AGE FORMING of CENTER PIECE HEAD S-IC

GPO PRICE \$

\qquad
Final Report

UTS PRICES)

January 1965
\qquad

By Robert W. Lightstone

Hard copy (HC) \qquad
Microfiche.(MF)

Prepared Under Contract No. NAS 8-11717 by
the boeing company
λ
Wichita Branch .
Wichita, Kansas 67210

Prepared for:
George C. Marshall Space Flight Center National Aeronautics \& Space Administration Huntsville, Alabama 35812

REV SYM:

Table of Contents Page
SUMMARY OR ABSTRACT 1
LIST OF APPENDIX ITEMS AND FIGURES 2
FOREWORD 3
SCOPE OF WORK 4
WORK PERFORMED 5-7
Introduction 5
Test Program 5
Test Parts and Tooling Configuration 6
Test Procedure 7
EVALUATION OF RESULTS $8-11$
Material 8
General Considerations 8-11
Conclusions 11
Recommendations 11
APPENDIX AND FIGURES

The primary objective of this investigation was to determine the capabilities of age forming 2219-T37 aluminum to a compound curved form in the configuration as represented by the Saturn S-IC Bulkhead Center Piece. The geometric shape of the part is a segment of an ellipsoidal shell.

The fact that the shell segment was located at the Y axis pole and of very small curvature compared to the full ellipsoid permitted substitution of a spherical form as the test configuration.

A fixture was designed and fabricated with interchangeable die and punch inserts so that variables of thickness and depth of curvature could be investigated, using one aging fixture. Age formed test parts were measured to establish amount of curvature retention, effect of grain direction, and growth of the alloy.

The data was analyzed and evaluated to obtain practical parameters which were used to design and fabricate tooling to age form sculptured blanks having a predetermined form after age forming.

Four important conclusions were obtained:

1. The age forming of compound contoured configuration proved feasible and repetitive for consistent manufacturing capability. Three sculptured centerpieces were age formed within tolerances set forth in MSFC Dwi. MRET-SK-714.
2. The percent of retention varies with thickness.
3. The percent of retention is greater in the longitudinal grain direction than in the transverse grain direction and varies at the same rate with respect to material thickness.
4. Material growth occurs in all directions and varies to a limited extent with grain direction and thickness.

| EOCENE | NO. WAS | $8-11717$ |
| :--- | :--- | :--- | :--- |
| SECT
 Final Report | PAGE | 1 |

Appendix

A
B
C
D
E

F

Flqure
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Empirical Method for Symmetrical Overform

 Comparison of $\frac{X^{2}+2 Y^{2}}{198^{2}}=1$ with $\frac{X^{2}+Y^{2}}{279.238^{2}}=1$Mechanical Properties Report 2219-T37
Mechanical Properties Report 2219-T87
Stress Calculations on MIT-RSC-MRET-SK-714
Data Sheet - Summation of Work Sheets

MSFC Drawing MRET-SK-714
Sketch of Scribe Lines for Test Parts
Graph of Ratio R_{f} to R_{p}
Graph Showing Lineal Growth in Age Forming
MRET-SK-714 Center Piece Blank - Adjusted for Material Growth
MRET-SK-714 Part No. 1 Material Growth
MRET-SK-714 Part No. 2 Material Growth
MRET-SK-714 Part No. 3 Material Growth
Deviation from 279.3"R MRET-SK-714, Part No. 1
Deviation from 279.3"R MRET-SK-714, Part No. 2
Deviation from 279.3' R MRET-SK-714, Part No. 3
MIT-RSC-MRET-SK-714 Age Forming Fixture
Measurement with Part Supported on Flat Surface
Curvature Measurement with Blank Supported on Rubber Pad at Center of Concave Side
R\&D Master in Open Fixture for Forming to 181" Radius Die
Sculptured MR\&T-SK-714 Center Piece Without $8^{\prime \prime}$ Dlam. Center Hole Prior to Age Forming
Sculptured MR\&T-SK-714 Center Plece with 8" Dlam. Cutout Prior to Age Forming
ReD Master Reinforced to Hold Developed Configuration During Plaster Casting
Plaster Die Pattern \& R\&D Master Ready. for Casting of Plaster Punch Pattern
Plaster Punch Pattern
Plaster Die Pattern
Completed Part Contour Compared to 279.3" Radius Template Age Formed MRET-SK-714 Part Nos. 1, 2, 3

FOREWORD

This final technical report covers the work performed from June 26, 1965, through December 22, 1964, under George C. Marshall Space Flight Center Contract NAS 8-11717 dated June 25, 1964.

