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ABSTRACT"
|98 52

The vortex flow of an incompressible fluid between two
finite flat plates is considered. Special attention is given to
the case for which the radius of the plates is larger than their
separation distance. A momentum integral solution gives the
variation of the important parameters g , the modified boundary
layer thickness, and 8 the radial velocity, with the radius
for various values of A , a measure of the imposed radial mass

flowe
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I.

INTRODUCTION

Recént attention has been focused upon rotating flows
within confined regions. In particular, vortex motion of a fluid
confined by stationary boundaries has received considerable study.

The swirling flow of an electrically-conducting fluid
between two coaxial cylinders in the presence of a magnetic
field has been extensively studied in an attempt to predict the
performance of a magnetohydrodynamic vortex power generator
(1, 2) . Such analyses, however, neglected the effect of any
confining end walls on the flow.

In an attempt to calculate the effect of the end walls
upon the vortex motion, several investigators have studied the
swirling motion of a fluid over a single finite flat plate in the
absence of magnetic fields. This work has been well summarized
by Mack (3) and King (L). More recently Lewellen and King (5)
investigated the flow over a single flat plate in the presence
of an applied axial magnetic field.

In a typical analysis (3) of the non magnetic flow over a
finite stationary plate it is assumed that the flow outside the
boundary layer is a vortex (tangential velocity ef\arn) with
negligible radial velocity. The flow within the boundary layer

is solved by a conventional momentum-integral technique,



The growth of a boundary layer on a finite flat plate in a
vortex flow has two effects on the flow. The first is a
retardation of the tangential velocity duve to the action of
viscosity. If, in a confined flow, the action of viscosity is so
great as to cause the boundary layers on the two end plates to
occupy an appreciable fraction of the volume of the confined
region, the vortex motion may be greatly affected. This effect
is referred to as boundary-layer blockage.

The second effect concerns the radial mass flow. The
radial pressure gradient caused by the vortex motion outside the
boundary layer cannot be balanced by such a motion within the
boundary layer becausé of the slowing action of viscosity. This
imbalance results in a net force that drives the fluid near the
wall radially inward. This radial flow must be compensated by a
mass flow into the boundary layer from the outer flow. In a
single plate problem such as that analyzed by Mack, the radial
mass flow within the boundary layer is compensated by an axial
flow toward the plate; it is assumed that the radial velocity is
zero outside the boundary layer.

In a problem with the vortex motion occurring in a
confined region, the flow picture is different. The slowing of the
tangential velocity, causing the boundary layer blockage occurs
as descriEed’aboveo However, there is a new condition imposed
upon the flow; the radial mass flow must be conserved. For motion
occurring between two impermeable plates, the net mass flow at any
radial sféfion is a constant independent of the radius since mass

is neither added nor removed. In a vortex flow, the radial mass



flow within the boundary layer induced by the pressure imbalance

is not a constant; it increases as the radius decreases. Therefore,
the radial mass flow outside the boundary layers cannot, in general,
be a constant. This is equivalent to stating that the radial
velocity outside the boundary layer cannot, in general, be a
constant independent of the radius (in particular, it cannot be
zero) . In order to physically maintain the vortex flow this radial
velocity must be directed toward the axis of rotation. Thus the
above mentioned analysis of the single plate problem is not wvalid
in general for the two plate problem since that analysis does not
satisfy the condition that the radial mass flow be conserved.

If the fraction of the radial mass tlow diverted into the
boundary layer is greater than unity, the radial velocity outside
the boundary layer must change direction from toward the vortex
axis to away from the axis. In this case the vortex motion breaks
down and the flow picture becomes more complicated.

The two plate configuration was initially treated by
Vogelpohl (6) in 194kL. In this analysis the axial velocity was
assumed to be identically zero. The relevance of this work will
be discussed subsequentlye.

Recently, Rosenzweig, Lewellen and Ross (7) analyzed a
two plate configuration but the analysis was limited to the case
for which the separation distance between the two plates was
greater than the radius of the plates,

In the present analysis, the Navier-Stokes equations will
be carefully ordered to determine the proper governing equations

for flow in a confined region for various values of the Reynolds



number and the shape parameter, b/fo where r_ is the radius

of the plates and b 1is the separation distance between them.
Particular attention will be focused on the case b/ro is smaller
than one, i.e., for which the spacing between the plates is smaller
than the radius of the plates.

One of the most powerful tools used to solve the non-linear
partial differential equations of fluid mechanics is a similarity
transformation which reduces the partial differential equations to
ordinary differential equations. This device is used by investi-
gators dealing with the problem of one infinite flat plate in a
rotating flow.

It will be shown why this method of attack is successful
for the case of one plate but cannot be applied to the two plate
problem.

Since a true similarity does not exist for the two plate
problem, an approximate solution to the problem is carried out,.
In particular, a momentum integral method is used to calculate the
variation of the boundary layer thickness with the radius. Also
the variation of the outer radial velocity and the shear stress
at the plates with the radius are calculated. An equation
relating the net radial mass flow to the pressure gradient is

giveno



II.

STATEMENT OF THE PROBLEM

The problem is to describe accurately the behavior of a
rotating viscous incompressible fluid between two finite flat
plates. The analysis will consist of three parts: 1I) Derivation
of the equations governing this flow; II) Demonstration that no
similarity transformation exists; III) Solution of the momentum
integral equations for the boundary layer thickness, the radial
velocity, and shear stress at the wall as functions of the radius.

The plates are situated parallel to each other and their
common axis is coincident with the vortex axis of the rotating
fluid as shown in figure 1. With the plates separated by a distance
b and with the coordinates shown in the figure, the boundary

conditions are, in part:

At z =0 u=v=w=20

At =z

n
o
-
"
4
1
=
W
o

Let the region of interest be bounded radially by two
cylinders at radial stations r = e, and r = r where e
is a positive number less than one. It is assumed that there is
a net radial mass flow inward (toward the vortex axis) between the
two plates. It is further assumed that this radial mass flow is
sufficiently strong such that the radial velocity is everywhere

toward the axis in the region of interest; that is, such that the



fraction of radial mass flow in the boundary layer is less than
uwnity. This assumption does not allow the vortex motion to break
down due to a reversal of the direction of the radial velocity
outside the boundary layer,

The fluid may enter the region of interest at the outer
cylinder by being injected tangentially by slot jets, by being blown
through a rotating porous cylinder or by some equivalent method

such that the boundary conditions at the outer cylinder are:

At 1T = T, v = Vo u= kVo w=0

where ¥k 1is a negative constant. These boundary conditions
prescribe the driving force of the problem.

