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1. INTRODUCTION

1. 1 Statement of Probletn

A vehicle entering a planetary atmosphere will be s_lbject to

severe aerothermodynamic conditions similar to those enconntered

during re-entry into the Earth's atmosphere. A great deal has been

learned about Earth re-entry during the past decade so that much of

the background knowledge required for the investigation of the lie;it

planet entry problem now exists. However, certain characteristics ,,f

planetary entry are new. The general purpose of this study was t_

explore these characteristics.

The current interest is in the flight into the atn_ospherc of

Venus by a zero lift ballistic vehicle experiencing a relatively "soft

entry trajectory; that is, the vehicle will decelerate to suhscmic

velocities at fairly high altitudes and traverse a large p_>rti+)n of th,

atmosi_her_. ,_t terminal \'clocities (with or with_,nt the ,_id _,t additi_,_._i

retardation systet_as). .quch a flight path wottld })_, .tttractivt. f,,r l}l,.

_ ondtwtiotl _I _,tn_.osphcric pr_)perty cxpcrin'_cnts - \vith tr+lt_s_t_issi,,tl

ot (tat,i (tir,.ctly t,.) tht' V,irth or rt,laycd to th(. }:.itrth tl_r()ttKh ;_ l>,_t,'l_t

x_,hictt' it1 the l)tancl's n_',tr spact', ,tnd fur soft lan<tin_ t,, ,, 1,,w IIl,+

conctttction of stlrfat _" t"ql)crimcnls. '['hc prin_/,ry c_,nc_'rn. _,._,.r.

is not with tee tern_inal f_tnction of such a \'chicle, trot r.ith_'r ,aith lh,'

})ct'h,t[_:-; t}_,' It_,st itt_p_+rt,lnt <l,'.-;i_t+ r_'<ltJ.ir,'i_t't_t - tI_, \x_'i+lht _,t tl_.

- I -



+ , ..% +,

]t_.,Jt l>t+<>t_'ctic>t_ _+y.,-,t,.i-t_. }+_or ,..:,;<trial)it +, if th_ + ht',tt l)i'ot_++'tiot-_ .45':_I_ t_; -

t)l'OtJ+tl)iy ,, l++r_t' [)__+1"¢.t+titctg¢ ' i)f the+ Iilass ¢>1 th( _r (_}li(." it' i is _)_._'r(lt'_<i;+tt+(.ci,

I+lllllt,( t"JS;ll'y and t)t'l+h,_!+s iil+pr+tcticai rt.strictioiis wilt b¢" pi:ic_+l <Jr1 tilt.

.'+izc _i th,' tJ+tyh,,td. W_thin the' c'ot/tt,>;t of .'-+(Jit t_ntry, ',_hi(ti >+uK_,,st>+

;t high (tl';l,,._ c)r t+]tlt+t ,.;<hit It + sh+lp_-, t}lt, study of <t h .t.,_isph¢.ric<+. l

st+tgl_,+ttion t+(.git+tl is l't.;i.sot:+lbl(', althocigh luttlr¢..sttl(li_.s sh_,tlld

itlvt'sti_<Itt' fl_,','_'.s _t_,v'+i'_' ir_+i+-i the. ,,-+t+lan+iti¢+t+ i+t'gic_ti ,is ,+vt. ll ,is thr<,<.-

di II_t'n sic_tl+t 1 t I_,\v_<+

'I'\v<J itltt,r,,._titl,, t'}l<il++t+-:tt'Fistit s c>t flight into tilt. ,itltlt)._tJlit.l'c.s

tit lht' tl_;tl + ,l)]++.l_'t_ !l'_+ll'., tht' p()il_l ol _.i(.\_. . tJf .,.+urf}t<-( _ hc+_tt ti-_:tn._l(.I + <+re'

tht, iI_iti<Jl _+atr W v<,l_)_ity ;,net the. ¢:ot+_I+_,sition of th( + ;tti-_-_osp}+_'t'_ . 'Ih_ +

t+sc+_p( + v¢,lc)¢'iti_'> t,>r +kd,trs +tnd V_.'nus arc ;tpl)roxir+,+itt.ty It). JOt) lI/_<('<.

;tnd Dt, Z(iO ft/.'--,.<., r<'s!>,'¢ti\t'ly. :\ \',hiclt, ;ippro<tchii+lg citht, r

+tir_,t'tly Iroi_ _IJ;i, t- (Ii_J l)ltirlt, t;tl'y ¢_rlJit pi+l,tse) will ct_tc, r the. ;tttt_<,spl+_'r_.

+it l<.;;_t <_t it..+ , sc,tfJ_. \_.J_Jcity; ho\,,'t_'\'t,l +, for v+trious _+_,i,_si_+n _<,ttsi,i,.r,t-

tiotts tiii . ,,t fliE}_,t. ['t'i+|ti\+t' t)¢Jsiti_>t_ <+f tht. t+larlt,t.'-+ <_t _.t_tr W, ,.i.411+,t

tt-;ll:+i_iis,+i_+t_ ,:ti);,i)i!it\. _'t_. it \viii t_rc)t)<tt)ty bt' d,'sir<i})l_, t,_ ,litt'r

th,' +h!;_rti,_t+ It: ._-;}_}i,.r_ {t_ th¢' Z(!, 0()0 t_> 24, ()0() ft/s¢'c" r_It+lu_ ,_:i_] +h,'

(;yth, l't'<lI_ ,it ++(,B})h('l', i+_ lh_+ + "_, ()(Jt + I + -++_, ()00 l't i._'c t'+_li,u_,'.

