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REVIEW OF EMISSIVITY CALCULATIONS
FOR DIATOMIC GASES

1. Introduction

The molecular absorption (or emission) spectra observed in the infrared
results‘from the transitionsrof vibrating and rotating molecules to higher
(or lower) energy levels. An absorption or emission spectra has only beén
observed for molecules which possess a permanent electric dipole moment
(HC1, CO, COg, HZO’ etc). We note that we are not considering electronic
transitions which are responsible for the visible and the ultraviolet band
spectra. We classify the wavelength region extending from 0.8 to 20u as

the near infrared and from 20 to 80u as the far infrared.

2, Coarse Structure of the Infrared Spectrum*

(a) The Rigid Rotator

The simplest model of the rotating molecule assumes the molecule to
consist of several point masses which are rigidly connected by weightless
rods. For the diatomic molecule there are only two point masses and the
line joining them is an axis of symmetry, the internuclear distance, so that
we have the so called dumbbell model.

The energy of rotation of a rigid body is given by

= 1 2
E=31 o (1)

where w is the angular velocity and I is the amount of inertia defined by

I ur 2 r ( )
= T e— 2
m1+m2

* See Herzberg, reference 1.
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It is convenient to write the energy of rotation E in the form

2
p

E = —

T o21
where P is the angular momentum Iw.
To obtain the possible energy levels according to quantum theory we
determine the eigenvalues of the Schrodinger equation for the rigid rotator.
The result is

2.,.
hj(j + 1)

E(j) = ;
Snz

i=0,1,2. ... 3)

I

where Jj 1is the rotational quantum number. We therefore have a series of

discrete energy levels whose energy increases quadratically with j.
According to classical electrodynamics the rigid rotator will absorb or

emit radiation if the rotation is accompanied by a changing electric dipole

moment. This would occur for all diatomic molecules that consist of unlike

atoms since these molecules have a permanent dipole moment in the direction

of the internuclear axis.* Therefore during the rotation, the component of

the dipole moment in a fixed direction changes periodically with a frequency

equal to the frequency of rotation, Vyeot = avzﬂ ; which would result in

the absorption or emission of light at this frequency. Thus the classical

theory predicts a continuous absorption or emission spectrum for the rigid

rotator since Vyot €an take all values.

* Diatomic molecules consisting of two like atoms have no absorption or
emission spectrum in the infrared.



According to the quantum theory absorption takes place only as a result
of a transition from a lower to a higher energy level.* The wave number,

v(cm_l), of the spectral lines are given by (cf. Eq. 3)

v=o=-=—=Bj"("+1) -Bj" G" + 1) (4)

where the primes

and the constant, B, is given by

B=_h___.__ (5)

8x2cl
The particular transition which give rise to absorption or emission are
given by
A =3 - =1
the so called selection rules of wave mechanics. Therefore, for the rigid

rotator j' > j" and Aj = +1 (consistent with our prime notation) so that
v=F G"+1)-F @G =2B(("+1) ;3" =0,1,2 ..., (6)

where F(j) represents the ratio E(j)/hc. Thus the spectrum of the rigid
rotator consists of a series of equidistant lines (see Fig. 1). For con-

venience we write j for j'.

* Recall the classical result for atomic spectra that energy is radiated
when an electron moves in a single orbit about a charged nucleus while
the quantum theory states there is no absorption or emission when the
electron remains in one orbit, but occurs only when the electron jumps
from one orbit to another.

and " correspond to the upper and lower states, respectively,



(b) The Harmonic Oscillator
The simplest model of the vibrating diatomic molecule assumes the atoms
to be point masses which are acted on by a force that varies with the distance

between them. This force corresponds to a potential energy, V,

where k is the force constant. The motion of the atoms can be described by
the harmonic motion of a single point mass, u, about an equilibrium position,
r , that is

e

dz(r-re)
b ———3— = ~k(r-r,). 7
dt

The frequency of oscillation is given by

1/2
) (8)

T =

_ 1
Vosc"’2,t

To obtain the energy levels of the harmonic oscillator, we determine the
eigenvalues of the Schrodinger equation. The result is

E(v) ~ Vosc

= G(v) = (v+1/2); v=0,1,2 ... (9
he

where v is the vibrational quantum number. The ratio v /¢ is denoted

oscC

-1
by w(em 7).
As a first approximation it is assumed that the dipole moment changes

with a frequency equal to the oscillation frequency, v /c = w. From the

osc

quantum theory we have that the wave number of the absorbed quantum is



given by

E(v') - E{v)

v o= he = G(v') - G(") = w (v - V") (10)

The transitions which absorb and emit radiation are given by

11

AV =v -v =+1 so that v = w = v /c
which agrees with the classical result. The spectrum is shown in Fig. 2.

