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The concept of an equilibrium point for an n-person game was lniroduced DY
Nash 10, 11] and the existence of such poinis proved under certain assumpiions
on each pilayer's sirategy space and corresponding payoff function. He showed
that if each player is restricted to a simplex in his own strategy space and it
the payof? functions are bilinesr Tunctions of the strategies, then an equilibrium
voinT exists. This result has been generalized to an abstract economy by Arrow
snd Debreu _1] and McKenzie [9], where each player's strategy space ray depend
orn The strategy of the other players.

~wis more general problem is considered here. Specifically, it is only
reguired that every joint strategy, represented by a point in the product space
ol e inaividual sﬁrategy spaces, lie in a convex, closed and boundeld region
R in the product space and that each player's payoff function @i, i=1, ... n,
_e corcave in his own strategy. The existence of an equilibrium poirnt for this

corncave n-person game is shown in Theorem 1, using a mapping of R into R
T A

N
»

ené tze Kexutani fixed point theorem [4].
Cne of the difficulties which has limited the usefulness of trhe concept of

ar. eguilibrium point for an n-person game is the lack of uniqueness of such

points, as shown by the fact that many games possess an infinite numopr of
-

-

equilibriwn points (for example, see Shapley [12]). This difficulty is overcome
oy recuiring that the payoff functions satisfy an additional concavity re-

A

cuirement which is called diagonel strict concavity. With this additional

o

reguirement it is shown in Theorems 2, 3 and 4 that every concave n-person
7zs a unigue ecuilibrium point. Theorem 2 shows unigueness for a game
wiza orthozonal constraint setis, that is, where R 1is tThe direct product of

the individual player's strategy spaces. In Theorems 5 the more general case of
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coir.ed constraints is considerel. A nornalized eguilibrium point is defired
in Terms of a specified positive comstant r, Tfor each player, whic: determines
L
th
the vzlue of the dual variables for ithe i1— player. Theorems % and - show that
& unigue normalized eguilibrium point exists for each specified value of the

R

perameters ri. The monotone behavior at the equilibrium point of the payoff
wnevion @, with respect to r. 1s shown in Theorem 5. Section 3 is
compieteld vy giving a sufficient condition for diagonal strict concavity in
erms of certlain Hessian mairices of the ©.,. The interesting case where each
i
&, <s bilirear in the strategies is discussed to illustrate <this condition.
Tne bimatirix game [7, 8] is a special case of this bilinear payofs
In Section 4 we consider a reasonable dynamic model of the rn-person concave
Zame . 7 is assumed that if the game is not at equilibrium each player will
attempt to change hic owm sirategy so as to obtain the maximum rate of change
of nis own payoif funcition with reépect t0 a change in his own strategy. It is
srown thet the system of differential eguations obtained in this way has the
orozerty that every solution starting in R remains in R (Theorern 7). The
statility of the system is considered in Theorems 8 and 9. It is shown that
whern concavity conditions sufficient for unigueness are satlsflea the system
of Cifferential equations is globally asymptotically stable. Furthermore,
starting at any feasible point in the strategy space R, the system of
differenzial equations will always converge to the unique equilibrium poiﬁt of
The original n-person concave game. Thus the dynamic model gnd the concave
Zzme have the same unicue equilibrium point. The stability prool uses the
were of tThe norm of the right hand side of the differential equations as a
~Ilzpunov funciion to show that the norm approaches zero. The stability of a
dirferent dyramic model of a competitive equilibrium represented by a system of

GiZferential equations has previously been investigated [13, 19].
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In Seczion 5 it is shown that the unigue eguilibrium point to the concave
same can ve found computationally Ty using a gradient method sultable for a
concave mathematical programming provlem [17, 18]. This may be considered as
a generalization of the well known relationship between the two-person zero-
sum geme and linear programming [15]. It should also be noted that the general
concave constrained maximization problem is obtained for the case n =1, so
that such a problem may be considered as a special case of the n-person concave
zame. Tror this special case of n =1, the results of Sections 2 and 3 reduce
<o known results. However, the results of Section 4, in particular Theorem 7,

appear to be new even for n = 1.

