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The objJect of this paper is to present a probabilistic model
for analyzing changes through time in e binary dyadic relation on
a finite set of points, The total relation on the set takes the
form of an aggregate of directed binary dyadic relations between
ordered pairs of points belonging to the set; equivalently, the
total relation on the set can be represented by means of a digraph
or an incidence matrix isomorphic with the total relation. Such
a relation, changing in its structure as time proceeds, is a rea-
sonable mathematical model, for example, for the evolution of inter-
relationships of the members of a social or any other group. A
group of this kind is organized for a specific activity involving
some sort of "communication™ from one member to the other, and may

be observed at successive discrete points in time generating sta-

——— I

tistics on the evolutionary process.| (For a detailed treatment,

p———

see [3]). As 8 matter of fact, under suitable assumptions, the

model presented here has potentialities for application in those
situations which can be represented mathematically in terms of a
finite set of points and an all-or-none relationship between
ordered pairs of these points, Some of the other examples are
communication networks, ecology, animal sociology, and management
sciences (see [5]).

1. Introduction: Let A ={Pl, P —— Pﬁ}be a finite set

29
consisting of N points, and R a binary relation defined on the

set A for each ordered pailr of distinct points Py, PJ belonging

to A. If R(i,}) donotes the relation for the ordered pair (Pi’

PJ) then either R(i,3)) = 1 or R(i,3) = 0. The total relation on
the set is the aggregate of the directed binary dyadic relations
R(i,J) and is denoted by R(A)., As time proceeds, some of the

relations R(i,J) may undergo a change while others may not. Thus R(A)




is a function of time, and the process may be obserwed at sic-
cessive discrete points in time, generating statistics on the
evolutionary process,

There are two common oprocedires for obtaining a su€ficiently
large number of obserxrvations for purnoses of drawing statistical
inf erences about a process in time: (1) makineg a series of ob=-
servations on a single set for a sufficlently long time, or
(i1) making obsewations in parallel on a number of similar sets
for a relatively shorter period of time, However, in many situ-
ations we are excluded £ romusing either of these procedures due
to ground mles laid down in certain aponlications, A device
useful in these circumstances is to consider the total relation
R(A) in terms of an aggregate of the subrelations R(a), where
a = {Pil, Piz, ——— pin} is a subset, of fixed size n, of A,

For a detalled discussion of this anprcach, we refer the reader
to [2] or [3].

There are two equivalent reoresentations of R(A): first,
in terms of a directed graph (or simply digranh) T(A), and
second, in terms of an incidence matrix C(A). Ve give below
some relevant definitions and notations,

The digravh T(A) consists of N vertices Pis Pyy ===y Py
corresponding to the points of A, and directed edces EI;;
shown by means of directed lines f rom Py to Pj corresponding
to R(1,3) = 1; R(1,3) = 0 is shown by absence of directed edges
f rom P; to Pj. T(A) is said to be of order N if it consists of
exactly N vertices frresnective of the number of edges, A di-
rected path from Py to Pj is given by a chain of directed edges
of the form 5;5;;, 5;;5;;, —-— 5;;3;. We note that by defini-

tion, presence of loops (directed edoes joining a point to it~
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self) 1is not allowed, and that there cannot be more than one di~-
rected edge joining any ordered pair of points, A directed vath
of length L (L > 1) f£rom Py to itself is called a cycle of length
L. PFinally, a point Pj is said to be accessible from a point Py
if there is a directed path from P; to Pj; when this hapopens the
ordered palr (PyPy) is called an accessible vair,

The incidence matrix C(A) is a matrix of zeros and ones
such that its rows and columns correspond to the points in A, and
the element Cij of C(A) is one, or zero corresponding to
R(1,§) = 1 or 0, A matrix C is said to be positive if all its
elements are positive, and is denoted by C > 0, The element-
wise (Hadamard) prodict of two matrices C and D is denoted by
C*D,

Corresponding to the subrelation R(a) there is a subdigraph
r(a) of r(A), consisting of all the directed edges in A which
connect points of subset a, and a principal diagonal submatrix
C(a), of C(A), such that its rows and columns correspvond to
the points of the subset a.

2, Classification of relations. It is easily seen that

the number of different forxrms in which R(A) may be observed is
ZN(N_I), which is extremely large. However, for statistical

pu rposes we require that the number of distinct "states" in which
R(A) may be observed should not be excessive. We may, first of
all, ignore the labels of the set A (in those cases where the
labelling of points is of no particular importance), and obtain
equivalence classes, under vpermutations, of the class of rela-
tions R(A). The number of these equivalence classes, although mud

smaller than the total number of different forms of R(A), is

still quite large. For example, for N = 5 these numbers are

—3-




8,508 and 1,048,576 respectively,

Next, we obserwe that relations belonging to different, but
nearly alike, equivalence classes are not modified very much by
the addition or deletion of a few directed dyadic relationms
R(1i,3)s Accordingly, we may group some of these equivalence
classes together to obtain more manageable numbers of empiri-
cally observable, mutually exclusive and exhaustive classes,
such that at any point in time R(A) may belong to one and only
one of these classes, Clearly this could be achieved in many
wayse. We present here three particular classification schemes:
the connectivity classification, the accessibility classifica-
tion, and the weighted classification, For this purpose we
find it convenient to use the graphic representation, I(A), of
the relatfon R(A).

