and loading symetry, to limit the deflection analysis to one characteristic beam lying perpendicular to the rotation axis. The results of this analysis are characteristic of the entire structure.

The investigation of this model leads to an essentially closed form solution for the rms surface deviations (d). If model and loading-condition simplifications are justifiable and the discrepancies in the performance results are tolerable it is possible to use this closed form solution for various optimizations. These may include the determination of optimum structural taper for a given actuator distribution case, or the optimum structural mass fraction (k_{S}) for a given taper. Comperable optimizations on the planar model requires an iterative computational procedure.

The notations in Section III 3.1 are used in the following analysis.
1.0 STRUCTUAL, MASS AND INERTIAL PROPERTIES.

In the planar model the ratio of the lengths of all the structural members to the area of the reflecting surface is $481 / 208 \mathrm{~L}^{2}=2.15 / \mathrm{L}$. For the 0 - A axis rotation half of the total beam lengthe are taken as the load carrying members. The width or the reflector surface area, L_{1}, on the simple bean model wich results in the same structural mass per unit of load-carrying beam length in the planar model is, therefore, computed from

$$
\begin{equation*}
2 n^{\prime} L / 2 n^{\prime} L L_{1}=(1 / 2)(2.15 / L)_{2} \tag{1}
\end{equation*}
$$

or

$$
L_{1}=L / 1.07
$$

n^{\prime} is the maximus number of beam lengths sections in a half beam length. ($n^{\prime}=8$ in this case.)

Therefore, the mass of the simple beam,

$$
\begin{equation*}
H_{S}=2 \mathrm{nLL}_{1} \mathrm{H} / 14 \mathrm{E}_{\mathrm{E}}=1.86 \mathrm{KN}^{\prime} \mathrm{L}^{2} / 144 \mathrm{E} \tag{2}
\end{equation*}
$$

The mass of the simple beam is also given by

$$
\begin{equation*}
M_{S}=\left(2 / k_{S 2}^{\prime}\right) \int_{0}^{n^{\prime} L} m_{x} d_{x^{\prime}} \tag{3}
\end{equation*}
$$

where the load carrying mass per unit of beam length $\boldsymbol{m}_{x}=P_{S} A_{\text {, }}$ and x is the distance from the neutral axis.

From Eq. (11) in Section LII

$$
\begin{equation*}
A=\left(1 / k_{0}\right)(w / B) 12 I_{0}(t / w)^{1 / 2}(1-j x)^{1 / 2} \tag{4}
\end{equation*}
$$

where

$$
j=\left(1-I_{1} / I_{0}\right) / n^{\prime} L
$$

and

$$
\begin{equation*}
I=I_{0}(1-j x) \tag{5}
\end{equation*}
$$

Using Eq. (4) in Eq. (3) and performing the integration,

$$
\begin{align*}
& M_{S}=-\left(4 / 3 k_{S 2}^{\prime}\right) p_{S}\left(1 / k_{0}\right)(W / B)\left[12 I_{0}\right. \\
& (t / W)]^{1 / 2}\left[\left(1-j n^{\prime} L\right)^{3 / 2}-1\right] \tag{6}
\end{align*}
$$

Eliminating M_{S} and solving for I_{0} from Eqs. (6) and (2),
$I_{0}=\left(1.86 j n^{\prime} L^{2} k_{S 2}^{\prime} K k_{0}\right)^{2} / 12(t / w)$

$$
\begin{equation*}
\left(1.33 p_{S} 144 g\right)^{2}(w / B)^{2}\left(\left(1-j n^{\prime} L\right)^{3 / 2}-1\right)^{2} \tag{7}
\end{equation*}
$$

and using Eq. (7) in Eq. (4).

$$
\theta_{1}=P_{S} M=1.86 j n^{\prime} L^{2} \leq k_{S 2}^{\prime}(1-j \times)^{1 / 2} / 1.33
$$

$$
(144)\left[(1-j n \cdot L)^{3 / 2}-1\right]
$$

The mage moment of inertia of the antenna, including the structure and on-board masses, is given by,
-here

$$
\begin{aligned}
& \text { no is the total number of actuators } \\
& \text { noe is the coordinate designation for the location of } \\
& \text { the actuator or actuators (note the max. }{ }_{00}\left(n^{\prime}\right) \\
& 4_{1} 4_{2} \cdots 4_{0} \text { are } 1 \text { or } 0 \text { and depend on the actuator } \\
& \text { distribution case. }
\end{aligned}
$$

$$
\begin{align*}
& K_{2} I_{A} \int_{0}^{n^{\prime} L}\left(x^{2} x_{S 2}\right) d x+\left(M_{S^{\prime}} / n_{0}\right) k_{A} L^{2} \\
& \left(a_{1}+4 q_{2}+9 q_{3}+\cdots n_{00}^{2} q_{00}\right)_{1} \tag{9}
\end{align*}
$$

By analogy with the case definitions in Section III:

Case	${ }_{1}{ }_{1}$	$\underline{q_{2}}$	q_{3}	9_{4}	q_{5}	9_{6}	q_{7}	q_{8}	no	n_{oo}
1	0	0	0	0	0	0	0	0	1	0
2	0	1	0	0	0	0	0	0	2	2
3	0	0	0	1	0	0	0	0	2	4
4	0	1	0	1	0	0	0	0	4	2,4

Note that,

$n_{0}=q_{0}+2\left(q_{1}+q_{2}+\cdots q_{n_{00}}\right)$

The integral term in Eq. (9) is the inertia of the antenna structure, the other tern is the inertia of the actuator-feed system.
2.0 BEAM DEFLECTIONS .