(c) Quick Comparison with the Coarse Structure of the Observed Spectrum

The observed spectrum in the far infrared consists of a series of nearly
equidistant lines and is therefd}e primarily a rotation spectrum. The spec-
trum in the near infrared consists essentially of a single intense line and

is therefore primarily a vibration spectrum.

3. Fine Structure of the Infrared Spectrum*

(a) The Anharmonic Oscillator

Recall that the harmonic oscillator is characterized by a parabolic
potential curve. This would imply, however, that the potential energy and
the restoring force continue to increase as the atoms move further and
further apart. Practically, the attractive restoring force goes to zero for
large distances so that the potential curve would approach a constant. As
a first approximation to a more realistic potential energy curve we consider

the following representation for an anharmonic oscillator:

2 3
V==f(r - re) - g(r - re) (11)

*See Herzbergl.



For small anharmonicity the constant g is much smaller than f. The clas-

sical motion of the anharmonic oscillator is given by

= in 2
X X Sin &gt Vg

01 t o+

c X9 (3 + cos 2 2vosct) + X

in 2
0351n n 3vosct *

(12)

where XOl’ X xo3 are the amplitudes of the fundamental, the first and

02’

the second overtone, respectively. For small anharmonicity x << x

02 01 and

X _.
*03 << %02
For small anharmonicity, the energy levels of the anharmonic oscilla-

tor [Eq. (11) ] as determined from the Schrodinger equation are given by*

13

2 .
=M =+ 3) mgr v + Oy (v ... (13)

where w x << w and wy << wx . Note that the energy levels of the

e e e e e e e
anharmonic oscillator are not equidistant like those of the harmonic
oscillator; their separation decreases slowly with increasing v (Fig. 3).
From Equation (13) for v = O we obtain the zero point energy of the an-

harmonic oscillator

1 1 1
he G(o) = 2% 77 %t g e (14)

For the anharmonic oscillator the selection rules for the spectrum

are given by

Av = + 1, + 2, +3, . . . (15)

* Note that using the Morse potential, which gives a good fit to the potential
energy curve, the first two terms of Equation (13) are obtained.



although the greatest contribution is given by Av = + 1 (which corresponds
to the sole contribution for the harmonic oscillator). If all the mole-
"

cules are initially in the lowest vibrational state, v = 0 (see Fig. 3),

we obtain from Equations (13) and (14)

2 3

— 1 - —_ 1 — ] 1 . T
v = G(v') G(o) = W,V WX V' F Wy v+ L Vo= 1,2,3,

where

>
0]
o

£
"
i
€
X
i
|
(>
~«
ot

(b) The Nonrigid Rotator
Representing the rotating molecule by two point masses connected by a

massless spring yields for the energy levels
2 2
= =F() =Bj(j +1) -Dj (J +1) a7

where the constant D reflects the influence of the centrifugal force. The
effect of D is important at the higher rotational levels. The wave numbers
of the spectral lines for the infrared rotation spectrum are given by

v =F({G + 1) - F(J) 2B(j + 1) - 4D(j + 1)3 (18)

i

the selection rule, Aj = + 1, being unchanged.
(c) The Vibrating Rotator (or Rotating Oscillator)
We now consider the molecule to be rotating and oscillating at the same

time. As a first approximation we could of course neglect the interaction



of vibration and rotation and simply add the independent contributions,
namely, Equations (13) and (17). An important interaction is the changing
moment of inertia resulting from the molecular vibration. This produces
changing values for the rotational constants B and D of Eguation (17).
Since the period of vibration is much less than the period of rotation mean
values are used as approximations to the (changing) rotational constant and

are given by

1
szBe—ae(v+§)+... (19)

where Be is the rotational constant based on the equilibrium internuclear

distance re,

h

1

Be = ;——5————5 and Dv = De + Py (v + 5 ) + ... (20)