li_ t¢:rtt+.< <+l _+;tr }:].irth r_,f_'r,,nc_ >. this is ,+\,,,iiint_> tht, >+ti}>(.r-

_)rl)it:tl _+t+ i_vl,,+r.,,'h)¢ itV t+t.gillit . (thu t.];_rth <.>rI+it_tt ,,'_,lc)city t_,.il_<_ ,iJ_,._i

_o, 00(.) t+l,/s, c'}. ;i fi,,ld i+_ ,.\hich _i+>r_>th_'r+_+_J<tynaI+i_i_: rt.s(';tt'_}+_ s+ .,li.._<

h;l\,_, t>_,<+t_ iz;iti<:t,,<.l <>hi,+ ira th," ])_i:_l i_,\v y, +_1"5+ f k(+ W <isI_'t't _1 + t}its

_,>_



flight regime is the generally increased importance of radiative heat

transfer to the surface from the gas in the heated shock layer

surrounding the body compared to its importance in suborbital flight.

Perhaps the clearest distinction between flight in the /_tmosphere of th(,

Earth and flight in the atmospheres of Mars and Venus is the uncertainty

of the composition of the near planets' atmospheres. It might be

expected that this could lead to a large uncertainty in the surface heat

transfer, particularly that due to radiation. In this study it was assun_ed

that the atmospheres of interest are composed largely of a mixture of

molecular nitrogen and carbon dioxide with trace amounts of water

vapor and other contaminants.

Fig. 1 is an illustration of the problems studied. The stagnation

region heat transfer is composed of boundary layer, or convective

heating and radiative heating from the shock layer gases. The radiative

heat transfer may be broken into two parts - equilibriun_ and non-

equilibrium r,_diation from the parts of the shock wave and shock layer

in which the g<_s has not had time to distribute its kinetic en_'r_y :_,_,on_

the' v,trit_us de<ret's of freedom. At high altitude> whei't' the density is

low the' n_n-t.quilibriun_ radiation will don_inatc the radiative, h,'i_t

transfer. At lower altitudes however the equilibrium radiation will

be the major source of radiant flux.

1. 2 Scope of Investigations

The present study was restricted to the investigations of

-3-
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2. EXPERIMENTAL FACILITY

Shock tubes have been used for many years in experin_ents

for the generation of aerodynamic data in flows of high energy and high

stagnation pressure (4) (5) (6). The demand for an experimental facility

in the areas of simulation of orbital and superorbital enthalpies and

pressures forced further development of its performance. It became

obvious that these requirements were beyond the capability of the

conventional combustion driven shock tubes. The arc-heated shock tube

used for the present experiments was specifically developed for this

purpose. Its basic design followed closely the features of the smaller

prototype tube (2) in which several investigations were carried and which

produced the necessary data used for the prediction of performance of

the present facility.

2. I Design Features

The electrically driven shock tube used in this present study

is itlustrat_'d in }ig. 2. t. The ability of this tube to provide strong

sho('i, xv,_\'cs at r_,l,ltively high initial prt'ssures is obtained fro_ the

hi,2}_ tol_i_erstt_lr_.. }_igh presstlre, low n_,iecular w_,i_ht dri_t'r _as

produced b v the rapid dischar_;e of capacitor stored _.ncrgy axially

through a tube of helium. "The driver section is shown in Fig. 2. 2. The

internal din_ensions _)f the driver are 3. 5 in. diameter and -t. 5 ft. l_mg.

In practice, the driver is shortened b} the insertion of solid plastic

cylinders to the dimet_sions necessary for obtaining required energy
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d_,nsity.

fits inside the driver tube.

along the arc path, th,it is.

An insulating cylindrical sleeve with 1/4 in. wall thickness

It is used to pr_,vid,, _,l_,ctrical insulati_,n

to insur(, that th,. ,ur_ clischar.t4(' is c,)nt._in_,_t

within the driver _as and lh,it the end,r:- v is uniformed (tistrib_t, d a>:l_lly

along the. driver. A thin x_ire is used to inhiat_, the. arc dis(hTir-,.. This

is located on the axis sc_ that the wall losses remain unif,.Jr_x_ in _}_e ;_xi,tl

direction reducinft thercbv non-homogenity in th,' t)r_I_.rties {,f th,' drlv_.r

gas.

The _'lectric,_l circ_lit for ',h_.driver ht'/_ti_',,4 s vstcn_ is sl_;,w_,

in Fig. ,_. 5a. The energy f,)r the arc disch/,rge is st_)rcd in c,tt,;,cil,_rs,

_ach rated al "3 lnicrofarads and go, ()00 volts. 'I<dal ,Lvailable stor(,d

('ncrgy Wg,.S _O-t. (1(1_} jo_ll_.s.

Fi R . 2. _b shows a typical c_zrrent way,. forth. It indicates that

the" circuit is critically dan_pcd and that th(' cn,.rgy is co,n_plt, telv

(lissipated in aboul 50 _',_icros('(onds, ,ind locf_r(, the. diaI)hr:_:an, op_'ns

\,,}_i, i_ occ,,.rs about 150 micr(_seconds lat_'r.