It is assumed that the cylinder at er, in no way obstructé
the flow of the fluid but only marks the boundary of the region
of interest. This assumption does not allow the prescription of
velocities at the inner cylinder and therefore precludes considera-
tion of a radial boundary layer on this cylinder. The analysis
will not be concerned with the manner of exit of the fluid from
the central core,

In practice, the radial mass flow is maintained by an
imposed pressure difference between r = r and r = er. o

One result of this analysis will be a relation between the radial

mass flow and the imposed pressure difference,



1.

26

3.
h‘
5.

6o
Te

IIT.

ASSUMPTIONS

The following assumptions will hold for this analysis:
The working fluid is
viscous
incompressible
The flow is
steady
laminar
axially symmetric
and
body forces are absent

the properties of the fluid are constant.



Iv.

ANATYSIS

I. Derivation of the Governing Equations

The Navier-Stokes equations for a viscous incompressible
fluid in cylindrical coordinates are, with the assumptions of
axial symmetry, steady flow, and no body force:

2 2

2
du du v 1 3P v[au 1l 9 u . du
Us—+ W -— o -=S + == (u) - —= + a
ar 3z r p ar ar§ r 3r r2 azﬁ]
W, g R, W Joy. dav _x, 3] b
or 2z r 2 T or 2 2
or r oz (1)
| 2 ‘ 2
W, W . (1P, Jaw, 1o, 3] .
ar Y oz T 2 r or azi
where the velocity is denoted by
A
v = uw o+ VO + wh
The continuity equation is, with the above assumptions:
1l 3. ow _
;gz-;(ru) + -S-E 0 d

The governing equations will be derived by ordering the
terms of equations (1) and ignoring the terms which are shown to
be small in the region of interest. In order to facilitate the
ordering procedure, the above four equations will first be rendered

dimensionless.



The characteristic dimension in the radial direction is
the radius of the plates, ro o The separation distance between
the two plates, b , is the characteristic dimension in the axial
direction. The characteristic velocity, Vo, s Will be taken as

the tangential free stream velocity at r o The characteristic

o]
pressure is pvg °
Thus
z = bz u-= Vou
r=rr v=Vyv (2)
o -
P pVoP W = Vow

where the bar denotes a dimensionless quantity.

Substituting equations (2) into equations (1) gives

2
- r - =2 = r. 22—
P 2ELE L ZL gL 2. 325
ar .Y r ar 00 3 ar b 3
-v To=3v =¥ v [d 3 s 2%
L RRELE L 520035
dr 92 r 00 or or ~r b~ ¥z
) (3)
- 3w Yo -—3w _ To 3P v azﬁ 13w Yo 325
u—_ g v e el g -l oper, Bk Shedied S ) ¢
ar oz 92 0.0 or rar b az
T —
- d
2@ g - 4
r dr 0z
Voro
The Reynolds number is defined as o If the

v

rotating flow is of a vortex nature, which is the most interesting
case, (Voro) is a constant of the flow irrespective of the

choice of ro.
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The boundary conditions now are:

=1
"
o

AL Z=0 u=v=

|
=1
]
<l
]
5|
i
o)

At =1

The flow pattern is governed by the values of two dimension-
less groups--the Reynolds number and the shape ratio, ro/b . The
effect of one plate on the other is most pronounced for the ratio
ro/b larger'than unity; therefore consideration will now be given
to this case.

Now it is possible to expand the three velocity components

and the pressure in power series in b/ro .

Q
u o= L ui(b/ro)l a
2 .
v = i;b vi(b/ro)l b
(5)
[04]
w -..iZO w, (b/r )t c
w .
T = z P, (b/r )" d

i=o

where the 1w, Vis W,» and P, are independent of b/ro but still
are functions of the Reynolds number.
Substituting equations (5) into equations (3) and

grouping terms with equal powers of b/ro gives
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du b ou auo aul v2 3P
w --—°+—[u — W — W — - °_ . °]¢
3 Fo- °ar 3 %3 T oF
2 du 9 du d du. v.v
<§E> [u'_L_..‘g*“ ""*"2':.'9*"1_.'_"*“0 2.2 3_'0
ar or 0z dz -} T
2 2 2
) _;L_f_q_,za“o+ia“1+iga“o+_a_(l‘s)+"’“2
woij—o*'?b_[uoa_-‘tg*wla—.?)'*w m"‘uovo]
9% o ar 3z d2z T
2 ov v v oV, ov v
(2 2o, Doy ey 2ae, 22, 0,
° or ar d dz dz T
2 2 2 2
b ia 0% 127 i_u[a"hi(."_o)ﬁ" .
Re © a—-z-’é Re = 2 Re rolF?2 SV F —
ow AP ow W OW. oP
W —— 4 s +-b—l:u +w1-:2+w -—:l+—l +
3z 3z~ To- %pr 3z °3% 3z
b 2 Bwo ow. awo ow. awz 3P
(T) [:ul_--+u —_'+W2—;—+Wl—__—+ W e o cmmes | pi0v
o dr Jr dz dz °3z 3%
2 2 2 2

o, DL (a2
AL
2 _ d )
+<rbo> [___z.:_.a? Fu) ¢ =2 ¢ o
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Since the ordered velocity components are independent
of b/ro , each group of terms in equation (6d) may be immediately

set equal to zero. The zeroth order group is simply

Immediate integration gives

w, = f£(r)

Applying the boundary conditions (L) the result is

w, = 0 (1)

This is an interesting result. In most analyses, it is
assumed a priori that the terms of the continuity equation are of
the same order. In the above analysis, this assumption was not
made and the result is that the axial velocity is not of the same
order as the other two velocity components; that is, while the
radial and tangential velocities are of unit order, the axial
velocity is of the order b/ro .