L=
.
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2. “orwilasTtion and Sxistence of Zeouillbrium Point.
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The concave n-nersc. Jeme 10 be considered is described in terms of the

-
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player is represented by the vecior X in the Zuclidian space , i=1, ... n.

e s EX - -mm h 3 o~ - e 3 g s : -
“re vector X e & then denoter ~ne simuitaneous strategies of & i players,
- b J ) m I
wrere E is the product space I. " XE ... XE and m = z: .. The al-
=1

lowed strategies will be limites oy the reguirement that x be selccted from a

and tounded set R C I . If we denote by Pi the projection of

R or E T, we will also consider tne convex, closed and bounded product set

knt

SO, given oy 5 = P.oX Pgbao,x:P . Tris is illustrated in Fig. 1 Tfor n = 2.

2 1

Figure 1

In most game theory papers consideration is limited to the case where each

rvlayer's sirategy Xi is restricted to a convex set R, CE in his own
4

strategy space. For example, in Nesh (.0,11] the set Ri is the simplex in

% T. In this special case where the con:ciraint sets are orthogora. we have
P, =R, =so that R =85 = K, X‘RE 0o aX PP, In the general case wiere RC S

we will say that R 1s a counled constraint set.



-+
[

¥

T

The payoll funcltion for the i— player depends on the stirategies of all
the otner players as well as his own strategy, and is given by the function
9. (x) = ®.(x,,.veX.,...x ). It will be assumed that Tor x ¢ S, ¢.{(x) is

Es i 4 z n i
continuous in x and <s concave in xi for each fixed value of

(x""'xi-7’x*+l""xn)' With this formulation an equilibrium point of the

n-person concave game is given by e point x° € R such that
Iy °
9. (x°) = max (@, (x,.c.y.,.0x%) | (X%,00.¥.,0..X°) € R) (2.1)
- l e Il 4 1 n

uch a point no player can increase his payoff by a unilateral change in

1471

£
his sirategy.
The results to follow make use of the function p{x,y) defined for
(x,v) € R xR by
N
p(x,y) = i‘é—:l Qi(xl,...yi,...xn) (2.2)

7

'y
-

"

Wo ovserve that for . (X,¥y) € R X R we have (xl,...yi,...xn).e S, 1i=1,...n,
sc that p(x,y) is continuous in x and y and is concave in y for every
fixed x, for (x,y) € R XR. We now prove the existence theorem for the
conceve n-person gane. +

Theorem 1

An ecuilibrium point exists for every concave n-person game.

Proof: .

Consider the point to set mapping x e R - [ X< R, given by

I'x ={y|p(x,y) = max o(x,2)} (2.3)
z€eR



v Io.lows Irom the continuity of p(x,z) and the concavity in z of plx,z)

Tor Tixed x, that [ 1is an upper semicontinuous mapping which rmaps each
point of the convex, ccompact set R into & closed convex subset of R. Then

Dy the Kakutani fixed point theorem [4,5] there exists a point x° ¢ R such

that x° ¢ I' x°, or

p(x°,x°) = max p(x°,2) (2.4)
ZeR

The Jixed point x° is an equilibrium point satisfying (2.1). For suppose that

—ais

it were nov. Then, say for 1 = I, there would be a poirt X, =X, such that
A

,...xg) € R and QZ(§> > Qz(x°). But then we have

X = (xi,..gg

o{x®,%) > p(x°,x°) which contradicts (2.5)

£



3.  Unigueness of Zguilivrium Point.

In oréer To discuss the unicueness of an equilibrium point we must
cescribe the convex set R more explicitly. For the general coupled con-
straint set where R« 8, we will describe R Dy means of the mapping

m

a{x) of E —aEk, where each component hj(x), j=1,...k of h(x) is a

concave function of x. It is assumed that

R = {x|h(x) >0} (3.1)

is nonvoid and bounded. It follows from the concavity of the h.(x) <that

o

the c.0sed set R is conveX. TFor the orthogonal constraint set
R=56= Rl X RE"'X Rn’ we consider the nonvoid and bounded sets

R, = {x. { n.(x,) >0} , i=1,...n (3.2)
Fy AL e -

waere each component h,.(x.), j = l,...X., 1is a concave function of x,,
ijvi i ~m i

59

. . 5 . - . i . o
so that R, is a convex, closed and bounded set in “E ~. We will zlso
4

-

assurme that the set R contains a polnt waich is strictly interior to

every nonlinear constraint, that is, 3 ¥ € R, such that hj(z) > ¢ for

every nounlinear constraint h.{(x). This is a sufficient condition Tor the
o~

satisfacition of the Kuhn-Tucker constraint qualification [ 2 ].