The connectivity classification is based on the strength
of connectedness and is a standard topological classification:
r{(A) is said to be strongly connected if each point of A is
accessible f rom every other point of A; unilaterally connected
if for every pair of points belonging to A there 1is a directed
path f rom at least one of them to the other; weakly connected
if there is a chain of connections, fignoring all directions,
f rom each point of A to every other point of A; disconnected
if it 1is not even weakly connected., These classes may be defined
more strictly, in an obvious manner, to obtain four mutually ex-
clusive and exhaustive classes: T(A) 1s sald to be in state s

3

if it 1is strongly connected; in state 5, if it 1is unilaterally

connected but not gstrongly connected; in state 8y if 1t 1s

weakly connected but not unilaterally connected; in state Sy

if it 1s disconnected.
-4-



The accessibility classification 1is based on the number of
accessible ordered pairs in the digraph T(A): T(A) is said to
be in state si if 1t consists of exactly I accessible ordered
pairs, By definition the accessibility classes are mutually ex-
clusive and exhaustive, and the number of classes devends on N,
the order of T(A).

The stwmcture of the relation R(A) is determined by the
symnetric relation of accessibility in both directions between
palrs of elements of A, This relation is an equivalence rela~
tion on the seé A, separating it into disjoint equivalence sets,
in each of which every point is accessible f rom every other
point., Further, the residial one-way relations indice a partial
ordering on these equivalence sets. Let there be m equivalence
sets A;, Az, ——— Am of sizes N;, Nyy ===» Np» respectively,
where {Ay | 1 = 1,2,---,m} constitutes a partition of A, and
1%1N1 = N, If p denotes the number of accessible ordered pairs
in (A), it can be shown (see [2]).

Theorem 2,1 p can take only values of the form

L NN - N
EX AN

whe re (U- 1, 1f the sets A; and
Ay are ordered in the partial ordering (€4= 1), and € 4= 0
otherwise,

The welghted classification is a refinement of the accessi-
bility classification, obtained by assiening to an accessible
ordered pair (Pivpj) a weight of N-L if the length of minimal
directed path f rom P; to Pj is L, and a weight of zero to all

those ordered pairs which are not accessible.
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Details of these classifications may be found in [2] or
[3]. 1In this paper we discuss some statistical results for the
first two classifications, namely, the connectivity and the
accessibility classifications,

3. Enumeration of subrelations. Since our approach con-

sists of considering R(A) as an aggregsate of subrelatiomns R(a),
it is necessary that we find formal procedires for enumeration
of subrelations R(a) which are, (i) in states s, (i = 0,1,2,3)
at any fixed time t, and (1i) in states S04 slj’ st’ S34 at
times tj, j=1,2,-=-=-,h,

Let Rni(t) denote the number of subrelations of size n,
which are in state s4 (L = 0,1,2,3) at time t, To find the
value of R,4(t), for any t, we define a function f on the class
of subrelations, {R(a), ac A}, with the set of states {si} as
its range: we say that

sy 1f R(a) 1is in state sy

f (R(a))-{
0 otherwise,
Thus R ,(t) is equal to the number of those R(a) for which
£ (R(a))= s; at time t, and the main problem is that of being
able to evaluate the function ft(R(a)) at time t for every
R(a). We also note that the total number of subrelations
R(a), of R(A), is (R).

Theorem 3.1

if, and only 1if, [C*(a)] 1> o0,

s, or s and ogly 1f, {[C*(a)]™"1+
3 0% %2 ey 2oy

s. or s. or s, if, and only 1f, [(Xa) +
3 chatm-1 30,

f (R(a))=

sg if , and only if, [C*(a) + c%a)in-1 # o.
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where C(a) is the corresnonding matrix renmresentation(defined
earliex) of R(a); and C*(a) = C(a) + I, I being the n x n identity
mat rix,

A proof of this theorem may be found in [2] or [4].