The first order continuity equation is, from equation (6d),

Note that now both terms of the continuity equation are of the
same order.
It is physically reasonable that the axial velocity be

small since it is prescribed zero on all boundaries where
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velocities are stipulated and since it has no primary driving force
such as an imposed axial pressure gradient. This fact undoubtedly
led Vogelpohl to ignore all terms involving the axial velocity or
its derivatives. Such an assumption does not allow the buildup of
radial flow within the boundary layer due to the imbalanced pressure
gradient and is therefore overly restrictive. The present analysis
will retain terms containing the axial velocity where they are the
same order as other terms. In this way the redistribution of
radial flow may be considered.

Equation (7) can now be used to simplify equations
(6a, by, c). Note that the zeroth order inertia terms of equations
(6a, b) disappear with the introduction of equation (7). For
simplicity the higher order terms on each side of equations

(6a, b, ¢) will be dropped. The equations now become

2 2
aub auo A aPo 1 ro 2 3 uo
YWty T T " T "/ T - D a
or 0z T or 2
Bvo Bvo uv, 1 ( r, >2 azv o
U e+ W w——t -~ - b
oF Loz T ke \. B 3z 2
(8)
oP Bzw ) '
—°._1 1 c
oW.
=2 (Fu)+=£=0 d
r dr oz

The fact that equations (8) do not contain the second order radial
derivative terms is consistent with the neglect of the radial

boundary layers discussed on page 6.



1

The set of equations (8) would be identical with those
derived by Vogelpohl if the terms containing Wy were omitted.
Howevery the ordering carried out above indicates that these terms
should not be omitted; therefore, the Vogelpohl equations do not
apply to the case of b/ro small.

The case of b/ro large will now be briefly investigated
to see if this ordering yields the Vogelpohl equations. Assuming
ro/b small, the velocities and pressure may‘be expanded in powers

of ro/b and substituted into equations (3). Upon ordering with

respect to ro/b s the zeroth order equations are

2 2
aub vo _ aPo 1 3 uo o) Y
Yo ——~—"°= -~ + Re ':TE‘* ==
dr T or ar or r

dr 3 dar ° T
2
o oo 2%, 3 Mo
Oa-r= Re a—2 ;’ ar
%} ;E T ) =0
r ar

These equations are identical to those which Rosenzweig, Lewellen
and Ross (7) apply to their central region (Region I of figure 1
in Ref. 7)o

The inertia terms in equations (9a, b) now are identical
with the inertia terms in the Vogelpohl equations but the viscous
terms which appear above are thé radial derivatives rather than

the axial derivatives. Equations (9) hold in the central region

(9)
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between the two plates but not immediately adjacent to them
because the highest order axial derivatives have been omitted.
In order to satisfy the boundary conditions on the plates, the
second order axial derivatives must be taken into account.

Introducing the boundary layer transformation

r -
Z = =—=Re 1/2 zZ

-1/2 =
) Re w

=l

into equations (3), together with the ordering b/ro > 1 , gives
the familiar boundary layer equations with axial rather than radial
highest derivatives. But in this case,; the inertia terms containing
the axial velocity reappear. Thus, the equations derived by
Vogelpohl do not accurately govern any phase of rotating flow
between two flat plates.

By ordering the Reynolds number with respect to ro/b for
ro/b >> 1 in equations (8), various types of flow are found in

the region of interest.
CASE A) Assume
2
Re << (ro/b) > 1

In this casey, the viscous terms dominate and a Stokes type
of flow results from equations (8). The inertia terms may be
neglected but the pressure term must be retained since it is the

driving force. Equations (8) reduce to
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3P 32u
53 3z °
azv
0 = —3 b
oz
(10)
E.E = 0 C
9z
w.
22 (Fu) e -0 d
r or 3z
Employing the boundary conditions on the two plates, the solutions
for the velocities are
. G - =2
u, = = (z-2°) a
r
v. =0 b
© (11)
W, = 0 c

" where the constant C must be adjusted so that the mass flow at

any radial station equals that at the outer cylinder ( V = 1), That is,
C = 6k

Equations (1la, b) do not satisfy the boundary conditions
at r =1 . There exists a radial boundary layer at r =1 ,

Introducing the transformation
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into equations (3) and realizing that the inertia terms are

r
negligible and that the pressure term is of order <-,6?-> Be

gives the radial boundary layer equations

2

9°u . 3 u 9%
— — +
352 Bf'<r> dz

]
o
]

(12)
32v+g_<_w_r_>+32v=o b
The solution of these equat:.ons w:.ll complete the solution for
the case of Re <<< > >> 1 . This solution will not be pursued
further since it is not related to the study of the boundary
layer interactions.
CASE B) Assume
2
Re = (r/b)°>>1
In this case the viscous terms just balance the inertia
terms and viscous flow fills the region of interest; that is,
there is tangential flow throughout the region but there is no
central core of inviscid flow. The equations (8) become
2 2
auo auo 0 aPo _ o Yo
U —tW et T T a
° a7 dz T ar 9z
(13)
2
ov v v, oV o
U, —— + Wy + = = b
°ar dz r dz
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oP
— =0 c
oz
(13)
ow.
-]-'-—a:(;uo)+—_l=0 d
T or dz

and the boundary conditions remain (4).

CASE C) Assume

r 2
Re >><..59.> >> 1

In this case the inertia terms dominate the viscous terms
except in the boundary layer regions near the plates. That is,
equations (8), with the second derivatives with respect to 2
omitted, govern the flow in the central region between the two
plates. The flow in the two boundary layer regions lying between
this central region and the two plates is governed by the full
equations (8) since the viscous terms must be employed to satisfy
the boundary conditions on the plates,

The conventional method of solving such a set of equations
is to calculate the inviscid solution in the entire region of
interest; then expand the coordinate normal to the boundary to
arrive at the boundary layer equations which are applied to a thin
region near the boundary. The transformed normal coordinate is
allowed to tend to infinity. The inviscid solution, evaluated at
the boundary is then matched with the boundary layer solution

evaluated at infinity.



19

In such an analysis it is implicitly assumed that the
boundary layer does not have a first order (i.e., appreciable)
effect on the inviscid solution.,

This classical analysis works well for flow over a single
plate since there is no conservation of radial mass flow to be
satisfied. Any radial flow induced in the boundary layer by
the imbalanced pressure gradient will be compensated by a second
order (i.e., small) axial flow in the inviscid region since it is
assumed that there is no radial velocity outside the boundary layer.
However, in the case of flow between two plates, any mass flow
induced in the boundary layer must be compensated by a corresponding
decrease in the radial velocity in the inviscid region since an
axial flow is blocked by the presence of the other plate. Therefore,
the boundary layer can have a first order effect on the inviscid
flow even though the boundary layer remains relatively thin. Since,
in the two plate analysis, the effect of the boundary layer on the
inviscid solution must be taken into account, the classical boundary
layer analysis cannot be accurately used.

