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SUMMARY

A finite difference method for the solutieon
of an axi-symmetric expansion of a perfect gas into
vacuum is developed. The method is applied to the
expansion of a gas with an equation of state of the
form of Tillotsen's equation. The solution obtained
by the finite difference method for a perfect gas
expansion is compared to the characteristic solution
to check the validity of the finite difference method.
A similarity solution for the perfect gas expansion is

compared to the long-term finite difference solution.
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LIST OF SYMBOLS

Non-Dimensional Variables

[}

speed of sound

constants in Tillotson's equation
L (Eqs. 6.3 and 6.4)

/
B constant defined by Eq. 5.20
C1: Cp.. -c7 constants in polynomial p = %(?)
d;. dz...q7 constants in polynomial @ = ’((?)
D constant defined by Eq. 5.2
E internal energy
gi: 920 --- constants in polynomial _? = 1 (‘1'_;1)
P pressure
r radius
R radius of escape front
S entropy
t time
u particle velocity
ue escape front velocity

starting time

» specific heat ratio
b 0 for plane expansion

1 for cylindrical expansion

2 for spherical expansion
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right-running characteristic

kz_ left-running characteristic
? density
aq shock strength
Subscripts
av linear average valuetf property between

two points

c state at which perfect gas relation becomes
valid

es property at the escape front

ex property at the expansion front

f escape front wave velocity

g state at which condensation begins

o undisturbed state

s shocked state

Dimensioned Variables

a speed of sound, cm/sec

A constants in Tillotson's

_ equation of state (Eq. 6.3 and 6.4)

B dyres/cm?

E internal energy, dyne cm/gm

E, undisturbed internal energy, dyne cm/gm

ES internal energy of shocked state, dyne cm/gm
fé Internal energy at which condensation

begins, dyne cm/gm

P Pressure dynes/cm2
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radius, om

initial radius of expansion, cm
o

entropy, dyne cm/gm- K

time, seconds

Ok

temperature,
particle velocity, cm/sec

density, gms/cm3

density at which perfect gas relation
becomes valid.
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1. INTRODUCTION

The complete description of the physics of the problem of
the hypervelocity impact of a cylindrical pellet with a thin
bumper plate has been described in an earlier report by Bull 1,
Due to the complexities of the various physical mechanisms
involved and their interactions with one another, the method
of approach toward a complete numerical solution of the impact
model will be to investigate each mechanism separately and then
to compile them together step by step to form the final complete
model. To adequately describe the phenomena involved, a num-
erical technique in three independent variables, (two space
variables and the time variable) must be developed. In this
report, the first phase of the analytical program on the dev-
elopment of a finite difference method in one space variable
for the solution of the radial expansion of a cylindrical gas
cloud into a vacuum is presented., Provisions are made in the
program such that any arbitrary equation of state can be used
and numerical solutions for two cases of impact of aluminum
pellets with aluminum bumpers using Tillotson's 2 equation of
state are given. The finite difference solutions are checked
against the characteristic solutions for a few caseé to det-
ermine the accuracy of the solutions,

1.1. The Problem

The physical model consists of an infinitely long cylind-

rical gas cloud with a uniform density distribution at time




t = 0, At later times the gas cloud is allowed to expand into
a vacuum. The problem involves only one spatial variable r;
nence both the characteristic method and the finite difference
method are straight forward, However, the finite difference
approach is easier to handle when two spatial variables are
involved. Existing solutions for this problem are of the
similarity type which hold only under two particular cond-
itions; (i) when the initial density distribution in the gas

cloud is a particular function of r; 3

(ii) At very large
times when the flow is inertia dominated for the case of an
initially uniform density distribution “. Hence the solutions

by the present method can be checked against the similarity

solution of case (ii).




2. ANBLYSIS

2.1. Egquations of Motien

The basic equations governing the isentropic ex-

pansicn of a gas ca ke written as:

Continuity: g‘%+§ Q. -ul%g +3 u = O 2.2

T
Momentum: a_d: PRy, TH a:" Q = O 2.2

The first law ef thermodynamics for a particle is

T d3 =¢E+1’5¢(—'§-> 2.3

wliere ,.é‘_ = 0 for a plan~ expansion
.3 = 1 for a cylindrical expansicn
3, = 2 for a spherica:. e¢xpansion

The bar (-) above the physical quantities in
Eg. 2.1 to 2.3 indicate that these quantities have dimen-
sions.
Since an isentropic expansion is considered,
ds = ©
and Bgq. 2.3 is written as

¢E = i-z. d{. 2.4
$

This equation may be integrated to yieid
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For a perfect gas, the equation of an isentrope 1is

fé = const, 2.6
<

and the speed of sound is given by
-2 -
oy 3 2.7

For a non-perfect gas, the equation of state is of the

form
p- (%, E) 2.0
and Eq. 2.5 must be integrated to obtain the pressure at

each value of density.

2,2. Non-Dimensionalization of Basic Equations

In order to facililate the numerical anaiysis,
it is convenient to write the basic equations in non-

dimensional form.

Setting: = f - h
¢- /¢
o= | By
@ = '/55 > 2.5
~ = '4:/I5; .
t = 557/-0




. 2.1 and 2.2 become:

N R

o/

- + J(L%/ + _Q;? %
ot o g?




3. CHARACTERISTIC SOLUTION FOR PERFECT GAS

3.1. Characteristic Relations:

A solution of the expansion by the method of
characteristics is obtained for later comparison to the
finite difference soiution which is developed. The rei-
ations along a Xl and Xz characteristic line can be

written as:

A, % = A+a 3.1

de  + A 413 = -" AL ﬁtt 3.2

Moo ar - AU-C 3.3
At

_[1,,,4,_!__(11;:-2;,9_4__4, dt 3.4
.Qa, ~

and together with the isentropic and the speed of sound

relationships,

£ 3.5
const,

H

=2 - %
7 g

Egs. 2.10 and 2.1l can be integrated numericaily along the

characteristic paths,




3.2 Finite Pifference Appreximation

| > M
t P

Fig. 3.1

A B

_b.
ﬂ-

Referring to Fig. 3.1, Egs 3.1 to 3.4 can be
written in finite difference form. If the grid points are
sufficiently ciose together, the dependent variables can
be assumed to vary linearly between the adjacent points.
Egs. 3.1 to 3.4 then become in the first order linear

-T2 = (ura), (te-ta) 3.7

oty = ( <), (P m) =4 (e )(t “th) 3.3

-ty = (e-a), (T -to)

e ore ) (i )
Bliminsting ¥p from Bgs. 3.7 and 3.9

Te = Toa-Ta + (“"'a)\.tr(u“&)h Ta 3.11

(@ra)y, + -




Re-arranging Eq. 3.7

Yo = Ty + <a+a,))‘, (’Cp "’CA) 3.12
Eliminating ’PP from Egs. 3.3 and 3.10

- o iy vt (@, ), (- o) - o) i), (ot

(go)y, + Cpa)y,

Re-arranging Eg. 3.8
Po = Pa - o), @”""‘0 '@a)x.g'@ﬁ’)x Q"’t‘\) 3.14

If the properties at points A and B are known,
then £p, Tp, A and P, can be found from Egs. 3.1l to
3.14. The values of Qe and ‘?P can then be determined
from Egs. 3.5 and 3.5. A more detailed outline of the
numerical procedure (including a second order approximation)

is given in Section 7.1.

3.3. Boundary Conditions

J

3.2

.13



The boundary conditions at the head of the expans-

ion front AB (Fig. 3.2) which must be satisfied are as

follows:

> 3.15

o
»
Ol
:
~
fl

X
"
3
sl
h

Oy
L
h
3
A
\
ASY]
i

where the subscript "ex" refers to values of the properties

at the expansion front.

3.4 Treatment At The Center

In order to avoid the singularity in the term

% Qﬁ? (in Egs., 3.2 and 3.4) as r~+0, a slender rod of
radius 0.0001 times the radius of the initial gas cloud

is placed in the flow. The detailed numerical procedure

for calculating points at the center is given in Section 7.1,
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4. FINITE DIFFERENCE SOLUTION FOR PERFECT GAS

4,1 Basic Eguations

For the solution of the expansion of a perfect
gas by the finite difference method, the isentropic relation
(Eq. 2.6) and Eg. 2.7 are used to transform Egs. 2.10

and 2,11 to the following forms:

2 oD .- o (oL =

-1 of "R T4 M oe +6"“-r = O 4.1
) AL:D ; (1,2b/ -
ot T twT Tw = © +2

Equations 4.1 and 4.2 can be re-arranged to
yield the time derivatives of the variables "a" and "u"
in terms of the spatial derivatives of the same variables

and the wvalues of these variables.