This theorem can be stated more strictly in an obvious way
to obtain the values of Rni(t). Fu rthermore, 1t can be orogram-
med on a computer to carry out the comnutations Iin an easier and
faster way, It also follows that reneated aponlication of this
theorem gives us the number of varfous (h-l)-order transitions
f rom state Sy1 at tinme ty; to state sy, at time ty through states
8§25 === 3§ h-1 at times tos === 3 respectively,

Similarly, if R;,(t) denotes the number of n-noint subrela-
tions in state si at time t, then the following theorem gives the

values of R;i(t) for all admissible values of i,

Theorem 3.2

€'(R(a)) = s; if, and only if, the number of non-zero en-
tries in the matrix [C"‘(a)]u'1 is exactly n + 1, where £' is a
function on {R(a), a € A} with its range as the set {sj}. The
proof of this theorem may be found in {2].

As before, a repeated application of this theorem counts
the number of (h~l)-order transitions for the accessibility classi-
fication, and it can be programmed on a computer for comnutational
pu rposes,

It mav be mentioned here that an (h-1l)-order transition table
for a given set of data can be rediced to obtain ali the transi-
tion tables of order less than h, as well as the values of
Ryy(t) (or Ry (t)) for t = t1s ta, ===, th.

4, Stochastic nrocess. The change in R(A) over a period of

time mav now be described as a stochastic process and standard
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tests and techniques may be used to draw statistical inferences

in time for such a process, The simplest case is that of a Mar-
kov chain model with unspecified Markovian property, and such a
model can be analyzed, using the standard methods as, for example,
in [1].

5. Distribution theory. The derivation of the probability

dist ributions of random variables R,j(R;4) is based on the theory
of compound probabilities, an exposition of which may be found,
for instance, in Feller [6], and Fréchet [7].

Let P; denote the probability of the occurrence of an event
Egy 1 = 1,2,--- ¥ (Ei's are not necessarily independent); Pij
denote the probability of the simultaneous occurrence of the
events E,, Ej (1,3 =1, 2, ===, M3 {1 % §); Pijk denote the proba=-
bility of the simultaneous occu rrence of the events Ey, Ej’ Ek
(i, jo k=1, 2, ===, M;1 # 3 # k); and so on, Define sums

S, = LP
1 1 i

2 7 1y Tuy

S, = z P -==_. and so on,
3 1,1,k ijk *

If P(m) and P be respectively the probabilities of the simul-

[m]
taneous occu rrence of exactly, and at least m among M events,
then the principle of inclusion and exclusion (Feller, [6],

Chapter 4) gives immediately

_ m+ 1 m+ 2
Pm) = 8y = (" m )00 + (P8 )8 - oot (%)SM
and
P

(m] ~ Plm) * P(m+l) Tt P(M)

P - (_m.)S m+l,g _ + (M-1)8
[m] Sm (n=1) m+l + (m-l m+2 —— - (m-%) M
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Let (k) denote the K-th factorial moment of the distribution.
Then
= [§
) k!S, (Frechet [T7]).
In particular,
Mean = S

1l

Variance = 282 + Sl - Sl

We make use of the above relationships and formulae to de-

2

rive results for the probability distributions of the random vari-
t
ables Rni(Rni)°
Let the point P; hold relation R with dy (o < a; < N-1)
other points in the set A; in digraph r(A), d; is the number of
is the "valency"

directed edges starting from P We say that d

i i
of the point Pi’ and assume that for any i, di is fixed, and the

di directed edges emanating from P, follow a hypergeometric law.

i
We also assume that the distribution of the terminals of the

directed edges originating at Pi is completely random. If all
the di's are equal (dl= d2= == dy= d, say) we have the simple
restricted case; otherwise the general unrestricted case., The
results for the general case get quite complicated and as such

most of the results presented here are for the restricted case,

Under the assumptions stated above, it is easy to see that

P[R(i,3) = 1] = a,/(¥ - 1),

P[R(i,3) = 0] =1 - a,/(N - 1),

P[R(i,3) = 1 | R(i,k) = 1] = (a;-1)/(N-2),
P[R(1,J) = 1 | R(i,k) = 0] = q,/(N-2),

P[R(i,J) = 0 | R(i,k) = 1] = 1 - (a3~ 1)/(N-2),
P[R(i,3) = 0 | R(i,k) = 0] = 1 - 4,/(N-2),

and so on.




We can now derive, at least theoretically, the probabilities
of the type P[£(R(s))= s3], P[£(R(s;))= 55, £(R(a)))= s,], ---,
where a1, 32 are two distinct subsets, of size n, of the set A,

By computing the sums of the form
rp[f(R(a))= s, ],

alfézp[f(a(al))g 83, f(R(ay))= 5,1, —--

we may obtain the probabilities P(m)’ the moments “(k),

P[m]’
and the exact probability distributions of the random variables
R ;(Ris).

However, these computations become extremely tedious even
for small values of n, and the derivation of exact distridbutions
becomes almost impossible., As a consequence we propose, later
on, simple approximations which are comparatively much easier to
obtain, and are, therefore, of practical importance. Further-
more, although the results for the restricted case may be ob-
tained as a special case of the general case (by putting dl=

2= ————= dN= d, say), we present the two cases separately due to
the marked simplicity of the former.