It may be noted here that the presence of the second plate
introduces a modified Reynolds number, where Re appeared in

the one plate analysis now Re (: :> appears., The boundary

layer thickness is now of order o rather than | =— L .
2 , Re
Reb
As the problem stands at the moment, equations (8) with
boundary conditions (L) govern the flrst order (1n b/f ) flow
between two flat plates for Re > <- :) > 1 . A transformation

is possible which will remove the dimensionless group from the
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equations and introduce it into the boundary conditions. This
transformation will be performed since the equations are more
amenable to analysis and solution in this form.

Introducing the transformation

|
n

a
(14)
2
r
W. = —°—-§§ b
1 Reb
into equations (8) gives
2 2
auo - auo v, BPO ) 9 u,
VoS Y= Tt T =
° a7 33z r or 3z
v ov uv azv
U 2 g 24029 = .___%
° o 3z T 3z
Fo _
dz
L2 (Fu)+&E - o0
r or oz

or, dropping the bars and subscripts,
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3u+ aunzﬁg_gg+82u a
stV T T dr 'a—;
ov v . w Bzv b
v3r 3% T 352
(15)
1l 9 ow _
T g =0 °
The boundary conditions (L) now are
At 2 = 0 u=v=w=0
(16)
2
At =z Eig_ u=v=w=20
r
o
Returning to equations (6) it is easily seen that the
second order equations are
ou aul du a{;l AL BPl r 2 azul
-——9-+u-—=+w-:2+wl_=2f_ =-_+g — a
dr °ar 2 33z 3z r dr bRe dz
v avl ov avl wv uvy T 2 Bzvl
-:2*“1":‘”'2':0'“'1-*-0*'_ = —-5——3 b
or 03T 3z 0z r r bZRe oz
(17
dP
2 =0 ¢
9z
ow,
L2(Fup+=L =0 d
r Or oz
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A1l the higher order equations are linear and once the first order
non-linear equations are solved, all higher order velocity terms
can be evaluated.
Equations (15) are identical to the equations governing
the flow in the single plate problem. However, there is a
fundamental difference between the boundary conditions in the single
plate problem and those in the two plate problem. In the single
plate problemy; u and v must asymptotically approach'the inviscid
values while the two plate problem u, v and w become exactly
zero at a given value of 2z due to the presence of the second plate.
It is convenient to apply equations (15) to the entire
flow field rather than to divide up the flow field as is done in
standard boundary layer theory. This formulation avoids the need
to match solutions at the edge of the boundary layer. Also it will
be shown later that the pfesence of the boundary layer has a first

order effect on the inviscid solution.

II. A Search for a Similarity

To determine whether there exists a similarity transformation
for the problem, a fairly general transformation is used.

Assume a similarity of the following form

u o= £ ()6 (%) o
v = f£,(r)g,(x) b

2 2 (18)
W o= f3(r)G3(x) c
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Introducing equations (18) into equations (15) gives

2
t f f
2 om0 1 2 2
£489Gy = £3 F GyGyx + £3 5 G980y -7 G
£
ap f1 on
S = e A o= (3 a
dr h2 1
£.£.G.G ‘ffh'GG' ff3GG' fszG
11U ~ iyl T bR Y Iy Mg Y I T 55

n
- ;% G, b
(29)
: 1

(fi*%>61“f1£‘c’3‘.x*%(5; =0 °
where the prime denotes differentiation.

For a similarity to exist, the function of r in any term
of a given equation must be the same, within a multiplicative
constant, as the r function in any other term of that equation.

This requirement gives rise to the so-called compatibility
squations.

First, the compatibility equations for fl and h will be
analyzed. From equations (19a, ¢) it is easily seen that the
compatibility equations for fl and h are

' 2n
L = Ky a
1 fl
flfl = k2 :Z b
, (20)
£, + -fl% -kt c
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These are three equations for two unknowns. In general
such a set of equations does not yield a non-zero solution.
However, this set may be solved if a condition is placed on the
constants kl apd k3 o Pirst equations (20a, c¢) will be solved
for f1 and h . Then these solutions will be substituted back
into equation (20b) in an attempt to satisfy that equation also.
The most general functions which will solve (20a, c) are
£, = khrkl/k3 i kl a
(21)

If kl = k3 s the exponents of the radius become infinity

in equations (21). Since these equations only have meaning for

(o]

r<l]l and since r =0 for r <1l , the functions f. and h

1
become zero for k1 = k3 o
Substitution of equations (21) into equation (19b) shows

that equation (19) is satisfied if

k3 - kl = kl + 2
k,(k, - k,)-1/2
kg = ['Q'EQE"'E']
L1

Substituting equations (21) into (19) and solving for

f2 and f3 gives
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l/kl + 2
h = ksr a
k,/k, + 2
171
fl khr b
(22)
ey fley + 2
f2 = k6r c
- 1/kl + 2
f3 = k7r d
The similarity still holds if kh’ kS’ k6, and k7 are
set equal to unity for convenience,
Changing notation (kl/kl + 2 =n) , equations (18) now are
w o= o Ga TV a
v = & Gz(z/r 1- n/2) b
(23)
w = rt " 1/2 G3(z/f 1- n/2) c

This is a known result; it is just the similarity used
successfully by Lewellen and King (5) to reduce a similar set of
equations for a single plate. The above analysis was performed to
show that this similarity is the most general one that will transform
the equations (15) into ordinary differential equations. Before
a2 similarity transformation is successful, it must also transform
the boundary conditions of a given problem. That is, the boundary
conditions in the transformed problem must be .applied at constant

values of the similarity wvariable., There is no trouble with the
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boundary conditions at z =0 , it is transformed into one at
x =0 ., The trouble lies with the upper boundary condition.

