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ABSTRACT 

The proton shield synthesis technique for spherical geometry has been extended 

to include a number of dose constraints and analytic expressions have been de- 

rived to calculate doses behind given spherical shields in particular proton en- 

vironments. The theory of shield optimization for generalized convex enclosures 

has likewise been extended and calculations carried out which give shield compo- 

sitions and layer thicknesses Over a wide range of parameters. The secondary 

neutron portion of the optimization theory has also been extended to include new 

materials and more complex shields. 
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1. INTRODUCTION AND SUMMARY 

The major objective of the program described in this report is the extension and 

generalization of the proton shield synthesis technique originally developed for the 

NASA Marshall Space FNht Center.' This technique allows the shield designer to  

determine which materials and/or mixtures should go into a minimum weight pro- 

ton shield for a space vehicle. It also enables him to specify the thickness of each 

material or  mixture and the order of these regions in the complete shield 

The proton shield optimization theory for the spherical case has been extended to  

include minimum weight shields for a variety of dose constraints, whereas, in the 

previous work, the only constraint allowed was that the shield was to eliminate all 

protons below a given energy. The dose constraints incorporated into the theory 

thus f a r  are: (1) specified dose in a small spherical tissue sample at the center 

of the shield with no self-shielding, (2) specified dose at that point with self-shield- 

ing by a spherical tissue model, (3) specified average body dose, (4) specified dose 

at any depth, and (5) application of two of the above constraints simultaneously. In 

addition, the special case in which the tissue model completely f i l l s  the cavity to 

be shielded has been studied. This case is of interest because it is applicable to 

the design of local body shields. A complete solution has  been obtained for this 

case. 

In Reference 1, the formulation of an approach to proton shield optimization of a 

convex, nonspherical void assuming normal proton incidence was begun. In the 
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present work, this approach is extended and calculations a r e  carried out from 

which the local compositions and layer thicknesses of a minimum weight shield 

for any convex void can be obtained. It is then possible, in many cases, to approx- 

imate a complete minimum weight shield for a realistic convex void by defining 

the optimized shield at specific points. 

A feasible approach to synthesizing an entire minimum weight shield analytically 

for symmetrical convex voids has been found. This method considers, for any 

point on the shield, a minimum equivalent shield thickness and requires that all 

possible proton paths through the shield at that point, for any direction of inci- 

dence, provide at least that much shielding. From a family of surfaces which 

satisfy this condition, the one which minimizes the shield weight is chosen. The 

mathematical formulation of this approach is not as yet complete, but, if success- 

fully carried out, it should have wide application for the optimization of space 

shields of any symmetric vehicle. 

The data on secondary neutron production and attenuation required for the proper 

inclusion of these parameters in the shield synthesis theory have been revised ac- 

cording to the latest  calculation^^*^ and experimental results.* The resulting sec- 

ondary neutron parameters have been extended to new materials and to additional 

proton spectra. Based on these new results, a generalized four parameter Young 

diagram has been calculated. The parameters include not only material density and 

proton attenuation, but also secondary neutron production and attenuation. Since 

there a re  four parameters involved, a four -dimensional “diagram” results. There- 

fore, it is not possible to construct such a diagram for visual representation. From 

the mathematical analysis, however, a number of conclusions can be drawn as to the 

proper shielding materials and their order in a shield optimized for both primary 

protons and secondary neutrons. Although no unique material sequence can be 

specified for a case of this complexity, shields made of given materials can be 

2 
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optimized. Several optimized shields have been synthesized using the results of 

this extended analysis. 

The results obtained using the extensions to the shield optimization theory de- 

scribed in this report verify our original finding that substantial weight savings 

are possible in certain cases by the use of the shield synthesis technique. Further 

extensions of the technique are deemed desirable, and recommendations for such 

' new work are included in this report. 

3 
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2. PROTON SHIELD OPTIMIZATION WITH DOSE CONSTRAINTS - 
SPHERlCAL GEOMETRY 

In previous work' a shield optimization technique was developed which leads to  

minimum weight spherical proton shields, given the constraint that the shield 

should stop all protons below a given cutoff energy. In this section, relationships 

are developed which permit the determination of minimum weight spherical 

shields given various specified dose rate constraints. These relationships are 

based on a realistic analytical expression for the incident proton spectrum. 

Analytical expressions are given for point dose, average body dose, depth dose, 

and surface dose for a spherical man model at the center of the shielded enclosure 

(the maximum dose location). An optimization procedure is then presented which 

leads to the determination of the minimum weight shield for specified values of 

any of these dose values or for a combination of dose constraints. In this section, 

only the direct dose from protons is considered. Secondary neutron dose is con- 

sidered in Section 4. 

2.1 STATEMENT OF PROBLEM AND ASSUMPTIONS MADE 

In the energy range up to about 300 MeV, the proton attenuation in aluminum can be 

represented by a single power fit of the form' 

5 



Values for n of 0.786 and for CY of 569 afford a satisfactory f i t  to the Bethe stopping 

power e q u a t i ~ n , ~  and to experimental results up to  about 300 Mev. Above 300 MeV, 

another single power fit appears to  be necessary. 

If aluminum is chosen as a reference material, an approximate expression for the 

rate-of energy loss per cm in a given material can be written as 

where Ai is called the proton relative stopping power of material i and is defined 

as the ratio of the proton energy loss per unit distance in the ith material to  the 

energy loss in aluminum. 

In Reference 1, calculations of proton relative stopping powers of various materi- 

als and compounds of possible interest to  space shielding were made at a number 

of energies. It was shown that Ai is practically constant from 500 Mev down to at 

least 50 Mev for most materials. Thus, for space shielding purposes, Ai  can be 

oenwidered energy indegsndent. 

A proton flux, representative of a flare or the Van Allen belt spectrum, is consid- 

ered to impinge on the outer surface of the spherical shield, What is required 

now is the minimization of the shield weight, subject to the condition that the ener- 

gy deposition (primary dose) in the crew model is less than or equal to  a specified 

6 
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value and also subject to the restriction that shielding materials be chosen from 

those of a given set. 

The choice of shielding materials is made according to  the Young prescription 

which has  been given in a previous report.' Fig. 1 shows the Young plot which is 

used in this study. The materials at the vertices of this Young diagram are poly- 

ethylene (CH2), carbon, nickel, and tungsten. 

These materials wil l  be used in that order from the outside shield layer in. Often, 

only part of this sequence need be used. For instance,for most reasonably sized 

voids and shield thicknesses, tungsten will  not be used. Thus, given this sequence 

of materials, the problem is actually to find what number of materials and set of 

layer thicknesses wil l  minimize the proton shield weight while satisfying the pre- 

scribed dose constraint. 

The calculations will  also assume that the expression for the incident proton flux 

at the outside of the spherical shield can be written as follows: 

P(E) = Ci 
E + Cz 

where m, Ci and Cz are constants determined by the particular proton environment. 

Such a single power f i t  appears to be valid for most flares over a large energy 

range, as can be seen in Fig. 2. 

It is important, however, to remark that in all cases Cz becomes negligible com- 

pared to Em when the proton energy reaches the order of 50 MeV. Since one ex- 

pects that the shield wil l  stop protons below that energy, it is reasonable to use 

the following expression in the calculations: 

P(E) = Ci E -m (2.4) 

7 
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which is sometimes called the Winckler spectrum6 for the particular flare. 

A better representation of the energy distribution of proton flares is to use sever- 

al power fits, each valid in given energy ranges. 

j -mj 
Pj(E) = Ci E (2.5) 

where 

Ej-i < E < Ej, j = 1, 2 ... 

Table 1 shows some power fits for selected spectra. 

A property of these spectra which wi l l  be used in subsequent approximations is 

that the number of protons of energy E impinging on the shield decreases rapidly 

with increasing energy. 

10 

Table 1 - Sample Proton Spectra, P(E) = CIEem* 

Energy Range, 
Mev Cl m 

May 10, 1959 Flare 10 - 60 1.90 X 10'' 1.5 
60 - 780 3.19 x ioi7 5 

Sept. 3, 1960 Flare 1@ - 60 4.03 X lo6 0.7 
60 - 200 8.0 x lo7 1.43 
200 - 780 7.87 X loi2 3.6 

Feb. 23, 1956 Flare 10 - 150 8.5 X lo9 1.5 
150 - 400 5.0 x loi2 2.65 
400 - 780 2.0 X 10'' 1.73 

Van Allen Belt - Freden 10 - 80 1.55 X lo2 0.72 
and White Spectrum 80 - 400 7.33 x io3 1.60 

400 - 700 1.02 x 105 2.04 

*P(E) is in protons/cm2/Mev except for the Van Allen Belt 
where P(E) is in protons/cm'/sec/Mev. 
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The incident proton flux is further assumed to  be isotropic in space. This is a 
good approximation when considering time-average flux sixice the shielded void 

represents a space vehicle which is free to move and rotate. Thus, the impinging 

proton flux per unit solid angle and per unit energy is given by 

1 
4n P(E,Q)dQdE = - P(E)dEdQ = 

Since the proton flux is isotropic, the number of protons of energy dE about E that 

are incident on the element of surface dA with angle d q  about q (where q is the 

angle with the normal to the surface), is given by 

P(E,a)dcpdAdE = - sin <p cos rp d W d E  (2.7) 2 

Finally, use is made of the fact that the energy deposited in a spherical phantom is 

greatest if its center coincides with the void center. In our analysis it is then pos- 

sible to consider only phantoms which are concentric with the void since, if the 

primary dose constraint is satisfied for that crew model position, it wil l  be satis- 

fied for any other position of the man inside the void. 

This simplification is valid because when the phantom is displaced from the center 

of the void the rays which are incident on the phantom have, in general, a longer 

path length through the shield than when the phantom is at the center. Therefore, 

the proton cutoff energy for these rays is higher. Since the proton flux incident 

on the shield decreases rapidly with increasing energy, the higher cutoff energy 

causes less energy to be deposited i n  the phantom. 

2.2 DOSE CALCULATION - ANALYTICAL TECHNIQUE 

A number of important relationships have been developed which are useful in the 

calculation of the dose received by a spherical model inside a multilayer shield. 

In many cases, these expressions represent advances over previous work in that 



they are more general o r  more accurate. 

themselves and provide a basis for the shield optimization relationships developed 

in Section 2.3. The dose relationships are summarized in this section and some 

numerical results are given. Derivations are given in the Appendices. 