The rate of change in slope of the beam deflection y is given by,

IE $d^{2} y / d x^{2}=$ the suw of the torques due to:
(1) the structural reaction forces
(2) the torques generated by the actuators
(3) the reaction forces due to the actuator massee

Using the 1 from Eq. (5), and the mass moment of inertia from Eq. (9), in Eq. (10),

$$
\begin{align*}
& \text { 10 }(1-1 x) E d^{2} y / 4 x^{2}=\left(1 / \pi s_{2}\right) \int_{x} \int_{x}^{2} x^{2} d x \\
& -\left(T / a_{0}\left[_{0} q_{0}(0)+q_{1} u(0-1)+q_{2} u(0-2)+\cdots q_{n_{00}}\right.\right. \\
& \left.u\left(0-n_{00}\right)\right]+a_{A}\left(L M_{S} k_{A F}^{\prime} / n_{0}\right)\left[(L-x) q_{1} u(0-1)+(2 L-x)\right. \\
& \left.2 q_{2}(0-2)+\ldots+\left(n_{00} L-x\right) n_{00} q_{00} u\left(0-n_{00}\right)\right] \text {, } \tag{11}
\end{align*}
$$

where () is unit step function.

Performing the integrations indicated in Eq. (11), making use of the boundry conditions $(d y / d x)=0$ and $y=0$ at $x=0$, and factoring out the terms used to normalize d in Section III,

$$
\begin{aligned}
& \left(E E / a_{A} p_{S}^{2} g^{2}\right) y=\left[0.061(t / w)(w / B)^{2}\left(\left(1-j n^{\prime} L\right)^{3 / 2}-1\right) /\right. \\
& \left.n^{\prime} L^{2}\left(k_{j 2}^{\prime}\right)^{2} k_{0}^{2} j^{4}\right]\left[-8.37\left(1 / j^{2}\right)\left((1-j x)^{5 / 2}-1\right)+1.9\right. \\
& \left.\left(1 / j^{2}\right)\left((1-j x)^{7 / 2}-1\right)-11.9(x / j)\right]+\left\{\left[(5.05) 10^{5}(t / w)\right.\right. \\
& \left.\left.(N / B)^{2}\left(\left(1-j n^{\prime} L\right)^{3 / 2}-1\right)^{2} /\left(k_{S}\right)^{2}\right)^{2}\left(k_{0}\right)^{2} n_{0}\left(n^{\prime}\right)^{2} j^{3}\right] \\
& {\left[(4.72) 10^{-7}\left(8+2 j n^{\prime} L+15 j^{2}\left(n^{\prime}\right)^{2} L^{2}\right)\left(1-j n^{\prime} L\right)^{3 / 2}\right.} \\
& -8) / j^{2}\left(\left(1-j n^{\prime} L\right)^{3 / 2}-1\right)+(3.35) 10^{-5}\left(k_{A F} / n_{o}\right)\left(q_{1}+4\right. \\
& \left.\left.q_{2}+9 q_{3}+\ldots n_{00}^{2} q_{n_{00}}\right)\right]\left[q_{0} u(0)+q_{1} u(0-1)+q_{2} u\right. \\
& \left.(0-2)+\ldots+q_{n_{00}} u\left(0-n_{00}\right)\right]-0.061\left(1-j n^{\prime} L\right)^{3 / 2}(8+12 \\
& \left.\left.j n^{0} L+15 j^{2}\left(n^{0}\right)^{2} L^{2}\right)(t / w)(w / B)^{2} / j^{5} n^{\prime}\right\}[x \log (1-j x) \\
& -x-(1 / j) \log (1-j x)]-\left[4 . 2 3 (t / w) (w / B) ^ { 2 } k _ { A F } \left(\left(1-j n^{\prime}\right.\right.\right. \\
& \text { L) } \left.\left.{ }^{3 / 2}-1\right)^{2} / x_{0}^{2} k_{s 2}^{2} n_{0} n^{\prime} j^{2}\right]\left[q_{1} u(0-1)\left[(L / j)-\left(1 / j^{2}\right)\right]\right\}
\end{aligned}
$$

$$
\begin{align*}
& \left.[(x \log (1-j x)-x-(1 / j) \log (1-j x))]+x^{2} / 2 j\right\} \\
& +24_{2} u(0-2)\left[(2 L / i)-\left(1 / j^{2}\right)\right][(x \log (1-j x)-x- \\
& \left.\left.(1 / j) \log (1-j x))]+x^{2} / 2 j\right\}+\ldots+n_{00} q_{00}\right) u\left(0-n_{00}\right) \\
& \left(n_{00} L / j\right)-\left(1 / j^{2}\right)(x \log (1-j x)-x-(1 / j) \log \\
& (1-j x))+x^{2} / 2 j \tag{12}
\end{align*}
$$