In the case of the single plate, the upper limit is removed
to 2z = ® which transforms into x = @ . If the same technique
is tried in the two plate problem, namely removing the upper limit
to infinity, the effect of the upper plate is lost. This defeats
the purpose of the analysis. Therefore phe upper boundary condition
must be applied at a finite value of z . Since x = z s

rl-n

z = constant transforms into x = constant only for a particular
value of n, n=1 o

The particular flow pattern for n =1 is modified after
wheel flow. The velocities u and v have z-dependent profiles
which are magnified by a multiplicative factor r while the profile
of w is independent of the radius. This is the same similarity
used by von Kdrman to reduce the equations in his classic rotating
plate problem. This flow pattern occurs only if there is no net
radial mass flow. This can be shown in the following way. The
net radial mass flow, Q  is given by the equation

Re b%ro2

Q = anrobvo j rudz (24)
o

Since mass is neither added to nor subtracted from the flow at a
general radius; r , the net mass flow cannot be a function of

r ;3 Q is a constant. With n =1 , equation (23a) becomes

u = r G(z)
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and equation (24) can be written

r2 i G(z)dz = const.

The only way this relation can hold for any radius is for both
the value of the integral and the value of the constant to be zero.
But this means that the net radial mass flow is zero.

Ruling out this unique case, which does not produce the
desired vortex motion, it is seen that the similarity fails to
transform the boundary conditions properly for the two plate

problem. Therefore, no similarity exists for the two plate problem.

III. A Momentum Integral Solution

It is of interest to calculate some of the effects which
the two flat plates produce on the flow. These include the boundary
layer blockage caused by the buildup of the boundary layers on
the plates and the variation of the radial velocity with the radius.
These effects may be calculated by a momentum integral
solution of the problem posed by equations (15) and (16).

The differential equations to be approximated are

Ju, 2 P e
3 3 T dr ;;Z
uav-pwél.yﬂ = azv
or 3z T 2

Q/
N

(15)
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The complete boundary conditions are

At 2z =0 u=v=ws= 0 a
2
At z = ./ Re b /;02 u=v=w=20 b
(25)
2
_ Y/ 2 _du_23dv _
At 2z =1/2,/Re r, Weg-=5-=0 c
At r=1 u=k<O v=1 w=20 d

The differen"tial equations are valid for Re 2 ( :g- >2 >>1 .
The conditions (25a, b) are a reiteration of conditions (16) where
z =,/ Re b /r02 describes the upper plate. Condition (25¢) is
applied at the midplane between the two plates and expresses the
conditions of symmetry existing between the two plates. Condition
(25d) is the velocity state prescribed at the outer edge of the
plates. It is assumed that the'fluid is injected at r =1 such
that the axial velocity is zero. The tangential velocity is chosen
equal to unity at r = 1 in agreement with the original nondimen-
sionalization. The radial velocity is chosen as some negative
constant since it is assumed to be negative everywhere in the
region of interest. This negative constant is related to the net
radial mass flow, Q by equation (24); that is,

v/ 2

Q = znprobVo Re r, k<0

or, introducing a dimensionless mass flow,
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2
T = oV, = k,[Re’ /r°2 <0 (26)

In the following analysis, only the region from =z = 0 to
z =1/2 [ Re b2/r 2 will be considered and the symmetry conditions
at the latter bouﬁdary will be employed. Because of the symmetry,
this is equivalent to considering the entire region between the
two plates. For brevity, let M = 1/2 ./ Re b2/r 2 , thus z =M
is the midplane between the two plates. °

Now to derive the integral equations: As a preliminary
step, multiply the continuity equation (15¢) by the radial velocity

component wu and integrate the result with respect to 2z from

zero to M . Applying the boundary conditions
w(0) = wM) = O
and realizing that

oM

r 0
gives the result
M M
u Ju .1 d 2
I(u%r-"'WgE)dZ T TE jrudz (273)
o o

Now multiply the continuity equation by the tangential

velocity v and again integrate from zero to M . This gives

M M
f <u %;-G + W % > dz = —%— 3% ‘[ ruvdz (27b)
) o
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These equations (27) will be used to simplify the integrals of the
momentum equations.
Integrate the radial momentum equation (15a) with respect

to z fromzero to M . Simplifying the result by using equation

hs du(M) _ .
(27a) and the symmetry condition -l 0 gives
M M 2
i.fl.J“ 2 j(éli_.;’.> = - u
= I ru-dz + i dz sz| z = 0 (28)
] 0
Integrate the tangential momentum equation (15b) from zero
to M . Simplifying the result with equation (27b) and the symmetry
condition ~9§§Ml = 0 gives
M
T2 9
%%erdz==§=§zgo (29)
r o
An additional condition appearing in the two=-plate problem
which does not appear in the single plate problem is the conservation
of radial mass flow. A combination of equations (2L) and (26) gives
M
r j udz = KM <O (30)
o

Equations (28), (29) and (30) are equations for the radial
variations of the velocities uw and v and the pressure p o

It is assumed that the Reynolds number is sufficiently
large such that the viscous effects of the plates do not reach
the midplane between the two plates. That is; the boundary layer
thickness, §(r) , is less than the value of the midplane M

everywhere in the region of interest.
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It was shown in seption I1 that a true similarity does
not exist for the problem. However, it is known from single plate
analyses (3) that the profiles of u and v are similar with
respect to the parameter z/§f (r) for z< S() . It is
expected that the presence of the second plate will not affect
this local similarity, therefore it is assumed that the profiles
of u and v are similar with respect to the parameter z/J—(?) for z <5 (r).
Also it is assumed that u and v are independent of z for z >§ .
The value of § is assumed to be zero at r =1 . This
means that any boundary layer on the outer cylinder is ignored.