This contract was conducted by The Boeing Company, Airplane Division - Wichita Branch. The work was performed under the direction of Virgil Gerstner (Manager) and R. E. Layton (Unit Chief, Tooling-Metalworking-Metallurgy) Manufacturing Development Section, by Robert W. Lightstone, Project Engineer.

The contract was initiated by Program RED Branch of Marshall Space Flight Center and was administered by C. H. Maroney, Technical Representative, and L. A. Bowers, Alternate, Industrial Support Branch, Manufacturing Engineering Laboratory.

Contract NAS 8-11717 was initiated to determine the feasibility of age forming double contoured parts to a configaration as represented by the S-1C Bulkhead Center Plece as shown on MSFC Sketch MRET-SK-714 dated March 27, 1964, and revised July 30, 1964, Appendix Figure 1, and to resolve problems associated with this operation.

The work included design and fabrication of a tool in which 2219 aluminum alloy in T37 condition could be age formed to the T87 condition. The tool was to be of sufficient strength and durablility to hold the blanks to a predetermined shape during the aging process and to accommodate thermal expansion and expected material growth. The one tooling fixture was to be suitable for age forming parts of various constant thickness in two different contours and also to age form the MRET-SK-714 sculptured parts by the use of removable die and punch holding inserts.

The scope of the work covered forming of 2219-T37 aluminum alloy blanks of a $55^{\prime \prime}$ diameter in constant thickness of $.250^{\prime \prime}$, .500', and $.900^{\prime \prime}$ to a basic contour of $\frac{x^{2}+2 y^{2}}{198^{2}}=1$ and in the same thicknesses to a $.650^{\prime \prime}$ symetrical overform of the basic equation. Three test parts of each thickness and of each contour were to be age formed. Three parts, from presculptured blanks per MSFC Sketch MRET-SK-714, were to be age formed in a holding die and punch adjusted to compensate for parameter variables determined from test forming as follows:

1. The effect of blank thickness on the formed part.
2. The relationship of depth of forming to final contour of the part.
3. The effect of sculptured pattern on the contour.
4. The effect of direction of rolling of blank on final contour.

WORK PERFORMED

Introduction

The Boeing Company - Wichita Branch developed the original technique for age forming contours into single curvature circumferential radli type configurations. This "age forming" process has the unique capability of forming age hardenable alloys without working in the plastic range or exceeding the yield point of the material.

The parameters for manufacturing of single curve configurations have been well established and are being used in production. However, preliminary research has indicated that in the age forming of compound contoured parts the grain direction as produced by the rolling process used in sheet and plate manufacture would produce variations in curvature directly related to the grain direction.

The effort under this contract was to determine the feasibility of age forming compound contours. The approach was to test age form a sufficient number of compound contoured parts to determine and evaluate the characteristics which could be used to establish the compound contour age forming parameters for aluminum alloy 2219-T37.

Test Program

The test program was set up to age form a series of 2219-T37 aluminum panels as follows:

1. Three . $250^{\prime \prime}$ thick, three $.500^{\prime \prime}$ thick, and three $.900^{\prime \prime}$ thick $55^{\prime \prime}$ diam. blanks age-formed to a segment f an ellipsoid described by the rotation of an eliipse $\frac{X^{2}+2 Y^{2}}{198^{2}}=1$ from $X=-27.5$ to $X=$
27.5 about the Y axis.
2. Three . $250^{\prime \prime}$ thick, three $.500^{\prime \prime}$ thick, and three $.900^{\prime \prime}$ thick $55^{\prime \prime}$ dia. blanks age formed with a .650" symetrical overform of the ellipse equation $\frac{X^{2}+2 Y^{2}}{198^{2}}=1$.
3. Three blanks sculptured to produce a part to conform with the S-IC Center Piece as called for by MSFC Dwg. MRET-SK-714 (Appendix Fig. 1).