In what follows, we need the following notations.

Factorial notation: x(e) = y(x « 1) === (x - 8 + 1), functions

= i == 3 ‘m- he
Ym L 43, 43, dim’ and pover sums vy = Fd; 7

functions u,  may be expressed in terms of the sums vy (Perron,

[9]1); for m< 4, these relations are

- 2 L
u2 = (vl - vz)/zo

=10




u, (vi - 3v, v, + 2v3)/3!
2
1

(vi - 6v

u

L

vi o+ 3vg + 8v v, - 6vh)/h!

2
2 3

6. Dyadic case: n = 2, For digraphs (or subdigraphs) of

order two, the connectivity and the accessibility classifica-
tions are identical; there are only three different states

= | = . = 1 3 -
(s $53 52_ 813 so_ so) in wvhich a two-point subrelation may

3-
be found, and R__= R! (see [4]). Let

- ] R = R' .
23- 22 ° Rap= Ro1e Bap= Bap
a = {PJ, Pk} be a two-point subset of the set A, and let R(a)
be the corresponding subrelation, It is seen easily that R(e)
is in state Sy if there are two directed edges in I(a): one

from Pj to Pk’ and the other from Pk to PJ; in state s, if

there is only one directed edge in T(a): either from PJ to Py,

or from Pk to P in state 89 if there are no directed edges at

J;
all in I'(a). As such,
-13)2
jdk/(N 1)4,
- - -1- -1- -1)2
P[£f(R(a)) szl {dj(N 1 dk) + dk(N 1 dj)}/(N 1)4,

and P[f(R(a))= sO] = (N-l-d

P[f(R(a))= 83] = d

1= ~-132
j)(N 1 dk)/(N 1)“.

Furthermore,
E(R = S = L P[f(R(a = g
( 21) u "k [£(R(a)) i]
where the summation extends over all the (g) unordered pairs

in the set A. We may write

N
E(R21) = j<§=1P[f(R(a)) = si}

and using the values of P[f(R(g)) = 51], given above, obtain
the expressions for E(R21), i =0,2,3. In the restricted case
(all di's equal to d, say) the probabilities P[f(R(a)) = si]
remain the same for any of the subsets a, and therefore,

- N -
E(R, ) = () PIE(R(2)) = s 1.

-11-




Simple reductions give us the following theorem:

Theorem 6.1 For the general case,

2
E(R,jy) = (v

E(Rzz) v1 (v1 vz)/(N 1)

E(Rzo) = N(N-1)/2 - v

- vz)/ 2(x-1)2

2 2

For the restricted case,
2
E(R = Nd 2(N-

( 23) / 2(N-1)
E(Rzz) = Nd(N-1-d)/(N-1)
E(R,) = N(N-1-d)2/ 2(N-1)

Let V(Rni) denote the variances of the random variables Rn .

i

Theorem 6.2 For the general case,

V(R,,) = (6u, - uzz)/(u-1)‘ + 2(-bu, + ugu - 3u)/

4 4 371

(N-1)3(N-2) + uzl(N-l)z

V(Rzz) 4(6ua u2 Y/(R-1) " + 8( 4u4 + u3u1 3u3)/
(N-1)3(N-2) + 4u2/(N—1)2

V(R ) = (6u, - uzz)/m—n4 + 2(-bu, + ugu = 3uy)/
(x-1)3(n-2) + uzl(N-l)z

For the restricted case,
VR,,) = Nd2 (N-1-a)2/ 2(n-1)3
VR, ) = 2na?(N-1-d)2/(8-1)3

V(R,) = NaZ(N-1-d)2/ 2(n-1)3

Proof. Let Smi denote the sum S , defined in section 5, for
- m

the random variable R (m=1,2,---), so that V(R21) a

21

2
2521 + S11 S11 . The sums Sli’ equal to E(RZi)’ already have

been obtained in the previous theorem, and as such, we only

need to compute the sums S21 (i = 3,2,0).

521 = T P[f(R(al)) = si, f(R(az)) = 31]
ajsay

-12-




h - =
where a, {Pj’Pk}’ 32 {Ph’Pl are
any two different subsets of the set A, and the summation

extends over all such subsets of A. If the subsets a a_are

1° 72
composed of four different points, then the two events [f(R(al))

- si], [f(R(az)) = 31] are independent, and

P[f(R(al)) = 84, £(R(a,)) = si] = P[f(R(a;)) = 31]'
P[£(R(ay)) = 5,].
However, if the subsets have one point in common (if both the
points are common, we do not have different subsets al, az),
say Ph - Pk’

are not independent, and we have to compute the compound pro-

then the events [f(R(al)) - si], [£(R(a,)) = 51]

bability P[f(R(al)) = 8,

and f(R(az)) = si]'
Thus,
521 - ZP[f(R(aI)) - sil‘P[f(R(az)) - si]

+ P[f(R(al)) = s1 and f(R(az)) = sil

where the first summation is over

1’ a2, and the second summation

is over the remaining pairs of (different) subsets a

all pairs of disjoint subsets a

s, @
1 2
(with one point in common).