Eq. (12) may be simplified to,

$$
\begin{align*}
& y=C_{1}\left((1-j x)^{5 / 2}-1\right)+C_{2}\left((1-j x)^{7 / 2}-1\right)+C_{3} \\
& x+C_{4}[x \log (1-j x)-x-(1 / j) \log (1-j x)]+c_{5}[\\
& \sum_{n_{00}} n_{00} q_{00} a\left(0-n_{00}\right)\left\{\left[\left(n_{00} L / j\right)-\left(1 / j^{2}\right)\right]\right. \\
& \left.[x \log (1-j x)-x-(1 / j) \log (1-j x)]+x^{2} / 2 j\right\} \tag{13}
\end{align*}
$$

In E_{q}. (13) the constants C_{1} to C_{5} are a function of the structural and loading condition parameters $E, K, a_{A}, p_{S}^{2}, E^{2}$, $(t / w),(w / B), j, n^{*}, L, k_{0}, k_{S 2}^{\prime} k_{A F}^{\prime}, n_{0}, n_{o O}, q_{,}$and $u()$.

Eq. (12) or (13) is the closed form solution for the bean deflection y at any position x. This solution, unlike that for the planar model in Section III, is based on a distributed spring-mass system for the structure. Lumped constants are only used for the actuator-feed masses.
3.0 WEIGHTED RMS DEFLECTIONS.

The weighted rins deflection is determined from

$$
\begin{equation*}
d=\left(\int_{0}^{n^{\prime \prime} L} y^{2} d x\right)^{1 / 2} /\left(n^{\prime \prime} L\right)^{1 / 2} \tag{14}
\end{equation*}
$$

Where $n^{\prime \prime}$ is the number of beam length sections in a half bean length that correspond to the $n_{o o}$ in the unit step functions u (). When no step function multiplies an integrand term $n^{\prime \prime}=n^{\prime}$. Therefore, the limits of integration for each integrand teri in Eq. (14) depends on U () and the presence or non-presence of u () in the integrand terme.

To reduce the complexity of the integration of Eq. (14) the following simplifications are made for some of the terms in the expression for from Eqs. (12) or (13).

$$
\begin{align*}
& \left((1-j x)^{5 / 2}-1\right) \triangleq j x \tag{15A}\\
& \left((1-j x)^{7 / 2}-1\right) \triangleq j x \tag{15B}
\end{align*}
$$

$$
\begin{equation*}
x \log x-x-(1 / j) \log (1-j x) \stackrel{\Delta}{=}-1 / j x^{2} \tag{15c}
\end{equation*}
$$

Using the above simplifications and the following

numerical parameter valiee, which correspona to loading conditione $1,2,5$, and 8 in Section III 4,1 , the normalied y in Eq. (15), is computed from Eq. (12).

$$
\begin{aligned}
& (t / \pi)=0.01 \quad \text { Uniform illumination } \\
& (W / B)=0.14 \quad \therefore \quad \text { Actuator distribution case } 1,2,3,4 \\
& \left.P_{S}=(2.59) 10^{-4} \quad\left(11-j n^{\prime} L\right)^{3 / 2}-1\right)=-0.9100 \\
& k_{\mathbf{S} 2}=0.75 \\
& \left((1-j n \cdot L)^{5 / 2}-1\right)=-0.9820 \\
& k_{0}=0.9 \\
& \left((1-j n \cdot L)^{7 / 2}-1\right)=-0.9964 \\
& n^{\prime}=8 \\
& \mathrm{~L}=300 \\
& \left(I_{1} / I_{0}\right)=0.2 \\
& \mathrm{k}_{\mathrm{AF}}=0.25 \\
& k_{s}=0.80
\end{aligned}
$$

$$
\begin{align*}
& \left(K E / a_{A} p_{S}^{2} E^{2}\right) y=(3.5) 10^{7} x+(0.23) 10^{4} x^{2} \\
& -\left[\begin{array}{l}
1.51 u(0) \\
0.85 u(0-2) \\
0.93 u(0-4) \\
0.43 u(0-2)+u(0-4)
\end{array}\right] \tag{16}
\end{align*}
$$

The terms in the large brackets of Eq. (15) correspond to actuator distribution cases $1,2,3,4$.