Measurements were made of the age formed constant thickness part to determine the radius of curvature, with and across the grain direction, and material growth resulting from the aging forming process. The measured data was analyzed to set up parameters to be used to compensate for springback and material growth in the age forming of the sculptured parts.

EPCOERNE	NO. NAS 8-11717
SECT Final Report	PAGE 5

Test Parts and Tooling Confiquration

The constant thickness test blanks were machined both sides to the required thickness and were cut to a diameter of $55.099^{\prime \prime}+.125 /-.000$ inches. Light scribe lines were made on one surface, consisting of four diametrical lines, indexed to the grain direction, and five concentric circles were scribed with 5 -inch to 25 -inch radii in 5-inch increments and one circle with a radius of 27.549 inches. (See Appendix. Figure 2). This gridding was used to locate measuring points. The blanks were age formed so that the grid appeared on the convex surface of the part.

Mechanical properties of the test part material in T37 condition were determined by laboratory tests on sample coupons from part trim. Test coupons were cut from one constant thickness part in each thickness after the age forming process to provde mechanical property data for the T87 condition. Results of these tests are found in Appendices C and D.

The aging fixture MIT-RSC-MRET-SK-714 was designed in a:two-piece octagonal box shape with radial internal reinforced structure. Each sectionpiece supported a removable die or punch insert. Eight slotted latches were used to lock the fixture under pressure during the aging process (Appendix figure 12). The structure was stress calculated for a closing and holding load of 152,000 ib. (Appendix E).

Welded 6061-T6 aluminum was used throughout the structure in order to maintain equal thermal expansion rates in the fixture and the test parts. The die and punch inserts used with the sculptured parts were fabricated from kirksite in order to permit an economy in the technique used to obtain the desired punch and die configuration. Production inserts of cast aluminum are equally feasible.

The die and punches used to hold the constant thickness test parts were shaped to conform in cross-section to the section of a circle with the equation of $\frac{X^{2}+Y^{2}}{2797^{2}}=1$. This configuration does not vary from the ellipse equation $279.283^{2} \frac{X^{2}+2 Y^{2}}{198^{2}}=1$ more than . 002 inch over the interval of $X=-27.5$ to $X=27.5$ and permitted conventional machining operations (Appendix B).

The $.650^{\prime \prime}$ symmetrical overform was established by adding a percentage of the total overform to the vertical distance from a horizontal line, through the pole of the arc, to any point on the arc at the same rate as the ratio as this distance was to the total chord height (Appendix A).

Test Procedure

The test parts were age formed by placing the flat blanks between the punch and die inserts and closing the fixture in a hydraulic press. The fixture was then locked in a closed position by driving wedges in the slotted latches while under pressure of $152,000 \mathrm{lb}$. The aging fixture was then transferred to a heat treating oven where the test part was aged for twenty-four hours at a temperature of $325^{\circ} \mathrm{F} . \pm 10^{\circ} \mathrm{F}$. This heat treating process transformed the aluminum part from 2219-T37 to a T87 condition. The furnace used for the aging process was a conventional furnace which is certified for temperature uniformity, etc., per established quality control procedures. Certification data is on file in the Quality Control Department of Boeing-Wichita.

After cooling to a maximum of $125^{\circ} \mathrm{F}$. the part was removed from the fixture and the chord height at 1 " intervals of the chord length were measured along each of the diametrical scribed lines. The increase in surface length over the dlametrical length of each concentric scribed circle was measured to determine material growth. Material thickness growth measurements were made on selected test parts in each thickness.

The measurements of the test parts were made with the part supported on a 10^{11} diameter rubber disc at the center of the concave side. This method gave a near free standing part and eliminated distortion induced by the part weight and irregularities when supported on the edge, or in a fixture (Appendix Figures 13 \& 14). Material growth was measured by a scale with . 010 " divisions and estimated to the nearest .005'. Thickness growth was measured by micrometer and by Vidigaging.

Test Part No. 6 was age formed with an eight-inch diameter center cut-out in order to observe the effect on growth and springback. One test part in each thickness and each fixture curvature was subjected to closing and then opening of the fixture after which it was measured to determine presence of any permanent set. No permanent deformation was incurred in any of the test parts.