Each set of fcur different points may form a pair of dyads
in three ways, and each set of three different points may have

any of the three points as the common point in the pair of

dyads. With these considerations, we may write

-13-



N
S = 3 7 P[f(R(a,))= s _]*P{f(R(a,))= s,]
21 h<j<k<f 1 i 2 1
=]
+3 3 PLER(2,)) d £(R(a,))= s,]
T a = s, an R(a = 3
1.k, =1 1 1 2 1
J<k<g
These probabilities are easily obtainable, and these sums now
can be computed in terms of the power sums vp's (p= 1,2,---).
The expressions V(R = § + S - S. 2 then are computed
P (Ra1) = Sy ¥ 514 ~ 54y N P
to give the variances for the general case. The variances for
the restricted case can be obtained by putting dls dza---- dN=
d in the expressions for the general case; however, there is
rather a simple way of obtaining them directly.

For fixed i, the probability P[f(R(al))8 si] is the same
for any subset a, of A; the compound probability P[f(R(al)) -
8y and f(R(az)) = si], where a, and a, have one point in
common, is also the same for every such pair of subsets.
Further, the number of ways of choosing four differeat points
from N points and forming two dyads from them is 3 (g); the
number of ways of choosing three different points from N
points and forming two dyads from them is 3 (g). Therefore,

= 3(N - 2 N =
S21 3(4) P[E(R(3)) si] + 3(3) P[f(R(al)) Sy and
f(r =
(R(a,)) 81]
where the subsets a1 and a2 have one point in common. The

sums S being known, the variances V(R21) can now be com-

11°
puted rather easily.

We note that the computation of the compound probability
P[f(R(al))= s> and f(R(az))- si] has to be carried out
rather carefully. For example the compound event [f(R(al))-

s, and f(R(az))= 32] may take place in any one of the fol-

2
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lowing four ways:
In the subdigraph F(al) the directed edge may be from ei-

ther P, to Pk or from Pk to Pj; with either of these two cases

A
the subdigraph F(az) may also have a directed edge either from

P to Pl or from PL to Pk' The probabilities for each of

these four cases will be different in general and need to be
evaluated separately and carefully.

To obtain higher moments of the random variables R21, we

need to compute the sums smi’ m > 3. The number of different
types of terms in Sm rapidly increases and the resulting expres-
sions for Sm become rather complicated algebraically, but the
principles of computation remain the same. We give here the

derivation of S for the restricted case, to i1llustrate

3,3’
the method. The sum

S, 3= L Pr {I£(R(2,))= 5,1, [£(R(2,))= 5,1, [£(R(a3))= s,]}
where the summation extends over all the triples of two-point

subsets a,= {Pi’Pj}’ a,= {Pk, P
particular triple of subsets a;»

}, a,= {Pm’ Pn}. For any

az, and a3 the number of dis-
tinct points in the three subsets may be six, five, four or

L

three; there is only one way of forming a triple of two-

point subsets on three points. 1If the points are Pi’ Pj’ Pg,

then the only possible triple is {P,, Pj}, {Pi’ P.}, and

L

33 consists of five different kinds of terms,

N 6 t
and there are (6)373T5?;T different ways of obtaining the

L
first kind of term (six distinct points); (g)_iéiT ways of

{Pj’ Pﬁ.}. Thus §

obtaining the second kind of term (five distinct points);

(z) %% ways of obtaining the third kind of term (four

-15-




distinct points); (E) %% ways of obtaining the fourth kind
of term (four distinct points); (g) ways of obtaining the
fifth kind of term (three distinct points). The probability

element of each type is determined easily, and

. 2 3 2
s.. = (& - [ d ] N) 5. a2 d d-1
33 6" 3. (29) (N-1)2 st @he (N-1)4 (N-1) EN-Z;

+ & 4272 @-12 + 8 41 [ a2 V2% (a-1) 4-2)
4 2! [(n-1)2] (n-2)2 4 31 |(m-12 (§-2) (¥-3)

N 2
+ () _d d(d-1) (d-1)2
3 (N-1)% (N-1)(N-2) (N-2)

7. Triadic Case: m = 3. The complexity of problems

concerned with the probability distributions of the random

variables Rni (R' ) increases many times for m > 2. 1In
ni

general, a subrelation may belong to a given state 85 (s;)

through several different kinds of structures (non-labelled
digraphs). Consequently, the computations of various

probabilities of the type P[f(R(a)) = si]’ P[f(R(al)) = s,
f(R(az)) = 81]’ ~--~ become increasingly more involved, and

it becomes almost impossible to obtain the various sums Sm

even for m = 2, and the restricted case, As a matter of fact,

for the general case, even for n = 2, the expressions for

52 are quite involved (see last section). However, the
principle inovlved is quite simple, and theoretically there
seems to be no difficulty in computing these.