}{eliu_p, is used as the gas hcat,,d in t}_c driver. The diaphr/tg_

seI_aratin.g tht. drivt,r and the, driv,._: section _f lh_' si_ock tu})t' is rllglfi(, <,f

stainless steel. It is scribed t<, a _<,::troltc(t (h,pth (generally i0'!_ - -t0%

of th(. thickness) _,lcmf_ two diametrical cross lin,.s. The required

conditions _,f a ilv,'n It,st ru,_ dictatt the proper st lection of th,'

diat)hragm. "Flat, diat)hraana is found to open cleanly with a negligible

loss of n_ateria]. The driven tube is made ,_f st<_inl<,ss steel, its
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internal diameter is 6 in. and the overall length is 31. 5 ft. The n',od,_,l

stagnation point is located 2 ft. upstream of the end flange at L/D 59.

As indicated in Ref. 2, an extensive research program was necessary

before a satisfactory operation of this facility was achieved.

A photograph of the complete test facility including the instr_ll_lcn-

tation, vacuum pumps, etc., is shown in Fig. 2.4. For safety reasons

the driver and the capacitive power suppiy are located in a r_om

separate frown the driven tube.

2. 2 Performance

The performance of the tube in air is shown in Fig. 2. 5 where

the attainable shock velocity is plotted as a function of initial pressure.

and energy input and driver length. The experimental data indicat<, th,_t

shock velocity up to _, 000 ft/sec can be obtained with 1 n_m ttg driv<.n

tubt _ initial pressure,18 in. long driver and full energy in the' capa_itc_rs

With a lowt, r initial pressurt,, shock velocity up to {_),000 ft/.sec ¢,ln 1)<_

rc,tc'h(,d. Supcri|_posed is ;t curvt, depicting the p_rf<_rm<_ct, c_i ._

ct)IilI_clstic_n dciv_.r facilit.v. Th¢, lil_itatioli of tht. lattt,r is st, li-_.k i(lt._t.

(3t_tsid_, t}_( cal)abil[tv c,f lt_c shock tub_, to prodtl_<, hi.,,h

st<lgn<_ti(_n _.lttttgtll)y fl_+ws ;+nothcr iti+port_tnt });tr,tlllt'tt't" is flit" It'st tiil?t'

which is defined ;is th_ _ timt * difference' bctw't'en tht, arrivals ol the

incid_'nt sh_Jck _v;_v_, and the driv_,n gas - drivt_r _<ts ct_l_tatI zc_nt. Ill

Fig. 2. 6 the test times produced in this facility at(, sh()wn as ;_ ftincti¢)i_

of shock velocity and the initial driven tube pressures. It indic<_t<,s that

ample test time was available during the present study.
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3. SIt©CK "I'LSI3E] }:LOW t_ARAME'I't¢tlS

(_)nt' (,f the tools required for a study of this type is a coI_plt.tc

set of thern,_._chcn_i(al ('quilibrium calculation for _as mixtur(, to bt.

studied. Such c,nlculation has b(,en previously reported (7) for th,.

9'!10 CO 2 - 90<_, N d - 1% A and 25% - 74% N z - 1% A _as mixtures.

ttowevcr, sine,, the. prcs_,nt study called for ,.nthalpy simulation t'(tui_al_.nt

to flight vt. locity in t,xc_,ss of 40, 000 ft/bcc th_.se calculations w'crv

,.xtcndcd up to teInpcratur_.s of 17, 000°K.

t.quilibriui_ t]_<,rl_odyn;tmic propt, rlics for

gcncI'att.d.

I"ig. _. 1.

Also a complete set of

5% C() 2 - 97% N z gas was

A Mollicr chart for the 9% CO 2 - 91% N 2 is shown in

Usin_ these stat,, propertios, \'ariotts gas dynamic propcrtic.s

associated with traveling and stationary shock fronts were calculatt_d

and chartt_d _s functions of shock w, locity and tht, driven tube initial

pr,'ssurc, s.

For Convt.nienct, of subsequent computations the tabulated

values of the _.quilibriun_ lh_,rr,_odynamic pr,)pertie_ wer{" plott,.d in ;_

fc_rm _iving ,_on-dii_t.nsional enthalpy }_M°
RTo

as d I-ui_ tion of pressure, t) in atmospheres.

where RT° 18. 71 ca[

Mo

[nchtdod in th_,sc i_lot.s ,

of cc_n>t<,nt tt.n_perattirc T in oK and consts_nt density r,_ti,> _5_ '

i 9o _ x 10 5 3._, g!cm In Figs. 3.2, 3. t and $.0 th<. keys to

line. s

\V}I (' F 0

tht' therm_odynan_ic charls ;,rt _ sht)wn. The. t,quilibrium tht. rn_dyi_:tll_ic

prop_ rti_.s of tht, thr_'e g;,s mixtures considered here appear ;_s I(>ll_vvs:



1% CO Z - 97% N Z Fig. 3.3

9% CO Z - 90% N 2 - I% A Fig. 3.5

Z5% CO2 - 74% N Z - I% A Fig. 3.7

The solution of the Rankine-Hugoniot shock relations was performed

employing semi-graphical methods. All calculations were made for

four initial driven tube pressures of PI = 0. I, I, 5 and Z5 mm of Hg.

The initial driven tube temperature, T I, was taken to be Z94°I/. The

range of shock velocities, U s , between I0, 000 ft/sec and 40, 000 ft/sec

was covered.