¥-1 '

2 p —— |- a.éﬁg - 2 . _ 4o

ot 2 >x ¥ ek Th= | 40
e = —m - 2 a 4.4
Dt L2l 8- Ry

4.2 Numerical Determination of The Derivatives

t4 \ JT'

t+oL ‘

t l% i3 4
AT T Tiar
A— T Fig. 4.1
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In order to proceed with the finite difference
solution, the derivatives of the fluid properties at the
point (r,t) must be obtained, Assuming that the properties

are kxnown for all values of r at time t, one can write:

2 ulct) s »‘*(“'*A"'.t)' M({'A“'} t) 4.5

ot 2 &

0 a(f) = a/_ﬁM,t)-a(‘f—A",t) 4.6
24%

The values of £ a.(*", t) and Q ﬂ("’;t) can
ot ot
now be found from Egs. 4.3 and 4.4 using the values of
a(r,t), u(r,t) and the values of Qu,é‘(‘.t) and 2 a(i"t)
L2l oK
evaluated from Egs. 4.5 and 4.6.
One can alsc write the follewing finite - differ-

ence relationships:

g‘:f" ) - " {u(-f teat) =3 |u(¢-4~ t)w(ﬁ“tg

2 (4,L) - —_{a(r tw)-'[a(ﬂ' art)m(ﬁwt)]} 4.3

ot AL

Egs. 4.7 and 4.7 can be re-arranged as follows:

w(s teat) = &t ??_c ulct) «3 [M(_-(-Af, t) »A(nw'o]
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Values for JL(r,t + At) and a(r,t + A t) are now determined:

ExPANSONV FRT’NT ‘

b e l— ESCAP
F 4 s e 7 i1 Fﬁohl‘f
o I T *Mtes
gz‘% ,é -0
_é: - ‘g-; N / ?5_ ‘-.t .’(-

By the above procedure, the properties at points
11 to 16 (Fig. 4.2 ) can be found from the known values
of the properties at points 1 through 8, The properties
at points 9 and 18 are known. Since the boundary cond-
itions at the expansion front and at the escape front are
known (Section 4.3), the properties at point 10 can be
found by linear interpolation between points 9 and 11,
and these at point 17 by linear interpolation between
points 16 and 18, Further interpolation must take place
if the expansion or escape fronts do not pass through a

grid point, but this will be clarified in Section 7.2.
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4.3 Boundary Conditions

The boundary conditions at the expansion and

escape fronts for a perfect gas can be expressed as:

u.txzz&'z_q/as = 0O

Ooy = a'“/a-s = 1 | 4.11
fo - QfR =

153 = 12u./§i5;1 = ,f%¢/§;a;1 J

- |- 2 )

Mes = 45/03 = 31

Qg = a.a,s/a-s = O >

?,p_g = ?.S/Q’s = O 4,12
P - fufql = O

where the subscript "ex" refers to properties at the expans-

ion front, and "es" to properties at the escape front.
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4.4, Treatment . At The Center

/]
\

h—.“r—
Fig.4.3

Once the properties at t =

1 have been determined
(points 1, 2, 3

in Fig, 4.3) it remains to find the
properties at t =

1 + At (points 5, 6, 7.....). At the

center where r = 0, u is an odd function of r and a is an

even function of r,

w(as) = -4 (- A< )

4.13
a(ac) = a.C—A<§ 4.14
The spatial derivatives of u and a are therefore
U = AL(A*ﬁ -.Au(LAﬁﬁ) = ﬁg;ggg) 4.15
2% |0 sy AY
%_% o alat) ~ a(-a%) = O 4.16

2 AT
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The term A o in Eq. 4.1 has a limit at r = 0.
AT
qes . | %( ) = (2 du = (aulas) 517
S ¥ Q ( ) Y . AT
T~ 0 -fauma ¢

da. can be found frem Eq. 4.3 using Egs.

ot.
4.16 and 4.17 and the nown properties at 1.

aw |
ot b

4.15,

can similarly be found from Eq. 4.4.

Eqs. 4.9 and 4.10 can be re-written for the case r = @

using Egs. 4.13 and 4.14,

wloLrat) = ot %’:t‘:(o,t)

4,13
a(ot+at) - at 2%@"3) + alac t) 4.19
For point 5 therefore,
| . o |
w(s) = At B-t“ 4.20
als) = at b..Q.—l + Q,(l) 4.21
2t |,
where O is found from Egs. 4.4, 4.15 and 4.16,
ot |
%&’ = -af1) M.Q_l a(i) 3“'
T W




Since (1) = © ana & | o)
(1) < |, =Y
%—‘;— [‘ O 4,22
fse¥ ‘ is found from Egs. 4.3, 4.15, 4.16 and 4.17
ot |y

@b%l s 5:;__' — a(1) u(?) -%%_—' MG)%“'?L -c__jfaéklﬁ(z)

w2
J AT
RO POWORE

The properties at points 6, 7, 3.... are found as
outlined in Section 4,2, The properties at the center
for successive times can be found in identically the

Same manner,

4.5 Starting Cenditions For Perfect Gas

Due to the uniform density distribution at time

t = 0, the density gradient is infinite at radius r = 1,
and a numerical determination of the properties at a sub-
sequent time cannot be obtained, In order to carry out
the numerical solution of the gaseous expansion, the
starting conditions at a time t = /A must be evaluated.
The flow is assumed to be one-dimensional for this small
time increment, and the X. and xl characteristic

equations (Eqg. 3.1 to 3,4) are utilized.




4.24
%\ %,a,wj_du\‘a-%: o 4.25
For a perf@ct gas
X.f%=u+a,3dw+i\%4w’o 4.26
%_ﬁt'._,y,..o,-) -Aw*—i%.‘_da,=0 4.27

Fig. 4.4

Integrating along the )\I characteristic which

passes through the point P (Fie. 4.,4)



A a
Sd“' - -2 g da.
¥-
D [
M = -E?__T <1-—a) 4.28

Along the x; characteristic through P
T

g'd»r = SA(u—a) dt

-1 = o(ﬂ—cx> A 4.29

Combining Egs. 4,28 and 4,29

o = & ¥-A [T
&*_1 x+' A 4,30
Mmo= ‘\i‘ [. + T_._...."'1 4,31

The distributions of W and a as functions of r
can be obtained at the starting time A using Egs. 4.30
and 4.31. The finite difference solution can then be
continued as in Section 4. 2.

It can be seen that the boundary conditions at

both the escape front and the expansion front are satis-

fied. At the escape front

< = |+.,U‘A
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Sinege

The boundary conditions at the escape front are

therefore both satisfied.

At the expansion front, r =1 - A

= ._.2...- — -‘ - =
e ¥+ 1 %:-1_ ( ') 1

Agy = ..L- L"'] = o
X+

The boundary conditions are therefore satisfied

at the expansion front as well.
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5. _SIMILARITY SOLUTION FOR PERFECT GAS WITH UNIFORM

INITIAL DENSITY DISTRIBUTION

5.1. Basic Relations

It is desired to obtain a similarity solution
for the long-term expansion of a gas with an initially
uniform density distribution. Following the analysis of
Ref. 4, the equations of mass and momentum conservation
(Egqs. 2.1 and 2.2) can be written using the isentropic

relation (Eqg. 2.6) as

IS
+
3o
Yyt
%S,
<
T
O
®
i
G

13
.
S
®
.
vkbe‘
5
Q
7
0

The pressure gradient term in the momentum equation
(the last term of Eg. 5.2) becomes negligable after long

time and Eg. 5.2 can then be integrated to yield

w = X 5.3

t

Substitution of Eq. 5.3 into Eq. 5.1 shows that

the density distribution must have the form

.?taﬂ = 1(%) 5.4
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The precise form of this function depends on

the earlier motion of the gas cloud. The motion is ,
A+1

self-similar (after long times) since both & and Qt

are functiens onli: of x

t

5.2 Self-Similar Flows

Looking at an expansion flow which is self-
similar at all times, let us assume that R(t) is the
leading edge of the gas cloud which is expanding into
vacuum, The gas is contained in the region 0 € - < R(t).

A simlarity variable is defined as

R(t)

so that the leading edge of the gas cloud corresponds to
11 = ], Self-similar solutions are found by assuming

the forms of the dependent variables.