Let a subrelation R(a) be found in state s, through one,

i

and only ome, of I different structures s ,, 8497 {1

-16-




(each of type si). Then

E(Ry;) = 8, = IP[£(R(2)) = s,]

11
I
= I I P[f(R(a)) = s ]
a p=1 ip
For the restricted case,
N I
E(R31) = S11 = (3)p£1 P[£(R(a)) = sip]
S21 = I  P[£(R(ag)) = s; and £(R(ay)) = s,]
al,a2

where ay and a, are any two distinct three-point subsets

of the set A, We may rewrite

I
S21 = T z P[f(R(al)) = 845 and f(R(az)) = siq]
a,,a, p,q=1
1272
I
= T 21 P[f(R(al)) = sip and f(R(az)) = sip]
a,,a,p
I
+ . Za ) El P[f(R(al)) = sip and f(R(az)) = siq]
1’3 P¥q
I 1
= I S, + E(Ry; Ry )

p<q=1

and f(R(aZ)) = g

where SZip - . X P[£(R(a;)) = s 1.

i
s a P

ip

To calculate SZip and E(R ) for the restricted

3ipR3iq
case, we notice that the various probabilities dc not depend

61

on which subsets a1 and a 3?3?3?

2 are taken, and there are (2)

different pairs of triads (three-point subsets) with no points

-17-~



5%

in co : Ny _D.
mmon s (F) 5oty

different pairs of triads with one

N 7
point in common; (4)5%57 different pairs of traids with
two points in common. Therefore,

N 6! . 2
S21p = (6)373?37 {P[£(R(2)) =.sip]}
+ (N) 5.

§) 215157 P[f(R(ai)) = sip and f(R(az)) =g

:lpl

aa, have one point in common ]

and,

B(Ryy Ry ) = () Tigizy PLE(R(a)) = sy 1.P[£(R(a))=s, ]

N 5
+ —_—
() 3733

» -ale w

P[f(R(a;))= Sip and f(R(a,))= 514 |

aa, have one point in common]

ala2 have two points in common]

+ () 7T PIER(a))= sy and £(R(ay))= sy

We give below, without proof, the expected values of
the random varizbles R3i and R;i for the restricted case.
‘The expressions for the variances are quite lengthy and as
such are not given here; these may be found, however, in [2].

Theorem 7.1 For the restricted case,

E(R,,) = Na3(2n3 - 1582 + 308 - 18 + 3a(n%-3)
-642(N-1) + 2d3]

/ 6(N-1)2(N-2)2
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E(R__) = N(N-1-d)a? [283 - 12N2 + 23N - 14 + d(5N-8)

32

-4d2(N-1) +243)]

/

2(N-1)2(n-2)2

E(R, ) = Nd(N-1-d)2(N-2-d) [-(N-2) + 2d(N-1) - 242]

1

/ 2(§-1)2 (n-2)2

E(R30

) = N(N-1-d)3(N-2-4) [(§-2)2 + 4d(N-2) - 2a?]

/ 6n-1)2(N-2)2

Theorem 7.2 For the restricted case,

E(R! ) = E(R33), given in theorem 7.1

36

E(R' ) = Na?(N-1-d) (2N-3-d) [-(N-2) + 2d(N-1) - 2d2]

34

/ 2(8-1)%(n-2)2

= Nd2 (N-1-d) [-(2N-3)(N-2) + d(4N% -9N +4)

/ 2(N-1)2(N-2)2

E(R;3) = Na2(N-1-d)2 (N-2-d) / (N-1)2(N-2)

ER' ) = Nd(N-1-d)2 (N-2-d) [-(N-2) + 3d(N-1) -3a%}

/ 2(N-1)2 (n-2)2

E(R'.) = Nd(N-1-d)3 (¥-2-d)2 / (N-1)2 (N-2)2

31

ER' ) = N(N-1-d)3 (N-2-4)3 /7 6(N-1)2 (N-2)2

30

8. Approximate Probability Distributions. We present

now simple approximations for the probability distributions

of the random variables Rn

i (n > 2) under the assumption that

N is quite large compared to the di's. When this happens,

that is N >> d i=1,

PR

2, =--, N) the probability of having

a directed edge between any ordered pair of points (which is

di/(N—l)) is quite small compared to the probability of not

-19-




having a2 directed edge between an ordered pair of points
(which is 1 - di/(N-l)). Therefore, the probability that R(a)
has a certain structure 1is proportiocnal to the number of
directed edges in its corresponding digraph I'(a). In other

words, the probability that R(a) is in state s, through those

i

structures s which have large number of directed edges, is

ip

quite small and may be ignored; we may approximate the proba-
bility P[f(R(a))= 81] by the sum of the probabilities P[f(R(a))=

| s

s ip

has smallest number of directed edges among s

~ 9 siI.]