Using Eq. (16) in Eq. (14) and performing the integration,

$$
\left(K E / a_{A} p_{S}^{2} g^{2}\right)^{2} d^{2}=(2.63) 10^{16} L^{2}+(2.07) 10^{13} L^{3}
$$

$+(4.31) 10^{9} L^{4}$
$-\left[\begin{array}{c}0 \\ 1.72 \\ 18.80 \\ 9.36\end{array}\right] 10^{12 L^{3}}+\left[\begin{array}{c}0 \\ -13.30 \\ 105.00 \\ 13.64\end{array}\right] 10^{8} \mathrm{~L}^{4}$
$\left(K E / a_{A} p_{S}^{2} g^{2}\right) d=\left[\begin{array}{c}54.5 \\ 54.0 \\ 50.4 \\ 52.1\end{array}\right] 0^{9}$

For the same numerical parameter values the corresponding walues of the normalized d from Section III Fig. 32 are

The trends in d values in going from case 1 to case 4 are the same for (18) and (19) however there is as much as a * 300\% discrepancy in the values. This discrepancy is accounted for by (I) the non equivalence of the simple beam end planar models, (2) the simplifications in Eqs. (15A), (15B), (15C), (3) the use of lumped constant parameters for the planar model vs. distributed constant parameters for the simple bead model, (4) when drawing an equivalency between the simple and planar models the assumption that half of the total beam lengths in the planar model are responsibie for carrying the load, (5) the assumption that the actuatore in the planar model are distributed along lines parallel to the OA axis, and (6) the use of a square contour refiector for the planar model in draning the comparison with the simple beam model.
It mppears that a simple bean model does not yield results
that are compatible with the planar model. A discrepancy of
$\pm 300 \%$ has showed up for one case. The discrepancy may be etill
greater for other cases.
Except for the use of distributed constant parameters all
other assumptions made in arriving at the simple beam model tend
to make the simple beam model a less accurate and less versatile
representation than the planar model of the actual configuration.

APPENDIX D - SIMPLE STRUCTURAL-BEAM APERTURE
 (By P. Slysh, checked by G. A. Burns)

The structural and radiation properties of a simple, planar-bean aperture is analyzed in this appendix.

Consider the aperture, shown in Fig. D-1, to be driven at a constant angular acceleration a_{1} about an axis perpendicular to the paper at point 0 . Two configurations of inertial actuators (i.e., reaction-flywheels) are assumed:

Configuration 1: A single actuator with a mass M_{0} located at point 0 .
Configuration 2: Two actuators each with a mase $M_{o l} / 2$ located at points 1 and 2.

The deflection, y, when $x \geq 0$, for Configuration 1 is,

$$
\begin{equation*}
y=\left(a_{1} / E I\right)\left(x_{0}^{3} x^{2} / 6-x_{0}^{2} x^{3} / 12+x^{5} / 120\right) ; \tag{1}
\end{equation*}
$$

and for Configuration 2:

$$
\begin{equation*}
\left(E I / a_{1}\right) y=x^{2}\left(m x_{0}^{3} / 6+M_{01} x_{0}^{2} / 4\right)-x^{3}\left(m x_{0}^{2} / 12-M_{01} / 12\right)+\operatorname{mx}^{5} / 120 \tag{2}
\end{equation*}
$$

where is the mass per unit lengtn of the beam, E the modulus of elasticity, I the beam section modulus, and $M_{o l}$ the mass of the two actuators in Configuration 2 。

$$
\begin{align*}
& \text { Neglecting the } x^{5} \text { terme, EqB. (1) and (2) are, for } x \geq 0, \\
& y=B_{1} x^{2}+B_{2} x^{3} \tag{1a}\\
& y=B_{10} x^{2}+B_{20} \tag{2a}
\end{align*}
$$

and for $x \leq 0$,

$$
\begin{equation*}
y=-B_{1} x^{2}+B_{2} x^{3} \tag{1b}
\end{equation*}
$$

Fig. D-1 Structural beam-aperture model

$$
\begin{equation*}
y=-B_{10} x^{2}+B_{20} x^{3} \tag{2b}
\end{equation*}
$$

where,

$$
\begin{aligned}
& B_{1}=a_{1} m x_{0}^{3} / 6 E I, \\
& B_{2}=-B_{1} / 2, \\
& B_{10}=B_{1}\left(1+1.5 M_{01} / x_{0} m\right), \\
& B_{20}=-\left(1+M_{0} / x_{0} m\right) /\left(2+3 M_{01} / x_{0} m\right) x_{0}
\end{aligned}
$$

The radiation pattern in the plane of the paper may be expressed (approximately) as,

$$
\begin{equation*}
g(u)+\left(x_{0} / 2\right) \int_{-1}^{1} f(x) \exp (j u x-j y) d x \tag{3}
\end{equation*}
$$

where,

$$
u=\left(\pi x_{0} / \lambda\right) \sin \theta,
$$

λ is the wavelength, θ is the direction to a point in the field at which $g(u)$ is the radiation intensity, and $f(x)$ is an aperture illumination function, that is, $f(x)$ describes the amplitude of the illumination in the aperture as a function of x_{0}.