We wish to use the differentiai form of the necessary and sufficient
Xuhn-Tucker conditions for a consirained maximum [ 6 ]. We therefore make
the additional assumption thet tke h,{x) possess continuous first deriva-
tives for x ¢ R. We also assume that for x € R the payoff function 

. .th

©,(x) for the i~— player possesses continuous first derivatives with

respect to the components of X, . For any scalar function ©(x) we denote

o

. . m
v KZfP(x) the gradient.with respect to x, .of o(x). Thus §é¢(x) € E T,

-8 -



The Xunn-Tucker conditions equivalent to (2.1) with R given v (3.1)

3

1 20w be stated as follows:

e
™
:

n(x°) >0 (3.3)

< . ~K ©an
and Tor 1 = l,...n,3 ui° > 0, u.; € £, such that

wn(x) = 0 (3.4)
A
\ /-
cpi(x") Zcpi(xi,,,,yi,.“x;/ + ? n(x ..yi,...xr"l)- (3.5)
Sirce ©.{(x) and h.(x) are concave and differentiable,

i ’ J

the inequality (3.5) is equivalent to

w

v\p (x°) + ]_ u;‘] vihj(x°) =0, i=1,...n (3.6)
J

e,

-

We will also use the following relation which holds as a result of the

concavity of h.(x). TFor every x°, x' € R we have
J J

n .
b, () - by(x) < (0wl n,(x) = T Gy pn () (3.7)

i=1

A weighted nonnegative sum of the functions cpi(x) is given by

n -
O’(}:’r) = E riq)i<x)) ri _>_ o (5'8)
i=1

- . . n o , .
Tor each nornegative vector r € E'. For each fixed r, a related mapping

m

z(x,7) of E= into itself is defined in terms of the gradients V4cpi(x) by

_9_



/< ‘7\3 (x

8le,z) = | AENCY (3.9)

v (o
\r- o, 0

An important property of o(x,r) 1is given by the following

The function o(x,r) will be called diagonally strictly concave for

x € ® and fixed r >0, if for every x°, x' € R we have

(x'-x°) g(x®,r) + (x°-x") g(x',r) >0 (3.10)

As shown later, a sufficient condition that o(x,r) De Giagonally
strictly concave is that the symmetric matrix [G(x,r) + G (x,r)] is
negative definite for x € R, where GC(x,r) is the Jacobian with respect to
x of glx,r).

“
We Tirst give the unigueness theorem for orthogonal constraint sets

1T c(x,r) is diagonally strictly concave for some T =1 > 0, then the

ecuilibrium point x° satisfying (2.1) is unique.

Proorf:
Assume there are two distinct equilibrium points x° and x' e R, each
o which satisfies (2.1). Then by the necessity of the Kuhn-Tucker condition

we have for £ =0, 1 and 1 =1,....n0,

yA 4\
£ £ ﬁki
uy >0, u; € £ 4, such that



wln () = 0 (3.12)
k-t
2 = Z \ 2
Vo, () + gl uijvinij(xi) =0 (3.13)

e multi ‘ To(x!-x°) = r (x°-x!)Y =
We multiply (3.13) by ri(;;i Xi> for £ =0 and by ri(xi xi) for 4 =1,

and sum on 1.- This gives

+D’ =0 (5.1)4)

W

(x'-x°) g(x°,T) + (x°-x')" g(x',T) (3.15)

w
il

k.
r, L (xi-x2) ' Vn, (x?)+uij(x;-x’)§1h..(x!)}

5 s i iJ 1 1 11571 i°ViTijti
2L jzi_‘,lri (g 3 Ihy 5 (x5)-hy S (xd0bug 1By S (x9) -y S (x00] )

n ; .
SURCENCIRRYENCH (5.16)

The inequality follows from the concaviiy of the hij(x) and (3.7), and the
last relation from (3.12). Then from (3.11) we have that ¥ > 0. Since
o(x,r) is diagonally strictly concave it follows from (3.10) that 8 > O.
But this contradicts (3.14), so that we cannot have two distincet equilibrium
points and therefore x° 1is unigque.