Two of the sculptured parts MRET-SK-714 Nos. I \& 2 were age formed without the center $8^{\prime \prime}$ dia. hole to permit observation of consistency with constant thickness parts (Figures 16 and 17). Part MRET-SK-714 No. 3 was age-formed with the $8^{\prime \prime}$ dia. center hole. Also an $8^{\prime \prime}$ diameter hole was machined in the MRET-SK-714 No. 1 part after age forming and measuring to determine effects of the center cut-out.

REV SYM:

Material

Aluminum Alloy 2219 in T37 condition was the material used for the test blanks. The age forming operation of heat treating at $325^{\circ} \mathrm{F}$. for a period of 24 hours produced the T87 condition in the age formed part. Analysis of the mechanical properties of the material used in this investigation is shown by Appendices C and D.

A comparison with the standard minimum average tensile yield and ultimate strength reveals that age forming produces no detrimental effects on the material strength, in fact there is an indication of a slight increase in mechanical properties.

General Considerations

The most important parameter effecting the ability to age form to a required conflguration is the amount of overform that will be required in the aging fixture to overcome the inability of the material to retain the full configuration of the fixture. The segment of an approximate spherical shell shape of the S-IC polar cap places the spherical radii as the basic measurement for data accumulation and evaluation. The data assembled from work sheets (Appendix F) showed that in the compound contour of the test shape, the retention of radii in the longitudinal grain direction were greater than the retention of radi in the transverse grain direction. The radius of the developed part was calculated by measuring the chord height along lines parallel to the grain and perpendicular to the grain direction and using the equation $R=\frac{4 \mathrm{CH}^{2}+\mathrm{CL}^{2}}{8 \mathrm{CH}}$ where $\mathrm{CH}=$ chord height, $C L=$ chord length, and $R=$ radius.. The percent of retention was based on the residual strain in the part as calculated from the equation, percent retention $=\frac{S_{p}}{S_{f}} \times 100$, with $S=$ calculated from strain $(S)=\frac{T}{2 R}$ where T = thickness and the subscripts ' p " and " f " represent the developed part and the fixture respectively.

A graph was prepared (Figure 3) using the fixture radius as the ordinate and the developed radius as the abscissa. The average of the radii in the transverse and in the logitudinal grain direction for each material thickness for

SECTENET	NO. NAS $8-11717$
SECT Final Report	PAGE 8

the two fixture radil were used to establish the points on the graph. Several important parameters were shown by the graph. The rate of change in the ratio of the R_{p} to R_{f} for longitudinal grain direction decreases slightly as the thickness increases. The rate of change in the transverse grain direction did not vary consistently as the thickness varied; the . $250^{\prime \prime \prime}$ and $.900^{\prime \prime}$ thickness rates of change are similar while the value of change of the . $500^{\prime \prime}$ thickness increases with increase of radius. The surface growth also is found to increase with increase in materlal thickness (Figure 4). This is understood because of the relationship between $S \& T$ in the equation $S=\frac{T}{2 R}$. Material thickness also increases during the age forming process. This factor was used to calculate a blank size.

To achleve the final objective of the project, the forming of the sculptured part of various thickness to a spherical shape, corrective measures were required to provide for the material growth and for the difference in the amount of corrective retention in the transverse grain direction and in the longitudinal direction. The growth factor was compensated for by re-dimensioning the part blank as shown in Figure 5.

The adjustment for the differences in percent of curvature retention require a fixture having a surface configuration produced by the trace of an arc rotated about its pole, with the radius cycling from a maximum to a minimum and back to a maximum during 180° of rotation.

Looking toward the production future of age forming as well as the direct fabrication of the MRET-SK-714 test specimens, alternate methods were considered. A method was sought that could avoid the initial preparations for numerical control machining or could avoid the numerous coordinated templatetype hand-formed fixture approach.

A unique and novel method was developed by which the desired configuration could be fabricated using only conventional machines and manufacturing techniques and requiring a nominal manhour expenditure.