Therefore, they are of interest in 

2.2.1 Nomenclature 

proton stopping power relative to aluminum 

proton relative stopping of the ith shielding material 

Ai - Ai+* 

proton relative stopping power of tissue 

1 
n+ 1 

complete beta function 

m - n - 3  

+ 2  - 

n +  1 

constants in the expression for the proton dose, functions of the partic- 

ular proton spectrum 

PB (a ,b) 

[b(b+l) ATC] -(b+ 2, 

local dose or dose rate per unit isotropic proton flux per gram of 

tissue 

dose or  dose rate at void center 

average body dose or dose rate per unit isotropic proton flux per gram 

of tissue 

depth dose or dose rate in phantom at radius e' per unit isotropic pro- 

ton flux per gram of tissue 

specified value of local dose 

specified value of average body dose 

specified value of depth dose 

energy of incident proton 



E' 
E" 

E', 

e 

ef 

F V  

- 
f 

m 

R 
R' 

energy of proton after attenuation by the shield 

energy of proton leaving the phantom 

proton energy corresponding to R', 
proton energy corresponding to  R', 

radius of spherical man model or phantom 

radius of a given shell in the phantom where 0 s ef s e 

energy deposition or deposition rate per unit isotropic proton flux per 

unit phantom mass 

K i b  - K i b  

e 6  
C 

function in brackets in Eq. 2.22 

- K Z  - (2ATe 
Km - Ko KO + 2ATe-K, 

- 

function of v and 7 

the angle dependent equivalent aluminum path length through the shield 

in units of cm of aluminum or  g/cm2 of aluminum 

minimum equivalent aluminum path length through the shield 

angle independent coefficient in the expression for K 
maximum equivalent aluminum path length through the shield 

total equivalent aluminurn path length through both shield and phantom 
C q j  (b+2) 

Lagrangian 
exponent of E in the expression for the proton flux 

exponent of E in the proton attenuation expression for aluminum 

isotropic proton flux in protons per cm2 per Mev or protons per cm2 

per Mev per sec 

range of protons incident on the shield in units of cm of aluminum 

range of protons incident on the phantom 

13 



R" range of protons emerging from the phantom 

Rb R - KO 

R L  R;Km 
R(v,d f - T  

r 0  

r i 

radius of the spherical enclosure or void to be shielded 

radius of the ith shielding layer 

W total weight of the shield 

Z i  %/KO 

z2 

Greek Symbols 

constant in the proton attenuation expression for aluminum 

m+2 
- 3Ci [a!(n+l)] n+i 
4pT 

- -  
n + 2  

Lagrange multipliers 

v' + 17 

angle of incidence of the proton on the phantom 

minimum angle of incidence of proton on the phantom for which all 

incident protons are stopped in the shield 

density of the ith shielding material 

density of tissue 

14 
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2.2.2 Equivalent Aluminum Thickness of Shield 

The equivalent aluminum thickness seen by a ray penetrating a shield of inner 

radius, ro, incident on the spherical phantom of radius, e, at angle qj with the 

normal direction at the phantom surface is 

2 1/2 
j 

K = -Ai (ri - e2sin2 q) 

with the convention that Aj+, = 0. 

+ 2 (Ai - Ai+i) (ri - e2sh q) 
i=l 

The minimum attenuation is given when q = 0 

j j 
KO =- Airo + (Ai-Ai+l)ri = 2 A i h -  ri- 1). 

i= 1 i= 1 

If K is expanded in  series in the form 

then 

(2.10) 

(2.11) 

Since the coefficients Ki decrease rapidly, a good approximation to K is 

K = KO + Kl sin2 q . (2.12) 

2.2.3 Energy of Protons Attenuated by the Shield and Incident on the Phantom 

The energy, E', of a proton of energy E penetrating the shield and incident on the 

phantom at angle q~ is 

15 



i f  

otherwise 

E ' = O .  (2.13) 

2.2.4 Energy, E", of Protons Leaving the Phantom 

The relationships which apply are summarized in Table 2. The formulas are 

given in te rms  of the range of the protons. The range is related to the energy by 

the approximate relationship, obtained by integrating the equation 

En" 
1 -  R = R(E) = (2.14) 

An interesting fact to note from Table 2 is that, if for a given E (or R), there ex- 

ists an angle <p = v0 < r / 2  for which a proton (which otherwise would strike the 

phantom) is stopped by the shield, then all protons of energy E which emerge in 

the void (o <v0) are  stopped by the tissue. A proton can emerge from the phantom 

only if its incident energy, E, is high enough to permit it to  penetrate the shield 

and strike the phantom at any angle. 

2.2.5 Energy Deposition in the Phantom for Monoenergetic Protons 

The relationships which apply to  the average body energy deposition rate are sum- 

marized in Table 3. Numerical results for a typical case (KO =10 g/cm2 of Al, 

ro = 50 cm, e = 26 cm) are given in Fig. 3. 

2.2.6 Energy Deposition in the Phantom for Given Proton Spectra 

If the proton spectrum is represented by a single power fi t ,  the average body dose 

or dose rate per unit proton flux is given by 
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Table 3 -Average Body Energy Deposition Rate per Unit Mass of 
Tissue per Unit Proton Flux as a Function of Range in Aluminum 

of the Incident Protons 

Proton Range, R(E) FJE) Comments 

18 
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(2.15) 

where b = (m- n- 3)/(n+ l), or 

for b - 0, or 

n+2 
n+l 

D-~ = (a- 1) Do = - Do 

(2.16) 

(2.17) 

for b - -1. 

The units of D are  in Mev/g-sec if a time dependent proton flux is given, and in 

Mev/g if a time-integrated proton flux is used. 

If the spectrum is represented by a combination of power fits, the average body 

dose or dose 

where f j  is a 

(Eq. 7.29). 

rate per unit proton flux is given by 

1 

j = l  

combination of incomplete beta-functions and is given in Section 7 

Pjfj  (KoqKm) (2.18) 

These relationships have been applied to the calculation of the average body dose 

for particular flare spectra as a function of shield thickness and void radius. Re- 

sults are shown i n  Figs. 4 and 5. 

The first flare considered is that of May 10, 1959. Two different spectra have 

been postulated for this flare. The NASA integral spectrum is matched by suitably 

choosing two differential spectra that join at 60 MeV. These are given in Table 1. , 
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The Winckler spectrum is given by a single power f i t  for 30 e E < 1000 MeV, 

namely 

P(E) = 1.672 X lo6 (2.19) 

A phantom of radius e = 26 cm is used. This represents approximately an average 

man since the weight of the model is about 73.5 kg or 162 lb. 

A 

For a void radius, ro, of 50 cm, the average body dose vs aluminum shield thick- 

ness in g/cm2 is plotted in Fig. 4 for the NASA and Winckler spectra. A similar 

plot for the November 15, 1960 flare is also given. These results have been com- 

p a e d  to other numerical dose calculations performed at United Nuclear by 

E. Greuling, et al., in which protons were assumed to be isotropically incident on 

the phantom (rather than on the shield). The agreement is very good because the 

man-to-void size ratio is small (=1/2). A s  the ratio e/ro increases, the average 

body dose becomes smaller because many of the protons which reach the phantom 

now penetrate the shield at a flatter angle and thus have a large path length through 

the shield. 

In Fig. 5, the average body dose vs the void radius is shown, assuming an alumi- 

num shield thickness of 10 g/cm2. When ro becomes very large, all protons which 

contribute to the energy deposition in the body can be considered as normally inci- 

dent on the shield. Note that the average body dose increases rather rapidly when 

ro increases from ro = e = 26 cm to ro = 50 cm, and then increases very slowly to 

the asymptotic value given when all protons a re  normally incident on the shield. 

2.2.7 Dose at the Phantom Center without Self-Shielding 

The dose or dose rate per unit flux at the void center for a point detector is given 

bY 

(2.20) 
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Results for the flare of May 10, 1959 are given in Fig. 6. As expected, the dose 

at the center point without self-shielding is much larger than the average body 

doses previously given. 

2.2.8 Dose at the Phantom Center with Self-shielding 

The dose or  dose rate per unit flux at the center of the spherical phantom is given 

bY 

B(a,b) 

(KO + ATe)tn2 
D(center) = b(b + 1) p AT (2.2 1) 

If we compare the values of dose obtained by use of this equation to those shown 

in Figs. 4 and 5, w e  find that the dose at the phantom center, when self-shielding 

is taken into account, is small compared to the average body dose for a phantom 

26 cm in radius. Most of the average body dose is contributed by radiation depos- 

ited in the outer portion of the phantom. 

2.2.9 Depth Dose 

The proton energy per gram of tissue 

shell at a given depth in the spherical 

deposited in an infinitesimally thin tissue 

man model is of special interest. Since the 

energy deposited w i l l  depend on the location of the shell with respect to the sur-  

face of the man, it is called depth dose. In particular, the energy per gram of 

tissue deposited in a shell located at the phantom surface is called the skin dose. 

It is likely that, for shielding purposes, a depth dose constraint rather than an 

average body dose constraint wi l l  be imposed because the permissible doses to 

certain vital organs such a s  eyes, kidneys, etc., are smaller than the permissible 

average body dose. 

The energy deposition or rate of deposition per unit flux per gram of tissue in a 

shell of thickness de' located at radius et in the phantom is given by 

24 
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1 ATC [ KCb - K L b  - K& - (Ki + 2A~e')-b 
(Ki + ~AT~'-K',)~ Dp(et) = - 3 (Kh- Ki)2 

(2.22) 

The particular case of et = e is of interest since, in this case, Eq. 2.22 reduces 

to Dp(e), the skin dose. In Figs. 7 and 8, the depth dose distribution vs e' is plotted 

for the NASA and Winckler spectra of the flare of May 10, 1959. The parameters 

used a r e  

e = 26 cm 

ro = 50 cm 

K~ = 5 g/cm2, IO g/cm2, 20 g/cm2 of aluminum. 

A s  the depth in tissue increases (i.e., as e' decreases), the depth dose decreases 

from a maximum on the skin to a minimum at the center of the spherical man. 

For relatively thin shields, Dp decreases rapidly near the skin. A s  the thiclmess 

of the shield increases, the reduction in dose becomes less  important and the dose 

remains practically constant. 

In Fig. 9, the doses a r e  normalized to the skin dose. Thus, for KO = 5 g/cm2 of 

aluminum, the relative dose decreases from 1.0 on the skin to 0.347 at the center, 

while for KO = 20 g/cm2.0f aluminum, it decreases only from 1.0 to 0.81. The 

curves of Fig. 9 have the same shape and otherwise compare very wel l  with the 

single curve given by S ~ h a e f e r . ~  

2.3 THE OPTIMIZATION PROBLEM 

In this section, a method is developed for determining the minimum weight proton 

shield in spherical geometry subject to  various dose constraints and a computer 

approach to the solution of the resulting equations is described. 
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2.3.1 Average Body Dose e 

The weight of the shield is given by 

or  

(2.23) 

where Pi represents the density of the ith material; Api = pi- pi+i, with the conven- 

tion that g+i = 0. 

The constraint is that the average body dose must be less than or equal to a speci- 

fied value, E. As shown in Section 7 (Eq. 7.26), it is necessary that 

where f(K0,Km) is given by Eq. 7.27. 

KO and Km are functions of the shell radii and are given in Eqs. 2.9 and 7.6 as 

j 
K~ = 2 A A i r i  - Airo 

i=l 

and 

j 
Km = 2 AAi (rt- e2)*l2 - Al(r i -  e2)i/2 

i= 1 

(2.24) 

where AAi = Ai - Ai+i 

with the convention Aj,, = 0. 
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To minimize the weight W given by Eq. 2.23 subject to Eqs. 2.24, 2.9, and 7.6, we 

construct the Lagrangian 

1 .  

Km+Ai (r$-e2)1/2 - 2 j AAi (ri- e 2 ) 1/21 

i=l 
(2.2 5) 

where p, v', and 77 are Lagrange rmltipliers. 

According to Slater,* the minimum weight is achieved if the following conditions 

are satisfied. 