We now consider the general case where R 1is a coupled constraint set and

is giver by (3.1). The values of the nonnegative multipliers wu?, i=1, ...n

(=

iven by <he Kuhn-Tucker conditions at an equilibrium point will, in general,

- 11 -



~os be related o each other. We will consicer a special kind of ecuilibrium
point such that each u) is given by

o _ __‘_o/w i =1 .

ui =0 /T, 1= ly,e.0.0 (5.4.7)
‘:\‘
..2‘ ) s - & 3

cor some r >0, and u® > 0. We will call this a normalized eguilibrium
soint.

Thers exisis a normalized ecuilibrium point to a concave n-person game for
every specified r > 0.
Prool:
For a fixed value r =r > 0, let
n
X,¥,T) = TP, (% y00eY.00eX .18
0(6,5,7) = T Ty (g peeeyyee o) (3.18)
1=4
Using the fixed point theorem as in Theoren 1, thereﬁ?xists a point x° such
L4
That
° o U o -
p(x°,x°,7) = max {p(x°,y,r) | b(y) > 0] (3.19)
v
Then by the necessity of the Kuhn-Tucker conditioms, h(x°) >0, and 311° > 0,
- -
such that u® h(x°) = 0 and
z
V.o, (x°) + § w{n.(x°) =0, 1i=1,....n (3.20)
i'i71 . JvYiTg -
J=1
But these are just the conditions (3.3), (3.4) and (3.6), with u?. = ug/ri,
or u; = u°/?i, which are su® % :i2nt to insure that x° satisfies (2.1).
b
x° is therefore a normalized ecuilibrium point for the specified value of r=r

-12 -



et o(x,r) ©ve diagonally sirictly concave for every r € Q, where @

n

is =z convex subset of the positive orthant of Z7. Then for each r € Q <here

is & unicgue normalized equilibrium point.

- Assume that for some r =r € Q@ Wwe have two normalized equilibrium

points x° and x'. Then we have for £ =0, 1 and 1= 1,...n,

Y

0 (3.21)

‘3 uﬂ > G, uz € EK, such that

A = o (3.22)
= £ < £ Z
ri‘émi(x )+ & U ih(x.) =0 (3.23)
o

~

. .- N / _ .

Wwe multiply (3.23) by (x;-x;) for £ =0 and by (x;-xi) for 2 =1, and
S

stm on 1. As in the proof of Theorem 2 this gives B+ ¥ = 0, where B 1is

given by (3.15) and

o

¥= & & . )
jgl L {u'j(xi—xi) Vih(x )+ u3<xi_xi) Vih(x')J
> ' [a(x)-n(x)] + ut’ [B(x°)-h(x")] (3.24)

o’

= u”n(x') + un(x®) >0

Tren since o(x,r) is diagonally strictly concave we have B > 0, which

corzradicis 3+ §J = 0 and proves the theorem.

- 13 -
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We will now investigate the dependence of the normalized equilibrium point
cn the value of r for the general case where R 1s a coupled constraint set.
For en orthogonal constraint set it follows from Theorem 2 that if o(x,r) is
Giagonally strictly concave for some 1 = r > 0, the eqguilibrium point x° 1is
irdependent of r., On the other hand it is not difficult to comstruct a simple
example with a coupled constraint set (see Fig. 2) where the equilibrium point

o

X does depend on r.