This tooling concept was developed as follows:

1. Using the Fixture Radius / Developed Part Radius Graph (Figure 3) it was found that to produce a developed radius of 279.238" (MRET-SK-714 spherical radius) the fixture would require $238^{\prime \prime}$ radius in the part longitudinal direction and 206" radius in the part transverse direction..
2. Using the graph again and using the 238 " radius in the transverse direction and 206" R in the longitudinal direction the fixture radius is determined.as 181".
3. A die and punch fixture was then machined to the 181 "spherical radius and a blank called the ReD Master was age formed (Figure 15). The radil of the RED Master was $238^{\prime \prime}$ and $206^{\prime \prime}$ as required and antipated (Figure 15).
4. Plaster patterns were made of the convex side and of the concave side of the RED Master. Grain direction was indexed on the patterns (Figures 18 thru 21).
5. In turn the plaster patterns were used to cast a kirksite die and punch set for the aging fixture. The grain indexing was maintained on the kirksite punch and die set.
6. The MRET-SK-714 sculptured part was then placed in the aging fixture but with the part grain direction rotated 90° from that of the die and punch. This operation was required to adjust for the grain reversal occurring between Steps 2 and 3 above.
7. Age forming of the part clamped in the fixture produced the required 279.3' spherical radius part within tolerance requirement.

Parts MRET-SK-714 No. 1 and No. 2 were age formed from sculptured blanks without the 8'' diameter center cut-out. Part MRET-SK-714 No. 3 blank was machined with the $8^{\prime \prime}$ dia. cut-out prior to age forming with the exception of the $8^{\prime \prime}$ center diameter of the Parts No. $1 \&$ No. 2. All three parts were very close to the required basic contour and all within the . $060^{\prime \prime}$ deviation allowance. The rate of change did not exceed the $.050^{\prime \prime}$ in $10^{\prime \prime}$ in any part with the exception of a local area within the $8^{\prime \prime}$ center area of Parts No. 1 \& No. 2 (Appendix Figures 6 thru 11).

There is a slight turn up on the edge of the parts and an underform in the center $8^{\prime \prime}$ dia. area on all parts. This condition was expected as the forming parameters were selected on the basis of an average thickness. Complete corrections could have been accomplished by selecting separate radii for each

different thickness and machining the punch with the multiple radii configuration.

Conclusions

1. The effect of grain direction and material thickness is consistent and can be predicted from tables established with accuracy sufficient for normal tolerance requirements.
2. The effects of sculpturing in a symmetrical pattern can be predicted and balanced by adjustments in the holding fixture design.
3. The age forming of double contoured configuration in the form of a symmetrical shell segment is feasible and within the normal manufacturing capabilities.
4. By taking advantage of the effects of grain direction upon age formed contours an economical two-stage method of tool fabrication was developed that will reduce production tool and part fabrication costs and use conventional machines (See Page 10).

Recommendations

1. It is recommended that further research be done on compound contoured symmetrical shell configurations. The contours should not be so near spherical but should have a shorter distance between foci and also have greater eccentricity.
2. An investigation to determine the parameters of various age hardenable metal alloys should be conducted in single and compound contoured configurations. Included should be the fusion weldable aluminum alloys 7002,7039, 8×7106.
3. A wider selection of material thickness age formed in a more than one degree of overform should be studied.
4. It is further recommended that the nature of residual stresses in both surfaces of the age formed parts be investigated and compared with. similar stresses developed by conventional forming.

The X Axis of the Ellipse $\frac{x^{2}+2 y^{2}}{198^{2}}=1$ is translated to coincide with the Chord of the Curve at $X=27.5$

$$
\text { At } \begin{aligned}
X=27.5 \quad Y & =\sqrt{\frac{198^{2}-27.5}{2}} \\
Y & =138.650
\end{aligned}
$$

Translating the Curve Equation becomes

$O^{\prime} B=$ Total Chord Height $(x=0)=\sqrt{\frac{39204}{2}}-138.650$

$$
\begin{align*}
& O^{\prime} B=1.357 \\
& O^{\prime} A=-\sqrt{\frac{39204-x^{2}}{2} n-138.650} \tag{2}
\end{align*}
$$

For Point P

Chord Height of Chord Thru $P^{\prime \prime}=A B=O^{\prime} B-O^{\prime} A$.

The Empirical Devised for Symetrical Overform is to Add to the Chord Height (AB) at any Point P^{\prime} the same percent of Maximum Overform K as the percent of the Chord Height (AB) at that point is to the Total Chord Height ($O^{\prime} B$).