Let ?[f(R(a))- si] denote the approximations as described

ip il, 12’

above, to the probabilities P[f(R(a))= si]. It is easy to see
that
(1) Plf(R(a))= 33] = P[T(a) consists of n directed edges
in the form of an n-cycle]
(11) Plf(R(a))= 92] = P[I'(a) consists of n-1 directed
edges in the form of an (n-1)- step chain]
(iii) F[f(R(a))= sO] ={P[T(a) has no directed edges], n=2,
P[T(a) has no or ome directed edgel,
n>2.
(1v) PlE(R(a))=s ] =1 - tP{£(R(a))= s,] 1 =0,2,3
These probabilities can be computed easily for any n, and
the approximate probability distributions obtained.

Using the factorial notation x(e) we find after some

reductions and approximations:

-20-



(1)

(11)

(1i1)

(iv)

FIE(R(a))= s, = — 2D} % d1, (1, ) (D),

[ (8- 15“‘1)]3 k=1
general case

- (-1 [d(N-1-q) (a-2)n,
[(N-1)(n-1)}n

restricted case

PI£(R(a))= 5,] =

= (n-1)¢ @-1)% 1.4, Yn-2
D jz [(N-1- -4y, ) Hldik(N 1-d4 ¥ h,
k#j

general case

= [( nin_l)]n (N-l‘d)(n—l)[d(N-1~d)(n_2)]n-1,
N-1)

restricted case

P[f(R(a))= sol =
1 (n-1)
= T (N-1-4, )
[(n-1)(o-1)yn 3=1 i
+ -1 I [dg -1-d5, 522 § (N-1- d; )“ ,,
[(N_l)(n-l)]n j=1 ] j i;}

general case (n>2)

(n-1);n
[ (N-1-d) ) a(a-1) o
= + d(N-1-8) @~ - afr-Dpt
[(n-1)(n-1)3n [(n-1¥2~1)n

restricted case (n>2)

?[f(R(a))= s ] is obtained by difference, i.e.

1 - I P[f(R(a))= s ]
i=0,2,3
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By investigating the forms of the approximate probabilities
P(m)i- P[Rni. m], we may propose approximations for the proba-
bility distributions of the random variables R, ;. The proba-
bilities P are expressed in terms of the sums S and the

(m)i k,1

first term in Sk { (approximated values as on page 21) camn be
t

approximately written as

s{P = (M) ?ﬁ% (FLER(a))= 5, 1)
This may be further approximated using the fact that N is
quite large and di's are quite small (N>>di).

The other terms in Sk’1 (i= 3,2,1,0) are seen to be, at
most, of order O (;); the number of terms in sk,i depends only
on k, not on N. Thus for fixed k and d, the sum of these re-
maining terms tends to zerxo for increasing N, and we may

approximate to S by the approximate value of its first term.

k,1
~
With this approximate value, say Sk i of Sy 4 we obtain
> ’
¥)-m Y
P = P[R w m] ~ I (-1)5(m s and then check to
(m),i ai 3=0 m  mt+i,i

see if it is the general term of a well-known distribution.
For each of the random variables Rni (i=3,2,1,0) we find

that P(m) : can be approximated by a general term of a Poisson

distribut;on and hence the following theorem:

Theorem 8.1 For large N, and d<<N

1 .o -
P[Rni- m] ~ aT ei exp(—ei), i 392)1!0
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2
n _ nc-2n
o o g (1 - a-1 )
3 n+l
N~
a-1 d -1 d-1 n2—3n+2
6, = (N-1)d (1 - - B.) (1 - —
2 2
2
N2 d n--n Nn—l 1 - d n“-2n+l
%0 T a (x - _g) (n-2)! ( _N_Eﬂ) (- _n
2 2
Nn
61 =;T- (93+62+60)

That is, the random variables Rn are distributed approximately

i

as Poisson distributions with parameters 684, i=3,2,1,0.

We may remark that for the random variable Rn3 our result

agrees with that of Katz [8] who obtained a Poisson approxi-

2
mation with parameter %~ for the simple case n=2 for the

distribution of the number of mutuals in a social group (R23

in our terminology).