I N S =
9, (x) = -5 %+ X%,
o (x) =~ 2 _x.x
3 oM T T 172
nl(x) = % >0
h2(A) =%, >0
h5(x) =X *x, -1 Z,O
:Pl(x ) = H}lca]}_‘: { cpl(xl’XE) h(xl’xg)z 0 = Xl(l
AN ' ) | o ] [} .
CPZ(X ) = max Cpe(xl,x2)l h(xl,Xg)z O} = Xl- .
b'e ~ . ,
2 R
( h v
__l | A 2 I‘l S ;2)
X = rl + 2r2 S B x2 = 1 - xl
Zr v T, 17 %2
. o
Figure 2

In such a case we will now show that in a certain sense the equilibrium value

is a monotone increasing function of ri.

“ . ~ - . o :
Let o(x,r) be diagonally sirictly concave for r e Q. Let r°, r' ¢ Q

= r;, i#q and ré > r;, Let x° and x', with

x' # x°, %be the corresponding unigque normalized equilibrium points. Then the

directional derivative of @O(x°) along the ray (xé-xa) is positive.

- 1 -



Let u® and ' Dbe the .. . nliers corresponding to the normzlized
eguilibrium poinits X and %' . T"hen for Z=1.ar’ i=1,....1m, ana for
! —_ v 2 -~ 4 - -\ Z PN e o =
=0 and i # q, the relatio-: (3.21), (3.22) and (3.23) are sztisfied

. For £ =0 and 1 =g, We have

X
° °) Nax®) = .
(rgr Vo (x°) « r 7o (x°) + = L uype =0 (5:29)

et - s . - . - . .
Valtiplying oy (x!-x7)" for 2 =0 and (x;—xi) for 4 =1, and summing
4 AL

now gives
r°-r' ) (x'-x°Y\Vo {x°) = -(8 + <0 .26
(zo-m ) G2 Vo (%) = =(5 +Y) (3.26)
or since r' >1r°,
qQ q

(e -0 \7@ x°) >0 (3.27)

2n

P

ut this is just the directional derivative of @q(x°) along the ray

A useful interpretation of Theorem 5 is obtained by observing that if

oc(x) has bounded 2°= partial Jerivatives and Hxé-xa“ is sufficiently small

7
4

then it Tollows from (3.27) that Qc(z) > Qq(x°), where x = (xi,...xé,...x;).

'S

Since x° 1is an equilibrium point x cannot be a feasible point, and the

value of @o(x) mey decrease as X goes from the infeasible point x to

C . e . 1 . <. .
the new {fea51ble) eguilibrium point x°, as illustrated in Fig. 3. Because

N - \

of the diagonal concavity property of ©.(x), the dependence of @q(x) on

¥ will usually dominate its &2 .nience on X5 i # gq. Therefore, it will

Ne

usuelly be true that O (x‘\ >:?q(x°). Tris is illustrated by the example of
&P &P

ig. 2, where it is easy to show that both 5;£ and = are . nonnegative.

Bl

- 15 -
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Figure 3

We complete this section by giving a sufficient condition on the functions
o {x), which insures that o{x,r) is diagonally strictly concave. The

condition is given in terms of the mxm matrix G(x,r) which is the Jacobian

R . . - .th ~ .
o z(x,r)} for fixed r > 0. That is, the column of G{x,r) is
N~
dg(x,z b

. - \ . e A
—_—, j=1,...m, where g(x,r) is define® by (3.9).
O,
J
Treorem 6
A sufficient condition that o{x,r) be diagonally strictly concave for

- . o - . iy . . . - - N rd N
X ¢ R and fixed r =71 >0, is that the symmetric matrix [G(x,r) + G'(x,r)]

*

ve negative cdefinite for x e R.

Let x°, x' be any two distinct points in R, and let x(8) = 6x' + (1-g)x
so that x(6) e R for 0 < 6 < 1. Now since G{(x,r) is the Jacobian of g(x,r)

we have

(o7}

I«(8).7 s o
elelo)r) - oi(e),m) ZEL S o), D) (3.28)



-

g(x',T) - a(x",7) = [ Ga(x(e), T)(x'-x°) a 6 (3.29)

- n . = id .
Multiplying both sides by (x°-x') gives

(x°=x') (", ) + ('=x*) g(x*,7) = - [ (x'=x") 6(x(8),F) (x'=x°) 4 @

i

= '% I (xr-x*) [a(x{8),r) + 6" (x(8),r)] (x'-x°) 4 6> 0 (3.30)

which shows that (3.10) is satisfied.
The Interesting case where @i(x) 1g pllinear in the strategies Xj

emprasizes an important relation ovetween this condition and a stability matrix.

wWe let
n
s / .