7 cpre

where
4B 3
e

De = _ZTE—_

e

The constants Ce and pe are much smaller than Be and D , respectively.
e

The energy levels of the vibrating rotator are then given by

3

E _ 1 1.2
He = G(v) + FV(.]) = (De (v + 5 ) - wex (v + é) + (Ueye(V + é’)

e

2 2
+ ... Bv JG+1) -D (G +1)+ . .. (21)
v

The energy levels are shown in Fig., 4. For each vibrational level there
are a number of possible rotational levels, the level j = 0 corresponding

to the pure vibrational level (no rotation). The wave number of the spectral




lines resulting from a particular vibrational transition v"' to v' are given by

v =G6(v') - G(") +F ') - F" (")
= Y st SR | _Bn Lt oy * 29
v+ B '3 U ) -B" 3G+ D (22)
where v, = G(v') - G(v'). WithAj =+ 1 and Aj = - 1 we obtain two branches,

the R and P branches, given by

2
2 ' v " . ' [T} L i . 2
vp = V, + 2B '+ (313V B) § + (B B') j; 3=0,1 (23)

2
_ ' " . [ 1" L s
Vp = Vg (BV+BV)J+(BV BV)J,J—l,Z... 24)

where we replace j" by j. The spectrum is shown in Fig. 5. Equations (23)
and (24) give good agreement with the observed spectrum in the near infrared.
For sufficiently large values of j a reversal of the R branch occurs corres-
ponding to the vertex of the parabola in Equation (23). This reversal or
band head is responsible for the sharp drop in intensity observed in band
absorption. We note that any absorption observed beyond the band head is
from the wings of broadened lines whose centers lie below this wave number,.
The wave numbers for the R and P branches are frequently written in

the form

: 5 (m=1,2,...R(m=j+1)
=v_+ (B '+B"m+ B ' ~-B")n { (25)
V=Vt (B v’ v v m = -1,-2,...P(m=-j)

For the most intense absorption transition, v' - v = 1, Equation (25)

*We neglect the influence of the centrifugal force on the rotational energy.



_10_
becomes
=v_ +2[Be-a (v +1 ] 2 (26)
Vo=V, e ae v + m«)e m

The average spacing between the lines is given by

vim + 1) - y(m) + v(m) - yv(m-1)

d = 2 = 2 [Be - g (v'+1+m) ] @27

4, The Calculation of Absorption and Emission in the Infrared Spectrum

(a) Band Models
Before discussing the calculation of the absorption and emission of
spectral lines we briefly review some basic results. The one-dimensional

equation of transfer for a radiating gas is given by

dIi = -I k du + I_ k du* (28)
v vV bv'y

where

du =pPdz (29)

and IV is the intensity, kV is the spectral absorption coefficient, and u
is the amount of material per unit area. For a single radiating gas at

uniform temperature and pressure we obtain

-k
I =T, [1-e v 1+ I, (e (30)

where Ibv is the black body spectral intensity, and Iv (o) is the inci-

2
*The corresponding notation of Penner 1is given by dX = pdz with an
absorption coefficient PV related to kV according to P =p kv/p
A%
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dent intensity at u = 0. For negligible emission of radiation we obtain

kvu

I = Iv(o)e_ (31)

v

Under atmospheric conditions the spectral lines in the infrared spectrum are
primarily affected by Lorentz (pressure) broadening resulting from molecular

2,3,4
collisions. Under these conditions, the line shape is given by ' '’

o

o

i

ml e
<
|
A

(32)
(v - vo)z+oc2

where S is the total line intensity

S =f k,d,, (33)

and & is the half-width. For negligible emission the total energy absorbed

by a single line over a frequency interval Ay is given by
- — I -k u
j (IV(O) IV) = IVO(O) j (L -e v )dv (34)
Ay Av

where we have assumed Iv(o) to have the constant value of Ivo(o) over the

interval Av. We define the fractional absorption in Av by

| J (1,(0)-1,)av

A\) 1 -k u
_ o e V¥
A = = x5 f (1-e Ydv (35)
fI()d aY
y o) v
Ay

and apequivalent width of the single line by

WS[ = AAvy
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Using the Lorentz line shape and eéxtending the frequency interval to infinity

we obtain

W, =2 Tq f(x) =2 ntagxe > [Io(x) + Il(x)] (37)

where Io and I1 are the Bessel functions of imaginary argument and

_Su (38)
2

X =

For small x we obtain the so-called linear approximation
= n = =
g =27ax=8u=dpx (39)

where

B = — (40)

with d equal to the average spacing between the spectral lines. In this
section it has been assumed that the spectral lines are spaced sufficiently
far apart so that there are no effects due to overlapping. Therefore the
total absorption from several (non-overlapping) spectral lines is obtained
by simply adding the absorption from the individual lines.