It is convenient to introduce the transformation
¢ = z/§ dz = §dC

The upper limit of integration becomes M/§ and equations (28),

(29), and (30) become

14 e e 2 1

alrs] ] | (E-F)« - ‘“‘5"%’}5 o (31)
(o] (o]

Lara 0 12

‘;za’x'-"[“ff wdg | - -5 52| o (32)
o]

M/s
rs | wag = (33)

At this point in a momentum integral analysis of the single

plate problem it is usually assumed that (3)
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[}
|

g, (r)h, (€)

v = g,(r)h,(¢)

Such a form for the radial velocity wu is acceptable in the single
plate analysis since it is assumed that the radial velocity is
identically zero outside the boundary layer; the continuity
equation is satisfied by an axial flow from infinity. This cannot
be done in the two plate problem. The radial velocity must have

a non-zero value outside the boundary layer. The radial velocity
also may overshoot in the boundary layer. This overshoot is

caused by the fact that radial mass flow is drawn into the boundary
layer by the imbalanced pressure gradient in the boundary layer,
There is no guarantee that the ratio of the maximum value of the
radial velocity in the boundary layer to the value outside the
boundary layer is a constant independent of the radius. Therefore;
the radial velocity at a given cross-section may be divided into
two parts; the first part consists of the portion of wu that is
non-zero outside of the boundary layer and does not have an
overshoot in the boundary layer, the second part consists of the
remainder of u which is zero outside of the boundary layer and
is a measure of the overshoot.

Thus it is assumed that

u = g (r)hy () + g,(r)h,(g)

<
'

g5()hs(0)

(3L)
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where 5’< M throughout the region of interest. The profiles

h

h and h3 are assumed to be known; their forms are

1? 27
determined in the appendix. Equations (31), (32), and (33)

become
. ) M/S , M/ ) M/5 )
d
o . (o] (o)
58 2 MAS 2 1 $ g
T e | hyde = - = [hl(O)g1 + h2(0)82]
(o]
M/ M/§ g, |
L& [PSeey | mngc e Plee; [ onpjac) - - '32 h3(0)
(o} (o]
M/$ M/§
r§e, J hdC + r S, ] hydl = KM
o] (o]

It should be noted here that the upper limit of integration

is a function of r through &(r) . It is just this type of

radial dependence that foiled the attempt to find a proper similarity

transformation for the two plate problem in section II. Since

the upper limit of integration is a function of the radius, the
integrals are not independent of the radius. This difficulty can
be circumvented by splitting the integral into two parts. The
first part is an integration from the lower plate to the edge of
the boundary layer (from ¢ =0 to ¢ =1 ); this integral is
independent of the radius. The second part is an integration from

=1 to ¢=M/§ . Inthis region it is assumed that hy = hy

(35)

(36)

37N

1
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and h, =0 . This means that u and v are functions only of

2

the radius in this region. Thus the second integral is a linear

function of M/§ . Equations (35), (36), and (37) become

2 2 dp
% {rgl [M + (Cqy - DS] + Lrfeg, + T, C22} I

ALENCPEE YIRS S LOEE HOLY
2

g,
E?? r2g1g2 [M + (c:l3 -1) 5] + 023 r25g2g3} = = _——; h;(O)

rgl[M-o- (0‘1-1)5]+02 rfg, = Wi

where
1 1
2 -
11 J hy d¢ a 6o = | mqhy e
o (o]
1 1
= 2 i 2
Gy = | b5 b Gy = J b5 dC
o (o]
1 1
Cp3 = jhlhB dc c Cpy = ] hohy dg
(o] (o]
1 1
cl=Jh1dg d C, = | h,dC
(¢} (o]

The constants C are evaluated in the appendix.

(38)

(39)

(LO)

(L1)
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The set of equations (38), (39), and (LO) are three
equations for five unknowns g, &,» g3» %; s amdvé", Another
two relationships between these unknowns must be found. A number
of equations can be found by evaluation of equations (15) at
the lower plate (z = 0) and at the midplane (z = M) .
Expressing u and v by equations (3L4), evaluation of equations

(15a, b) at z = 0 gives

dP _ 1 ft n
T T2 (eyy () + g5,(0) ) a
(L2)
1
0 = s;3h3(0)/‘g'2 b
and evaluation of equations (15a, b, ¢c) at 2z = M gives
! 2 dp
glgl-gB/r = "'a; c
d
g, =— (rg,) = O d
1l dr 3 (L2)
d =
T (rg)) = O °

The evaluation of equation (15c) at 2z = 0O was omitted
since nothing is gained by the reintroduction of w . Equations
(L2) are written with the assumption that §'<:M s therefore
the viscous terms are absent from the right hand side of equations
(L2c, d). Equation (42b) is merely a condition upon the assumed
form of h., . Equations (L2d, e) may be directly integrated to

3
yield
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= 2 _ k
83 = '?' gl = ’;’ ()43a,b)

where the boundary condition (25d) has been applied. Note that

represents the radial variation of the tangential velocity and

€3
&1
the boundary layer. It must now be decided whether equations

represents the radial variation of the radial velocity outside

(43a, b) can be used as additional equations or must be rejected.
Both of these equations are written ignoring the effect of the
boundary layers. It must be decided whether the velocities at the
midplane are affected by the presence of the boundary layers or not.

The tangential velocity together with the prescribed radial
velocity toward the axis of rotation is the driving force of
the problem. The only way that the tangential velocity can be
reduced from its free stream value is by the action of viscous
forces. By definition, é'nwrks the upper limit of the action of
the viscous forces. Since it 1s assumed that é; <M , the
tangential velocity at the midplane is not significantly affected
by the presence of the boundary layers. Therefore equation (L3a)
which represents the radial variation of the tangential velocity
can be used as an additional relationship.

On the other hand, it was stated in the introduction that
there are strong radial velocities in the boundary layer. By
the conservation of radial mass flow, this requires a corresponding
decrease in the radial velocity outside the boundary layer. Thus
the presence of the boundary layer affects the radial velocity
even in the region outside the boundary layer. Therefore,

equation (L3b) which gives the radial variation of the radial
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velocity external to the boundary layer is inaccurate with boundary
layers present and will be ignored.