Ax) = e, ., +xIC,.] x i=1,...n 31
0;(x) = X lefy + x{e, 1 x,, ) (3.31)

J=1

‘ n,
wnere e,, 1s a constant vector in E J and C,., 1is an m.Xm. conz .zant
iy i e 1773

L
rix. The bimatrix game [7,8] is a special case of (3.31) witn

- = D —_ N lal —_ — N -~ ~ / o~ Ia] !/ ~ e - .
n=Zz, .. = = C,q = : o, C G. The two-persoa zero-sum

7 F s T Y Tt TV B vy FU by F p :
game 1s a further specialization with G, = -C7,.

21 12 -
From -~ definition (3.9) of g(x,r) and G(x,r) as its Jacobian matrix,’
&
we obtain
G(x,r) =D C (3.32)

where C is the mxm constant rairix

2011 C12 « . . C

Cc 2C
c = a1 =2 (3.33)

in

C 2C
nn



ané D is the diagonal positive definite matrix D = Qiag{ri}° For this
bilinear case it follows from Theorems 2 and 6 that we have uniqueness if

+here exists some r > O such that
Dc+CcD=-1 (3.3k4)

where D = diagci;.}, But this is Just the condition which ensures that
every eigenvalue of C has a negative real part (see, for example,
Bellman [ 31). Thus the same condition which guaraniees unigueness also
irmpiies that C 1s a stability matrix.

A case which might be considered as a generalization of the .wo-person
zero-sum game 1s the n-person "skew-symmetric” game where
., i, 3 =1, ...n. For such & game we will have [C + C'] negative

- P . ’ - . - e . o
definite if [C.. + C/.] 1is negative definite for 1 = 1, ...n.

\{)



. Clobal Stability of Ecuilibriws Point.

- - -

" Will now consider & reasonzcle dynamic model of a concave n-person game in
e &< o

woich each player cnenges his own sirategy in such a way that the joint strategy
remains in R and his own payoff function would increase if all other players

held to their current sirategy. That is, each player changes his strategy at

& rate proportional to the gradient with respect to his strategy of his payoff

f

Tunction, subject to the constraints. If we let the proportionality constant

for thn i— player be r., we obtain the following system of differential

e

ecuations for the strategies X.»
dx{ 4
= =% = ri§7iQi(x) +:Zi uj§7ihj(x) , i=1, ...n (%.1)
i=

where the vector u lies in a bounded subset U(x) of the positive orthant of
E&. The effect of the summetion term, with the appropriate choice of w, is
to ensure thav starting with any x € R, the solution to (4.1) remains r 2.
fact, the right hand side of (4.1) is just the prosection of the gradient

\/.O.1x) on the manifold formed by the aciive constraints at x. If we define

an mxk wmatrix H(x), whose jEE column is ‘7hj(x),
B(x) = (Va0 Vayl) - - -V ()] (1.2)

and use the definition (3.9) of g(x,r), we can define the mapping f(x,u,r)

- itk . . =
of 2% - BV for each fixed r >0, as follows

£(x,u,7) = glx,r) + H(x)u (4.3)

Then the system (4.1) can be written
x = flx,u,r) , u -« (x) (4.4)
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- K . . o
The set U(x)C =% is determined as follows
{

000 = (u| {26eu D) = min J2tem, )] (+.5) ,
W}ZO,jeJ L
V,=0,3£3 |
J
waoere
J=J(x) = {J hj(x) < 0} - (k.6) |

Yote that for every interior point x of R +the set J(x) is empty and

U{x) = 0, so tnat 2(x,u,r) = glx,r).
We will assume that g(x,r) and H(x) are continuous in x for all x ¢ R,
where RZR 1is a compact set such that every point of the compact set R is

irnterior to R.