3. l Incident Shock

The state of the gas on both sides of a normal shock is rel,_ted

by three basic equations corresponding to the physical principles of the

conservation of mass, momentum and energy. These are:

where h = enthalpy

p = pressure

u : velocity

- density

and subscripts 1 and Z refer to regions ahead and behind the incident

8hock respectively. The simultaneous solution of these equations
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to_tqhcr with thL' _.i!_ ,,f the' (q,lili ,rialto st.t_" ci_,_rt_ procluc, :: '.',,_ults

which art' plotl,.d in i_i<,trcs J. ,3, 5. I1, _. 1-t, 5. 17 a,_d 5. ?-0 f ,r t*_t,

_'_, C() Z Inixturc, F'i_tres ;. 21. _ 2_. 5. ZT, _. 2') and _. _Z for the

9'Y0 C()_ r_:ixtttrt. ,t_lct ila }"i_ttI'_'S _. 35. _. 50, 5. _(}. _. tl ,,rl(l g. |_, !_,I"

2_ _,C() 2 mi.xtt_r_..

_. Z Stationary Notarial Shock (I.aboratory Cuordinates)

Aft(.r the passin_ _,f the. incident s}_,)ck the' n_orte/ finds list. If

in it sut)cc.s,)tti( qu;lsi-stcgtdy flow with th,. properties of region 2 ,thca(l

of th(' _*_o(i*'1 bow s}_,,_ k \v,_v,'. '['h_' flow close, to th,. g, xis of s\'_n_(.try

is decelerated to subsonic x,.l_cit_,'. Th(" st/,tc _)f the ,_as ,_Ion> tln_.

stagnation strt.amlit_e ,_n b_)th sidcs _f tho b_w sh_('k is govornt'd by

tt_,. same thr(-o conscr\ati,,:a laws.

where s_,Aascript _ rt.l-, rs to the rcei,,n t)t.i_i_.d the bow sh,_(k. 'l}i,

calculation pr,,duccd th, tt.s_.lts ,,vhic}_ ,,re i)r,.s,.utod in }7"iffurt's 5. _

-)

3. 1g 3 15 and % IS for the 3_<, CO Z si_s t-nixtttrc, Figure's 3. )' _ 5

and f. 35 for the q"_) C() g _ixture a!:d i:_. 1. igt_r_,s _. 5-t. 3 _. 5 t., ,,u(i

_. 43 for tl_t, Zq";> CO Z _ixtt_re.
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3. 3 Stasnation Region

The flow along the stagnation streamline in region 3 is

decelerated to a stop at the body. The stagnation conditions are found

2
as follows: The enthalpy is given directly by h s = h 3 + 1/2 U 3 The

stagnation pressure is computed approximately by assuming incom-

pressible flow Ps = P3 + 1/2.f3 U32 Both the stagnation temperature

and the corresponding density are read off directly from the thermo-

dynamic state charts and plotted in Figures 3. 10, 3. 13. 3. 16 and 3. lc_

for 3% COg mixture, in Figures 3. 2_3, 3. 26, 3. 28 and 3. 31 for the 9%

COg gas and in Figures 3. 35,

gas mixture.

3.4

3. 38, 3. 41 and 3. 44 for the 25°70 CO 2

Gas Comppsition Behind Incident Shock

Using the equilibrium temperature and density obtained in

Section 3. 1, the composition of the gas was calculated for the initial

shock tube pressure of 1 n_m as a function of shock velocity. The

results for 9c_0 CO 2 and 25% CO2 gas mixtures are shown in Figures

3. 46 and 3.-I7 respt, ctively.

3. 5 ComT)osition of Stagnation Region Gas

The equilibrium concentration of the various species appearing

in ti_e dissociated and ionized gas when heatt,d to the t,nthalpy 1,'vt_l

cor,-, Sl_onding to lhc stagnation point had also })ten obtaint.d .tud t)lolt,'d

;is ;t lltl_tt[on of s}loct< v_locity. The 0,% CO Z gas n_ixture ;at sh_)ck tttbt,

initial prt. ssurc I_ I 1. 0 :_nl was only consid_,red and shown it_ }rig.
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3. 48. Compositions for 9% CO2 - 90% ?_2- 1%A and 25% COg - 7-t'G

N 2 - 1% A and at initial shock tube pressure of I mm and 5 n_m Hg

were reported in refer_,nc_, 8.



4. EXPERIMENTAL PROCEDURE AND INSTRUMENTATION

During the present experimental study special precautions were

taken to ensure that the contamination of the test gas was at the minimum.

A thorough cleaning of the tube with acetone and dry,clean rags preceded

2-3 hrs. pumping period prior to each test. The tube was normally

evacuated down to approximately 8/1_ and kept at that pressure to promote

outgassing of the walls. A leak check taken at that pressure indicated

normally a rate of 0-0. 8_¢ per minute. The tube was then filled with the

test gas to the pressure level required for the experiment. Premi×ed

gas mixtures were purchased from the Matheson Co. The analysis of the

gas provided by the supplier indicated nominal composition variation of

+0. 2 percentage point of CO 2 with the balance being N 2. (;ol_an grade

CO 2 and prcpurified grade N 2 with 99. 99% and 99. 99t3 n_ini_um purity

respectively (as advertised by Matheson) were used to obtain the _nixtures.

[n order to further reduce the contaminants clue t_ outg;lssin_ of thc sh _(k

tube walls a throue, h-flow system was provided. This allow,.d ;t ¢,,minu_us

sc;_vanging ,_,f thc tube at t_.st pressure tew,1 for apt_t'o'<in_,_t,'Iy _{_ L_i,u_lt,'s

pri_,r to the :tctHnl run. The test gas w'(_s introduced thr()L1,,,h _ c_,ld tr;_ i,

of dry ice ,itl(t /_cct()nc at the diaphragm end of the tube whih. a _>,,,ch ,nic_,l

v,_cuum I)un_.p at the n_odel end pro(tu< cd the through flow. \_ [th the c ld

tr;_ I) ti._l',[)_'litl tr,. ()i -78t)(i th(. _T_()ist_rc i)rcscnl in th,, l,,sl z.,.s v.-g_s

r_.dt_<c(I (i,,\,._ t_, 0. ()() h ;'..,. 5cv_,ral s,tl_pl('s \v<-r<' \vil}_dr,_\\,_ fr,_ . 1}_, : _},t.