For large x we obtain the so-called square root approximation

wsl =J8m? x = 2VSXu = d~N28“%/x (41)

Now, to calculate the absorption of a band a specific model describing
the spectral lines must be considered. The Elsasser model assumes a band
consists of an infinite number of spectral lines of equal intensity; S,

half width, &, and line spacing, d. For this band, the fractional ab-
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sorption integrated over a frequency range d is given by

1

b1d
A=1- P &/h exp [~ Bx sinh B/(cosh B-cos z) ] dz (42)
7

For x > 1.25 and B <€ 0.3

1/2
A= erf [ (% 62 x) / ] (43)

and for 8 > 3 for all x

A~1-eP* (44)
We note that the fractional absorption of an Elsasser band does not in gen-
eral equal the fractional absorption of a single line. The difference is
due to the effect of the overlapping of lines in an Elsasser band.

The statistical model of a band5’6 assumes that the position and in-
tensity of the spectral lines are randomly distributed. For an infinite

number of equally spaced lines the statistical method gives

A=1-exp (- WSL /d) (45)
where
oD
Wsl =‘[ Wy, (S, B)P(S)dS (46)
Wy /d =P f(x) =8 xe [I(x) + I(x) ] (47)

P(S)dS denotes the probability that a spectral line of intensity S, is in
the interval dS.
Still another model for band absorption may be obtained by a random

superposition of Elsasser bands. Each Elsasser band consists of an in-

*We shall Iater discuss overlapping effects in detail.
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finite number of spectral lines of equal intensity, S, half width, ¢, and
line spacing d, although the bands may have different intensities, half
widths and line spacings. The absorption from a random superposition of

N Elsasser bands is given by

w
N E, i
A=1 - (1- —) (48)
| l A,
. i
i=1
where Ai is the separation of the spectral lines in the ith band and WE ]
i
?
is the average value of the equivalent width of the ith Elsasser band,
given by

(o)

(b) Regions of Validity for Absorption Calculations
(i) Strong Line Approximation

When the absorption is virtually complete near the centers of

the strongest lines in the band (x large) the absorption is a
function of the single variable Bz X =230 Su/dz. The strong
line approximation corresponds to the case of complete absorption
near the center of the strong lines and is valid even when there
is overlapping of the spectral lines. The resulting absorption,
as calculated by the strong line approximation, is dependent
on the spectral arrangement of the lines in the band. This must
be so because overlapping near the strong line centers cannot
result in increased absorption. It should be noted that the

strong line approximation is not the same as the square root
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approximation discussed previously, which is valid only for non-

overlapping lines.

We first consider the strong line approximation for the stati-

stical  model.. For large x for the Lorentz line shape we have
ng 1/2
el B £(x) = B (2x/7n) (50)

If all the lines are equally intense, (uniform statistical model)
the intensity distribution is given by

P(S) = 3(s - So) (51)
where § is the Dirac delta function. Therefore the absorption

is given by

1/2
A=1-exp [-(28°x /0 ] (52)
with
X, = Sou/2 o (53)

For the statistical model with an exponentially decreasing

intensity,
, 578,
P(S) = SI (54)
which gives
1/2_ .
A=1-exp [ - Bxl /(l+2x1) ] (55)
with
Slu

X = (56)

1 21 ¢

To compare the uniform statistical model with the exponential

intensity model we must make some connection between the two
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intensity parameters, S0 and Sl' If S 1is chosen to be S1 % the
o

absorption is seen to be only slightly affected by the two in-
tensity distributions.

For the Elsasser band, the strong line approximation gives

A = erf ( % Bzx)l/2 (57)
The Elsasser band gives more absorption than the statistical model.
This is due to the fact that there is more overlapping of the spec-
tral lines in the statistical model than in the Elsasser model.
Since the absorption is almost complete at the strong line centers
overlapping in these regions cannot result in additional absorption
Thus for a given total intensity, the more prominent overlapping
associated with the statistical model results in less absorption
than the Elsasser model.
(ii) Weak Line Approximation

When the absorption is small (x small) at all frequencies
in the band (including the centers of the strongest lines) the
absorption is a function of the single variable BX = Su/d. This
condition is valid even when there is overlapping of the spectral
lines. It is therefore not the same as the linear approximation
which is valid only for non-overlapping lines.