A4 = 3(,t) Cf(”w 5.6

¢ - At) £ (’}L) 5.7

Substituting Egs. 5.6 and 5.7 into Egs. 5.1 and 5.2

(neglecting the pressure gradient term of Eq. 5.2) and
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finding the forms of g(t) and h(t) such that the resulting
equations are independent of t, one obtains

Q= E_%”) [1 -')l"] ¥ 5.8

. (4R
M= dt)"l/ 5.9
\

where 4@ - _1 __ A R.A'HX‘—') E 5.10
dt (é'u)"z ¥-1

This solution satisfies the following boundary conditions:

t =0 R =1 %%—: @) 7

t=o T=o O L $ 5.11
t >0 1= P =o

t 2o 1=0 A = 0

Thus initially (r = 0), u 0 and ? varies from 1 at r = O
to 0 at R =1r.
The location of the leading edge of the expans-

ion can be found by integrating Eqg. 5.10

, R dR

' T = f 3 _(3+|XZ¢-I) ' 5.12
Ay | -

(3”) X -1 ) l, R j




R (@\)U-') <<

After long time , 1, so that
Eg. 5.12 may be written
R
(34—:\ ¥- | A
| 2
ie R 5.13

- (é'+ ))'/‘ Y-

The velocity and density distributions can now be found

from Eq. 5.3 and 5.5 as

.,4-1 ' 1 6’” '—1_—
Qté = (?('”)Z(x") ('_.’[z>‘\1 5.14

5.15

i\

7 nll
T

These results are in agreement with Egs. 5.3 and

5.3 Approximate Assymptotic Solution For Initially

Uniform DPensity

Equation 5.4 suggests that a suitable form
for the density distribution as t — ®9 for an initially

uniform gas cleud is

' &
grd" - o (-7)
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where D and B are constants and ")l

X .
RL(t)

Since the gas cloud is initially uniform

R 2
= ——— t
¥ -1 5.17

The constants B and D can be determined from the conser-

vation of mass and energy of the expanding cloud.

= Eés“ Xi“?%éd% 5.18

1
4+ o
, 4 '
S I % L 519
SG0Ge) ) Le/‘f% ol |

Eg. 5.18 equates the mass at t = 0 to the mass at t —» °§
and Eg. 5.19 equates the internal energy at t = 0 to
the kinetic energy at t —— ©© (the internal energy —w= 0
as t —=~ ©© ), Substituting Egs. 5.16 and 5.17 into

Egs. 5.18 and 5.19 with WU = X vyields

’

B = 342-1 (5;_‘;'_._) - 5.20

’

and D:f_g_<x_1_-_.>3*' NNVl -
VN Tl ]
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Thus Egs. 5.15, 5.16, 5.20 and 5.21 yield a solutien fer
the expansion of an initially uniform gas cloud which

assymptotically approaches the exact solution as t - @,
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6. FINITE DIFFERENCE SOLUTION OF REAL GAS EXPANSION

6.1 Basic Equations

The finite difference method of solution of a
gas expanding into a vatuum is developed in order to be
able to handle problems in which the equation of state is
not of the perfect gas form. The equations of conservation

of mass and momentum are written as in Section 2.1:

d w L 4Qu L o0
_55.4—?3(4—/“?; é_‘__ 6.1

"
O

W . o Qu *’Q’?%
ot ot e D

6.2 Eguations of State

The equations of state used for the non-perfect

5
gas solution are those empirically determined by Tillotson .,

'T) = a +

E_ +1
E:—',l"z

f or compressed states, where a, D, X and B are constants

for a given metal, and
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For the expansion of a shociked metal at low

densities ( ?—/{); & 1) the material behaves as a gas

at these low densities if the internal energy E is greater

than Eg" the energy at which condensation begins. The

behaviour is described by:

-~ -ﬁ(%"y ;*(%_1)1 ,

- afp | 2EQ L Ruo

/
where a, b, and X are the same constants as in Eg. 6.3
and ¢ and/g are two additional constants for the metal
considered. For very low densities (and if E is still

_ - \2
greater than Eg), (%- 1) » { , and Eq. 6.4 reduces to

the perfect gas relation

/ﬁ = Q,E € 6.5

If the internal energy E drops beiow the critical value

Eg, the material is assumed to partially condense and

the condensed equation of state (Eg. 6.3) is used.

6.3 Calculation Of The Shocked Metal State

The Hugoniot relation across the shock is

written as:

e y(RR) g o)
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The condensed equation of state (Eq. 6.3) and the Hugoniot

relation (Eq. 6.6) can both be expressed in the form:

- 1(¢ E) 6.7
? = }2(?,—@) 6.3

Once the shock strength is specified (by the density ratio
%g )., Egs. 6.7 and 6,7 can be solved by Newton - Raphson

(2
iteration to yield the shocked state pressure and inter-

nal energy.

6.4 Isentropic Expansion of Shocked State

The isentropic relation (Eq. 2.5) is now used

to obtain the isentrope for the expansion process.

£ ¥
g dEe = % d'? 6.9
Eg ?5

If the properties behind the shock are known (9%)‘é \ ES )

and a small increment —ei? is taken, Eqg. 6.9 can be

2

written in finite difference form

E""és 2 ’fja: (5___(5;> 6.10

ay
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where /PN. is the average value of ’E over the interval
and ?a\r is the average value of g over the interval.
in general, between points n and (N + 1), assuming

that the state is known at “w ,

- d@ 6.11

")
2

Qe
EM. = EW + '_g?:;_v (QM,- :?;) 6.12

and Q_,\“ using the equation of state appropriate to the

-

value ot ?\H /?D .

Now, ‘?av' = ‘?w + Q’M-l 6.13

- -

- - 6.14
1944 ’P% /mel
2
A second approximation for E'u-»q is obtained from
Eae, = EBw + Tar <-?-vu-q - .‘?w 6.15
~ 3
av
A new value of 'ﬁmn is calculated from the equation

of state appropriate to the value of -?.F.,{.?o (Eq. 6.3

if '?-1\*1 /'?a > 1; Eq. 6.4 if ‘?:H'/‘S;p < 1). Any desired

number of approximations may be taken by going back to

;p‘M_. can now be determined from E,“_' (first approximation)
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the relations 6.13, 6.14 and 6.15., As soon as'E has

N |

reached a value equal to or less than E

g (the critical

energy for condensation to begin), Eg. 6.4 is used as the
equation of state.

If the initial shock strength is great enough,
the perfect gas relation (Eq. 6.5) adequately describes
the expanded state at low density before the internal
energy E is reached the critical values E , and the cond-
ensed equation of state (Egq. 6.3) is not used. This
critical value of density is taken such that the exponent

in Eqg. 6.4 becomes

- i
°‘¥§_1 = Rg

)
Ye

1

ie. _é, g" 6.16

| 4

2|5

If this value of density _99 is reached before E is less
than Eé, Eg. 6.5 becomes the equation of state of the

metal, and the relation

'
=%

@

is used to describe the further expansion of the gas, where

¥ = (:l#—cg) .

3
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The values of »P and Q are retained at

each value of ,? used to calculate the isentrope, and
the isentrope is curve-fitted with a sixth-degree poly-

nomial in the non-dimensional form

- [ 3

_\b
'I;_ = C+G 9: 4.052 4-.“4-‘315 6.18
F % '?5 ?s

The speed of sound at each point on the isentrope

- -—

is found by calculating the slope of the »F , ‘_?

isentrope between the two adjacent points.

Qv

/a_f_w 6.1°
2%/

Py s - D 6.20
where 6% = ’rimﬂ ‘iw
™~ gm +{ - '?w

The speed of sound is also curve fitted with a sixth-

degree polynomial in the non-dimensional form

- - 2 - \b
a _ d, rdff\+ds g_ +...+d7( X 6.21

as gs Qs ?s
In the event that Eq. 6.17 is used to describe
part of the isentrope, the curve fits are used only over
the range ?" éé s ?5 and the perfect gas relations

are used over the range DO < g 3 ?{, .
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6.5 Boundary Conditions

The boundary conditions at the expansion and the

escape fronts are:

Expansion Front:

N
-T_ay = 1“ t
-/ui.x = 'S
Qb‘ N 1 > 6.22
?.ly 1
—_ - -2
R - 'Tli/ s (g )

Escape Front:

~Nac = ’ + /u{t T
where /L(,‘: - g s QQ

6 WYY
?.‘, . Qee. > 6.23
Fos

@)

i
C
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For a sufficiently strongly shocked metal, ?“ *0,
but it is possible that the pressure of the metal becomes
negative (ie. metal fails in tension) so that the pressure
becomes zero at a finite density particular to the cal-

culated isentrope.

6.6 Starting Conditions For Non-Perfect Gas

As in the case of the perfect gas (Section 4.5),
the starting conditions are found by integration along a X,

and \; characteristic.