Trheorem 7

a continuous solution x(t) to (4.%) exi exists,

Starting at any point x e R
St Ahmde ( - > -4 -y 11 0. LN
suear that  X(¢) remains'in R-.for.all t.>0.- . '3

'y
O

-~

of

e

Because of the continuity in x ant assuming only that u is measurable
4 |

. Ly 4 . s . R
in %, we have from the Carathéodory existence theory [1k4,16] that a continuous

solution x(t) exists for x(t) in R, which satisfies (4.4) almost everywhere

Now suppose that for some point x'e R on the trajectory x(%t) we have

hﬁ(x') < 0. Then by the continuity of x(t) there must be an earlier point x= |

on the trajectory, such that h,(x) = O and ﬁz(i) < 0. But from the latter

s

and {k.4) we have

(% = Vo £ =Vnl® £ <o (4.7)
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. we let the corresponding value of u be U e U(X). From the defini<<on (4.3)
we Lave
liwa e s i =
- =g'g+2uHg+uwHHER (%.8)
or
N N2
~-=2 hz(x)[g+Hu]=Eth(x) £ <0 (4.9)
£
According to (4.9) we could decrease the norm ||f] by increasing Gi > 0. But
since hﬂ(z} = 0, we have ¢ ¢ J{x) by (4.5) and therefore w ocannot satisfy

(.5 so that u & UX). ™
on the trajectory such that

By a direct application

the constrained minimization

This contradiction shows

that there 1s no point x!'

hi(x‘) <0, for any i, which proves “he theorem.

of the necessity of the Kuhn-Tucker conditions for

problem in (4.5) it is not difficult to demonstrate

every vector u e U(x) are given by a vector

= ./

Ly g{x,r) >0 (%.10)

tne Tollowing
“ne nonzero elements of
= a8 = .
Ve 3, < k, where
u = -(H H)
The mXk metrix H = H(x)

E{x) selected from K7h4(x)
oJ

consists of k lirzearly independent columns of

Tor Jjed.

We now consider an equilibrium point x of the system of differential

ecu.zions (4.4).

f(x,u,r) = 0,

That is, for a

fixed r =7r, we will call X an eguilibrium

e U(x) (4.11)
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Tre system (k.4) will be called asymptotically stable in R if for ever

initial point x € R, the solution x(t) to (4.4) converges to an equilibrium

Theoren 8

’

If R is given by (3.1) and [G + G’] is negative definite for x ¢ R,

3

where G 1s the Jacobian, of g(x,r), then the system (1.k) is as oL

r
) i

ne prooi consists of showing thet for x and u satisTying [4.4), the
LE(x,u,7)I° s alweys negative for f(x,u,r) # 0. We first
consider the situation when the selection of columns in H(x) remains unchanged.
Then since all elements of u are zero except those given by u > 0, we have

from (4.3)

f=g+:5=g+EEJth (5.12)
b
anc
f-0%x+VT0.Q %x+Fu 4,13
NS (4.13)

where Q. is the Jacobian of K7hj(x) (or its eguivalent, the Hessian of h,(x))
J - 9]

and is therefore negative semidefinite from the concavity of hj{x). Now using

(£.13) and (4.4) we have

s e et S (e = =e s+ BN, £, £ PET (ha1k)

We consider the last term and make use of (4.12) and (4.10) to show that

FEu= [@H+ TFT G- [0 - ¢F 5= 0 (4.15)

—Dp -



Tor scme ¢ > 0.