9. A simple approximation for expected vatues. We have

seen that the expected values of Rni and R;i have rather 1in-
volved expressions even for moderate values of n, and are com-
putationally difficult to obtain. Consequently, simple
approximations for E(Rni) and E(Rgi) would be convenient. The
natural way seems to be to investigate their limiting values
as N tends to infinity.
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Let us suppose that the valencies d, are simple linear

i

functions of N, that is d,= 6,(N-1), 0< 8, <1 (i=1,2,---,N);

i i

eia dil (N~1) is the ratio of the number of points with which

Pi holds the relation R to the total number of points with

which P1 may hold the relation R. If N be large emough so

that all ei's are almost the same, or if all di's be the same

(restricted case) so that all 6 ,'s are equal then this common

i
value, say 6, is much more meaningful and denotes the “rate of
valency” for the relation R(A). Let 6 = d/(N-1) for the
N -
restricted case, aund 8 = I di/N(N—l) = d/(N-1) for the general
- i=1 N
case, where d is the “average valency” (= I 4 /N) for a point
i=1
in the set A.
Let E(R 1imit E(R_, /(¥ d ER' limit ER')/ (Y
et E( ni) Ngit ( ni (n)’ an ( ni) NEQC ni n
We obtain easily:

= ] = 82
Theorem 9.1 ﬁ(R23_ Ry,) = @

*
= R! = 20(1-9
E(R22 R21) 26(1-98),

* o - _ 2
E(Rzo- RZO) 1 29 +8

*
Theorem 9.2 E(R = R', ) = 83(0-2)(2862-20-1),
33 36
E(R32)=- 662(1—6)2(1+6—62),
)=

* 2¢1_ 4
E(R31 66<(1-6)

*

E(R, )= (1-0)*(1+40- 202);

E '0 = 3(1-8)2(2-9)
E(R34)" 66 ( "e) ( - ’
E(R' )= 692(1—9)3

33 4’

' - 2 -
ﬁ(R32)- 992 (1-8)",
* . _ 5
E(R31)— 66 (1-08)",

X, 6
E(R30)= (1-9)
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Theorem 9.3

*
E(R,q)=
*
E(Ry))=

*
E(R4y)=

x
E(R,o)=

o4 (6 + 366 - 10482 + 2483 + 17704 -25205

+ 15666 - 4867 + 668),

263(1-8)3(12 + 366 - 7282 - 1663 + 900"
- 5785 + 110%),
263(1-0)%(52 - 5106 + 563),

(1-0)8(1 + 60 + 2162 -7283 +788% -3605+66°),

*
E(R} 12)= 8%(6 + 360 -1046%+ 2403 +1776% -2520°

*
E(R;q)=
*
E(R;g)=
*
B )
*
E(R¢)=
*
E(Rgs)=
*
E(R},)=
E(Rl3)=
E(R’ )=
42
*
E(RZ1)=

*
E(R' )=
( 40)

+156066 -4867 +668)= E(R43),
864 (1-8)3(6 ~1362 + 963 - 85),
665(1-8)4(10 ~ 200 + 1482 - 383),
1204(1-8)3¢6 - 6 - 502 + 383),
403(1-0)6(8 + 210 - 3062 + 1163),

1203 (1-6) 7 (2 + 30),

303 (1-8)2(32 + 30),

402(1-8)° (6 + 116),

4262(1-0)10,

126 (1-0)' 1,

(1—6)12

We give below some computational checks of these limiting

(approximate) values of E(Rni) and E(R;i) with their exact

values, for the particular cases N =25, d = 3, n = 2,3; and

6 = 1/8 = 0.125.
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Table 9.1

Showing the approximate and exact values of E(Rni)

for n = 2, 3, and N = 25, d = 3.

n= 2 n=3
Exact Approximate Exact Approximate
value value value value
E(Rn3) 4.7 4.7 10.0 10.3
E(an) 65.6 65.6 184.9 183.1
E(R ) - - 111.8 126.4
nl
E(Rno) 229.7 229.7 1993.3 1986G.2
Total 300 300 2300 2300
Table 9.2 Showing the approximate and exact values of E(R;i)
for n = 3, and N = 25, d = 3.
Exact Value Approximate
value
E(R§6) 10.0 10.3
E(Réa) 35.1 38.7
L
E(R33) 149.9 144.5
|
E(R32) 180.2 189.6
! 911.8 884.8
E(R31)
E(R! 1013.1 1032.2
( 30)
Total 2300 2300
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*
For 6 = ,1,.2,...,.9, the values of the ratios E(Rni) and
ﬁ(R'i) have been computed for n = 2,3, and 4; these values
n
arranged in the form of tables are given in [2]. 1In applica-
* *
tions these tables showing ratios E(Rni) and E(R;i)’ and their
corresponding graphs with 6 as the independent variable may
be used:
* *
(i) to estimate the ratios B(Rni) or E(%&) for predetermined
values of & and n,
(1i) to find that value of & (and hence, d) which for a pre-
*
determined n, will give a certain preassigned ratio E(Rni) or
*
ER')),
ni
(iii1) to find that value of n which for a fixed 6 , will give

* *
a certain preassigned ratio E(Rni) or E(R;i).
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