;tlld (tllill\ ,zt'(t _II ::,it 5S S_)I'( [ I'()I1_LII ('I" . _['}](' FLI}41:ItS ' I { l" { I ' h ( t ( 1 ( ) > V '' '_ _ 1 _ : l _ _



tlic sp,'{ifi, d l<_],'r,_i/_ ,' with th,' tnixt:u'c noil_;l:.ll c',,:l_}_o'_ition. )>y_,.ri

wils fcJlind t_ [Jc th_ l_l_tj{)r conl,lll_in_ant. NI_ _scll't.l_.l)ts _)f the' w;tl{,r

V,ttj_l" CtJllt('nt COtl[d I1O[ [)t' t4[)[ktiFi('d l)t.L ;iris(' ()l- iN,' {t>lldt.iicv c_l ,3.;tlt'F t() l)(,

_ibsorb<'d _,l \v;tlls ,_I th,' s<iinl)lin's, (1, vit _, ,tnd t}l_. s})t.ctl't,:l-l,.tcr it_('lf

.*"kit t..%lilll,tI,, h_,v,(,v,,r w,ts l>ade by an,tlyzin,4 th,. int,'nsity ,>f ll/g tin(,

in the sl./gn;tlion region tlii_t, r(.solv_'d st)_'ctrum. Assun_ing tln;lt ;t[1

}_ytir,_L:,,n cal:.c frotll t}_c' disso('iati,_l_ of w;ilt.r t)rt.s{'i:t in the t(.st _:._s ,)nc

iitl_'tll;tlt'.--; tht' c(_D_ +..l_tl/_ti()ns c)t \viitt. l" \.'it[)(}r to) })_' :_})iJFc)xillllilt'lV (J. ()Ill _:).

-t. i _t_:.2cl__.. [--t_!)c i__,.rforl_<_ncc

..k sci,c.ili,,t[( <ii;tgriti:_ showing the' st_in<t;_rti s}:¢_¢ k tub,'

instrtll_i.flt;tfi,-_ll _hi( h is tls(.d daring all cxi)c, ril_',.ni,_l r_ins is t)r,'s,'lii,>d

in Fig. -I. I. The s}i,._cl.._p:'cd is oi_t:lin:'d }>b <>}_s:'rvinL, tli¢' l::i::i>_,_s

pr:,fil<, c,[ ti:<. shock w;_vc wi.th cc>llin_;:l,,d ph:_t:o_:::tllipti,'rs ,:s it p,ss:.s

five sl;:tti<_ll.-, _}:c,_d :;f t}:,. test st-.ctioi_i-_t \,!:i:}? l}',. :} ,_<t_.l i_ [,_c.,ic.d I hu

sign;i[s frol,: (;tc'h p}::_t,,s,,l:sc)r are diflt,rct:lig_tcd ;li:d disl)lgix<,d <,i: ,,

',.\[t}/ ,_I'l i_'t'llt';e_. V c_i" ll),ltlI :(I. :_ t_.scc which, i,_," , "-,:_'1,1, , ,,t ;:, {}Oil! ti :,, c
-- /

Rixt's .i:,,, !. :4t,,,(,<i with ,it: ,lcc::r;tc V ,>I- l)tttt.r t}).<lll A'I,. t'l','.q.'ql'.tt' :2.;t'l'>,

i,,c'.lt,'d .,t txvc) ,at,it{,)tib ',v_,rc iils,o :ts('<t ;:-_ :l (h, ('t. ,>1 bh<,<k :_i)<, ,t ,,i)l.:in<.d

Ir:):_: tl_,' I):isSlig,' _)I t}:c l:tl_qino:ls she,ok fr<,nt. '1 yl)icn[ sh(>cl< bf_,',<i

el/it;: is sh=l',_..i: iIi F'ig. t. Z

In _)l-dor t(_ ins,if,, t}::ll tht' rc. ft,.cted ,.xp,ii:si<>Ii xv,tv<' :r,,'._ lit,.

dri,.,.r <i,_:> n,d i[:ll,i-tt.r_. '_ith Ill,' It.s1 g:.ts llc_\v \_.}:{.l: :isi/::., fix,' sI:,_rt,.t:...rl
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length driver,pressure history behind the incident shock is monitored.

The pressure data is also useful for verification of equilibrium thermo-

dynamic state behind the incident shock wave.