Substituting Eqs. (la) and (lb) into Eq. (3),

$$
\begin{align*}
g(u) & =\left(x_{0} / 2\right) \int_{0}^{1} f(x) \exp j\left(u x-B_{1} x^{2}-B_{2} x^{3}\right) d x \\
& +\left(x_{0} / 2\right) \int_{-1}^{0} f(x) \exp j\left(u x+B_{1} x^{2}-B_{2} x^{3}\right) d x \tag{4}
\end{align*}
$$

Expanding the $\exp (-j y)$ term,

$$
\begin{align*}
g(u) & =\left(x_{0} / 2\right) \sum_{m=0}^{n}\left((-j)^{m} / m^{\prime}\right) \int_{0}^{1}\left(B_{1} x^{2}+B_{2} x^{3}\right)^{m} f(x)(\exp j u x) d x \\
& +\left(x_{0} / 2\right) \sum_{m=0}^{n}\left((-j)^{m} / m^{\prime}\right) \int_{-1}^{0}\left(-B_{1} x^{2}+B_{2} x^{3}\right)^{m}(x)(\exp j u x) d x, \tag{5}
\end{align*}
$$

where $m=0,1,2$, . . n. Integrating, expanding and rearranging the first three terms (i.e., $=0,1,2$) of Eq. (5) for $f(x)=1$, that is, for constant illumination acrose the aperture, an approximate expression for $g(u)$ is obtained as

$$
\begin{align*}
g(u) / x_{0} & =j\left(B_{1} / u+2 B_{1} / u^{2}-2 B_{1} / u^{3}\right) \cos u+j\left(B_{1} / u-2 B_{1} / u^{2}-2 B_{1} / u^{3}\right) \\
& +j\left(2 B_{1} / u^{3}\right)+\left[\left(-B_{1}-2 B_{2}\right) / u-\left(8 B_{1}^{2}+20 B_{1} B_{2}+12 B_{2}^{2}+2 B_{1}\right) / u^{2}\right. \\
& +\left(2 B_{1}+12 B_{2}\right) / u^{3}+\left(48 B_{1}^{2}+240 B_{1} B_{2}+240 B_{2}^{2}\right) / u^{4}-\left(480 B_{1} B_{2}\right. \\
& \left.\left.\left.+1440 B_{2}^{2}\right) / u^{6}\right)\right] \cos u-\left[\left(-2+B_{1}+2 B_{1}^{2}+4 B_{1} B_{2}+2 B_{2}^{2}\right) / u\right. \\
& -\left(6 B_{2}+2 B_{1}\right) / u^{2}-\left(2 B_{1}+24 B_{1}^{2}+80 B_{1} B_{2}+60 B_{2}^{2}\right) / u^{3}+12 B_{2} / u^{4} \\
& \left.+\left(48 B_{1}^{2}+480 B_{1} B_{2}+720 B_{2}^{2}\right) / u^{5}-1440 B_{2}^{2} / u^{7}\right] \sin u-B_{1} / u^{3} \\
& +480 B_{1} B_{2} / u^{6} . \tag{6}
\end{align*}
$$

Using Eq. (6), typical power patterns, $p(u)=(g(u))^{2}$, are estimated in Fig. D-2. It is meen that the structural deformations (i.e., for $B_{1}=1$ and $B_{2}=-1 / 2$) result in a shift in the position of the main lobe of the radiation

Fig. D=2 Normalized power pattern
pattern when compared with the static, non-loaded case ($B_{1}=B_{2}=0$). Also, as expected, the side lobes increase and the nulls are minimized.

The radiation pattern for Configuration 2 can be drawn for comparable operating conditions, such as for the same a_{1}, or the same total beam and actuator mass. In the latter case, the torque/mass constant, k_{1}, of the actuator mould enter into the problem formulation such that,

$$
\begin{equation*}
\left(M_{01} / M_{0}\right)=\left(1-2 a_{1} x_{0}^{2} / n_{1}\right)^{-1}>1, \tag{7}
\end{equation*}
$$

Where M_{0} is the mass of the actuator in Configuration 1.
The influences of $B_{1}, B_{2}, k_{1}, a_{1}, \lambda$, etc。 on the anifting of the main lobe, degradation of the side lobes etc. should be studied. These influences are extremely complex and it appears that even for the chosen example, they can only be studied through numerical (parametric) examples.

It is evident that, in spite of the simple two dimensional model of Fig. D-1, the simplifications in Eqs. (1), (2), and (3), the idealization $f(x)=1$, and the approximations that $=0,1,2$, the expression for $p(u)$ is nevertheless unwieldy. In the computer simulations partly developed in this study, none of these idealizations and simplifications are made and the numerical solutions for the structural defthofspermid radiation patterns are a great deal less approximate.

```
APPENDIX E - MEASUREMENT OF "RATIO" APERTURE DISTORTIONS
(By P. Slysh)
```

In an operational RATIO antenna it may be desirable to implement a myten for measuring the coordinate, linear and angular distortiong, u, at discrete points on the reflector with respect to reference coordinate syetem. Such measurements mere, in part, planned for the 600 foot radio telescope that was being built at Sugar Grove, West Virginia. For RATIO antennas, in which structural compliances are likely to be large, such measurements would be useful for much smaller dish sizes. This appendix congiders the problems of and suggests one approach to implementing these measurements on RATIO antennas.