Along Xz

ie, 1= Ad—-Q

6.24




3 p
Along }\, ) (du., = -— ga% = (@d@
o

! ¢
}
ie. = ( Q. Q(‘e 6.25
. ¢
From Egs. 6.24 and 6,25
|
R 2 gaéﬂ - a 6.26
A . <

In order to obtain the starting distributions of Q
uat t = QA , the integral in Eg. 6.26 is evaluated for

a number of values of Q

f
(a,d - g £ _Lés) c 27
-J Us '
¢ ?/Qﬁ %
Carrying out the integration of Eq. 6.27 with

Eg. 6.21

)
a'd - dv d, - d 3 d 5 3
2 [ grgrr g [ragaeeg o]

a
as A
evaluated for any value of .? (0 € .e < 1),

R

Since a = is known (Eq. 6.21), R can be
In the event that Eqg. 6.17 partly describes the
isentropic expansion of the gas, Eq. 6.27 is used only

over the range ec < g < ?S , and the perfect gas
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relation (Eq. 6.17) is used over the range 0 £ g < ?c. .

The density can now be expressed in the form

0o 5 () 1o o (S o

and u can be evaluated from Egs. 6.23 and 6.28,

\O

At the expansion front, r =1 - A and % =1

From Eqg. 6.26

W
| o

Ay
and from Eg. 6,25

Mex =0 {
At the escape front r =1 +uft =1 +A(a‘% and

= (s

From Eq. 6.26

a_‘_s = 0

From Eq. 6.25 ‘ o
o (0H

The starting conditions (Egs. 6.25 and 6.26)
thus satisfy the boundary conditions (Egs. 6.22 and 6.23)

at both the expansion and the escape fronts.,

6.7 Continuation of Solution
The solution for time greater than A is

carried on in the same manner as for the perfect gas
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(Section 4.2) except that the finite difference equations
are written in the variables ? and u.

From Egs. 2.10 and 2.11

D o =0 - 4
é% ‘Q > é)? 3% °- 30
()J!i' S - agi/ - a}' 9]
> S« § 3%’ 6.31
The numerical derivatives are:
Doty = # (vra< t) — s (F-a% t’) 6.32
o 247
Q_ ?(’{" t) : Q(*F‘-A-t t) - «?(‘ﬂAT', t) 6.33
e 246%

. -
wl< toeal) = At Z%_u/’f', L) + 12- t‘u(i"»-m;t) +,u(”f+M",t) 6.34

plxt-nt) - at % Q(*',C\ by \:Q("'-A'T.f) *e("r“\"r, t\_ 6.35

Using Egs. 6.30 to 6.35, the solution may be carried out
identically as in Section 4.2. A slight difference

arises when the center is reached.
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2

1 2

= [~—AF% //////////
//// e VU
Fig. 6.2
At the center

w(ss t) = —-/U-C-A'\'lt> 6.36

?CA"—,-C\) = L (- A%, t> 6.37

2 _ o awlast
D’( (-\':o - CA-{ ) 6.38
= O 6.39

5

<=0

The term 3 %%? in Eg. 6.30 has a limit at r=0,.

g Ry

Lo
- A0 éi (—r)

)

Refering to Fig. 6.2

El - 49

L (& (00)

§g§£t£§i> 6.40

AT
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LR S C

{'

The procedure is then basically the same as in Section 4, 2.
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7. DETAILED NUMERICAL PROCEDURES

7.1 Solution By Method of Characteristics

The origin of the expansion is assumed to be

at the point (1,0) in the r,t diagram (Fig. 7.1).

Fig. 7.1

The r,t plane can be divided into four distinct regions,

the region of undisturbed gas (Region 1) the centered

wave region (Region 2), the reflected wave region (Region 3)
and the vacuum ahead of the escape front (Region 4), The
conditions at the fronts proceeding into regions 1 and 4

are xnown:

U, = O
a = a«/fa; = 1

(;. - é/@ = ) 7.1
- /o 2 = [o -2
o= Pfeal = ’Fs/?sas
/

1}
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a) Starting the Solution

In order to begin the solution, consider a

centered expansion at r = 1,

Fig., 7.2

Co-ordinates in the r - t plane are now referred to as

‘T(L,J))t/l:,_j)

values as indicated in Fig. 7

where the subscripts i and j taie

.2. The properties at the
head of the rarefaction fan are known:
altt) = © h
a(11)

\)(U) : k
o (1.0 - Pfaal




- 4] -

Taking r(l, 1) = 0.99,

2(z,) = P(4,1) + AD | 7.4

and assuming one-dimensional flow from the origin of
the expansion to the characteristic 1line j = 1, the
velocity u(2,1) is determined from Eq. 3.2 in finite

difference form

- - AP
au(2,1) - a(1,1) (5 )alts 1) 7.5

where the subscript (1 + 1/2, 1) denotes the average

value of a property between (1, 1) and (2, )

Q14 1) - ?(1.1)2’: e(2,1) 7.6

a(1+1.1) = aln + a(21) )
2

Both §7(2, 1) and (2, 1) are determined from the isen-
tropic relations (Eq. 3.5 and 3.6), since‘P(Z,l) is known.
The propagation velocity of the right-running wave is

(from Eq. 3.1)

Ce = 4(1+3:1) + a(1+4.1)

Ce - ~2L [&(1,1) +a(1,1) +,U—(2,1) + a(ﬂ)] 7.8
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The propagation velocity of the left-running wave is

(from Eg. 3.3).

¢ = u(21) - alat) 7.9

The intersection point of the two waves in the r, t plane

is found by writing Egs. 3.1 and 3.3 in finite difference

form N
N )T () G [E@D-E0)
- - > 7.10
>\1 : ’\'(2") - 1 = CL l't(zj\ - QO
/
Egs. 7.10 are solved to yield: 3
t(2,4) - [c&t(1,1)-~r(1,1)+ﬂ [cg-_c,_]
+(2,) = cQ[t(zJ)_tm)] cx0) |

Py
The intersection point r(2, 1), t(2, 1) is thus determined.

To determine the remaining points along the iine j = 1,

the general relations are:
/10(":1) = /P(L-'I1) * A'P 7.12

(i, 1) and Q(i, 1) are found from Egs. 3.5 and 3.6.
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it) = afi=, 1) = Ap 7.13
Qlirs 1) a(ivy 1)

The intersection point r(i, 1), t(i, 1) is given by:

\

‘t(t’,ﬂ = [Cg t(é-i,i)—f(i-1l1)+1]/[ca-Ct.]

~r(‘j'1) = Ce [t(m) —t<£-1,1)]+- 1‘(6-1,1)

where Ce = -5- [/4(5-’,1) +a(£—1,1) 4—/4(5,4) + Q_([J)] 7.15
and & = X&(t,f) — a,<l:’1) 7.16

b) Solution in Centered Wave Region

Fig. 7.3a Fig. 7.3b
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The point (i, j) is to be determined from the known prop-
erties at the points (i - 1, 3) and (i, j - 1) in Fig. 7.3a.
Assuming that the grid points are sufficiently
close together that the dependent variables vary linearly
between adjacent points. Egs. 3.1 to 3.4 may be written
in finite difference forms (Egs. 3.7 to 3.10).
Since the values of the properties at points A
and B (Fig. 7.3b) are xnown, one may write as a first

approximation:

(/bu-a))\' = Ay + Oy \

Q‘f"a’ ))\w
<«?®>)\, = Ln g
@“3,\, be Qg $ T

(22.) A <Q-3“> = £0a 4 QplUa
‘e A/& I, jS Y

i

Ug — Qg

4

CQCL\))\\-% Cf:(-.—’“)x} = Qe %39_8_\__:3&@

/

Values for tp, rp, up and']D‘P can now be determined from

Egs. 3.11 to 3.14, and both ?p and ap are found from

Egs. 3.5 and 3.6,
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A second approximation for the properties at
point P is found using the first calculated values at P,

and putting:

@ra), - + (u“a“/xna,,)
(w-a)y, = % (4a -2 +ue-ae)
(@) - & (Qan + fear)
Go), - £ (%05 + L) e
(o), 4 %%)N -g-(eﬂou Catts .0, § Golie
(@), A \'af :_(Qaap KQRUS anaapup

/

These values are now put into Egs. 3.11 to 3.14, and

more accurate values for the properties at point P are
calculated. Any point in the centered wave region can

be determined in this way provided that the previous point
on both the right - and left-running characteristic

lines are Xnown.
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c) Treatment At The Center

(1,1)

Fig, 7.4

In order to avoid the singularity of the term
(% %$? in Egs. 3.2 and 3.4. a slender rod of 0.0001 times
the radius of the origin of the expansion is placed in the
flow field. Points are now subscripted r(I, II), t(I, II).