The Empirical Equation for the above becomes Total Overform Chord Height

$$
\left(\text { At } X_{n}\right) \quad L_{n}=K\left[\frac{0^{\prime} B-O^{\prime} A}{O^{\prime} B}\right]+0^{\prime} B-0^{\prime} A
$$

Substituting Equations (1), (2)

$$
\begin{aligned}
L_{n}= & K\left[\frac{1.357-\left(\sqrt{\left.\frac{39204-x_{n}^{2}}{2}-138.650\right)}\right.}{1.357}\right]+1.357-\left(\sqrt{\frac{39204-x_{n}^{2}}{2}}-138.650\right) \\
L_{n}= & \frac{K}{1.357}\left[1.357-\left(\sqrt{\left.\frac{39204-x_{n}^{2}}{2}-138.650\right)}\right]+1.357-\left(\sqrt{\frac{39204-x_{n}^{2}}{2}}-138.650\right)\right. \\
L_{n}= & \left(\frac{k}{1.357}+1\right) \cdot\left(140.007-\sqrt{\frac{39204-x_{n}^{2}}{2}}\right) \\
& \text { For } K=.650 \quad L_{n}=1.479\left(140.007-\sqrt{\frac{39204-x_{n}^{2}}{2}}\right)
\end{aligned}
$$

- Variations of Ellipse $\frac{x^{2}+2 \gamma^{2}}{198^{2}}=1$ and Circle $\frac{x^{2}+T^{2}}{279.738^{2}}=1$ from $x=-27.5$ to 27.5

Ellipse

$$
D_{E}=140.007-\sqrt{\frac{198^{2}-x_{n}^{2}}{2}}
$$

Materiel 2219-T37 Alumiriun Vendor

45: mm
The $2210-T 37$ specimens were tensile tested with results as follow:

SAMPLE THEE?	DEETSIONS		$\begin{aligned} & \text { YIEID } \\ & \text { LOAD } \\ & \text { LE. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ULTTMATE } \\ & \text { LOHं } \\ & \text { LS. } \end{aligned}$	YIG STPEVETH PSI	TENSILTA STRENGTH PSI	$\begin{aligned} & \text { ELONG。 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { REDUCIION } \\ & \text { IN AREA } \\ & p \\ & \hline \end{aligned}$
130-5812								
II	0.5024×0.2520	0.1271	5,870	7,220	46,200	56,800	19	42.9
$L 2$	0.5048×0.2514	0.1269	6,050	7,290	47,700	57,400	19	38.1
L3	0.5038×0.2507	0.1263	5,880	7,230	46,600	57,200	19	41.1
T1	0.5053×0.2522	2. 1274	5,370	7,340	42,100	57,600	17	37.2
T2	0.50417×2.2520	0.1270	5,350	7,280	42,100	57,300	16	35.0
? 3	0.5029×0.2524	0.1269	5,220	7,240	41,100	57.100	18	38.5
13-1903								
L1	0.5040×0.5010	0.2525	12,020	14,200	47,600	56,200	21	40.2
I2	0.5020×0.4988	0.2504	12,360	11,520	49,100	58,000	22	45.3
L3	0.5023×0.5004	c. 2516	11,980	13,980	47,600	55,600	22	4.0 .0
It	0.5032×0.5003	0.2518	12,500	14,560	49,600	57,800	23	45.6
$\stackrel{-1}{ }$	0.5028×0.5011	0.2520	10,340	11,200	41,000	56,300	22	40.1
12	0.5031×0.5008	0.2520	10,800	14,600	42,900	57,900	21	36.5
13-1904								
L1	0.5050×0.4986	0.2518	11,960	14,560	47,100	57,800	21	38.8
L2	0.5032×0.4997	C .2514	12,120	14,200	48,200	56,700	23	42.3
I3	0.5024×0.5002	0.2513	11,500	14,280	46,200	56,800	22	42.3
IT	0.5030×0.5004	0.2517	12,160	$\underline{11}, 300$	48,300	56,800	21	38.4
T1	0.5038×0.5018.	0.2528	10,650	14,720	42,200	58,200	22	37.5
T2	0.5034×0.4978.	0.2506	10,920	14,720	43,600	58,700	20	39.7