1. f - G o ;  p >  0 

i 
2. KO = 2 Miri - Airo; V' 7 0 

i=l 

j 
3. Km = 2 AAi (ri- e2)'l2 - A1 (r:- e2)'l2; 77 > 0 

i=l 
(2.26) 

Let us  define a new Lagrangian factor 

v = (v' + 77) > q >  0. (2.27) 
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Eliminating p in Eq. 2.25, the system of equations in v, 77, and ri to be solved 

becomes 

r f -  v-- - 1) = 0; i = 1, 2, ..., j (2.28a) 

(2.28b) 

f -T=O (2.28~) 

An important point to note is that if e becomes very small, then Eq. 2.28a reduces 

to 

ri 2 - - A A i = ~ ;  
APi 

i = l , 2  ,..., j. 

Further, in Section 7.4.3 it is found that for e << 1, f (KO, Km) reduces to a function 

of KO only. Therefore, the solution of the optimization problem is similar to  that 

given in Reference 1, if one first finds the normal shielding attenuation, KO, cor- 

responding to the specified dose using Eq. 7.33. Then 

r . -  2 v- AAi = 0; i = I, 2, ..., j 
APi 

which yields 

in  accord with Eq. 11 of Reference 1. 
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It is readily seen from Eq. 2.28a that 

(2.29) 

since v and q are positive numbers and 0 G e s ri. In order to obtain ri from 

Eq. 2.28a one has to solve cubic equations in ri. In Appendix D it is shown that 

one and only one solution of these equations satisfies the inequality (2.29). Further, 

since ri must be positive, one obtains the shell radii by taking the positive square 

root of the solution. Hence, the shell radii, ri, are obtained as a function of the 

two Lagrange multipliers and, of course, depend on the values of e and AAi/APi, 

i.e., 

Thus, the problem is to find a set of Lagrange multipliers, q and v, which Satisfies 

the system 

ri = h i  (qp) i = 1, 2, ..., j (2.3 1) 

f - i = o  

The method of solution is based on a rule of false position iteration for the values 

of v and 77.’ In this method, a guessed value for the set (v,q) provides us with a set 

of shell radii, r* Once ri has been obtained the following quantities can be com- 

puted successively. 
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zi =r Km > 1 and Z2 = 
+ iTe < 1  

f=q$ [ F l  z i  ( Z Y - 1 )  -- z2- z 2  1 (zk- 111 1 

- af af 1 [ z:+~ + z1 - zP2 + z2] 
== 1 + z, 1 + 22 +-  aKm aK, 

Given three linearly independent sets (vp,qf) the corresponding values Rp and Sp 

can be computed. A rule of false position iteration for the value of v and q which 

satisfies R(v,q) = S(v ,q)  = 0 is given by 

(2.32) 

where X = v or 7. 

34 



I 

. A corresponding set of ri and R and S are then computed and the following inequali- 

ties are tested 

where 6 is a very small number. 

(2.33) 

If the inequalities (2.33) are satisfied, then the values of v and 7 are accepted as 

solutions. If they are not satisfied, the procedure is repeated by replacing one set 

(vl,ql) by the new computed set. This is done until the convergence of R and S to  

0 is accepted for the computed values of v and q. 

The procedure outlined was  programmed for the CDC-1604-A, but to  date this por- 

tion of the overall optimization code, MOPS, has not been completely checked out. 

It is difficult to predict what the value of 6 must be in the inecpalities (2.33) for 

which the values of 7 and v are acceptable. Initial guesses of the three sets ( 7 , ~ )  

must be based .on physically meaningful quantities and the convergence will be at- 

tained rapidly if one starts with good sets (v,~). However, machine experiments 

with the code wil l  be necessary before a practical procedure can be determined. 

2.3.2 Depth Dose 

To optimize the shield weight subject to a given depth dose at r = e' within the 

spherical man, the approach outlined for the average body dose constraint is fol- 

lowed. 

If the depth dose can be written as (see Eq. 2.22) 

(2.34) 

then the system of equations in the Lagrangian factors v and q and the shield 
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layer radii, ri, to be solved are 

- 
g - g = o  

j 
KL = AAi(rq- er2)1/2 - Ai(ri- er2)i/2 + +(e2- er2)*/2 

i=l 

where 

(2.3 5) 

and $(e') is the given constraint. 

Of course, we also must have 

Note that if e' - 0, the optimization problem becomes trivial since the constraint 

can be replaced by a given aluminum equivalent shield thickness, KO. This case 

has been treated in Reference 1. 

The method of solution is also based on a rule of false position iteration for the 

values of the Lagrangian factors v and q. The steps to  be followed are: 

1. Guess a set of values for v and q 
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2. Obtain ri in terms of v and 7 

3. Compute K{ and Kin 

4. Using these values of K6 and KL, evaluate g(K6,Kh) and ag/aK$ and ag/aK', 

5. Evaluate the remainders 

6. Repeat steps 2 through 5 with two other guesses for the set (v,q) 

7. Compute a new set (v,~) by solving the following equation 

where x = v or q 

8. Repeat the process until the computed remainders R and S are less than 

or  equal to a very small number, 6. 

Once the false position iteration procedure has been worked out successNly for 

the average body dose constraint, the solution of the depth dose problem should 

follow in a straightforward manner. 

2.3.3 Particular Case of the ComPletelv Filled Void 

If the crew model fills the available space inside the shield completely, i.e., if 

e = ro, then it can be shown that all the materials available on the Young diagram 
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must be used in the minimum weight shield. To do this, it must be shown that all 
the optimized shield layer radii ri ... rn are greater than ro, i.e., that 

In Sektion 2.3.1, the system of equations to be solved in order to  obtain the mini- 

mum shield layer radii, ri, is given in Eq. 2.28. If the set of Lagrange multipliers 

in Eq. 2.28, v > 0 and 77 > 0, is determined, then ri values a r e  obtained by solving 

the following equation 

ri - 2 [v' + 77 -4 = 0; i = 1, 2, ..., n (2.36) 

where n represents the total number of materials on the Young diagram. Here 

we revert to  the multiplier v' and the definition given in Eq. 2.27 is used. 

Let us  define xi, by xi = ri - ro, and then let us  show that a unique positive solu- 

tion, Xi, to the equation exists. 

(2.37) 

If the positive values of xi, which satisfy Eq. 2.37, exist, they are given by the 

intersection of two curves which are defined by the following equations: 

yi = (x+ro)2 x >  O (2.3 8) 

y2 =- v' + 77 x + + ]  x > o .  
APl [ (2xro+x 

But as x increases from 0 to infinity, yi increases from ri to o while yf decreases 

from to 
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, 
. (see Fig. 10). Hence, there is one and only one intersection point of the two curves 

in the first quadrant (x > 0, y > 0). 

Therefore one, and only one, value of X i  exists which satisfies Eq. 2:37 and is 

positive. Since 

Since the Young curve is increasing and concave downward (see Fig. 1) 

AAi a n  o<-’<- ... <- 
AP1 AP2 APi *pn 

... <-. AA AA2 

Then, from Eq. 2.38, given x, we have 

Thus, it is shown in Fig. 10 that Xi  must satisfy the inequality: 

and therefore 

Thus, all the materials on the Young diagram must be used in order to  obtain a 

minimum weight shield for this case. 

This result is of particular interest in the design of space suits where the astro- 

naut completely fills the “shielded void.” In addition, even for a space vehicle, if 

the man can and does move around inside the crew compartment, he can be viewed 

as being uniformly distributed in the available space. 
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2.3.4 Simultaneous Application of Two Dose Constraints 

In Section 2.3.1 we considered the constraint that the average body dose pV, in the 

spherical phantom must be less than a specified dose, &. In this section, we add 

the additional constraint that nowhere inside the void can the local dose D(r) exceed 

another specified value, 6 

Since the local dose is a maximum at the void center, as shown in Section 2.2.7, it 

is sufficient that the void center dose, D(O), be less than B. From Eq. 2.20 

C D(0) = b(b+l) AT - 
K@+2 

What is required then is that 

where 

C' = [b(b+l) ATC] - (b+d (2.39) 

A trivial solution is obtained if the specified values of the dose constraint are such 

that 

i 5 d &  (2.40) 

Then, since the local dose at the center is always greater than the average body 

dose (when e>  0) for a given shield, if we  obtain the minimum weight shield sub- 

ject only to the constraint that 

this shield will  satisfy the two dose constraints in the problem. This case has 

been solved in Reference 1. 
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In general, however, 

- 
D > Sv (2.42) 

Then the procedure to obtain the minimum weight proton shield subject to the two 

prescribed constraints is as follows: 

1. Compute the minimum weight proton shield subject only to the constraint 

that 

Once the number of shield materials and the set of shell radii have been 

determined, calculate the average body dose in the given crew model, 9.. 
Test if Dv is less than or  greater than E,. If less, the solution of the 

problem has been obtained. If greater, proceed to step 2. 

2. Compute the minimam weight proton shield subject only to the constraint 
- 

that D, s D,. Do this by using the technique outlined in Section 2.3.1. 

Once the number of shield materials and set of shell radii have been de- 

termined, compute KO and test if KO is less than or  greater than Eo. If 
less, the solution of the problem has been found. If greater, proceed to 

step 3. 

3. Since the average body dose is a function of KO and Km, compute Em for 

a given dose, E,, and a given normal shield attenuation, Eo. 

Then, construct the Lagrangian 

where I-( and 7 a r e  positive Lagrange multipliers. The optimum weight 

shield is then achieved if the following conditions a r e  satisfied. 
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The method af solution by iteration described in Section 2.3.1 must be used to 

solve the system of equations (Eq. 2.44). 
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3. PROTON SHELD OPThrIIZATION FOR CONVEX'VOLUME VOID6 

3.1 METHOD OF LOCAL OPTIMIZATION 

In Reference 1, the analysis of the technique of spherical shield optimization was 
extended to the more general case of convex voids under the assumption that the 

shield must eliminate all normally incident protons below a specified energy. 

This analysis resulted in an equation for the local layer thicknesses in the opti- 

mized shield given as Eq. 22 of Reference 1. This theory has now been put in 

slightly different form and has been applied to the calculation of local minimum 

shields for convex voids. 

3.1.1 Theory 

The problem is to find the initial material sequence and layer thicknesses of the 

minimum weight shield surrounding an elementary surface, ds, about each point 

P on S. If the void has rotational symmetry, dS is taken as an infinitesimally thin 

ring about the axis of revolution. 

The surface element, ds, is characterized by its two principal radii of curvature. 

All distances are measured from one of the curvature centers, the positive direc- 

tion being the normal outwards. Then the local weight is 



where n = number of shield materials 

Pi = density of ith material with Pn+i = 0 

Si = distance to  the outer surface of the ith shield layer from the major 

center of curvature of the local section considered 

so, s o + a  = principal radii of curvature of the local section, a assumed to be finite. 

The aluminum equivalent thickness of the local shield is given by 

where Ai  is the proton relative stopping power of the ith material with An+1 =O. 

To minimize W subject to Eq. 3.2, we construct the Lagrangian 

(3.3) 

where p is a Lagrange multiplier. 