At the center point (1, 1) in Fig. 7.4,

Y(1,1) = . ocof )
t(1,1) s .o

7.19
w1y = o, \
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{
ey =
Po [ dx

o
~
-l

~.—-
N’
u

°
~
’—L
amlitn
N’
[}

/

The points (2, 1), (3, 1)..... etc. are found as outlined
in Section 7.1.Db.
The first approximation for the point (2, 2) in

Fig. 7.4 is found as follows:

-a)y, = «(4) - a(r)
C?Qz)x, = Q241) a(21) \ 7.2
@a)x,é' (Q,_?_c) - 0(21) a2 Aa(u \ula, )

Using Egs. 3.9, 3.10 and 7.20, and the conditions that

w(22)

-{‘(2,1) - 0.0001

one obtains t(z,l) “ t(2,1)+ {(2})"1-(2.1)

u1) - a(21) 722
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P(2,2) = =GN aG ) u(21) « p(3,1)

‘f'(2 1)

- 0(24) al2, 1)8 a(2,1) u(2,1) [f(2.2)-t(2.1)] 7.23

@ (2, 2) and a(2, 2) are found from the isentropic
\

relations (Egs. 3.5 and 3.6)

The second approximation is taken as:

(ﬂ'“-)\;. = 'Z[’“(“) - a(2,1) - a(z.,z)]
G, =+ (46020 g0al)| L,
(g), 4 eg)

"
M

W‘”m )4 ala) u(M)]

| ~(2,1)

Again
u(2, 2) = 0,

0.0001

r{(2, 2)
Ilew values are calculated for t(2,2) and p(2,2) using Egs.

7.24, 3.9 and 3.10. The procedure of Section 7.1.b is
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followed to obtain points (3.2), (4,2)...etc.

The properties at point (3,3) are found from
those at point (3,2) in the same manner that the properties
at (2,2) were determined from those at (2,1). The entire
flow field of the reflected wave region can therefore be

determined.

7.2 Numerical Procedure in Finite Difference Method

The basic procedure for the numerical solution
of the expansion problem has been outlined in Sections
4,1 to 4.4. In this section, the method of construction
of the grid is outlined and additional numerical inter-
polation formulae are introduced for use when the expan-

sion or escape fronts do not pass through a grid point.

a) Construction of Grid

The velocities of both the expansion and the

escape fronts are nown, For a perfect gas

T

1}
—

Alex
u 2

f ¥ -1
For a non-perfect gas

Al ex
Me

1) N
N
NN
o
S
~
N
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The increment A r is chosen such that there are 501 grid

points when the expansion front has reached the center (t = 1i).

t A

—l e AT /
1 lf |} T L4
P
Fig. 7.5
This condition is expressed by
Soo
A starting time A must now be chosen
t +
L
....... ]
} & = "'»u_(A
tiA Yal-A
| -

Fig. 7.6

Referring to Fig. 7.6 | A is chosen such that
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L = 5AT 7.4

Since /-l,u = 1, it can be seen that A = SAr is the
appropriate starting time for the solution. The right

hand extremity of the grid is defined by:
and the left hand extremity by
Voo = V=B = |-SAT 7.6

The points on the grid between r = Leos and r= oy 3T€

defined by:

A condition for the stability of the solution

by the finite difference method is that %% >, greatest

velocity in the system. In practice, it was found that a
ratio éj: of 4 yielded good results, and this ratio

AL

was used.
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The time increment At is now defined, and the grid can
be drawn for times greater than the starting time A .

The two boundary conditions which are maintained are:

Ales N '(»Qt 7.10

The grid size and location is maintained until the solution
has reached time t = 1, and points are added to the grid
where necessary until the number of points is 501 at t = 1.
Several additional interpolation techniques must
be used so that the solution can be obtained when the
expansion or escape fronts do not pass through a grid
point. In all cases, the boundary conditions at both

fronts are known,

D) Solution Near Escape Front

B A

A

e 5(‘0‘)‘) I "‘
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The properties at points 1 to 4 have been
determined, and it is desired to obtain the solution for
points 5 to 9 at the next time t = t + At (Fig. 7.7).

Points 5, 6 and 7 can be obtained by the method
of Section 4.2 knowing the properties at points 1 to 4.

The distance between points 7 and 3 is Ar,
and that between points 3 and 9 is ﬁAr. The properties
at point 9 are known from the boundary conditions at the
escape front, and the properties at 8 are determined by

interpolation,

a(g) - 2(9) + pa(7)
1+ A

u@By = w9+ pu(7)
te A

7.11

o3 ] Solution Near Expansion Front

QxFonSuan

front

t+at
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If the situation in Fig. 7.8 arise§, the propert-
ies at t =t + At are found as follows:
The properties at points 1 to 4 are known, and those at
point 5 are known from the boundary conditions at the
expansion front. The properties at points 7, 8....can
be found from those at points 2, 3, 4....as outlined
in Section 4. 2.

If the distance between points 1 and 2 is N Y

and that between points 2 and 3 is Ar, one may write:

o () -

L) ale) -5 2! 2
= v alb) 3[a(2)+‘_&_a.(%)+___a(1)} 7.12

14+

f
|
%"(2) : _A_’_t_{.u(b) -3 {u‘(z) +‘% w(3) + _‘_‘%( M(ﬂ] 7.13

%.i(;) IR (B‘d)a(%)+Q+o€)a(2) - wa(ﬂj 7.14

3(1+ot ) AS

Qu : l Sa-oiu\++ (- Yu 7.15
) o ) ()] 7

Equations 7.12 to 7.15, along with Egs. 4.3 and 4.4, can

be used to find the properties at point 5.

t+at

m‘aan‘:!cy\

front
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If the wave intersection with the grid occurs
as in Fig, 7.9, the following technique is used:
Points 9, 10...etc. are determined from points 2, 3, 4,
5...etc. as in Section 4.2. The properties at point 3 are
found from those at 1, 2, and 3 as outlined in this sect-
ion above. The properties at point 6 are known from the

boundary conditions at the expansion front, and the

properties at point 7 are:

a(?) = Ba(3) + als)

t+ A \ 7.16

u(?) - Aau(g) + m(6)
1 +/§ )

d) Continuation of Solution Beyond t =1

Once the time t = 1 has been reached, the grid
size is doubled (both A r and A t are doubled) and the

number of points is reduced to 251.

¢ |
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Points 2, 9, 10... and point 16 (in Fig., 7.10) are found
as in Section 4.2. The boundary condition at 13 is
known, and the properties at 17 are found from those at
16 and 13, The point 7 is then determined by the method
outlined in Section 4.4. The solution for the flow can

thus be obtained for the time beyond t = 1,
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8. RESULTS AND DISCUSSION

3.1 Finite Difference Solution For Cylindrical Expans-

ion of Perfect Gas with ¥ = |. 4

The escape front velocity of a perfect gas is
given by Eq. 4.12 and it is seen that for such a gas
with a specific heat ratio of 1.4, the escape front
velocity is five times the expansion front velocity.

The speed of sound profiles at times t = O,
0.5, 1.0 and 2.0 are given in Fig. 8.1. It is seen that
at time t = 0.5, the speed of sound distribution is
almost a linear one, comparing closely to the distribut-
ion for the corresponding distribution for the plane case
(see Section 8.2). The term in the continuity equation
(Eq. 4.1) which causes the departure from linearity in

4

the cylindrical expansion is A4 Q4 (for the cylindrical

g

case,v{ = 1), but at this relatively short time from

the initiation of the expansion, the expansion front has
advanced only to half the original radius and this term
is small. The escape front velocity, as pointed out
above, is five times that of the expansion front, and
this front has proceeded out to a radius of 3.5, where

the boundary condition of a = 0 applies. At t = 1.0,

the head of the expansion wave has reached the center and
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the fluid states at r = 0 begin to decay. The escape

front position is now r = 6, where the boundary condition

(a = 0) applies. The non-linearity of the speed of

sound distribution is now more apparent due to the in-

creased effect of the term A\QAL . At t = 2, the ex-
N

pansion front has been reflected from the center (of

the cylinder), and has caused a further decay in the

speed of sound to the radius to which the reflection has

penetrated (approximately 2.0). The speed of sound is

approximately constant (a = .625) from the center to

r = 1.5,

The corresponding density profiies for the cyl-
indrical expansion at times t = 0, 0.5, 1.0 and 2.0 are
shown in Fig. 8.2. The decay in density is more rapid
than the speed of sound decay, since from the isentropic
relations (Egs. 2.6 and 2.7), it can be seen that the
density varies as the speed of sound raised to the power

2

K'1 , or 5 for the case of a specific heat ratio of
1.4,

The density variation is otherwise analogous to
the speed of sound variation.

The velocity distributions at times t=0.5, 1.0 and 2.0
are plotted in Fig. 8.3. At t = .5, the distribution is
approximately linear, varying from 0 at r = .5 (boundary
condition at the expansion front) to 5 at r = 3.5 (bound-

ary condition at the escape front). Again, as in the
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case of the speed of sound distribution, the velocity
profile becomes increasingiy non-linear as time increases,
with the beundary conditions of zero velocity at the

center, and a velocity of 5 at the escape front maintained.