SAMPLS	DINENSIONS		YIMID	ULTIMATE	YIATD	TENSILE		REDUCTICN
		AREASQ. IN.	LOAD	LOAD	STRENGTH	STRENGTH	ELONG.	In AREA
			L3.	LB.	PSI	PSI	$\%$	$\%$
181-113								
LI	0.5065	0.2015	9,280	11,250	40,100	55,800	20	43.5
L2	0.5078	. 0.2025	9,290	11,330	45,900	56,000	21	44.2
L3	0.5079	0.2026	9,250	11,330	45,800	55,900	22	4.4
T1	0.5073	0.2521	8,330	11,520	41,200	57,000	17	32.8
T2	0.5059	0.2010	8,210	11,400	41,200	56,700	18	34.9
T2	0.5042	0.1996	5,130	11,350	40,700	56,900	18	35.8
181-114								
11	0.5071	0.2020	5,560	11,520	47,3no	57,000	20	40.4
L2	0.5039	0.1591	0,930	11,340	47,300	56,900	20	42.0
T1	0.5032	0.1589	E,340	11,540	41,900	58,000	18	34.5
12	0.5051	0.2024	E,500	11,710	42,100	58,400	16	33.5
T3	0.5045	0.2000	E,370	11,640	41,900	58,2:00	17	34.5
T4	0.5037	0.1093	8,340	11,540	41,800	57,900	17	35.8

The samples were destroyed in testing and the remnants disposed of as scrap.

Find deflection due to
STRESS at CENTER $=49,000$ pSi (yIELD PT. OF 2219TAL)

$$
\begin{aligned}
& s= \frac{E t^{2}}{a^{2}}\left[\frac{1.238}{1-v}\left(\frac{y}{t}\right)+.294\left(\frac{4}{t}\right)^{2}\right]^{*} \\
& 4.9 \cdot 10^{4}= \frac{\left(10.6 \cdot 10^{6}\right)(.9)^{2}}{(27.5)^{2}}\left[\frac{1.238}{1-.36}\left(\frac{y}{.9}\right)+.294\left(\frac{4}{.9}\right)^{2}\right] \\
& \rho=.413 y^{2}+2.44 y-4.9=0 \\
& y=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} . \\
& \text { or } y=+1.60 \mathrm{in} .
\end{aligned}
$$

FORGE WITH WHICH MAT'L REACTS AGAINST CLAMPING-

$$
\begin{aligned}
& \frac{w a^{4}}{E t^{4}}=\frac{64}{63(1-v)}\left(\frac{4}{t}\right)+.376\left(\frac{4}{t}\right)^{3} * \\
& \frac{w(27.5)^{4}}{\left(10.6 \cdot 10^{6}\right)(.9)^{4}}=\frac{64}{63(1-.36)}\left(\frac{1.60}{.9}\right)+.376\left(\frac{1.60}{.9}\right)^{3} \\
& w=64 \mathrm{psi}^{1}
\end{aligned}
$$

Total Load $=152,000 \mathrm{lb}$.
Load per beam $=38,000 \mathrm{lb}$.
Moment of INERTIA NELESSAMY TO WITHSTAND LOADING:

$$
\begin{aligned}
y & =\frac{3}{320} \frac{W I^{3}}{E I} \\
5 \cdot 10^{-3} & =\frac{3}{3.2 \cdot 10^{2}} \frac{\left(3.8 \cdot 10^{4}\right)(68)^{3}}{(10.6 \cdot 106)(I)} \\
I & =2110 \mathrm{NN}^{4}
\end{aligned}
$$

1. FORCE WITH WHICH MATIL. PEACTS AGAINST BEING HELD. *From Roark, Re., "Formulas for Stress Et Strain" Chap. 10, page 220

Moment of Inertia (Typ section):

$$
\begin{aligned}
I_{\text {TOTAL }} & =\frac{\sum b h^{3}}{12}+\sum A d^{2} \\
& =2\left[\frac{\left(8^{2}\right)(13)^{3}}{12}+(8)(2)(7.853)\right]+\frac{(2.00)(14)^{3}}{12} \\
& =21931 \mathrm{~N}^{4}
\end{aligned}
$$

Weld Length to withstand 19,000 lb. at clamps:

$$
\begin{array}{ll}
P=0.6 D L & P=\text { LOAD RIPS } \\
19=06(1 / 2)(L) & L=W E L D L E N G T H \\
L=3.76 \mathrm{iN} . & D=W E L D S I Z E
\end{array}
$$

R.