The distances, Si, of the minimum weight shield, a r e  then obtained by minimiz- 

ing L with respect to each si. Hence, 

(3.4) 

where the sign 6 depends on the sign of a in order for si to be positive. Sub- 

stituting Eq. 3.4 into Eq. 3.2 yields an equation in & 

With this general expression it is possible to synthesize the minimum weight 

shield for any convex void by breaking it up into local volumes, each of which 

has designated values of so, a, and K. The local void volumes which can be 

treated include a sphere (for which a = 0), a cone, and a cylinder. The latter 
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t two special cases (for which u becomes infinite) are treated in detail in Section 4.2 

of Reference 1. Once the local shield layers have been determined, the weights 

of each layer can be calculated by numerical integration over the shield surface 

and the total weight of the optimized shield can be obtained, 

3.1.2 Numerical Results 

In order to investigate the application of the theory, the dimensionless parameters 

K/so and u/so are used to show how different materials enter the local minimum 

weight shield Fig. 11 shows how the number of materials to be used in the local 

optimized shield varies as a function of the two parameters. In the regions be- 

tween the curves, the designated materials make up the local minimum weight 

shield. It is interesting to note that the ordinate in Fig. 11, Le., u = 0, gives the 

results for the spherical case. 

Sets of curves which give the thicknesses of each shield layer have been con- 

structed. A separate curve is required for each combination of materials speci- 

fied by Fig. 11. These curves are shown in Figs. 12 through 15. The parameters 

used are si/u and (K+AjSo)/ u, where Aj is the relative stopping power of the inner- 

most material of that particular sequence. The thickness of any given layer is 

then equal to (si-si-*). 

3.2 SHIELD OPTIMIZATION FOR COMPLETE CONVEX VOIDS 

In the last section, it is shown how it is possible to synthesize a minimum weight 

shield for a convex void on a piecewise basis. In that method, normal incidence 

of the incident proton radiation was assumed In this section, an approach to 

synthesizing a complete minimum weight shield analytically for a symmetrical 

convex void and at the same time removing the normal incidence restriction will  

be outlined 
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Fig. 11 - Materials to be included in an optimized shield 
as a function of K/so and a/so 
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Fig. 14 -Distances to the outer surfaces of the various 
shield layers for a two-material shield as a function of 
Si /U and (K+A&/u 
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c 3.2.1 Statement of Problem and Assumptions Made 

Given a convex void enclosed by a surface of revolution, the optimization problem 

concerns itself with determining surfaces which define layers of surrounding 

shield materials (obtained from a Young diagram) such that protons of energy 

less than a given cutoff energy, E,,, have an aluminum equivalent range which 

does not exceed a given constant, K, for any direction of proton incidence. Then, 

for a given family of surfaces which satisfy this condition, the one which mini- 

mizes the weight of the shield is chosen. 

The other assumptions made are: 

1. Besides requiring that a surface of revolution enclose the void, the 

surfaces of the surrounding shield layers are taken to be surfaces of 

revolution about the axis of the void. 

2. The void surface is defined in terms of a parametric representation 

using as a parameter the distance, s, measured from anorigin which is 

the intersection of the axis and the void surface (Fig. 16). 

3. The void is defined as having a continuously turning normal at all points 

on its surface. This assumption makes it possible to define the shield 

layer surfaces in terms of the void surface itself and the distance along 

Fig. 16 - Parametric representation of the void surface 
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the normal from the void to the surface in question. This assumption is 

not absolutely necessary to the theory , but it has the advantage of en- 

abling us to define the shield layers in terms of a single, uniquely deter- 

mined, normal thickness function, t(s). 

4. A further simplification is made in the formulation by permitting the 

void surface cross section to be defined in terms of straight line seg- 

ments and/or a rcs  of circles. However, this should be sufficiently gener- 

al to handle most shapes of interest. 

3. 21. 2 Theory 
I 

Jterms of the foregoing assumptions the equation of the void surface in cylin- 

drical coordinates (R,Z) may be obtained by eliminating s from the equations 

for 0 G s G S = total surface length. 

The equation of each shield layer of normal thickness, t(s), can then be obtained 

by eliminating s from the equations 
/ 

R(s) = f(s) - t(s) f’(s) 

(3.6) 

where the functions must satisfy the conditions 

g’(0) = 0 = g’(s) (3.7a) 

(3.7b) g’(s) 2 0 i f O - ( s - ( S  
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: -  must be continuous if g’ # 0 dZ f’b) 

dR =m (3.74 

The singly and doubly primed functinns have the usual meaning of first and sec- 

ond derivatives. 

If the void surface is defined in terms of straight line segments, the equations 

for the straight line between (gl,fl) and (gz,fz) where gl < g2 and (g& corresponds 

to s = s1 are given by 

I .  

I -  

I 
I .  

It is clear that all the conditions of Eq. 3.7 are satisfied along the portion of the 

surface defined by the straight line. 

The alternate formulation is to define the void surface by a circular arc with 

center (a#) and radius r passing through (gl,fl) at s = si, where (gl,fl) is the left - 
most point on the arc. It should be noted that f(s) must exceed /3 for all s on the 

a r c  since the a r c  must be concave downward (see Fig. 17). The equations for 

the circular a rc  defined in this manner are 

(3.9) 
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Fig. 17 - Circular arc definition of the void surface 

Along the portion of the surface defined by the circular arc the following condi - 
tions hold 

(3.10) 

Therefore, the conditions of Eq. 3.7 are also satisfied for this formulation. 

The equations for  the shield layers in the two cases a r e  the following: 

Straight Line Segment 

(3.11) 
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Circular Arc 

r+t(s) S'S1 
Z(s) = a + 1.] [ (gl-a) cos (y) - (f1-6) sin (-J] 

(3.12) 

R(s) = B - [ 7 1  r+t(s) [ (gi-a) sin r?) + (f1-6) cos (y)] s-1 

The calculation of the distance from the void surface to any shield layer surface 

now can be derived. By virtue of the cylindrical symmetry an arbitrary point 

on the void surface may be chosen. This will  be the point with coordinates 

f(so),O, g(so). Let (%,%,%) be a unit vector at this point which makes an angle 

of not more than 90" with the outward normal. Then (&,%,%) must satisfy 

and 

or  

If this point is to lie on the surface defined by Eq. 3.6, or one of its specialized 

forms (Eqs. 3.11-or 3.12) it must be possible to determine s', lying in the proper 

range, so that the corresponding R and Z satisfy the equations 

(3.13) 
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It is possible to introduce a new set of variables for  the angular dependence, 

which will  satisfy conditions with fixed limits, independently of the value of the 

parameter so. Let 

Then 

Substituting in the above, we obtain 

with the following conditions: 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

The simultaneous Eqs. 3.16 must have a solution pair (s',T) for each pair ( Q,,522) 

satisfying the conditions of Eqs. 3.17, and s' must lie in the interval in which the 

particular form given by Eqs. 3.11 or 3.12 is appropriate. As stated above, by 

choosing the appropriate form for  t(s), one and only one solution T for each 

"triple" so, G?,, SZ2 is insured. 
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For each shield layer, k, the volume, vk, enclosed, can be calculated from 

(3.18) 

The shield weight, W, is given by 

The optimization problem now consists of minimizing W as a functional of the 

normal shield layer thicknesses ti(sj, ..., tk(S), ..., tn(S), where ti(S) (i=1, ..., n) 

is such that the following conditions are satisfied. 

0 The solution is unique 

0 Q(s) s tz(s) ... s t,(s) for 0 c s S (3.20) 

0 The total aluminum equivalent thickness of the shield at that point 

3 K, Le., 

AtTi + Az(T2-Ti) + ..., + An(Tn-Tn-1) 3 K 

where Tk is a solution of Eq. 3.16 for ts = tk(s). 

(3.21) 

This leads to a problem in the calculus of variations, and since the conditions on 

the t’s are nonlinear, it was decided to attempt an approach which would reduce 

them to a discrete problem. This, in turn, presents a problem in the minimization 

of a number of constants, where the constraints are nonlinear. 

To solve this reduced problem, the void is first divided into segments according 

to the sequence s = so, si, ..., 5, where so = 0 and % = S. (See Fig. 18.) Once 

this is done, the thickness function, tk(s), for the kth shield layer can be re- 

placed by a sequence of thickness functions, t b  = tk(sp) in each interval (see 

Fig. 19). It is necessary to assume a behavior for the function in the interior of 

each interval (sp, s ~ + ~ ) .  The simplest assumption which wil l  still permit the sur-  



S SO 

Fig. 18 - Segmentation of the void 

(a) Single th i chess  sfunction (b) Sequence of thickness functions 

Fig. 19 - Replacement of a single thickness function by a 
sequence of thickness functions 
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face, now made up of various sections, to be continuous is a linear one. The re- 

lationship in the interval sp s s s spci is 

(3.22) 

where k denotes the kth shield layer and the initial condition is that 

tk+i, p tk,p* 

Additional conditions arise as the resulting curves (defined by Eqs. 3.11 or  3.12 

depending upon whether a straight line segment or  a circular arc is used for the 

void region or  section thereof) are required to give a curve which is concave down- 

ward for all values of 0 s s s s. The condition given by Eq. 3.21 must also be 

satisfied. Finally the function W(ti,o ... ti,p; t2,0 ... t2,p; ... tn,o ... fn,p) must be 

minimized subject to the conditions which satify tk,p 

Another simple approach is to choose t(s) over the interval so that the resulting 

curve is linear between the two defined points where the thicknesses are known. 

If we define 

(3.23) 

then the desired condition for convexity is: 

(3.24) 

This leads to a quadratic condition on tk,p. The condition given by Eq. 3.21 still 

holds, and again the function W must be minimized. 



The complete solution to this problem is beyond the scope of this study. The for- 

mulation of a method of solution would undoubtedly have to be carried out,partially 

at  least, by means of a digital computer, and a machine program would have to be 

written to obtain minimum weight shields by this method for cases of interest. 
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4. EXTENDED AND IMPROVED TREATMENT OF SECONDARY NEUTRONS 

InReference 1 the optimization theor7 for spherical proton shields was  modified 

to include the production and attenuation of secondary neutrons. Several one- 

layer shields and one two-layer minimum weight shield were calculated for a 

single solar flare. Because of a lack of data on (p,n) cross sections, only shields 

containing aluminum, carbon, and polyethylene (CH2) could be computed. 

In the present study, the cross section data for these materials have been revised 

according to the latest available data,2y394 and data on several new substances 

[oxygen, copper, tungsten, and phenol-formaldehyde (C,HsO)] have been obtained 

and they are included in the calculations. Phenol-formaldehyde was included as 

it is used as an ablative material in many heat shields. Using the computed param- 

eters for all of these materials, a generalized four-dimensional Young diagram 

has been devised. One-layer spherical shields have been calculated for these 

substances for two quite different solar flare spectra. Several two-layer mini - 
mum weight shields also have been computed. 

4.1 REVISION AND EXTENSION OF SECONDARY NEUTRON PARAMETERS 

The (p,nj cross sections which are used in this study a r e  the so-called effective 

values which take into account multiple neutron production. The most recent 

values were obtained from Bertini's calculations which are available on micro- 

film from ORNL. A description of the method and the microfilm output are de- 

scribed in References 2 and 3. Besides the cross sections, Bertini also gives the 
c 
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yield of cascade and evaporation neutrons for proton energies between 25 and 

400 MeV. His results are in good agreement with experimental data' in the energy 

ranges where such data a re  available. The effective cross sections used in this 

study are shown in Fig. 20 where they have been extrapolated to 500 Mev and then 

kept constant to 800 MeV. 

Bertini has recently reported an e r ro r  in the code which generated his data." 

Although this error should have little effect on the (p,n) cross sections themselves, 

it may affect the yield and, hence, the effective cross sections. However, inasmuch 

as his data compare favorably with available experiments, it is believed that our 
results wil l  not be significantly changed by the reported errors. 