Reflector distortions may be determined by direct measurements between given points on the reflector surface and a mechanical reference axis. Alternately, sequential measurements may be made between successive points on the reflector surface, the first of which measurements would be with respect to the reference.

Since the measurement errors, as well as the gaging equipment complexity and weight, are estimated to increase with the distance over which the measurements are made, it follows that for a given accuracy the sequential measurement approach regults in less equipment complexity and weight. However, it is believed that the sequential measurements will require on-board data processing (or the equivalent) to convert the equipment readouts into the u distortions.

Possible gaging equipment or transducer techniques for implementing the sequential gaging system include: (1) autocollimators and reflecting mirrors located at distributed structural junctions; the linear displacements normal to the line of sight between the autocollimators and mirrors,
as well as the angular displacements about these normals, may be determined automatically and used to compute the distortions, u; (2) strain gage deployed to sample structural strains from which the distortions may be computed; and (3) optical or infra-red ranging methods.

An autocollimator approach is probably the aimplest, and most reliable. A description of one such approach is started by considering a straight line, in Figure E-1, along which the linear deflections u_{1}, u_{2}, . ., and the angular deflections u_{11}, u_{21}, . . . are to be determined.

The collimators, located at points $1,2,3, \ldots$. generate in-line, tandem IR beans that illuminate detectors on either side of each collimator. (The detectors are also located at points $1,2,3$, , .) The response from a detector at a typical point "b" due to collimator at an adjacent point "a" is proportional to the displacement mab

If $u_{01}, u_{11,} u_{21}, \cdots$...the angular deflections in the plane of the paper at points $0,1,2,3$, . ., are taken as positive for counter clockwise rotations, then,

$$
h_{01}=m_{01}+u_{1}
$$

$$
h u_{11}=-m_{10}+u_{1}=m_{12}+u_{2}-u_{1}
$$

$$
h u_{21}=-m_{21}-u_{1}+u_{2}=m_{23}+u_{3}-u_{2}
$$

$$
h u_{31}=-m_{32}-u_{2}+u_{3}=m_{34}+u_{4}-u_{3}
$$

$$
h u_{41}=-m_{43}-u_{3}+u_{4}=m_{45}+u_{5}-u_{4}
$$

If $u_{01}=u_{0}=0$ it is evident that a solution for $u_{11}, u_{21}, u_{31}, \ldots, \ldots$ and $u_{1}, u_{2}, u_{3}, \ldots$, can be obtained from these equations.

Now consider the application of the above method to the measurement of displacements at the grid junctions ghom in Figure E-2. The displacement

FIGURE E-1 Instrumentation of nodal deflections

FIGURE E-2 Structural grid.
meagurements are to be made normal to the plane of the grid.
Taking the $\mathbf{u}_{0}=\mathbf{u}_{01}=0$ at $x=y=0$ as a reference, it followe that the displacements along $x=0$ can be determined. $I f x=0, y=1$ is now taken as a new reference the displacements along $y=1$ may be determined, etc.

The above method can be extended to measuring displacements normal to a paraboloidal surface. With these measurements it is possible to develop an aperture calibration function that describes the orientation of the main lobe of the radiation pattern as a function of the aperture distortions.

It is noted that the measurement accuracy is best at the center of the aperture if the main reference is taken at the apex. This is consistent with the performance features of typical antennas in which the errors at the center of the aperture have the greatest effect on aperture performance.

An adaptive multiple-feed system may be competitive with the described gaging method as a means for obtaining a continuous aperture calibration. The adaptive system may typically divide the received $r-f$ radiation into separate channels. The phases and amplitudes at the channel outputs can then be compared (with sum and difference networks) to determine the location of the peak in the main lobe. Preliminary considerations indicate that aperture gaging methods are likely to yield greater main-lobe pointing accuracies than adaptive feed aystems.

APPENDIX F - CONTROL SYSTEM CONSIDERATIONS

$$
\text { (By P. } S \perp y s h \text {) }
$$

1.0 INTRODUCTION

The following is an outline of an approach to the study of RaTIO control systema. This approach is considered in this appendix to clarify aspects of RATIO control system problems.

It is to be assumed in this appendix that the control system only induces a single, fundamental flexural mode in the structure. This assumption makes it possible to develop manageable relationships between the applied torque and the separation between $r-f$ and mechanical axes. The following is an outline of some of the salient control system features that can result from this assumption.