In order to make the set of equations (38), (39), (LO) and
(L3a) complete, one more relationship must be found between the
unknowns. Either equation (L2a), (L2c) or a combination of the
two will give the additional relationship. However, the resulting
set of equations is quite cumbersome and not amenable to solution,.
Since the momentum integral solution is an approximate solution,
it is not out of order to introduce a simplifying assumption which
will make the equations mueh more amenable to solution. This

assumption is

where El is independent of the radius but depends on M and k .
This is equivalent to assuming that the ratio of the maximum value
of the radial velocity in the boundary layer to the valug outside
the boundary layer is a constant independent of the radius. This
assumption restricts the form of the velocity overshoot in the
boundary layer but still allows one to gain a measure of the
influence of the boundary layer on the outer flow. The assumption
allows an exact closed-form solution to be obtained,

Substitution of equations (L3a) and (LL) into equations

(38), (39), and (LO) gives

g; {rgi [M + (Cll + jﬁl 012 + E12 022 - 1)5—J} + Mr %§
i 171" [+ gy -8 ] = - T ENORSSNO)

(Lk)

(L5)
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& frey [ (og50 -05l) . Y ,(0) (L6)
rg, [M+ (6, +E G, - 1§ = (u7)

Equation (L47) may be solved for g, in terms of 5Y

Substitution of that result into equation (L6) gives

£ _ "y
2
[M+(01+E102-1)5:l m2(013-c1+E1023-E102)

where the prime dentoes differentiation.
Direct integration of this equation yields the expression

for the boundary layer thickness,

(cl+'12102-1) ]_ (c +k c, -1)8
M

1 1+
og[ M+(cl+k102-1)5

+ % C. - 12 ho(0) (1 -12)
i 2 (L9)

+ %k, C C,)

2 -
217 (Cy5 = 1 C23 =K1 G5

%
where the boundary condition § (1) = O has been applied.

To study the character of this equation note that k is a
measure of the mass flow and is negative. If it is zero the solution
is meaningless since the analysis leading to the solution is
invalid.- It is shown in the appendix that

X - - k -k <
C1 + kl 02 1>0 and 013 C1 + k1 023 kl 02 0
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Therefore the solution (L9) does not exhibit singularitiess.

It is possible to determine the nature of g{(r) without
an explicit solution. Assume that S— has a maximum at some r # O,
ignoring for the moment the fact that the equations are not valid
for r <€ o If equation (L8) is to hold then the denominator of
the left hand side, M+ (G, + % C, - 1)§ , must be equal to
zero. Solving this for & gives J;ax = - M/C1 + Ei Ch=1 o
This states that .§ <0 , but S is a physical quantity
always greater than zero. Therefore the leading aSsumption is
invalid and g has its maximum at r =0 o

Equation (L48) asserts that é{' is zero at r = 0 , infinite
for r =1 (because 5 = 0) and negative but finite for O <r <1l .
Therefore it follows that §(0) is finite.

The maximum value of j’within the region of interest occurs
at r=¢ ., For € small, Jkax may be approximated by"g(O) o

Por convenience introduce the notation

B = (cl+E102=1) J/M a
0 - - (50) .
o - 2kM (Cl3~Cl+k1023—k102) .
- 2 1
(c::L + X% C, - 1) h3(0)

Note that B is a modified boundary layer thickness and A is a
measure of the imposed radial mass flows.

The expression for B and A may be somewhat simplified by
introduction of the calculated values of the constants ¢ 2rom the
appendix and by noting that M = 1/2 V/Re b2/r°2 and kM = Q

where § = Q*/2nprobvo o Thus
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B = El - b o 1 a
T =6
e
(s01)
Q./ Re b 266 + 6l ky
A= -= 5T, 35 b
(kl - h) o
Note that §Q is negative so that A 1is always positive.
Now equation (L9) becomes
B 1-1r? '
lOg(l +B) - T3P = T (51)
This equation is solved graphically in figure 2. This graphical
solution may be used to obtain plots of B versus r for various
values of A 3 these are plotted in figure 3.
As was stated above, the maximum value of B occurs at
r=0 ; Bmax versus (A) is plotted in figure L.
Rewriting equation (47) in terms of B gives
g 1
2 . (52)

This relationship is plotted in figure 5 for various values of A

The radial shear stress at the plate is given by

k3
u
L

T =
az* z =0

r

where the asterisks indicate dimensional quantities. In terms of

the functions g , h and é‘ this relation is
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LLV 1 - ] g
T, = -r-o-° th: <h1(0) + & h2(0)> -51- | (53a)

This relationship is plotted in figure 6 for various values of A .

The tangential shear stress at the plate is given by

or in terms of g , h and é; it is

W,

=R ny(0) g (53b)
(o]

-
"

This relationship is plotted in figure 6 for various values of A
With § and g, known as functions of r , equation (L5)

gives %% as a function of r and the various constants appearing

in the problem. This equation may be considered as a relationship

between the pressure gradient and the net radial mass flow Q °
which is just 2kM

So far El has been an unknown; it may be determined by use
of equations (Li2a, c) combination to get rid of %g gives, noting

that gy = 1/r and g, = Elgl s

5 (el - %) - -G + Tt

: ‘
The term g, may be found from equations (52) and (51).

The result is

72M° [21'281{2
5 A

2.2 .
2 B k
-B°(1 +B) - T+F (53)
rk ' 1+ J

— 2
(K, - 02K, + 1)
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If the right hand side of equation (53) were independent of
r , equation (LL) would be exact instead of approximate. Knowing
M, k and A , equation (53) may be averaged over r and solved
for k1 o ‘
If Ik l<< 1 and El >> I}.5 a good approximation is

2
_u3 - %M°8°(1 + B)
. (Ei r2(— k)

An alternative method of evaluating k
Since X
A is a function of 'El s Tc_l will have to be evaluated by trial

and error, knowing M and k .

, depends on A (through its dependence on B ) and

(5k)

1 is by experimentation,
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DISCUSSION OF RESULTS

Figure 2 is the graphical solution of equation (51). It
plots B , the modified boundary layer thickness, as a function
of 1 - r2/A where the parameter A 1is a measure of the strength
of the imposed radial mass flow.

Figure 3 is obtained directly from figure 2. Figure 3 is
a plot of B , the modified boundary layer thickness as a function
of the radius for various values of A , the measure of the radial
mass flow. This figure shows the actual form that the boundary
layer will have on the plate.

Note that the boundary layer thickness is a strong function
6f the radial mass flow. This functional dependence is shown in
figure L which plots Bmax s the maximum value of the modified
boundary layer thickness as a function of A ; the measure of the
radial mass flow. Bmax is directly a measure of the boundary
layer blockage; this figure shows that the amount of boundary
layer blockage depends strongly upon the applied radial mass flow.