In addition to the data necessary for the evaluation of shock speed

and pressure, photometric and photographic methods are employed to

obtain further information about the quality of the incident shock wave

generated flow. The emitted light from the shock heated gas behind

the incident wave is observed. Fig. 4. 3 shows oscilloscope traces

obtained with a multichannel monochromator. Note the fairly narrow

bandpass of each channel. From that the quality and duration of the

steady flow at a given station is determined. Also using a two-color

photometer with its entrance slit focused on the shock layer ahead of

the stagnation point of the hemispherical model it is possible to detcrn_inc; 1)

when the flow around the model is fully established and how ste;tdy the

test flow is. Z) when tho mixing zone between the test gas and the driver

g_ts arrives at the n_odel. Oscilloscope traces of the si_nnl from th,' two-

color photon_etcr _re shown in Fig. 4. 4a. The upper tr_tc't' corrcspc,nds

t_, the blu_. ¢ h/_nt_(,l. "lhc })ott()i_l trace is frol_l the r_.d _ h.,_u_.l. It is

intcr,.stiJ_<_: t<_ not<. tl_,. blue si,+.:n.tl sh,)\vs in _._t'Iit'F{tl <+_I1 inc r<,;, ->, ,i !.ltt_'=_--{t\'

ill)till <tI'l'i\,tI <)1 th,. niixl,d 7;is while the r<'d , }l<iI-ll]t.[ 7t1\,.{t\'5 i: <iic<,i< _.,

<ll'c) t) in r,idi.til<_rl ,It il5 l't>Sl)OllSt' w<tvt'l<'l_i.t'lhs. \n [l]'_,ik_l ' t t>It'_'i'I't<'I" t'.lll/!'l'+

\_,<,s .lls() tis<'(t to <tsScss lh,' quality cJl [low by sh<_winc the. sh.tlJ,, ,,f th,.

iilci,t_.nl shcJch \V,iVt ;llld tilt' S'),'lllllht'tI" 7 t)l Ill< > llll)(t!'l fl'>\'.. 'I'hi._ is



illustrated in Fig. .t.-tb whcrc _ photogr;tph obt,_incd with . 050 L_ scc

exposure and containing three frames, each taken lO/_scc _part, is

shown.

q'racc_ of the discharge current and voltag,, in tht. dl'lvcr arc

tak(,n during _,ach run in order to cvaluatc th,, operation t,f the drivcr. It

is felt that in order to assurc reliability of the d,_ta a tlaorou!<h dia<n(,s_ic

in,_cstit_g_tion of tht' t,'st flow' quality must be carried sin_ultanct)usiy

with th(' pcrf_)rmancc of the cxp_,rimcnt.



4. 2 Convective Heat Transfer

The determination of convective heat transfer rates in the

hypervelocity flight regime has been a controversial subject because of

a disagreement between data obtained in the Space Sciences Laboratory

and those of several other investigators. For this reason, some care

was given to the investigation of measurement techniques for convective

heat transfer in the blunt model test configuration. Two different types

of heat transfer gages were used. One was the calorimeter or thick

film gage and the other the thin film gage. Since we have found that

material properties appreciably affect the apparent heat transfer response

of the calorimeter gage, several materials were investigated. The thin

film gage was also used, since as a basically different means for th,"

measurement of surface heat transfer, it offered a capability for

discrimination between the results of the different materials obtained

with the calorimeter gage.

Photographs of the types of convective heat transfer gages

us_,d in t}_" present study are shown in Fig. 4. 5. The two-calorim_ter-

gage ,a_odel was ust, d to obtain simultaneous data with gages of diff<.rent

matt, rials or of different geometries. All models had 0. 5 in. nose

radius, t_ecause of the high heating rates and short test times assoeiatt_d

with hypervt, locity flight simulation in the shock tube, the use of gage

response in which the heat is assumed to be distributed uniformly throttgh

the gage will be in error. Time dependent temperature distributions
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and corrections for this effect have been calculated for two tyl),,s ,_f

ga_e materials - platinum arid Hytemco. (a nickel-iron alloy)- with

different gage element thickn,.ss(.s, qhc correction c,lrves :,r, s}:,_',v;_

in Fig. 4. 6. Note that the thick i{ytcmco i,_:ttcrial has gt rclat:,v_.lv

large correction; this is caused by the fact that the heat is c'¢_ndu(:l,.,.[

slowly into this material in comparison with the plntinun_ _aleri:-_l ,_s

shown in Fig. 4. 7. Thus. the temperature gradients are reli_tiv_ i\'

steep. Corrections for thinner gag,_s are s_nalI; h,,vvev,.r, ,, thin ,t_;2c

wilt lose heat to its backing: l_:at<.rial early in tt_c t_.st tinge. '['h_'rctor_.,

w',, h;_ve conclud,.d th;_t for the types of t_,sts d_'scrib_'d in h_,rc ,_ I). IIt_Z in.

thickness is most approi_riate for ,_ t_[atinun_ gage. In ;tn attcmi_t to

ci_eck the. scalin R law of th(, conv_:ctiv,' heat transfer several r_ms w,r_.

t:_Ldc with a _ in. tnodel having g in. nose radius as sh<_wn iz_ Ki<. 4. S.

l)ifficulty was experienced however witt_ eslablishin_ steady flow around

{_ ;!nd n,._ r(.itd;tblc data could t)e obtained.

The h_..tt tr/:nsfer RaR, s were n_u:_tect ;,t thw sta,4nc_tion t)_)in*,

!}_c hc,_ispi_crical n_oclel "I'ht: dcsig_ dimensions of the a;_'-_' werc

l(, in. wide by 1,/ t in. long as illustrated in Fig. -t. 9a. also th,.

:_),t_',ti_ g in I}_c t.i}_)-.:v 1)ase is indicated in the same figure. Metal and

phenolic nylon models were used in order to det_.rn_ine whether any

_.1_ ctrical _,ffects due 1_ c_nductance of the modcl could be /tffecting the'

.:' ,_', r_ sponse. No difference was observed. In the initial stages of th,.

charac_ ('ribll('S.