8.2. Comparison of Finite Difference Solutions of Plane,

Cylindrical and Spherical Expansions for Perfect

Gas With & = 1.4

The speed of soﬁnd distribution at time t = 0.5
for the plane expansion is shown in Fig. 8.4, and it is
seen to be a linear distribution from a = 1 at r = 0.5
to a =0 at r = 3.5, the two boundary conditions which are
imposed. The solution obtained by the finite difference
method is therefore identical to the closed form of the
solution which can be obtained for a plane expansion.
Results at greater times indicate that the finite differ-
ence golution is correct for the plane case for times
greater than t = 0.5.

A comparison of the results for the plane, cyl-
indrical and spherical expansions for t = 0.5 is shown in

Fig. 8.5. The boundary conditions are satisfied in each

case at r = 0.5 and r 3.5. The distribution for the
plane case is linear as in Fig. 8.4 above. There is a

slight non-linearity for the c¢ylindrical solution, with
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the decay being more rapid due to the ternléwggt in

the continuity equation (Eq. 4.1). For the spherical case
this effect is most pronounced and the greatest departure
from linearity is seen here. At time t = 1, the plane
cylindrical and spherical solutions are again compared
(Fig. 8.6), and the same gqgualitative behaviour is noted

as in Fig. 8.5. It is seen that the speed of sound
gradient %E? is greater: for the spherical case

near r = 0 than it is for the cylincrical or plane sol-
utions.

A comparison of the speed of sound distributions
for the plane and cylindrical expansion at t = 1.5 is
shown in Fig, 8.7. For the plane case, the value of“a“
at the center is 0.879, and for the cylindrical case,
the value is 0.733. The more rapid decay at the center
for the cylindrical case is due to the sharper gradient

term .gﬁy on the time derivative 9& (Eq. 4.3).
&% >t

of "a near the center, and the effect of the
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8.3. Comparison of Cylindrical Expansions of Perfect

Gases With & = 3.0 ana ¥ =1.4

It has been noted that a perfect gas description

of metal states has served to predict the behaviour of the

expansion preocess. Using the approximation of the limit-

ing density ratio of a strong shock.

G = g 8.1
¥ -1

For a shock strength O°= 2, the effective § is 3.0.

The perfect gas selution for ]9 = 3.0 is now obtained for

later comparison to the real gas solution for CY = 2,0.
The speed of gound and velocity distributiens
as functions of r at t = 0.5 for the cylindrical case
shown in Figs. 3.8 and 8.9. For the perfect gas with
.y = 3.0, the escape front velocity is 1, the same as
the expansion front velocity. The boundary condition (a
at the escape front occurs at r = 2, as opposed to r = 3,
for the perfect gas with & = 1.4, As a result, the
gradient of "a" with respect to "r" is sharper for this

gas ( ¥ = 3.0) than for the gas with ¥ = 1.4, The

!

5

corresponding distributions for the gas with F = 1.4 are

shown in Figs. 8.3 and 8.9 for comparison and the sharper

gradient ( g ) is apparent for the case of 6\ = 3.0.

0)
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The speed of sound distributions for both E = 1.4
and )9 = 3.0 at time t = 1.0 are shown in Fig, 8.10,
and it is again apparent that the gradient ,%% is much
greater for 6\ = 3,0 than it is for & = 1.4, The
effect of the sharper gradient for Y? = 3.0 becomes
apparent when the speed of sound distributions are plot-
ted at time t = 2,0 for the two cases (Fig. 8.11). Where
in the case of ‘& = 1.4, the value of "a" at the center
is 0.625 at t = 2.0, "a" at the center is 0.231 for the
case of ‘S = 3.0, at the same time. There is also a
slight increase in "a" from r = 0 to r = 0.8.

8.4 Comparison of Characteristic Solution With Finite

Difference Solution for Cylindrical Expansion of

Perfect Gases

In order to check the solution of the expans-
ion of a perfect gas of constant 'x as obtained by the
finite difference method solution of the same cases by
the characteristic method (Secs. 3 and 7.1) was effected,
For the perfect gas with a specific heat ratio
of 1.4, the speed of sound distribution at times t = 0.5,
1.0 and 2.0 are shown in Figs. 8.12 to 8.14. The solid
line represents the characteristic solution, and the cross-
es represent points obtained by the finite difference

method of solution. Extremely good agreement is noted,
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especially for radii far away from the escape front. Near
the escape front, slight discrepancy is noted for these
cases and the reason shall be discussed in the next
section.

The results for a perfect gas with 4& = 3.0
are presented in Figs. 8.15 and 8.16, Again, the speed
of sound distributions obtained by the characteristic
me thod at times t = 0.5 and t = 2.0 are represented by
the solid lines, and the crosses indicate points obtained
by the finite difference method of solution. Here, agree-
ment is extremely good, even in the region near_the

escape front.

8.5. Stability of the Finite Difference Solution

The stability of the finite difference method
of solution (its resistance to oscillation) is dependent
upon the grid size which is utilized in obtaining the
solution. At the onset of this work, it was thought
that the use of a grid ratio éi' such that this ratio

At
was equal to or greater than the maximum velocity in

the expansion system was sufficient to ensure the stab-

ility of the solution obtained. The first results for

the perfect gas with x = 3.0 were obtained using a
grid ratio %{ equal to 1, the velocity of the expan-

sion front and the escape front. The results obtained
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are plotted as crosses in Fig, 8,17, These results
clearly show that the solution is unstable for AY
equal to 1. It was found, in fact, that satisfactory
results are obtained when AX is equal to 4, 4 times
AL
the greatest velocity in the system. This instability
for a small grid ratio is due physically to the fact
that local disturbances in the flow propagate at a
velocity which is the sum (or difference for left-run-
ning waves) of the particle velocity and the local
sonic velocity. The solution cannot therefore be pro-
ceeded with at a rate faster than the speed of local
disturbances (i.e. A t cannot be too large for a given
A r). This criterion accounts for the small discrep-
ancies between the characteristic solution and the finite

difference solution for the perfect gas with '&‘ = 1.4

near the escape front, a trend noted in the previous

section, (Section 8.4, Fig. 8.12). Since a grid ratio
AT of 5 (the escape front velocity) was used in

At

this solution, a sliight instability occurs near the
escape front where the propagation velocity of local

disturbances is comparable to the grid ratio used.

8.6, Similarity Solution for Cylindrical Expansion of

Perfect Gas with 4& = 1.4

The similarity analysis of Section 5 was
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followed to obtain a solution of the expanéion for the
cylindrical case for times greater than 1 in order to
determine at what time the similarity solution becomes
a sufficiently accurate discription of the expansion

process. Values for the constants B and D (Egs. 5.20

and 5.21) used for the cylindrical expansion (ﬁ\= 1.0) of

the perfect gas ( & = 1.4) are
B =5.0
D = 0.240

A comparison of the results obtained by the sim-
ilarity solution and those obtained by the finite dif-
ference method (fer perfect gas with ‘& =1,4) at
times t = 2,0, 3.0 and 4.0 are shown in Figs. 8.18 to
8.20. The values obtained for the speed of sound at
the center by the similarity assumption and the finite

difference methed respectively are:

t =2.0 a = 0.568 by similarity
a = 0.627 by finite difference
t =3.0 a = 0.484 by similarity

a = 0.512 by finite difference

t=4,0 a 0.432 by similarity

i

a 0.447 by finite difference
The appearance of these curves, and the gradual coalescence

of the two solutions into one, indicate that for times
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greater than 4 (greater than 4 times the time required
for the initial expansion wave to reach the center), the
similarity assumptions of Section 5 become sufficiently
valid to enable one to obtain an accurate solution by

this simple method.