Moment of Inertia for upper plate:

$$
\begin{aligned}
& P=\text { TOTAL LOAD } \\
& I=\text { LENGTH OF BEAM }
\end{aligned}
$$

$$
\begin{aligned}
y= & -\frac{P a^{2}}{12 E I}(32-4 a)^{*} \\
-5 \cdot 10^{-3} & =-\frac{(38,000)(9)^{2}}{(12)\left(10.6 \cdot 10^{6}\right) I}(3 \cdot 73-4 \cdot 9) \\
I & =8881 N^{4}
\end{aligned}
$$

Typ Cross-Section:

$$
\begin{aligned}
I & =\frac{b h^{3}}{12}+A d^{2} \\
& =2\left[\frac{(8)(13 / 4)^{3}}{12}+(13 / 4)(8)(5.375)^{2}\right]+\frac{(2)(9)^{3}}{12} \\
& =937.121 N^{4}
\end{aligned}
$$

APPENDIX E
MATERAC: GOGITT6 AL.
Allowable Stresses;
TENSILE $=10,000$ DSI
COMP $=10,000 \mathrm{PS} /$
$S_{H E A R}=15,000 \mathrm{PS} 1$
DSuene COAD AT A-9:

$$
t=\frac{19000 \mathrm{LB}}{2}=9500 \mathrm{LE} .
$$

Allowable lono AT A-A

$$
L=1.5 \times 1.75 \times 15020 C=39,375 \angle 45
$$

(2) Tensile Load at B-B: (nin Area)

$$
L=\frac{19000 L B 6}{2} 9500<\mathrm{ES}
$$

ALLOWGSLE COAD $=.875 \times 1.5 \times 10,000 P S /=13,125 \angle B$ RON.
(3) TENSILE LOAD AT C-C:
$L=19000 \angle \mathrm{BS}$
ALLOWABLE LORD ATC-C $=2 \times 1.5 \times 10,000 P S I=30,000 \mathrm{LBS}$
(4) Compressive Stress At Pin:
$t=$ THICKNESS $d=$ DIANETER
Coripressive Dref $=t$ th $=1.03 \times 1.25=2.0375$
Compensive Stress $=\frac{19000}{2,0370^{\circ}}=9,327 \angle B$

Calculations for lock Wedes
MATIC $=6061-76 \mathrm{AL}$.
LOAD P $=19000 \angle B S$
SPAN $L=1.63$
R. SAFETV FACTOR = Z

$$
M_{0}=\frac{P_{L}}{8}=\frac{19000 \times 1.625}{8}=\frac{31,825}{8}=3978 / \mathrm{N} / \mathrm{CBS}
$$

WEDGE THICILNESS - $=.500$

$$
S_{0}=\ln \frac{C}{I}=M \frac{C}{G d^{2}}
$$

$$
R 20000=3978 \mathrm{~m} / \mathrm{LB} \cdot \frac{6}{.5 \times d^{2}}
$$

$$
R d=\sqrt{\frac{3978 \times 6}{20000 \times .75}}=\sqrt{1.591}
$$

$$
\text { R.. } d=1.265
$$

$$
d(A \subset T U A C)=1.375
$$

Maximun Shear Coho $=19000 \angle B$
ALLOWABLE SHEAR COAD=

$$
(.5 \times 1.250+.5 \times 1.525)(15000)=20,813 \mathrm{LBS}
$$

cace			ncunso	oate	GRID PATTERN	
OMLCX						
Are					-	FIG. 2
						Pat
CONTRACT NO. NAS 8-11717						

Longs.
$\begin{array}{rl}2 & 2 \\ { }^{2} & 8 \\ 8 & 8 \\ 4 & 8\end{array}$

Calc			Ravisto	Date	MR\&T-SK-714 PART NO. 1 MATERIAL GROWTH	
Curce:						
Ane						FIG. 6
APR			-		n-	
						mase
CONTRACT NO. NAS 8-11717						

cave			Evisep	DATE	MR\&T-SK-714 PART NO. 2 MATERJAL GROWTH	
CuEg						
Ane						FG. 7
NR					Ther \qquad -8)	
						Prem
CONTRACT NO. NAS 8-11717						

\min