2.0 CONTROL AXES

The r-f axis is typically defined by the orientation of the main lobe of the radiation pattern, and the reference axis may be established by an astronertial platform. If the mechanical axis of the antenna is taken as a line passing through the apex and focal point, then the displacement between the $r-f$ and mechanical axes may be defined by the matrix-vector relationship (see Figure $\mathbf{F - 1}$),

$$
\begin{equation*}
\left(\theta_{0}\right)-\left(\theta_{1}\right)=\left(f_{1}[u]\right) \tag{1}
\end{equation*}
$$

where, u is the generalized displacement, with respect to the mechanical axis, at the structural junctions. This displacment consists of three linear and three angular orthogonal displacements that in effect describe the departure of the reflector surface from that of a true paraboloid.

It follows from Eq. (1) that the structural compliances that give rise

ANTENNA
APERTURE

FIGURE F-1 Control axes
to (u) are in effect responsible for a compliance between the $r-f$ and mechanical axis. When the expected displacements between the $r-f$ and mechanical axes are large compared to the required pointing accuracy, as will be assumed here, then the compliances are critical factors in the performance of the control systeris.

The displacements (u) may be caused by manufacturing and asaembly tolerances, thermal stresses, atructural deflections due to actuator reactions, and creep in the structural material. Only structural deflections due to actuator reactions are considered here.

An extension of the work under the current study contract NAS7-228, is applicable to the evaluation of ($\left.f_{1}[u]\right)$. This work is also directly applicable to the evaluation of (u) if the displacements are cauged by steady state actuator torques and structural reactions. Account is taken only of the dynamics of the structural deflections due to the actuator reactions.

If the astronertial platform is mounted at or near the apex or focus, such that the compliances between the platform mount and the mechanical axis are negligible, then the instrumentation of the data take-off (θ_{0}) - (θ_{2}), (in Figure $F-1$), may include automatic boresighting between the apex and focus, and a resolver train to generate the coordinate angles between the boresight and reference axes. It is also possible to determine

$$
\begin{equation*}
\left(\theta_{0}\right)-\left(\theta_{2}\right)=\left(f_{2}\left[u^{\prime}\right]\right) \tag{2}
\end{equation*}
$$

where u^{\prime} is the generalized coordinate displacement or motion at the structural junctions with respect to the reference axis (i.e. inertial space).

A possible method for instrumenting the measurement of (u) is described in Appendix E.

Because of the availability of the $\left(\theta_{0}\right)-\left(\theta_{2}\right)$ data takeoff, a transformation,

$$
\begin{equation*}
\left(u^{\prime}\right)=(T)(u) \tag{3}
\end{equation*}
$$

may be generated. (T) is a matrix for transforming the displacements u tc u^{\prime} (i.e. from body fixed reference to an inertially fixed reference.)

From Eqs. (1) to (3),

$$
\begin{equation*}
\left(\left(\theta_{1}\right)-\left(\theta_{2}\right)\right)=\left(f_{1}[u]\right)+\left(f_{2}[(T)(u)]\right) \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\left(\theta_{1}\right)-\left(\theta_{2}\right)\right)=f_{1}\left[(T)^{-1}\left(u^{\prime}\right)\right]+\left(f_{2}\left[u^{\prime}\right]\right) \tag{5}
\end{equation*}
$$

It is evident that the instrumentation of $\left(\left(\theta_{1}\right)-\left(\theta_{2}\right)\right.$ is possible through the instrumentation of $\left(\left(\theta_{0}\right)-\left(\theta_{2}\right)\right)$ and $\left(\left(\theta_{0}\right)-\left(\theta_{1}\right)\right)$. The vector $\left(\left(\theta_{1}\right)-\left(\theta_{2}\right)\right)$ is the variable to be controlled. By analogy with the above, if the displacement rates in (\dot{u}) and (\mathbf{u}^{\prime}) are obtained by differentiating the outputs of displacement sensors,

$$
\begin{equation*}
\left(\left(\dot{\theta}_{1}\right)-\left(\dot{\theta}_{2}\right)\right)=\left(f_{3}[\dot{u}]\right)+\left(f_{4}\left[\left(T_{1}\right)\left(\dot{u}^{\prime}\right)\right]\right) \tag{6}
\end{equation*}
$$

and, if inertial rate sensors are used, in which case \dot{u} and the displacement rates in (T) are sensed directly, then,

$$
\begin{equation*}
\left(\left(\dot{\theta}_{1}\right)-\left(\dot{\theta}_{2}\right)\right)=\left(f_{3}\left[\left(T_{1}\right)^{-1}\left(\dot{u}^{\prime}\right)\right]\right)+\left(f_{4}\left[\left[\dot{u}^{\prime}\right]\right)\right. \tag{7}
\end{equation*}
$$

Eqs. (5) and (6) indicate that the displacement rates between the r-f and references axes can be obtained by instrumenting a transiormation between the mechanical-axis and reference-axis coordinate system and by sensing the relative (with respect to the mechanical axis) or absolute (with respect to the reference axis) displacement rates at the structural junctions.

3.0 CONTROL SYSTEM DESCRIPTION

Neglecting structural damping, the coordinate forces and torques, p, at the structural junctions (in Figure F-1) can be expressed in matrix forms

$$
\begin{equation*}
(P)=(K)(u)+(M)\left(\dot{u}^{\prime}\right), \tag{8}
\end{equation*}
$$

where (K) and (M) are the displacement and mass matrices for the antenna structure.