When the weak line approximation is valid, the absorption is
sufficiently small at all frequencies so that the effect of the

different spectral lines is additive. Therefore for the weak line
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approximation, in contrast to the strong line approximation, the
absorption does not depend on the spectral arrangement of the
lines in the band,

For small x we obtain
w
—gﬁ=5f(x)=sx (58)

and

A=1-¢ (59)
for the absorption for both the statistical and the Elsasser models.
(iii) Nonoverlapping Line Approximation

The regions of validity for the strong and weak line approxi-
mations depend only on whether the absorption is large or small at
the line centers. The regions of validity for these approximations
do not depend on overlapping effects. On the other hand, the only
requirement for the validity of the non-overlapping approximation
is that the spectral lines do not overlap appreciably. This approx-
imation does not depend on the value of the absorption at the line
centers and since there is no overlapping effect, the absorption is
the same for regular or for random spacing. For the Elsasser mcdel
and the uniform stat;?;I model the absorption is given by

A=81£x) (60)
The values of x and B for which the three line approximations, strong,
weak, and non-overiapping, are valid to within 10% have been

determined’ by Plass.
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(c) Emissivity Calculations

The actual calculation of the emissivity or absorptivity within the ap-
propriate region of validity requires the determination of the intensity,
line spacing, etc. To date, the best calculations for the emissivity of
diatomic gases have been made by Stull and Plass8 and by Malkmus and Thomson9
employing the rotating anharmonic oscillator model previously discussed.
Recall that the energy levels of the rotating anharmonic oscillator are
given by

2

N 1 1 1,3 1
E(v,j) = u%(v + 2) u%xe(v + 2) + aéye(v + 2) + u%ze(v + 5)

+B (I + 1) -av+1/2) §(5+1) (61)
%
The effect of the centrifugal force on the energy levels has been omitted.
The frequency of a transition for Av =1 1is given by**
w v+l ' o . .
vj =E(v + 1, 3') -E(v,J3) (62)
g B [ 3G DG D T-a [ (v D3G 4 D
U')V e e 2

(v + 1/2) (3 + 1) ] (63)

We represent both the R and P branches by one equation

1
S’
=]
(-

_ _ 1
® = + 2Bm -0 [ m(m + 1) +2(v + 3 (64)

which gives a band head in the R branch. The average line spacing is

* Stull & Plass do not neglect this effect in their calculation.

** In our notation w, = Vo
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given by
2 1/2
d(w) = 2 [:[ B, - ae(v +1)y ] - o, (w- wvi] (65)
9
The energy levels FV(J) are given by
. ~ 1 3 LY
FMZEW~[B -a (v+3) 130G+ (66)
Be—(v+1)oze ,
= —_— 2 [Bg-(w+1a ]J[B,-(v+1a
o 2 e e
e

¥ V[Be - (v+1 ae ]2 - ae (w - wv)
1
2 ae

- 1+ . a (w=- o) (67)
B -(v+1a e v
e e

The equation for the integrated absarption of a vibration rotation line
o0 8
-2 -1 . . . . 2
per.unit pressure (cp atm ),(1/p) k(v)dv, is given by (Penner ,
o)

p. 135)
S V'J'! 3 V'j'
v = (8x"/3hc) (N/Gp)ay;
vljv 1
Xexp[—E(v,j)hc/kT]lej |
X[Jaj—l,j'+(3+1)6j+l,j']
v'i' .
X[l-exp(-hcawj /KT) ], (68)

for the transition vj- v'j'. In this equation N is the number of molecules

per unit volume, p is the pressure in the atmosphere, G is the partition
, .
v J/ ,2

. is the square of the vibration rotation matrix
V]

function, M

elements of the dipole moment, and 3 is the Kronecker delta. A number of
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2

approximations must be made to obtain the final result

v'j! v' v' V'j' 151
Sy’ 0 = [0y /eee,m (0,7 ) Lo duyyY T E VY
Xexp[-E_(j)hc/KT]
x[1-exp(-wvjv'3'hc/kT)] (69)

The total band absorption (neglecting overlapping) is given by

v v'y' 3 v'| 2 v
a, =:}: Svj =(8x"/3hc) (N/Gp) le ' {Qv > av
- XGp(v,T) exp! -E(v) hc/kT], (70)

where

]

v
<Qv >aVGR(v’T)
- V'j'- ijv ijv
=:§: Wy 5 ij [l—exp(—uwj he/KT) ]
33’

Xexp[—EV(j)hC/ kT][jbj_l’J.+(j+l)8 (71)

j+1,301
2 2
v'

V’J'2,8,9
v , .