4 change in the columns selected for H(x) can never increase the value of

. - . . . . . e s Hall
since tune selection as determired by (4.5) will always minimirze If;. It

-
it

= 0, so that x(t) - x, where X

\
}

trerefore Tollows from (4.16)

Is an eguilivrium point waiceh i {w..1). By Theorem 7, we nave that
An ecuilibrium point x° € R will be called globally asymptotically stable
sy R if for every starting point x € R <the solution x(t) to (Lk.4) converges
o P

to x°. We will now show that with the sppropriate concavity conditions the

vnogue equilibrium point x° of (2.1) is also globally asymptotically stable in

Zet R e given vy (3.1) and G Dbe zhe Jacobien of g(x,r) for some

. - . 4 . i A . o e
ixed r =1 > 0. Then if [G + G“] 1is negetive definite for x ¢ £, the

rorrsliized equilibrium point x°.r) is globally asymptotically stable in R.
4 N \ &

Since [G + G7] is negative definite, o(x,r) is diagonally sirictly
concave by Theorem 6. Then by Theorem 4 there is a unique normalized egquilibrium
point x° = x°(r), which satisfies (3.21), (3.22) and (3.23). But en equilibriun

point x of (4.4) also satisfies these three relations. The first relation is

o

ied since x € R, while (4.11) is ecuivalent to (3.22) and (3.23).

savls

o

Therefore we must have X = x°. By Taeorem 8, the system (4.4) is asympto-.ically
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s=zZle in R. Since x = x° 1is unique the solution to (4.4) will converge +o
x° Irom every starting point in R, and the system is globally asymptotically

s
steo.e.

e

v,

.~ 2k -



Zetermination of Eoullibrium Point.

\J1
N

The glcbal stability of the eqguilibrium point permits us to determine
the unigue equilibrium point for any concave game by appropriate mathematical
orogramsing computational methods. In particular, gradient methods for the

ye

cocncave nonlinear programming problem [17,18] can be modified to find the
eculliorium point for a concave game. Such methods take finite steps in the
direcvion of the gradient of the funciion to be maximized taking account of the
constraints by projection, or appropriate penalties, in order to remain in the
Teasitle region R. The essentiazl idea in applying one of these gradient
metnods to the concave game problem is to use the vector g(x,r), given by

(3.9}, as if it were the gradient of a function of X, Where the function is

1o te maximized for x € R. The solution to this "maximization"” problem will

v

ive a point x° € R where the Kuhn-Tucker conditions (3.21), (3.22) and (3.23)
are satlsiied. But as has been shown such a point is the unique equilibrium
for the concave game. Note that the optimalitx;conditions involve only

the gradient g{x,r) and do not recuire that the function itself be xnown.

radient projection method can be considered as a finite difference

b
'
(T

o8}

approximetion to the system (4.i), where the solution is obtained by a seguence
of finite steps in the direction of the projected gradient f{x,u,r). The
-

only practical difference between this and a true maximization prcbiem is that

in the latter case we choose the step length so as to give a maximum of the

¢

true funciion value along the chosen ray, whereas for the equilibrium point
provlem we choose the step length so as to minimize the norm éf f.

To show how Tthis is done we consider the finite difference approximation
C (4.4) given by

°

. . . .. .
NS 9 r(x?,ud,T) , uwl e U(x%) (5.1)

where Y is the step length to be selected.



. Trneoren 10.
-

If the assumptions of Theorem 8 are satisfied then a finite step length
; h L pady y

N Lo I n ] , i 5 =
1Y can e chosen so that |ITV |l < |29, for f£9 £ 0, where £V = £(xY,u’,r).

o

For u=1u held fixed we have

T L p (09T = 0 s Tt - i) (5.2)

waere = 1is a mean value of the Jacobian of f, so that fF 7 < 0,
for f£# 0. Then from (5.1) we have
—_‘:‘+l . — 'y :
o (14 1) T (5.3)
- =j+1 . ot = n .
The norm of I is minimized by the choice
Y
. o e ~
— s N0 — o’ .
= - [FeY] /20 FeY > 0 (5.1)
walich gives
i—""l||2 ‘f_cnjl’g ' j 2 —,:‘"—:_;_\J' .:-. 2 :
T = 20T ¢ (29)7 29 FeY < e (5.5)
. . j+1 S+l j+1 = 3+ o S
Firally since £9 ©— = f£(xY",u’ ,T), where ud L U(x¥" "), it follows
—."7'15 ’:.';—l" )
from (4.5) and (5.2) that |lrv7 =} < 1T < Ned].

The convergence of this finite difference procedure to the urique

equilibrium point x° can be shown as in Theorem 8.

38}
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