If position and velocity feedback loops are used between the r-f and reference axes then (P) is also given by,

$$
\begin{align*}
(P) & =\left[\left(\left(\theta_{1}\right)-\left(\theta_{2}\right)\right)_{i}-\left(\left(\theta_{1}\right)-\left(\theta_{2}\right)\right)_{0}\right]\left(G_{1}\right) \\
& +\left[\left(\left(\dot{\theta}_{1}\right)-\left(\dot{\theta}_{2}\right)\right)_{i}-\left(\left(\dot{\theta}_{1}\right)-\left(\dot{\theta}_{2}\right)\right)_{0}\right]\left(G_{2}\right), \tag{9}
\end{align*}
$$

where the subscripts i and o refer to the input and output respectively, and (G_{1}) and (G_{2}) are the feedback and controller gain (matrix) functions.

Thus the collection of forces and torques, (P), as caused by structural spring and inertial forces, are nominally equal to the amplified, actuating (velocity and position) error functions.

Equating Eqs. (8) and (9), and using Eqs. (3), (5), and (6),

$$
\begin{align*}
& \left\{\left(\left(\theta_{1}\right)-\left(\theta_{2}\right)\right)_{i}-\left(f_{1}\left[(T)^{-1}\left(u^{\prime}\right]\right)\right\}\left(G_{1}\right)\right. \\
& +\left\{\left(\left(\ddot{\theta}_{1}\right)-\left(\dot{\theta}_{2}\right)\right)_{i}-\left(f_{3}\left[(T)^{-1}\left(\dot{u}^{\prime}\right)\right]\right)-\left(f_{4}\left[\dot{u}^{\prime}\right]\right)\right\}\left(G_{2}\right) \\
& =(M)\left(\dot{u}^{\prime}\right)+(K)\left((T)^{-1}\left(u^{\prime}\right)\right) . \tag{10}
\end{align*}
$$

A block diagram of the system described by Eq. (1)) is shown in Figure F-2. In addition to the feedback of $\left(\left(\theta_{1}\right)-\left(\theta_{2}\right)\right)$ and $\left(\left(\dot{\theta}_{1}\right)-\left(\dot{\theta}_{2}\right)\right)$ subsidiary feedback loops for $\left(\theta_{0}\right)-\left(\theta_{2}\right)$), and $\left(\theta_{0}\right)-\left(\theta_{1}\right)$ may be

FIGURE F-2 Diagram of attitude control system
considered.

The control system is to primarily function in a position control mode. However, the performance of the control system in slewing, tracking and slave modes of operation may also be investigated per the above.

4.0 METHOD OF ANALYSIS

For given inputs, $\left(\left(\theta_{1}\right)-\left(\left(\theta_{2}\right)\right)_{i}\right.$, and $\left(\left(\bar{\theta}_{1}\right)-\left(\dot{\theta}_{2}\right)\right)_{i}$, Eq. (10) nominally represents a set of simultaneous (linear) differential equations describing u^{\prime} and u^{\prime}, the three linear and three angular displacements and displacement rates at each structural junction.

Since the structure to be considered may have on the order of a hundred structural junctions (and each junction has six degrees of freedom) it is evident that generalized and rigorous solutions for u^{\prime} (or u^{\prime}) represent a formidable undertaking. However, if only the first primary modes of oscillation are considered then the complexity of the problem is reduced by at least an order of magnitude.

The computational time constants, as for f_{1} to f_{4} and the transformations (T), in Figure $F-2$, may be considered neglegible compared to expected systen response rates.

With solutions for u^{\prime} and u^{\prime} it is possible through the procedure indicated by Eqs. (5) and (7) to determine the controlled variable at the output, $\left(\left(\theta_{1}\right)-\left(\theta_{2}\right)\right)_{0}$ and $\left(\left(\dot{\theta}_{1}\right)-\left(\dot{\theta}_{2}\right)\right)_{0}$. Thus the input-output characteristics can be examined in both the time and frequency domains.

Externally induced force and thermal fields will act to perturb the input-output relationship in the control system.
NON-TAPERRD
CONPIGURNTONS
CONFIGURATIOAS

[^0]: 1 See, for example, J. A. Stratton, Electronarnetic Theory, McGraw-Hill, Mew York, 1941, Chapter 9.

[^1]: See, for example, S. Silver, Microvave Antoman Theory and Denire, Vol. 12 Ladiation Laboratory Series, pp. 158-162, MeGraw-Hili, Mow Tork, 1948.

[^2]: ${ }^{3}$ See, for example, M. Born, Optics, reprint by Edwards Bros., Ann Arbor, Mich., 1943.

[^3]: *Reference "Energy Theorems and Structural Analysis," J. H. Argyris Aircraft Engineering, Oct.. Nov., Dec., 1954, Feb.. Mar., Apr., May. 1955.