V)

F Note

viit -
The amplitude IMvj J | has been written as |R
Tt st

that S .v J° can be calculated for any temperature as long as avv' has

v

J 8,9
been measured at one temperature.

Thus the frequency and the intensity may be calculated at different
temperatures for the important transitions (v,j - v + 1, j + 1). The
/2

quantities X Si and © (Si)1 may then be calculated as functions of the
i i

frequency.
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Now, in the weak line approximation we have

€, = 1 - exp [-Bx] = 1-exp [ - plS(w)/d(w)] (72)
=1- exp [ —plg/d]
where
S/d =% S./Nd = 5 S./Av (73)
i i i i

and Nis the numberof spectral lines in a small frequency interval Ay. The
quantity % Si/AN is obtained as a function of frequency and temperature as
discussed previously so that the emissivity may be then calculated according
to Equations (72) and (73).

In the strong line approximation (for the uniform statistical model)

2 1/2
1 -exp [ - (2B x/x) ] (74)

m
It

1/ 1/2

2 2
/vy (p 1) ] (75)

1

2
1 -exp [ - 2rn ao)l/ (>:ZLZSi

where ao is the average half width of the line at one atmosphere pressure
and the quantity % Sil/2 /Ay is obtained as a function of frequency and
temperature as discussed previously. The strong line absorption for the
Elsasser model follows directly from the above.

Calculations were made for HCl, HF, CO and No over a temperature range
from 300 to 7000 OK? There is good agreement with other published cal-
culations of the spectral emissivity.

We have had to omit certain details in our discussion of the emissi-

vity calculations. An important point which warrants consideration is the

determination of the line width, 2 . As was recently demonstrated by
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Malkmus, Maclay and Babrov10 for the HCL band at room temperature, the
correct use of the available data on line strengths and line widths is
more important than even the choice of a particular band model. There
remains a definite need for further work on the temperature dependence of
molecular line widths.

(d) Experimental Considerations

The use of experiments in conjunction with band models in order to
determine the emissivity of gases has been discussed by Oppenheim and
Ben—Aryeh.11 They consider the statistical model for the linear triatomic

gas CO We briefly outline their discussion,

o -
From experiments at one temperature, the variation of -1n T/P may be

obtained as a function of wave number, vy, and path length ﬂ . T is the

transmittance. Now, for the uniform statistical model with Lorentz line

shape, we have

W
In T -1n(1-A) "st 2 g Qy _
o = D = d = a f(X) (76)

By plotting Equation (76) vs. path length, 1

2 x7
called curve of growth) we obtain 3, —g— and ? at one wavenumber.

, at one wavenumber (the so

. . S
The procedure is carried out over a range of wave numbers so that a,

g_g;! and % are obtained over a range of wavenumbers. These parameters

constitute the fundamental spectroscopic parameters so that the transmit-
tance can now be calculated for any pressure and path length. 1In detail,

for a given path length we obtain

2
g ¥ and x. Then, for the uniform



statistical model

=1

sp _ Wsp_ 2 4v _
- Siraa e A SO (17)

so that the transmittance, T, or absorption 1-T, can then be obtained from

Equation (76) as a function of wavenumber and pressure.
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FIG. I ENERGY LEVELS AND INFRARED
TRANSITIONS OF A RIGID ROTATOR
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FIG.2 ENERGY LEVELS AND INFRARED
TRANSITIONS OF A HARMONIC
OSCILLATOR



| I O

FIG.3 ENERGY LEVELS AND INFRARED
TRANSITIONS OF A HARMONIC

OSCILLATOR .
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FIG. 4 ENERGY LEVELS OF THE VIBRATING ROTATOR
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FIG. 5 ENERGY LEVELS AND INFRARED TRANSITIONS
OF A ROTATION-VIBRATION BAND