8.7. Shocked States of Real Gas (Aluminum) and the

Isentropes Appropriate to Two Shock Strengths

The equation of state constants (Eq. 6.3 and

6.4) appropriate to the shocked states of aluminum arc:

a = 0.5

b =1.63

—- 12

E, = 0.05 x 10 dyne cm/gm
- 12 2
A = 0.752 x 10 dynes/cm

1012 dynes/cm2

wl
[
o
o
(6)]
"

s

B=5.0
Neglecting %i with respect to .ii , the shocked metal
pressure (in Eg. 6.6), Egs. 6.3 and 6.6 are simulatneously
solved for a series of shock strengths, (values of § ),
and the resulting shock Hugoniot for aluminum is shown
in Fig. 8.21. Two isentropes are calculated and shown
in Fig. 8.21 as well. In the first case, corresponding

to an initial shock strength ¢’ of 2.0, the perfect gasequaticn
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(Eq. 6.5) becomes valid at the density -Q- = 0.52953 gms/crn3
and a pressure i: = 0.009771 Mb. The curve fits
for "p" and "a" as functions of "Q " have been obtained
and are valid in the range
0.52953 € Q £ 5.4
The coefficients ef the power series are given in Table 1.
The second isentrope calculated is that cor-
respeonding to an initial shock strength Q of 1.7, and
is also shewn in Fig. 8.21. In this case, the internal
energy of the gas E drops below the critical energyfg
at which condensation begins. This occurs at Q' = 2,594
gms/cm3, and the condensed form of the equation of state
(Eq. 6.3) becomes valid at this value of density. The
calculation of the isentrope is continued until 'F-= 0,
a condition which occurs at .?_ = 2,320 gms/cm3. The
isentrope is then curve fitted o er the range
2.320 € § € 4.59
The coefficients for the polynomials obtained for "p"

and "a" as functions of "Q"are given 1in Table 2.
The critical density at which the pressure becomes
negative (i.e. material is in tension) is defined to be

the yield point of the metal and the pressure and speed

of sound at this point are defined to be zero.
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3.8 Solution for Cylindrical Expansion of Real Gas with

Shock Strength G = 2.0

The finite difference approach using the var-
iables QD and u (Section 6) has been used to obtain a
solution of the expansion of the shocked aluminum ( g = 2.0)
using the two curve fits [’P = ﬁ(?) y @ - ﬁ(?)‘l
of Section 8.7 to describe the metal states. The dis-
tributions of ? and u at times t = 0.5, 1.0, 2.0
and 3.0 for a cylindrical expansion are shown in Figs. 8,22
and 8.23, and are of essentially the same character as the
corresponding distributions for the perfect gas ( x = 3,0)
expansion,

A comparison of the real gas ( Q = 2.0) and
the perfect gas ( 8 = 3.0) solutions for the density
distributions as functions of r at times t = 0.5, 1.0 and
2.0 are shown in Figs. 8.24 to 8.26. A slight discrepancy
is immediately noted as to the location of the point of
zero density, the escape front. For the perfect gas
case, the escape front velocity is 1, for the real éas
case, the escape front velocity has been found to be
0.81243. The greatest discrepancy in the two solutions
at time t = 0.5 (Fig. 8.24) occurs in the low density,
highly-expanded region, where the effective & calculated

from the strong shock approximation is no longer valid.
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As time increases, the disagreement between the two sol-
utions becomes increasingly apparent and by time t = 2.0
(Fig. 8.26), the real gas solution yields a value of

at the center of 0,200, whereas the perfect gas approx-
imation yields a value of ,230.

The perfect gas approximation is thus sufficient
to describe the expansion of shocked aluminum for this
shock strength for very short times in the high-density
region, but becomes increasingly inaccurate as time

increases.

8.9 Solution of Cvlindrical Expansion of Real Gas With

Shock Strength J = 1,7

The impact velocity required to produce a
shock of given strength in a metal is given approximately

by:

where Eévis the internal energy of the shocked gas, and
V is the velocity of impact. It is found that to pro-
duce a shock of strength ( = 2.0, an impact velocity of
15.67 km/sec is required. Since such a velocity is

not experimentally obtainable, although meteorite impacts
do occur in this velocity range, it was decided to obtain

a solution for the expansion of a metal which is not so

strongly shocked.
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The isentrepe for a sheck strength T =17
in aluminum has been obtained (Section 8.7), this shock
strength corresponding to an impact velocity eof 10.06 km/sec.
The cylindrical expansion results have been obtained using
the finite difference methed with variables e and u,
and using the polynomial curve fits "p"and"a"apprepriate
to this particular isentrepe (Sectien 3.7).

The density profiles for times t = 0,25, 0.50,
1.00 and 1.25 are shewn in Fig, 3.27. It is seen that
as time progresses the point at which the critical density
is reached moves radially inward, the critical density
being the density at which the material fails in tens-
ion., At t = ,25, the critical radius is 1.058, at

t

0.5, it is 1,047, at t = 1.0 it is 0.3647, and at

t 1.25 it is 0.653, For t = 1l.35, the solution indic-

ates that the density is belew its critical value for all
radii, and the specimen can be considered to have failed

in its entirety.




EFFECT OF TIME ON SONIC VELOCITY DISTRIBUTION

FINITE DIFFERENCE SOLUTION

1.0

0.8

0.6

0.4

0.2

PERFECT GAS

=14

=10

] L
1) 1

1 2 3

SPEED OF SOUND DISTRIBUTION

FIG. 8.1

—



1.0

0.8

0.6

0.4

0.2

EFFECT OF TIME ON DENSITY DISTRIBUTION

FINITE DIFFERENCE SOLUTION

PERFECT GAS

J'= 1.4
i-1.0

DENSITY DISTRIBUTION

FIG. 8.2



4.0

3.5

EFFECT OF TIME ON PARTICLE VELOCITY DISTRIBUTION

FINITE DIFFERENCE SOLUTION

PERFECT GAS
¥ -1.4
t=o0.5 J = 1.0

VELOCITY PROFILE

FIG. 8.3



EFFECT OF TIME ON SONIC VELOCITY DISTRIBUTION
IN PLANE GEOMETRY

‘ FINITE DIFFERENCE SOLUTION
PERFECT GAS
1.0 T=1.4
J=0
0.8 4
q 0.6
0.4 +
0.2 +
' s + - f——
0 1 2 3 4 5 6 T

SPEED OF SOUND DISTRIBUTION

FIG. 8.4



1.0

0.8

0.6

0.4

0.2

EFFECT OF GEOMETRY ON SONIC VELOCITY DISTRIBUTION

FINITE DIFFERENCE SOLUTION

PERFECT GAS
¥ =14
T-os
+ i % t i i
1 2 3 4 5 6

SPEED OF SOUND DISTRIBUTION

FIG. 8.5



1.0

0.8

0.6

0.4

0.2

EFFECT OF GEOMETRY ON SONIC VELOCITY DISTRIBUTION

FINITE DIFFERENCE SOLUTION

P= 1.4
T- 1.0

PERFECT GAS

SPEED OF SOUND DISTRIBUTION

FIG. 8.6




1.0

0.8

0,6

0.4

0.2

77 -

EFFECT OF GEOMETRY ON SONIC VELOCITY DISTRIBUTION

FINITE DIFFERENCE SOLUTION
PERFECT GAS

J‘= 1.4
t-1s

4 1
T T

1 2

}
1

3

SPEED OF SOUND DISTRIBUTION

FIG. 8.7



EFFECT OF t ON SONIC VELOCITY DISTRIBUTION

1.0

0.8

0.6

0.4

0.2

FINITE DIFFERENCE SOLUTION
PERFECT GAS

e
-

L
L

1 2 3 4

(S,

SPEED OF SOUND DISTRIBUTION ~

FIG. 8.8



EFFECT OF )9 ON PARTICLE VELOCITY DISTRIBUTION

W, for §= 1.4 is y =75.0

FINITE DIFFERENCE SOLUTION

PERFECT GAS
.

J = 1.0

€ =0.5

= 3.0 15 LYo = 1.0 |

-
-
-

VELOCITY DISTRIBUTION

FI1G. 8.9




1.0

0.8

0.6

0.4

0.2

EFFECT OF \‘ ON SONIC VELOCITY DISTRIBUTION

FINITE DIFFERENCE SOLUTION
PERFECT GAS

§ - 1o

t =1.0

SPEED OF SOUND DISTRIBUTION

FIG. 8.10




EFFECT OF 2" ON SONIC VELOCITY DISTRIBUTION

1.0 {4
FINITE DIFFERENCE SOLUTION
PERFECT GAS
0.8 | J = 1.0
t=2.0
Q, 0.6
4..
N =1.4
0.4 L

= 3,
0.9 1-_/‘\ / o 0

SPEED OF SOUND DISTRIBUTION

FIG. 8.11




1.0

0.8

0.6

0.4

0.2

82 -

COMPARISON OF FINITE DIFFERENCE AND CHARACTERISTIC

SOLUTIONS FOR

SONIC VELOCITY DISTRIBUTION

¥ =1.4
j = 1.0

t-o.s

Solution by Method of
Characteristics

Solution by Finite
Difference Method

AT
b ] 5.0
At
t —+ t i t
1 2 3 4 5
'T/

SPEED OF SOUND DISTRIBUTION

FIG, 8.12



1.0

0.8

0.6

0.4

0.2

COMPARISON OF FINITE DIFFERENCE AND CHARACTERISTIC

SOLUTIONS FOR SONIC VELOCITY DISTRIBUTION

PERFECT GAS

¥ = 1.4

1.0

t e
]