The four parameters required in a shield optimization theory which is to include 

secondary neutrons are 

0 The proton relative stopping power, A 
0 The material density, p 

0 The neutron attenuation factor, y 

0 The relative secondary neutron production factor, z. 

As pointed out in Section 5 of Reference 1, the parameter z is energy dependent 

and therefore will vary with the incident proton spectrum. Using the effective 

(p,n) cross sections, the secondary neutron production was calculated as a function 

of equivalent aluminum thickness, K, in cm, for the three incident proton spectra 

given in Table 4. The secondary neutron sources, S(K), ( n/cm2, or  n/cm2/sec) 

thus obtained, are shown in Figs. 2 1  and 22 for the materials and proton spectra 

considered The points on the curves represent the neutron production in alumi- 

num, whereas the spread in the points represents the limits in the deviation of 

the normalized curves for the materials examined in this study, i.e., C, Cu, 0, 

W, CH2, C7Hs0. The relatively small spread in the normalized results for new 

tron production over the wide range 

neutron production factor for each of these materials meaningful. 

s K s lo2 makes the use of a single 
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Table 4 - Proton Spectra Used 

May 10, 1959 Flare (Protons/cm2-MeV) 

3.19 ~ 1 0 ' ~  
Po = Ea + (5>a06) 

30 E S 800 Mev 

Februarv 23. 1956 Giant Flare (Protons/cm2-MeV) 

Po = 4.84 X 10' X E-'*27 

Po = 9.46 x 10" x 

30 6 E S 200 Mev 

200 s E 800 Mev 

The Van Allen Belt (Protons/cm2-MeV-sec) 
~ ~~~ 

Po = 1.55 X 102X 

Po = 7.33 X 10'X E-'*'' 

Po = 1.02 X 105X 

30 s E s 80 Mev 

80 S E s 400 Mev 

400 c E S 800 Mev 
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Fig. 21 - Secondary neutron production in several materials as a function of 
equivalent aluminum thickness for two solar flare spectra 
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The parameter used is defined in Eq. 59 of Reference 1 as 

I 
I 

I -  

Values of z for the three proton spectra of Table 4 are given in Table 5. 

Table 5 - Primary Proton and Secondary Neutron Material Parameters 

Density, 
Element p, g/cms A 

C 2.22 0.934 
Al 2.70 1 
cu 8.96 2.85 
W 19.3 4.76 
0 0.16 0.0658 
CH2 0.92 0.459 
C ? W *  1.27 0.572 

*Phenol -formaldehyde. 

y, cm-’ 

0.045 
0.048 
0.13 
0.16 
0.0030 
0.055 
0.045 

r 

5/10/59 

0.909 
1 
3.87 
9.52 
0.0655 
0.323 
0.539 

- ~~ 

2/23/56 Van Allen 

0.833 0.820 
1 1 
4.26 4.26 
10.9 11.4 
0.0639 0.0621 
0.296 0.291 
0.545 0.544 

It should be noted that the new cross sections, based on Bertini’s calculations, 

result in much higher values of Z for carbon than were obtained in UNC-5049 

(0.2 as compared to the present value of 0.9 for May 10, 1959 flare). In fact, 

carbon now produces almost as many secondary neutrons as does aluminum (for 

which Z = 1 by definition). This result is reflected in the percentage of the total 

dose now contributed by neutrons for carbon and CHz shields as compared to the 

percentage given in UNC-5049. (Compare Table 7 of that report with Table 6 of 

the present report.) 

The neutron attenuation factors, y, were computed in the following manner. The 

results of Bertini’s  calculation^^^' were used to obtain the average energy of the 



I 

cascade and evaporation neutrons as a function of the incident proton energy and 

target nucleus. For these average neutron energies, average neutron total cross 

sections were obtained either from BNL 325l1(for neutron energies <20 MeV) or  

from experimental results4 and/or Bertini's calculations (for higher neutron en- 

ergies). This process was facilitated by the virtual equivalence of neutron and 

proton total cross sections for energies greater than 100 MeV. 

The resulting macroscopic total cross sections were then averaged for each mate- 

rial over the energy range in which neutrons a r e  most likely to be produced in 

that material in  an optimized shield. These averaged cross sections then were 

used as the parameter y (cm-l) in that material. For example, in materials most 

likely to be used as the outside layer of the optimum shield, such as CH2, most 

neutrons wil l  be produced by low energy protons,and therefore, an average over 

low energy neutron cross sections is used to obtain y. On the other hand, for 

inner layer materials, such as copper, most neutrons produced a r e  of higher en- 

ergy and, therefore, higher energy neutron cross sections were used to yield 

the neutron attenuation parameter. 

It should be noted that this method of calculating y gives only a first approxima- 

tion to satisfactory values. The y values then could be used in an optimization 

calculation to compute a shield, and the shield so obtained could then be analyzed 

(by a computer code) to find the actual neutron production and attenuation. On the 

basis of this analysis a better guess could be made of the y values and these 

new values then could be used to reoptimize the shield. 

The values of y for the six materials studied are given in Table 5. Finally, the 

A and p values as  previously calculated in Table 2 of Reference 1 a re  also listed 

in this table. The values of the four parameters listed in Table 5 were used in 

calculating the generalized Young diagram and in computing the optimized shields 

listed in Section 4.3. 
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f 4.2 THE GENERALIZED YOUNG DIAGRAM 

A four-dimensional Young diagram results when the production of secondary 

neutrons and their subsequent attenuation are included in the shield optimization 

theory. Although it is not possible to construct such a diagram for visual repre- 

senta€ion, a mathematical analysis has been made according to the methods pre- 

sented in Section 9 of Reference 1, using the six materials for which parameters 

have been calculated. The initial result of such an analysis is a closed hypersur- 

face consisting of 12 tetrahedra. This number was reduced by further analysis to 

a single tetrahedron which links the materials aluminum, carbon, CH2, and copper. 

This is an isolated tetrahedron in four-dimensional space, and what still remains 

to be determined are its connecting links with the origin of the diagram. This 

origin represents the air or  vacuum which must exist outside of the outermost 

shield layer. The connecting links can be either triangles (of three materials) or 

curves (of two materials), but not tetrahedra. 

A machine code was used to complete the analysis of the Young diagram. The 

final result is the generation of that portion of the total hypersurface which in- 

cludes the materials and mixtures which will make up the minimum weight shield. 

Although it is not possible to construct the four-dimensional diagram for visual 

representation, a rough projection in two dimensions is shown in Fig. 23. (It 

should be noted that because of the nature of the projection the axes cannot be 

meaningfully labeled.) 

From the Young diagram calculated for these six materials (Al, C, Cu, W, CH2 

and C7H60) the following conclusions can be drawn. 

1. Phenol-formaldehyde (C7H60) is not included in any optimum shield. 

This arises from the fact that it is inferior to polyethylene (CH2) as a 

shielding material in the region where substances with its values of 

the four parameters would be used, namely, at the outside of the shield. 

Therefore, when materials with these characteristics are required, the 

n 



Vacuum 

Fig. 23 - Projection in two dimensions of the four-dimensional 
Young diagram 

choice wi l l  always fall to CH2. If phenol-formaldehyde is required for 

some other reason, it can be used, but a slightly heavier shield will  

result, i. e., the shield will no longer be optimum. 

2. Of the materials considered, only polyethylene may be at the outside of 

the .optimum shield, i. e., only CH2 connects to vacuum in Fig. 23. Thus, 

when calculations of a one-layer shield for enclosures 20 cm in radius 

for the Feb. 23, 1956 flare show that a copper shield gives the lowest 

weight (Section 4.3), it is concluded that under these conditions a one- 

layer shield is not the minimum weight shield. Indeed, calculations of 

two-layer shields show that a Cu-CH2 shield has a lower weight for  

that case (see Section 4.3). 

3. Tungsten can only be adjacent to a pure region of copper o r  to a mixed 

region of tungsten and copper. Thus, the least complex optimum shield 

containing tungsten would have W, Cu, and CH2, in that order, starting 

from the inside. 
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4. of the materials considered, three-material mixtures can only consist 

of combinations of CH2, C, Al, and/or Cu. (Four-material mixtures are 

excluded on theoretical grounds.)' Two-material mixtures can consist 

of any two of the above materials with the addition of mixtures of W and 

Cu as noted above. 

As was pointed out in Section 4 of Reference 1, the Young diagram, in a case 

where four parameters are required, cannot determine the optimum sequence of 

materials to be used in a minimum weight shield. However, it will  restrict the 

choice to certain materials and certain sequences, and the f ina l  choice then can 

be made by means of actual shield weight comparisons. 

4.3 NUMERICAL CALCULATIONS AND RESULTS 

Single-layer shields were calculated for all the six materials investigated for 

void radii of 20 cm and 100 cm, and for the proton spectra of the May 10, 1959 

and February 23, 1956 solar flares. The results, for shields which will  reduce 

the total central dose, 6, to 25 rem, are given in Table 6. 

The proton dose conversion factor used is Dp = 2.083 X 

corresponds to an average RBE value of 1.3 rem/rad over the proton energy 

range. For neutrons, a dose conversion factor of % = 3.8 X lo'* rem/n/cm2 is 

used  This corresponds to an average RBE of about 6.5. This is an appropriate 

conversion factor for neutrons in the energy range 5 to 10 Mev.I2 

rem/Mev/g, which 

It is seen that polyethylene (CH2) is the best single material of this group, except 

for cases of small voids and hard incident proton spectra such as the 1956 flare. 

It is noteworthy that for all of the shields considered, secondary neutron doses 

are significant compared with the primary proton doses. For the May 10, 1959 

flare, the neutron doses a r e  higher than the proton doses in most cases. This 

somewhat surprising result can be attributed to several factors. 

73 



A . .  

E a 
k 

d 

c, 
cd 

v 

E 

E 
0 

74 



. 

1. Doses a r e  given in rem rather than rad, and the RBE used for neutrons 

is several times that for protons. 

2. A fairly low dose is specified, leading to thick shields which favor a high 

neutron to  proton dose ratio. 

3. The spectrum of the May 10, 1959 flare is rather soft, with a great many 

low energy protons which do not penetrate the shield but do produce sec- 

ondary neutrons and thereby contribute to the neutron dose. 

A series of minimum weight two-layer shields using the materials studied has 

also been calculated. The calculations were made by means of a machine pro- 

gram written for the CDC-1604-A computer. The results a r e  given in Table 7. 

The results show that for the two flares studied, for large enclosure radii (100 cm), 

the minimum weight spherical shield is composed of a single layer of polyethylene. 

For smaller void radii (20 cm), such as might be used for a local body shield or 

a space suit, certain two-layer shields have a lower weight than one composed of 

CH2 only. This is particularly true for the February 23, 1956 giant flare, which 

has a very hard proton spectrum. In this case, the use of a Cu-CH2 shield re- 

sults in a 44% weight saving over an all CH2 shield. 

In real  space vehicles either structural or  ablative material will nearly always 

comprise the outermost layer of the craft. Similarly, there will be equipment 

and some sort  of cabin liner between the vehicle radiation shield and the astro- 

nauts. With these constraints it is no longer obvious that a pure polyethylene 

shield is best, even for large enclosures. 