.<aR,:s was fo,md to hay,. scver:_l _nd,,sirablc



1 I _ _ I_ _ . ,_ !_

A strong negative potential with respect to ground was observed prior

to the arrival of the incident shock wave at the model. Also a fair

amount of noise was superimposed on the thermal signal once the flow

around the model was established. Several schemes were tried. As

the first step, each side of the gage was connected through a 10 ..O_

resistance to ground as shown in Fig. 4. 9b. This succeeded to eliminate

the strong negative going precursor which affected the gage prior to

the shock arrival. However, as soon as the flow was established, quite

a strong current, approximately IA, was observed to flow from the

plasma in the shock layer to ground. Presence of such current could

produce additional potential drop across the gage which could not be

distinguished from the thermal signal. Therefore, this scheme was

abandoned and it was decided that the gage must be left floating, in

this case the potential of the gage rapidly changes polarity _t the moment

o'f shock arrival as shown in Fig. 4. 10a. The associated pot_.ntial junlp

of several volts was observed. No current between the gag,' <tad th(.

ground flows with the gage connected through 1 M_ r(.sistancc t<.>

,_r,)und. bLlt n very citrefui balancing of tht' difft.r,,ntiitl pre;l:llptifit, r

is r.,, c,.s_._r\ t<, i_ii_{;:_ix_, l}_t, _.ticct._ _f tbc ti'._last_'nt pt_t,,tali,iI c};:_ngt, c,n

th,. th,.ril_a[ si,2i_,l of th,. ga_<" as sh_v,n i,l 1:'_. t. 10h. ]l_ i,,l(titi,,,-

prop¢.r shicl<tin_ of the leads and a perf,.or circuit syI_inetr_ ,re required

for protection against disturbances caused by electromagnetic coupling.

With all these prccliutions applied, a completely clean signal fr_)n_ the

-19-
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rep_,rt_,d in R(_f. Z. .%in,," c,thcr in_.,-stig_ttorn (<i) {iJ) have r,,:_t;rt,,d

lll('ilt4ttl'( tll_.'[t[. !;tl<,'II \_,,}|1 l)l.ttintt_ _ r..... ,- tt_,:t _r i_ _iut_i',ic;_, ,!i_,,<,r_(-
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ment with those of Ref. 2, the validity of the measuring techniqucs

employed was investigated. Fig. 4. 11 shows traces taken during a high

velocity run using both the platinum and Hytemco gages in the two gag_,

model described earlier with gage currents equal to zero. It has been

reported by Rose and Stankevics (9) that a spurious zero gage current

signal was observed when gages of thicknesses corresponding to th,,

present Hytemco gage thicknesses were used. Fig. 4. 1 1 indicates th,ut

this effect is absent from the data presented here. I-towev,-r, thor,, is

significantly more signal noise generated during the establishment of the

test flow for the Hytemco gage. The second gage evaluation test was the

measurement of convective heat transfer {finite gage current), again

using the two gage model. Results of this type are shown in Fig. 4. 12.

Again one sees the more pronounced signal noise associated with th,,

Hytemco material. However, a significant period of test time exists

during which _ccuratc slope n_easurements of the tlyt_,mco signal can

be made. The platinum signal is quite clean throughout a large t)orti¢_n

of the t_.'st ti_c.

'Fh,' r_'du('t'd hi,at transfer data for tlu, two ga,<,. _:_lcri; Is IttSt

(tis('ttsst.d were f(_und to St' in significant disagreeing,hi, lhc Iiyt,.l (<_

material ttst.l&[Iv indi_ ating apparent heat transfer ratus consi(tt.r,lioly

hi-}_cr thi_Ii th;tt _,l_t_lint.d with plalinun_ (see Vig. -t. l.l). .,\[so, I/lc_rt'

data scatt_,r is t_,und with the }tytemco gaRcs. Sinct, it was not app,trcnt

which material gave the corr,,ct signal, or indeed, if eilher mat,,rial

-21-



did so, we investi_;_tcd other approaches to the mcasurell_cnt ,,f

stagnati,_n point hcatll_g. ].'[rst, to determine if the alloying l)roccss

in the }{ytcmco was _ausin_ a discrepancy, nickol thick flln_ g,_cs were

c_)nstructcd ,,_,d .,un. Thc. se dater tend_,d t_ ;,_rce with th,. }{ytcn_,co

results, thus suggesting that the properties of nickel itself wcrc causin,a

the difft'rence bctwccu the _age responses. Second, the thin film

tecllniquc was used t_J provide an esscntfalI\,' different means for

measltrhl,< tht..st,_x_,_tion point boat tr;tnsfer. A photograph of a

sputtcrt.d p1;_lin_t_l_ tlli_l l-ilt_ ga_ae and 1_odcl is sht,wn in }rig. -t. ¢t) ,_tt_i

the response t,I su{h a g,tbl(, is shown in Kig. -t. I {. The rcduc,'d heat

transfer rat_'s, corr,.ct,'d for surface :t_,_tcrial tc_pcraturc ch,tngc

art. sl_own in }:'ic. 4. l-t al,_ng with the obscrw'd platinu:_,, tlyt,.mco.

nickel and gold calorimeter ga_' data

_._'"_ C() 9 "" _, 1,,, N, and 25% COg 75_1, N 2

Data for air as wet1 as for lht

_3_].xturcs arc shown. _l't)l-13

) )



measurements° Measurements of other investigators using calorimeter

gages in a shock tube are not given since they generally agree with the

present data using the same technique. Additional data <,l)tained with g_Id

gages were found to indicate much higher heating rates than those obtained

with platinum gages and generally in agreement with nickel gage values.