SOLUTION BY METHOD OF

\\K\t CHARACTERISTICS

SOLUTION BY FINITE
DIFFERENCE METHOD

X XK XX

1
LI

1 2

SPEED OF SOUND DISTRIBUTION

FIG. 8.13



1.0

0.8

0.6

0.4

0.2

COMPARISON OF FINITE DIFFERENCE AND CHARACTERISTIC

SOLUTIONS FOR SONIC VELOCITY DISTRIBUTION

PERFECT GAS

P o= 1.4
J = 1.0
t =2.0

SOLUTION BY METHOD OF

CHARACTERISTICS
X X X SOLUTION BY FINITE DIFFERENCE
METHOD
+ t t f } —
1 2 3C 4 5

SPEED OF SOUND DISTRIBUTION

FIG. 8.14



COMPARISON OF FINITE DIFFERENCE AND CHARACTERISTIC

SOLUTIONS FOR SONIC VELOCITY DISTRIBUTION

PERFECT GAS
1.0
2" = 3.0
.A.= 1.0
0.8 + t =0.5
Q 0.6 |
SOLUTION BY METHOD OF
CHARACTERISTICS
X X X SOLUTION BY FINITE DIFFERENCE
0.4 4} METHOD
A.( = 4.0
At
0.2
} 4 + —+ 4 +——
0 1 2 3 4 5 6
SPEED OF SOUND DISTRIBUTION /rd

FIG. 8.15




- 86 -

COMPARISON OF FINITE DIFFERENCE AND CHARACTERISTIC

SOLUTIONS FOR SONIC VELOCITY. DISTRIBUTION

PERFECT GAS
1.0 L
77 = 3.0
J =Lo
0.8 4 t=2.0
SOLUTION BY METHOD OF
CHARACTERISTICS
0.6 L
X X X  SOLUTION BY FINITE DIFFERENCE
METHOD
0.4 , ,
T g = 4,0
At
_x,,
0.2 +
¥
0 b ——t i \\'\‘ ! - >
1 2 3 4 5
SPEED OF SOUND DISTRIBUTION )

FIG. 8.16




1.0

0.8

0.6

0.4

0.2

EFFECT OF GRID RATIO ON FINITE DIFFERENCE

SOLUTION FOR SONIC VELOCITY DISTRIBUTION

PERFECT GAS

N = 3.0

2 J =10

t = 0.25

4+
I

1

SPEED OF SOUND DISTRIBUTION

FIG. 8.17




1.0

0.8

@ 0.6

0.4

0.2

-+

COMPARISON OF FINITE DIFFERENCE AND SIMILARITY

SOLUTIONS FOR SONIC VELOCITY DISTRIBUTIONS AT

e € = 2.0

PERFECT GAS

7 = 1.4

J =10

T =2.0

‘\\\‘\\ FINITE DIFFERENCE SOLUTION

e

SIMILARITY SOLUTION

/\

-

’ ‘ - + - o
1 2 3 4 5 6
SPEED OF SOUND DISTRIBUTION AR

FIG. 8.18



- 89 -

COMPARISON OF FINITE DIFFERENCE AND SIMILARITY

SOLUTIONS FOR SONIC VELOCITY DISTRIBUTIONS AT

miME L= 3.0
PERFECT GAS
1.0 $ Bﬂ = 1.4
J =10
12 = 3.0
0.8 +
a 0.6 1
FINITE DIFFERENCE SOLUTION
. - SIMILARITY SOLUTION
0.4
0.2 1
0 } } t t + {———a—
1 2 3 4 5 6
~

SPEED OF SOUND DISTRIBUTION

FIG. 8.19




COMPARISON OF FINITE DIFFERENCE AND SIMILARITY

SOLUTIONS FOR SONIC VELOCITY DISTRIBUTIONS AT

TIME £ = 4.0
1.0 |
[ PERFECT GAS
o= 1.4
0.8 | J = 1.0
T = 4.0
a..
0.6 |
FINITE DIFFERENCE SOLUTION
-— SIMILARITY SOLUTION
0.4 { L
0.2 |
o } + } : + + 4 t —
1 2 3 4 5 6 7 8
SPEED OF SOUND DISTRIBUTION ~~

FIG. 8.20




B

5.0

4.8

4.6

4.4

4.2

4.0

3.8

3.6

3.4

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

FIG. 8.21

SHOCK HUGONIOT AND 1IWO
ISENTROPES OF ALUMINUM

ISENTROPE

&
G

91 -

= 5.4

= 2.0

SHOCK
HUGONIOT




1.0

0.8

0.6

0.4

0.2

EFFECT OF TIME ON DENSITY DISTRIBUTION

FINITE DIFFERENCE SOLUTION

REAL GAS

g = 2.0

-

\3 = 1,0

t=2.0
L ——
A
0 1 45 5 k

DENSITY DISTRIBUTION

FIG. 8.22




1.0

EFFECT OF TIME ON PARTICLE VELOCITY DISTRIBUTION

FINITE DIFFERENCE SOLUTION
REAL GAS

Q' =2.0

.

-5 =1.0

1 2 3 4

VELOCITY DISTRIBUTION

FIG. 8.23

-



COMPARISON OF REAL AND IDEAL GAS SOLUTIONS

FOR DENSITY DISTRIBUTION -

FINITE DIFFERENCE SOLUTION
REAL GAS

= 2.0

*— % - % PERFECT GAS

Y= 3.0
J = 1.0
] t = 0.5

DENSITY DISTRIBUTION

FIG. 8.24




- 95 -

COMPARISON OF REAL AND IDEAL GAS SOLUTIONS FOR DENSITY

DISTRIBUTION

FINITE DIFFERENCE SOLUTION
REAL GAS
0= 2.0

% - % — ¥ PERFECT GAS

T = 3.0
: =10
J - W
t=1.0
} t + - J—
3 4 5
-‘-

DENSITY DISTRIBUTION

FIG. 8.25




1.0

0.8

0.6

0.4

0.2

4

COMPARISON OF REAL AND IDEAL GAS SOLUTIONS

FOR DENSITY DISTRIBUTIONS

FINITE DIFFERENCE SOLUTIONS
REAL GAS ("= 2.0

—X—X—X PERFECT GAS 2* = 3.0

‘\=1.0

€ =2.0
_,‘_*"*\x
: : \**‘: | ~SE——
1 2 3 4 -~

DENSITY DISTRIBUTION

FIG. 8.26 .



1.0

0.8

0.6

0.4

0.2

- 97 -

EFFECT OF TIME ON DENSITY DISTRIBUTION

t=1.0
/ = 1.7
t=0.25 ¢
= 1.0
t = 0.50 J
t=0.75

——— e Qat P 0

|

DENSITY DISTRIBUTION

FIG. 8.27




Bull, G.V.:

Walsh, J.M.,
Johnson, W.E.,
Dienes, J.K.,
Tillotson, J.H.,
Yates, D.R.:

Keller, J.B.:

Mirels, H, and
Mullen, J.F.:

- 98 -

REFERENCES

On the Impact of Pellets With Thin Plates
McGill University, T.N. 1 - 10/61
(1961)

Summary Report on the Theory of Hyperveloc-
ity Impact.
General Atomic GA-5119,

Spherical, Cylindrical and One-Dimensional
Gas Flows,

Quart. App. Math. Vol. 14, No. 2,171
(1956).

Expansion of Gas Clouds and Hypersonic Jets
Bounded By A Vacuumn.

AIAA Journal Vol. 1, No. 3,596

(1963).




- 99 -

TABLE 1
G =20
o | da; 3&
~0.0075342082 -0. 089059629 0.51268487
0. 0033611059 1.1313687 ~0. 50142606
1.8051498 0. 00000 -0. 023580486
-11.685586 0. 00000 0.18603611
28,771736 0. 00000 0.11303411
-26.840525 0. 00000 -0.34116759
8.9565915 0. 00000 ~0.27784690

( isentrope )

-
™
:Q.

1 ‘-
0 = Z d’; ?" ‘ ( isentrope )

v O
Z 9. _.‘_‘.> ( starting conditions )

QD
"
b




- 100 -

TABLE 2
=|.7
¢ C: d; 9:
1 0.50557207 -275.41494 0.55002965
2 1.2407034 2109.7054 -0,21778543
3 -2.7742933 ~6688, 2209 0.44371078
4 5.8613678 11246,.781 -0.041185003
5 -7.6545925 -10574,952 -0,60877374
[ 5.3192251 5271.8190 -0.35783680
7 -1,4983452 -1088,7201 0.00000
7 1
b-
/Fs Z CC Q (isentrope)
=1
] d. -1 (isentrope)
a: 2 &0
Y
7 -1
T
? = 3; -A— (starting conditions)
RN