For example, Table 6 shows that for C and C7Hs0 most of the dose through a one- 

layer shield comes from neutrons for the May 10, 1959 flare, which has large 

numbers of low energy protons. Only for CH2 a r e  the proton and neutron doses 

about equal. If the shield is composed almost entirely of CH2, a sizable proton 

flux will  strike the material or  equipment closest to the cabin and may produce 
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a substantial number of secondary neutrons which will then impinge directly on 

the astronauts. For such a case, it is possible that the lowest total dose may be 

obtained by including a heavier material in the radiation shield to attenuate the 

proton flux. Any secondary neutrons produced in this shield material then would 

be attenuated in a layer of CH2 located between it and the cabin. Therefore, given 

such a constraint, it is not at all clear, a priori, what the minimum weight shield 

would look like, and the synthesis technique could conceivably lead to significant 

weight savings. 

. 

. 

This study is continuing with an  investigation of three-layer minimum weight 

shields. It is planned to write a computer code to solve a number of such cases 

for the six materials used to date. 
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5. CONCLUSIONS 

The proton shield synthesis technique has been extended to include a number of 

dose constraints, including average body dose and depth dose, which a r e  of par- 

ticular importance in shield evaluation. The extended technique leads to several 

interesting conclusions. For example, for the case of a tissue model which com- 

pletely fills a shielded spherical enclosure, the theory predicts that all the materi- 

als making up the Young diagram must be used in the minimum weight shield 

This result can be applied to the design of local body shields. 

Analytic expressions have been derived by means of which doses behind given 

spherical shields in particular proton space environments can be calculated. The 

sample numerical results obtained agree very well with previous machine cal- 

culations made at United Nuclear and with the results of other investigators.? 

The theory of shield optimization for generalized convex enclosures has been ex- 

tended along two different lines. By the first approach it is possible to obtain 

local compositions and layer thicknesses of minimum weight shields for any con- 

vex shape specified by two radii of curvatures. Calculations have been carried 

out which give such compositions and thicknesses over a wide range of param- 

eters. It is then possible, in many cases, to approximate a complete minimum 

weight shield for an entire vehicle by the combination of a number of local shield 

results. 
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The second approach sets forth the theoretical basis for  synthesizing analytically 

an entire minimum weight shield for symmetrical convex enclosures. The com- 

plete mathematical formulation of this approach still remains to be worked out. 

The work on the inclusion of secondary neutrons in the shield synthesis technique 

has been extended also by: 

1. Improving and expanding the secondary neutron production and attenuation 

parameters 

2. Calculating a generalized four-parameter Young diagram 

3. Extending the one- and two-layer shield calculations to other materials 

and other space proton spectra. 

The results of this study substantiate our previous findings that important space 

shield weight savings a r e  possible by the use of the synthesis technique. It is 

believed that this method wil l  increase in importance as more shielding is re- 

quired for longer space voyages or for protection against very high energy proton 

flares. For these cases the effect of secondaries, particularly neutrons, cannot 

be ignored. 

, 

. 
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6. RECOMMENDATIONS FOR FURTHER WORK 

In the course of the present study, a machine program to calculate minimum weight 

spherical shields under a variety of dose constraints was prepared, but it did not 

become operational. This code should be completed. A method must be found for 

selecting good enough initial values of the two Lagrange undetermined multi- 

pliers to permit the code to converge properly to the final correct solution. Sev- 

eral methods have suggested themselves and it will be necessary to conduct a short 

“experimental” program on the computer to arrive at the proper procedure. Once 

the code is completed, a range of problems involving average body dose, depth 

dose, and various point dose constraints should be solved. These results can be 

of great importance to the manned space flight program. 

As explained in Section 4, a four-parameter Young diagram was calculated and 

certain useful conclusions were derived from it. The methods used to calculate 

the Young diagram for these materials should be used to test the usefulness of 

other likely materials as well as to calculate Young diagrams for other secondary 

radiations. 

As part of the present study, one- and two-layer minimum weight shields designed 

against protons and secondary neutrons have been computed. The equations for 

calculating three-layer shields a r e  now being prepared. A machine code should 

be written to perform the computations. The formulation also should be extended 

to include more shield layers and to permit the use of mixtures of materials in 

given layers. 
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Since all space vehicles must have a designated metal “skin” or  ablative material 

as their outermost layer, this constraint should be included in the shield optimiza- 

tion theory which takes into account both primary protons and secondary neutrons. 

This special constraint can be looked upon as changing the radiation spectrum 

which the shield sees, since not only is the proton spectrum changed, but also 

secondary neutrons may be produced in this outer layer. The inclusion of this 

constraint in the present theory appears to be feasible and within the present 

stat e - of - th e - art . 

Another important constraint which should be included in this formulation is the 

presence of equipment and/or a cabin liner between the radiation shield itself 

and the astronaut’s living space. Recently computed minimum weight shields of 

polyethylene may allow a sizable proton flux to strike this inner material o r  equip- 

ment thus producing substantial numbers of secondary neutrons which then im- 

pinge unattenuated directly on the astronauts. With such a system it may be nec- 

essary to include a heavier material in the optimum radiation shield to attenuate 

further the proton flux before it strikes the inner equipment region. Therefore, 

it would be highly useful to include this constraint in the optimization theory as 

it could conceivably lead to significant weight savings in cases of real spacecraft. 

Although it is usually assumed that secondary protons can be neglected as an im- 

portant source of tissue dose from space radiation, this problem should be in- 

vestigated in greater detail. In particular, it may be that low energy secondary 

protons produced near the inner edge of the shield or  in the astronaut himself 

may affect significantly the total dose received. This is a consequence of the 

large amount of energy transferred by low energy protons to tissue. The inclu- 

sion of secondary protons -as well  as secondary neutrons in the shield optimiza- 

tion theory still may lead to only a four-parameter system since the same proton 

relative stopping power, A, may be usable for both primary and secondary pro- 

tons and the production factor for  secondary protons may be proportional to that 
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. . for secondary neutrons. Therefore, the problem of incorporating secondary pro- 

tons into the shield synthesis theory should be investigated. 

In the course of the present study a feasible approach to synthesizing an entire 

minimum weight shield analyticdlly for symmetrical convex enclosures has been 

formulated and a possible method of solution has been outlined. The mathematical 

formulation of this approach should be completed and methods of solution should be 

worked out in enough detail so they can form the basis for a computer program. 

Such a method, once available, would be of inestimable value in accurately syn- 

thesizing minimum weight proton shields for most convex shapes of interest in 

space work. 

The synthesis theory for spherical proton shields has now been formulated in 

terms of various realistic dose constraints. The next logical step in advancing 

the method is to include secondary neutrons in the dose constraint theory. It is 

believed that this is feasible and will lead to an 'almost complete practical solu- 

tion to the minimum weight spherical space shield problem. 

A final aspect of the continuation of the present shield synthesis work which is 

considered to be of great importance, is to  study the transition from spherical 

to generalized convex geometry of the dose constraint model. Here, both the local 

optimization and the complete shield approaches would be investigated to deter- 

mine which is more likely to give meaningful results without being too complex. 

The successful conclusion of such a study would go a long way toward the solution 

of the minimum weight space shield problem for realistic vehicles. 
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7. APPENDIX A - DERIVATION OF DOSE RELATIONSHIPS 

7.1 EQUIVALENT ALUMINUM THICKNESS OF THE SHIELD 

Consider a shield consisting of concentric spherical shells of radii ro, rl, ..., rj, 
where ro is the void radius, and containing materials with proton relative stopping 

powers Ai, A2, ..., 4. As shown in Fig. 24, a proton of energy E incident on the 

shield at angle cp ((p is measured with respect to the inward normal from the sur- 

face of the spherical phantom) wi l l  penetrate the shield if its energy is greater 

than the energy, Eo, defined by the following relationship: 

or  

(7.1) 

where CY and n have been defined in Eq. 2.2 and ti(cp) denotes the path length 

through the ith shell in the cp direction. 

The right-hand side of Eq. 7.1 defines the equivalent aluminum thickness of the 

shield, K, in the cp direction. 
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Fig. 24 - Geometry of the dose constraint model 
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I . '  

K, in units of cm of aluminum, wi l l  be used frequently to denote the shielding at- 

tenuation along given incidence angles. 

I 

1 . 

I 

Since those protons which penetrate the shield and are incident on the spherical 

phantom are of interest, it is useful to express the path length, ti((p), as a function 

of the inner and outer shell radius and the phantom radius, e. Taking the origin 

at a point P on the phantom surface, one obtains 

where 0 scp n/2 . 

Hence, Eq. 7.2 can be written 

j 
K = 2 Ai [(ri-e' sin2 (p)'l2 - (& -e2 sin2 (P)'/~] 

i=l 

o r  

j 
K = -A1 (ri - e2 sin2 (p)'I2 + 2 (Ai -Ai+l)(ri - e2 sin2 (p)'l2 

i=l 

with the convention that 4+1 = 0. 

(7.4) 

As <p increases from 0 to 77/2, the path length through the shield increases and 

thus the shielding attenuation increases. 

Indeed, the differentiation of Eq. 7.4 gives 



(7.5) 

Since e ro < r, < ... < ri < ... rj, then 

1 > 1 
(ri-i - eZ sinZ c p )  lp (rf - eZ sinZ cp)'P 

All terms on the right-hand side of Eq. 7 .5  a r e  positive. Therefore, K increases 

with increasing cp (or remains constant if e =O). 

The minimum shielding attenuation is given by: 

KO is the shielding attenuation constraint used in the previous work* in which the 

protons were assumed to be normally incident to the shield. The use of KO is 

also justified in  the case of dose calculation at the center point of the phantom. 

However, in the general problem, the angle-dependent shielding attenuation, K, 

must be used. It will be shown in the following sections that analytical expressions 

of doses can be obtained by using an expansion in series of K. 

Since e d ro < rl < ... < ri < ... < rj and sin q 

ries in the following manner 

1, Eq. 2 .8  can be expanded in se- 

K = K~ + K, sin2 CD + K~ s in4  q + K~ sin6 (D + ... (2.10) 

where KO, Ki ,  . .. a r e  positive, angle-independent coefficients. For example, 

(2.11) 
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It can be shown also that the coefficients Ki  decrease rapidly, particularly if e<<ro .  

Also 

Thus, if the two first terms of the expansion are retained, Le., if 

K = K,, + K~ sin2 cp, (2.12) 

an approximate equivalent aluminum thickness is being used that is less than, 

or equal to, the actual equivalent aluminum thickness given by Eq. 2.8. As far 

as energy deposition in the phantom is concerned, this will be a conservative as- 

sumption in the calculations. Using Eq. 2.12 ensures that the calculated energy 

deposited in the phantom will be greater than the actual one (since, as pointed out, 

the number of protons incident on the shield and the proton energy loss in aluminum 

increases rapidly as the energy becomes smaller). 

7.2 DETERMINATIONOFTHEENERGYOFPROTONSATTENUATEDBYTHE 
SHIELD AND INCIDENT ON THE PHANTOM 

A proton of energy E incident on the shield at angle @ will penetrate the shield 

if its range in aluminum, R(E), is greater than the equivalent aluminum path length 

through the shield, K (see Fig. 25). Then the emerging proton energy will  be a 

function of E and K. 

Consider incident protons with directions passing through a point P on the phan- 

tom surface (Fig. 25). Since K increases with increasing q for 0 C cp 6 n/2, 

three cases a r e  possible: 

1. R(E) 6 KO, then no protons emerge in the shielded enclosure and hence 

no protons reach the phantom. 