It has been repeéfedly stated in this analysis that the
boundary layer draws radial mass flow from the outer flow. This
influence of the boundary layers upon the outer flow is depicted in

figure 5. It is a plot of gl/k s the radial velocity, as a

function of the radius for various values of A. A = o corresponds

to a very large imposed radial mass flow such that the boundary
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layers are very small and have negligible influence on the outer
flow. As the value of the radial mass flow is decreased, the
boundary layers at a fixed radius grow larger and exert a larger
influence upon the outer flow. Note that the value of the radial
velocity may remain relatively small over a significant portion of
the radius. It is possible that the influence of the boundary layer
may be so great as to cause gl/k to become negative. In this
case the vortex motion would break down (this case was not considered
in this analysis).

Figure 6 plots the tangential and radial shear stresses
as a function of r for various values of A , the measure of
the radial mass flow. The shear stresses are both infinite at
r =1 , due to the singularity which appears in all boundary layer
calculations at a sharp leading edge, and at r = 0 , because the
velocities tend to infinity as r tends to zero. The shear
stresses have minimum values in the region .55 ¢ r « 65 for a
large range of A . As A grows large, indicating a large radial
mass flow, the boundary layer becomes thin and velocity gradients

become large. Therefore T increases as A 1increases.,



VI.

CONCLUSIONS

It has been shown that the first order equations governing
the flow between two flat plates for b/ro << 1 are identical to
those governing the flow over one plate.

Although the equations are the same for the two problems,
the boundary coﬁditions are fundamentally different. The boundary
conditions for the two plate problem preclude the use of a similarity
transformation.

The momentum integral solution of the two plate problem is
basically different from that of the single plate problem because
the conservation of radial mass flow is used as one of the
governing integral equations in the former.

The solution shows the strong dependence of the boundary
layer thickness and the radial velocity on the imposed radial
mass flow. This dependence is not brought out in a single plate

analysis since radial mass flow is not a governing parameter.
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APPENDIX

The purpose of this appendix is to assume reasonable

profiles for the functions h h, and h

1?7 72
c

3 and to calculate the

C C C C C and C.,,o

1’ 722 Y11’ Tl2® Y13® Y2’ Y23 33

The boundary conditions to be satisfied are

constants C

11
At ¢ =0: h1 = h2 = h3 =0 hB(O) =0 a
At T =1: hl = h3 = 1 h2 =0 b(Al)
ﬁ_l_!_o
At £ =1: hl = h2 = h3 = c

The requirement that h;(O) = 0 1is a direct result of
equation (L2b) which is an evaluation of the tangential momentum
equation at the plate. It has been previously assumed that h1
and h3 are identically one and h2 is identically zero for
greater than one. Condition (Alc) is an expression of the
requirement that the functions should join smoothly at [ equal
to one., For greater smoothness, higher derivatives may also be
set equal to zero at ({ equal to zero.

The profile fbr h, , which is associated with the tangential

3
velocity v , is expected to increase monotonically from zero at
€ equal to zero to one at { equal to one. The profile for h1 P

which is associated with the regular part of the radial velocity

u , is expected to vary in a similar manner. The profile for h2 9
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which is associated with the overshoot of the radial velocity, is
expected to increase from zero at { equals zero, to reach a
maximum for some O < { <1 and to return to zero at { equals
one.

In analyses of this type, the function most commonly
assumed is a polynomial in the independent variable with coefficients
which are determined from the boundary conditions.

It will be assumed that h, is a quadratic polynomial and

1

h2 and h3 are cubic polynomials since these are the simplest

polynomicals which are able to satisfy the necessary conditions:

hl=ao+alC+32§2 a
_ 2 3
h2 = bo + bl C + b2 ™ + b3 C b
(A2)
h3 = c,* Cy C+ ¢, C2 + cq C3 c

Since the assumed form for h1 has three unknown coefficients
and h1 must satisfy three boundary conditions it is completely

determined:
b o= C(2-0) (43)

Similarly, h3 has four unknown coefficients and four

boundary conditions to satisfy:

g 2
h3==—2-(3='€) (AL)
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The case for h2 is not so clear cut. There are only three

boundary conditions to be satisfied, but if it is assumed that h

2

is a quadratic polynomial application of the boundary conditions

requires that the constants are all zero. Therefore for a non-zero

solution, it must be assumed that h2 is a cubic polynomial. Now

three of ‘the constants b can be found in terms of the fourth.

There is no loss of generality if this fourth constant is set equal

to unity. The profile for h2 iss

2 .
h, = ¢(1-0) (45)
The profiles hl’ h2 and h3 are plotted in figure 7.
Now that the profiles are chosen, the constants C are
easily calculated.,
1 1
= 2 e = 2
¢y = | ma - g Clp = | hphy AL =
o o
1 -l
_ 2 1 _ 2 _ 29
Gy = ] M3 - g 033 = | myac = 3
o o
(46)
1 1
61 | 19
Cy3 = J g = 15 Co3 = | byl = 3%
o o
1 -1
- . 2 - |
cp = ) M - F ¢, 'mya = 5
Evaluation of the functions h hz‘9 and h3 at the plate

gives
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1 _ " _
hl(O) 2 hl(O) -2
1 it
h2(0) = 1 h2(0) = -b (A7)
] _ _3_ 1" B
h3(O) = 3 h3(0) 0
The groups of constants found in equations (LS5), (L6), and
(4L7) become.
- k -L
Cl + k1 02 -1 = T3
by
= e e . (D
C13 781+ Kk Cy3-Kk Gy = 'Cﬁw*ﬂg>
- =2
k k
2 _ 5 "1, "1
Cip ¥ 2Ky Cpp + k7 Cpp =1 = -5+ 15+ 153
o (48)
C3-1 = -
19k
T - 59 1
Ci3* k& Cy3-1 = -5+ 130

The expression (c1 + Elcz - 1) is just the ratio of the
average radial velocity in the boundary layer to the radial velocity
outside the boundary layer. It has been stated that there exist
strong radial velocities in the boundary layer which draw fluid
from the region outside the boundary layer. If this is true, then
the average radial velocity in the boundary layer must be larger

than the value outside of the boundary layer and the above expression
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must be always positive. By equation (A8), this means that

k1>h and C1+C2_k1'1>0

By substitution of the values given in equation (A6)

into the expression 013 - C1 + kl(C23 - 02) it is easily seen

that
Cp + kyCp > Cy3+ ky0pg

Therefore the inequalities expressed on page 38 are shown

to hold.
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