2. R(E) 2 K,, where Km is the maximum equivalent aluminum thickness 

of the shield. i. e., if in Eq. 7.4, sin q = 1, 
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Fig, 25 - Energy attenuation model 
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j 

Km = AAi (ri- e2)'/* - Ai (ri - e ) 
i=l 

Then all incident protons of energy E emerge in the shielded enclosure 

and a r e  incident on the phantom. 

3. Kg < R(E) < K- 

Then there exists an angle coo, O c 'po c n/2, such that 

Then only protons incident on the shield with an angle cp less than uo 

penetrate the shield and reach the phantom. 

The emerging proton energy E' is given by 

Otherwise 

E' = 0. 

(7.7) 

From Eq. 2.1, the analytical expression for the range in aluminum can be obtained 

and Eq. 7.7 becomes 

if 

(2.13) 

otherwise 
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7 .3  DETERMINATION OF THE ENERGY OF PROTONS LEAVING THE PHANTOM 

A proton of energy E’ incident on the spherical phantom with angle <D will pene- 

trate the phantom, emerging with an energy E” if its range in aluminum is great- 

e r  than the equivalent aluminum path length, f(o) through the phantom in direction 

LO. 

where AT is the phantom relative stopping power. 

Thus. the energy E” is determined by the following equations: 

R(E”) = R(E’) - f(o) if R(E’)> f(v) 

Otherwise 

E” = 0. 

(7.9) 

However, it is shown in the foregoing section that the energy of a proton incident 

on the phantom, E’, is itself a function of E and 0. If the total aluminum equiva- 

lent path length at angle LO through both the shield and the phantom is denoted by 

KT(o), i.e., 

Then, from Eqs. 7.4 and 7.10. 

(7.10) 

(7.11) 

, 
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. The behavior of K(q) is not obvious, since as q increases from 0 to n/2, P ( q )  de- 

creases while K(q)  increases. 

It can be shown that if 

(7.12) 

then KT(q) is a nonincreasing monotonic function of cp. KT(@) decreases from 

KT(0) = KO + 2 AT e to KT (7r/2) = K,, the maximum shield path length. 

Fig. 26 gives a plot of the variations of K T ( ~ )  and K(q)  with (p. 

If the approximation (Eq. 2.12) for K(q) is used, then Eq. 7.11 becomes 

or 

KT(V) = Km + [KT(O)-K~] COS q - (Km-Ko) COS~<D 

where 

KT(O) = 2 ATe + KO 

is the maximum value of KT( (~) ,  and 

Km = KO + K1 

is the maximum value of K(u). 

(7.13) 
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Fig. 26 - Aluminum equivalent path lengths at angle q, v s  q 
through: (1) the shield, K(u), (2) the shield and the phantom, 
KT ( c3) 
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7.4 RATE OF ENERGY DEPOSITION PER UNIT MASS OF THE PHANTOM 
FORMONOENERGETIC PROTONFLUX 

If protons of energy E are isotropically incident on the shielded spherical void, 

the rate of energy deposition per unit mass of the spherical phantom for a unit 

flux is given by: 

Fv(E)= 3 [ Jqo E’ sin cp cos q dq-  E” sin q cos q dq 
2ePT 0 

where the values of qo and ql depend on the incident proton energy E as shown 

in Table 2. In Eq. 7.14, Fv(E) is expressed in Mev/g per unit flux (in protons/ 

cm2 - s ec 1. 

Referring to Table 2, it is seen that there are four possible cases. 

1. R SKo; 

then qo= 0, and ql = n/2 

2. KO < R Km; 

then, using Eq. 2.12, 

3. Km < R KT(O); 

then qo = n/2, and ql is determined by solving the equation 

with 0 < cos < 1. 

(7.15) 

4. KT(0) < R; 

then ‘po = n/2, and = 0. 
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The integration of 

11 = loo E' sin (D cos q d(D 

as shown in Appendix B, yields 

(7.16) 

I -  if R ,  Km 1 n+l EbRh-EfnRh 
' - Z a  Km - KO 

where the notation is a s  follows: 

If E and R are the energy and the range in aluminum of protons incident on the 

shield, Rh = R - KO and RA = R - Km represent- the range in aluminum of those 

protons which penetrate the shield and a r e  incident on the phantom normally and 

tangentially, respectively. 

E; and E L  are the proton energies corresponding to Rh and Rfn, respectively, 

and they are obtained from range-energy tables. 

The integration of 

I z =  s:" E" sin co cos co d(D, 

also given in Appendix B, is much more complex. The final expressions for 1 2  

a re  
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1 n+l EhRm 
I2 = 2  n+2 KT(0)-m 

1 n+l EhRk-Ei’R;’ 
2 n+2 KT (0)- K, 

I * = -  - 

Km < R KT(O) 

(7.17) 

where E& and RA have been defined in the foregoing discussion for It, G’ = 

R - KT(O) is the range in aluminum of a proton which emerges from the phantom 

along a normal and E;’ is the proton energy corresponding to the range G’. 

Introducing Eqs. 7.16 and 7.17 into Eq. 7.14 yields the expressions for the energy 

deposition per unit body mass and unit proton flux as a function of R (or E). 

These results have been summarized in Table 3. 

7.5 DOSE CALCULATION FOR GIVEN PROTON SPECTRA - AVERAGE BODY 
D06E 

The dose o r  dose rate per unit mass of the spherical crew man per unit proton 

flux for an isotropic proton flare incident on the shielded void is given by 

D = Fv(E) P(E) dE (7.18) 

where P(E) is the energy distribution of the incident proton flux given in Eq. 2.5 

and Table 1, and Fv(E) is given in Table 3. If P(E) is in protons/cm2-sec-MeV, 

D is expressed in Mev/g-sec. If P(E) is the time-integrated proton flux, D is 

expressed in Mev/g. 

If the proton range, R, is used as variable rather than the proton energy, E, 

Eq. 7.18 becomes (Appendix C) 
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where 

1 
n+ 1 a = - + 2 > 0  

> O  m + n  a + b = -  
n + l  

m-2 -- 

As shown in Section 2, C, and m are constants in given energy ranges (Table 1). 

Further, a single power fit for the aluminum stopping power may not be enough. 

Hence, it may be necessary to subdivide all integrals in Eq. 7.19 into partial in- 

tegrals in which a, b, and @ are constants. 

7.5.1 Single Power Fit 

The case of a single power fit for both the energy distribution of incident protons 

and stopping power of aluminum is of great interest since even a 4 g/cm2-thick 

aluminum shield stops all protons of energy less than 60 MeV. Since R 2 KO in 

Eq. 7.19, Ci and m may be considered as constants in all the domain of integra- 

tion. In addition, the number of protons of energy higher than lo3 Mev is relative- 

ly small. Therefore, n and a can be considered as constants for all values of R 

(7.20) 

(7.21) 

(7.22) 
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In Appendix C w e  show that in this case Eq. 7.19 becomes 

where, from Eqs. 7.20 and 7.21, 

m-n-3 
n + l  b =  

Since n = 0.786 and the range of the m values as given in Table 1 is 

0.7 s m s 5, 

then b can take negative values, viz., 

-1.73 b 0.68. 

(7.23) 

(7.24) 

(7.25) 

where B(a,b) is called the complete beta function often found in statistics, and 

r(x) is the tabulated gamma function. 

Eq. 7.13 then becomes 

(2.15) 

Although the beta function is discontinuous for b = 0, -1, it is shown in Appendix C 

that the dose given by Eq. 2.15 is a positive continuous function of b if b is greater 

than -2. 
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When b tends to zero either positively, o r  negatively, D tends to the value Do 

When b tends to -1, D tends to the value D-1 

DO 
n + 2  D,l = (a-1) Do= - n + l  

where Do is given in Eq. 2.16. 

(2.16) 

(2.17) 

In conclusion, if the energy distribution of the incident protons and the stopping 

power of aluminum can be represented by single power fits, the average body 

dose is given by 

(7.26) 

where C is a constant which depends only on the characteristics of the spectrum 

distribution fit (m!Cl) and the aluminum stopping power fit (a,n), so that 

C = /3 B(a,b) 

and 

(7.27) 

depends on the maximum and minimum shield attenuations, Km and KO and the 

man size, e. 

7.5.2 General Case 

It may be necessary to divide the energy range into several portions in each of 

which the energy distribution of the incident protons can be represented by a power 
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function of the energy. This would be the case if one considers protons from the 

Van Allen belt o r  the February 23, 1956 flare as being incident on the shield. 

Hence, a general solution for the average body dose is of interest. 

Assume that the energy distribution of the incident proton flare can be represented 

by 1 power f i t s  as follows 

(‘7.28) 

when Ej-1 < E 

a variable), j = 1, 2, ..., 1; Eo = Ro = 0, and E1 and Rp are infinite. 

Ej (or 5,1 < R < if the proton range in aluminum is used as 

Then, in each energy range, the following quantities can be defined 

- mj-n-3 
bj n + l  

mi -2 

and 

By convention, when x 3 1, B,(a,b) equals the complete beta function, B(a,b), 

and when x < 1, it becomes the incomplete beta function often found in mathemat- 

ical statistics.I3 When x = 0, B,(a,b) = 0. Numerous approximations to the in- 

complete beta function, %(a,b) a r e  available.“ Most tablesi5 use the “standard- 

ized” form which is called the incomplete-beta-function ratio: 
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Then, the average body dose is given by 

where 

-b- K a  0 

(2.18) 

(7.29) 

Eq. 2.18 reduces to Eo. 2.15 if  a single power fit for the energy spectrum is 

valid when R 3 KO. 

7.6 DOSE CALCULATION FOR PARTICULAR CASES 

7.6.1 Specified Dose at Phantom Center without Self -Shielding 

When the phantom radius tends to zero, only protons normally incident on the 

shield may impinge on the phantom. Then 
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K, = KO + K1 = KO + e2kl 

with 

(see Eq. 2.11) 1 

Also, 

when e << 1. 

Similar 1 y , 

2A -b 
KT(O)-~ = KO (1 + 2AT 5)  = KO [ 1 -b 3 e + E) 2 

-b -b 
2 e'] KO KO 

when e << 1. 

When e tends to zero, Eq. 2.15 becomes 

(2.20) 

which is the dose rate at the center of the void. 

7.6.2 The Case of Very Large Void Radius 

Assuming that 

Km = Ko(l+6) 

where 6 is a small number, then even if the phantom radius is large, when 6 tends 
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to 0, Eq. 2.15 becoines 

which is the dose when ro >> e. 

If 

then 

Then, when x << 1, 

and when x >> 1, 

which is the case of e << 1 studied in Section 7.6.1 (Eq. 2.20). 

7.6.3 Case of Noriiial Incidence 

Assuming that all protons froiii the flare penetrate the shield and the phantom at 

zero angle, the average body dose becomes 

(7.32) 

(7.30) 

(7.31) 
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where a, b, B have been defined in Eqs. 7.20, 7.24, and 7.22, respectively. 

When e tends to zero, Eq. 7.32 becomes 

(7.33) 

7.6.4 Specified Dose at the Phantom Center with Self-shielding 

If the average body dose is desired in a concentric spherical tissue region inside 

the phantom of radius e' (e' < e), Eq. 2.15 applies by replacing e by e', 

j 
KO by AAiri - Airo + AT(e-e') 

i=l 

j 
Km by 2 AAi (rf - er2) 'I2 - Ai(ri - e'2 )i/2 + AT(e2 - er2) i/2 

i= 1 

j 
KT(O) by AAiri - Airo + AT(€?+&). 

i=l 

As e' tends to zero, it can be shown that Eq. 2.18 holds i f  w e  replace 

Hence, the dose in an infinitesimally small sample of tissue located at the phan- 

tom center is given by 

B(a,b) 

( K ~ + A ~  elb2 
D(center) = b(b+l) PAT (2.21) 
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7.6.5 Depth Dose 

The specific requirement in this case is to evaluate the proton energy per gram of 

tissue deposited in a shell of thickness de’ located at r = e’ (0 s e‘ s e) when de’ 

tends to zero. The radius of phantom is e. If D,(e’)represents the average body 

dose in a sphere of radius e‘, then the depth dose, D at r = e’, is given by P’ 

4 d 
3 de 47pT e’’ de’ Dp(e’) = - 7PT 7 [ef3 Dv(e’)] de’ 

or 

(7.34) 

The analytical expression for the average body dose, Dv, is obtained from Eq. 7.26 

and can be written as 

(7.35) 

Substituting Eq. 7.35 into Eq. 7.31 gives 

os 
(7.36) 

To obtain a compact expression for the depth dose, KA is expanded in series, 

assuming e’ small coinpared to ri, and using the two f i rs t  terms of the expansion 

in the calculations. Thus, 
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el2 K& = KO + ATe + - 
ri e i=l 

2 

and 

or  

Hence, it can be shown that 

(7.37) 

(7.38) 

(7.39) 

Jn particular, if e' = e, the skin dose, Dp(e) is obtained. Thus, in Eq. 2.22, Ki  

would equal KO, the aluminum equivalent shield thickness and K; + 2 A ~ e '  = 

KO + 2+e, the aluminum equivalent shield and tissue thickness. Also, 

which is the aluminum equivalent path length through the shield in the direction 

tangent to the man volume. 

If e' = 0, K; = Kfn = K; + 2+e'  = KO +  AT^, Eq. 2.22 shows that Dp(o) is undeter- 

mined for e' = 0. 
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However, for  e' << I, the following expansions can be used for K;-", (K;+ 2~Te')-" 
-n and (KL) . 

-n n(n+l) ( A oT e' ) 2  + ...I (7.40) 
Ki-" =(KO + AT€?) [ 1 + * Ko+ATe e' + 7 K + A  e 

(7.41) 

(7.42) 

where 

Introducing Eqs. 7.40, 7.41, and 7.42 into Eq. 2.22 yields for the center dose 

(e' - 0) 

This is exactly the analytical expression found directly in Section 7.6.4 (Eq. 2.21). 

Indeed, Dp(0) can be considered as the average body dose in an infinitesimally 

small spherical volume of tissue located at the phantom center. 
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I 

8. APPENDIX B - THE INTEGRATION OF 11 AND 12 

8.1 THE INTEGRATION OF 1, 

I, = a" E' sin <D cos <D d u  

where 

with 

or 



The limit of the integral is then obtained by solving the following equation 

R = KO + &-KO) sin2 cp (8.4) 

If in Eq. 8.1 the variables are changed so that 

u = R - K(q) 

then 

I where uo = R - Km if cpo = ~ 1 2  

(8.5) 

otherwise uo = 0. 

Integrating Eq. 8.6 yields 

L +  l l  (8.7) 1i=zn+2 Km- Ko [(R- KO)"+' - uo 
1 1 .n+l [(n+1)aln+' - + 1 n+i 

Now, R$ = R - KO and R', = R - Km represent the range in aluminum of protons 

incident on the phantom normally and tangentially, respectively. From the energy- 

range relationship Eq. 2.14, if E$ and E', are the energies corresponding to % 
and Rh respectively, Eq. 8.7 can be written as 

Et R$ if R Km (or cpo <s/2) 1 n+l 
Km - KO 1i=2n+2 

1 n+l E$ R$ - E', R', 
2 n+2 Km - KO Ii = -  - i f  R > Km (or cpo = n/2) . 
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8.2 THE INTEGRATION OF I2 

where 

E" = 

with 

y d 2  
E" sin ~p cos ~p d q  

1 1 

(8.10) 

(8.11) 

(8.12) 

KT(q) = Km + 2 A ~ e  COS Cp - (Km- KO) COS2 q 

or 

KT('~)  = Km + [KT(O) - KO] cos cp - (ICm- &)cos2 cp 

and 

cpi = 0 if R 2 KT(0) 

0 < n / 2  if R < KT(O) 

4' is obtained by solving the equation 

R - Km - 2ATe COS + (Km- KO) COS2 Cppi = 0 

where 0 < cos cpi < 1. 

Since KT(q) was shown to be monotonic in all practical cases, there is just one 

solution to Eq. 8.12. 

Upon the change of variables, x = cos ~ p ,  Eq. 8.9 becomes 
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Eq. 8.13 can be written a s  follows: 

(8.14) 

The first term on the right-hand side of Eq. 8.14 can be integrated, and since 

2 A ~ e  = KT(O) - KO, 

(8.15) 

where 

If K~(cp)  is used rather than K ~ ( c p )  in Eq. 8.16 where 
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Is becomes 

n+2 n+2 

(8.17) 

(8.18) 

Now R k  = R', = R - Km and RG' = R - KT(O) represent the range in aluminum of 

protons emerging along a normal and tangent to the phantom, respectively. If 

E& and Et' are the energies corresponding to R', and RG', respectively, using 

Eq. 2.14 I2 becomes 

if K, < R S KT(O) 

(8.19) 

113 



C 

9. APPENDIX C - EVALUATION OF THE AVERAGE BODY DOSE 

The average body dose, D, is given by 

D = im Fv(E) P(E) dE 

where P(E) = CiE-m is the incident proton spectrum and Fv(E) is the energy de- 

position rate in the body. 

If the range, R, is used as a variable rather than the energy, E, from Eq. 2.14 

1 1 - -  
E = [a(n+l)]n+' Rn+' 

Hence, 

m- - m+n n+l -- 
dR [a(n+l)] n+i P(E)dE = Cl + 

(9.2) 

(9.3) 

(9.4) 

Using the expressions of FJR) in Table 3, Eq. 1 can be written as 
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m- 2 -- 
e~~ a(n+l) n+i D =  Km-Ko n + l  [L n+2 

(R- Kf+' 
- 

m+n - 
R n+i 

n+2 - 
(R-Km)n+* 
- m+n 

Rn+* 

- 
m- 2 00 n+2 
n+i 

- 
dR (R-Km) n+i 

m+n - 6 Rn+' 

eC1 Q (n+ 1) - 
KT(O)- K, n +  1 

Let 

where 

m+n 

R 

dR 

i 

m- 2 -- m- 2 

n+2 a = -  + 1  n+ 1 

m- n- 3 
n+l b =  

(9.5) 

(9.6) 

(9.7) 

(9.8) 

In each integral, w e  change variables such that the limits of integration are 0 and 

00, then we obtain 

(9.9) 
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I .  where 

. 

which is by definition the beta function if a > 0 and b > 0, Le., 

(9.10) 

(9.11) 

Now and and a+b = (m+n)/(n+l) a r e  always positive. However, b is positive only 

if m > n + 3. As b tends toward 0, I becomes infinite. Now show that D tends 

toward a finite value when b - 0. 

-b -b Km 
KO KO Km b (log Km - log KO) = b 1% - 

Therefore, as b approaches U, D tends to the value Do where 

(9.12) 

If b is negative and tends to zero by negative values, I tends to -00. but D still 

tends toward Do. Hence, D is continuous at b = 0. When 

- 1 < b < O ,  I<O,  

. 
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and 

such that D remains positive. 

Now, from the values of m in Table 1, b cannot be less than -2, since if b = -2, 

then m = 1 - n = 1 - 0.786 = 0.214. For all flares, m > 0.7. Therefore, we have to 

show that Eq. 9.11 gives a finite value for the dose as b tends toward -1 by higher 

and lower values and that the dose is positive for - 2  < b < -1. 

Let b = -1 + 6, where E is a small positive or negative number. 

Then 

r(a) r(b) r(a) r(-i+6) r(a) r(e) x a  + 6 - 1 
== r(a+6-1) =r(a+6) 6 - 1  

and as 6 - 0, 

On the other hand, 

(9.13) 

(9.14) 

t 

. 

Substituting Eqs. 9.13 and 9.14 into Eq. 9.9 yields the following, as 6 - 0 and 

D tends toward D-, 
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I *  

l w  
which does not depend on the sign of 6, and D,l is positive since from Eq. 9.7 

a >  1. 

Let b equal a number between -1 and -2. Then r(b) is positive and therefore 

B(a,b) > 0. 

Since 

then 

Therefore, 

(9.15) 

when 

-2 < b < -1. 
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10. APPENDIX D - THE SOLUTION OF THE 
LAGRANGE MULTIPLJER EQUATION 

The equation to be solved is 

in which 

Also, from Eq. 2.27 we have 

v = V ’ + T p 7 > 0  

If we define 

2 x = ri 

AAi % = -  
Pi  

AAi S = q - - ,  
Pi 

Eq. 10.1 can be written as 

X -  1 -+ =‘m -- 

(10.1) 

(10.2) 

(10.3) 

(10.4) 

la 



From Eq. 10.2, it can be shown that the left hand side of Eq. 10.4 is positive. 

Theref ore, 

where x = xo if e = 0. 

On the other hand, from Eq. 10.3 we can write 

x o - s > o  

Eq. 10.4 now can be transformed as follows: 

(x- X ~ + S ) ~  (x- e2) = s2x 

or 

x(x-xo) (x-x0+2s) = e2(x-xo+s)2. 

(10.5) 

(10.6) 

(10.7) 

The solutions of Eq. 10.7 are given by the intersections of the parabola 
y1 = e 2 (x- xo+ sl2, and the cubic yz = x(x- xo) (x- xo + 2s). But, from Eq. 10.5, the 

desired solution must be greater than xo. Since xo - S > 0, two cases are possible 

in view of the zeros of the cubic: xo - 2s < 0 and xo - 2s > 0. 

for both cases in Fig. 27. 

y1 and y2 are plotted 

The plots show that there are up to three real and positive solutions for Eq. 10.7 

but that one and only one solution is such that x > XO, 

Hence, if one makes the  change of variable, X = x - xo in Eq. 10.7, and solves the 

cubic equation in X, one gets only one real root such that X > 0. 

Eq. 10.7 then becomes 

X(X+X~) (x+~S) = e2(X+S)2 = o 
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'1 

t 

l y  Case 1: k,,- 2s < 0 

Case 2: x, - 2s > 0 t 

Fig. 27 -Solutions of Eq. 10.7 
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. 
+ or 

x3 + (xo + 2s- e2) x2 + 2s(xO- e2)X + e2S2 = 0. 

Now let 

p = xo - e2 t 2s  

q = 2s(xO- e2) 

t = e2S2 

and 

a = 1/3 (3q-p2) 

b = 1/27 (2p3 - 9pq+ 27t) 

One can then compute the discriminant 

If A > 0, there will  be only one real root 

(10.8) 

(10.9) 

(10.10) 

(10.11) 

(10.12) 

If A < 0, there wi l l  be three real  roots. The desired solution wil l  then be obtained 

as follows: 

Compute 

Compute the value of the angle 

cp x = - + 2  1;y2 cos - , 
3 3 

(10.13) 

cp. Then the solution is given by 

(10.14) 
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