Also, we have conducted a few tests with silicon oxide coated nickel

gages. While there is not yet sufficient Lnformation to construct a

complete story, we have found that the apparent heat transfer rate for

these tests has a tendency to agree with the low level of our platinu_n

data. It is clear that some effect other than internal electric phenomena,

of which we originally suspected the nickel and Hytemco, produces the

difference in heat transfer readings. Therefore, we have tentatively

concluded that the other investigators of hypervelocity convective heat

transfer have used measurement techniques in which the surfaces can

now be suspected of having low effective catalytic activity. Fc_r example,

concerning the melting aluminum model results (II), }lartunian (IZ)

has stated that aluminum is one of the' best non-catalytic materia[_ _f

which he is aware. Also, Hartunian {13), on the basis of measuren_ents

in a discharge tube with oxygen and nitrogen atoms, and Myerson (14),

usin_ q_lalitative ar_umc_t._, have bc, th =tatc_l that i,_atiI, l_._ i._ laruely

non-catalytic to atom rccon_hinati_,n unless exceptionally clean.

The uncertainty range _,f c(mvective i_eat transfer results ha=

been estimated t,) be : IZ ,0.
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t .

-i. { Total t{Jdiati,.,n St_ldy

In th(, c()urs_, t)f the present sh_ck tube investizati<)ns ,_t th,

l()t_*l radiative, t_ropt, rtit's of high tcnlt)cr,_tur_ gas l_ixturcs t_<,_

exp_.rin_enl,,[ ({_.,ili,qur_ttions of tht' cavity gagt'([_], x',i:(,a<, pri_i},l, I

op(,r,_ti,,n is d,.sc:'il)(.d in section q, werc eml)l_,ycd. In the. fir.-,t

configur,tti,on the _nt.asuren_('nts were mad(, of radi:ttion t.n_itt('d lr,,:n

the g;_s fl()w h(,hind th,' incident shock \vav(,. The scht, matic ,trI',_nKt'tli_.t_t

(_f the ga,,t.._ is sh_)wn in Fig. -t. 15. Only the equilibrium r:_(liati_,_t xv,,,;

Incas_lrcd. The gagt' was located ,_t ;_ distance from the c,)llim:,tl_ng

stit and therefor<, was viewing a narrow layer of th<. gas across lh_.

shock tub_,. Fig. .t. 16 shows the ,_a_e holder and tl_e ga}ae. A fus,.d

silica quartz \vind_,w vvT_s separatin,., the ,_age from tht: flow. In r_'¢htcink_

the data 90",{_ transn'issi_)n was assumed over the whole w,tvelength

range. Also the t.ffcct of off-axis radialion and varii_ble distan(.,' fro_

the g_ig<' was acc,),mtt'd t_0_" by int_._rg, tiI_/ th(' s,)lirl ;_n/l_' {)v,.r t},<' \\h(,l_.

c_)ntributing \'ol_tt_:c and finding an avc_r;_,_,e value c<)rrespondin_ t() {h('

\,oIu_t_e _.×t,'nrh'_t l)y tht' elllr/tl/e(: silt ar_'7_.

Tht. tc_!)cr;_tt:r_'s and densiti,'s of lhe t,'st Uas in t}_" _. _,i_'.

behind the incid,'_t shock dre [i,_xitcd by th_ _ strength of thc sh,_( _, w},i__

can he. £cn_.rgtt_.d at ,_ given initial pressure with the ,_vailabl_ ,':_,'rvy i_

the sh()ck l_,b,, (lrivcr. In or(tot t_) obtain ('xp_.riment;,1 ,-,,di,tti,)_ d,,l,i

iro_n _,-_s _t t_'n_l)t'z',_tttres in the r_,nge ()f IZ, 000 to 16, ()00"K _,_(t ._t ,_

rt.1;_liv,'ly hi,_'h dt.nsily tht' iuv,.stiR;_tions wert. custo,_arily ('g_rri(.(! ()ill

-Zt -
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in the reflected shock region of the shock tube. This n_ethod, however,

holds several disadvantages which can be avoided if the gas in the

stagnation region of a hemispherical model located in the flow generated

by the incident shock wave is used as the source of the radiating gas.

It was therefore decided to employ this test configuration as shown in

gig. 4. 17 for the present study of the high temperature gas emission.

From previous investigations of stagnation point convectiw, hca!

transfer and studies of shock tube flows it is known that the flow

establishes itself rather quickly after the passage of the incident shock

wave and remains relatively steady for a sufficiently long time to permit

the measurement of the radiant emission from the shock layer gas.

Since the flow is steady in the laboratory coordinates the requirements

on time response of the instrumentation employed in the mt, asuremcnts

is less severe. This configuration is rcstrictc_t to conli,.t,_tri_lions

of equilibrium radiative properties only. This is so because the fr,.e

stream flow entering the l)_w shock, which forms ahead of the, l_odcl.

is already in ,t st_ttc ,>f high thcrmoche_nical excitation t)_'il_,a carli_.r

proccss,.d b, the' passaac of the incident shock wave. as cot_l_._rcd t,_

the free stream conditions a vehicle w'ill experience in ;i lliRhl lhrou_zh

an ;tt_nosph_'re.

sh,,vvl: ill l'tgt. |. 1, \VitS used I<)r Ilit,st _._f tht _,,,dcl _'Xl),'rklll,'Ill>5.
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to stand-off distance of the bow shock a larger model with R n = 2 in.' and

3 in. diam_ter cylindrical after body was tried for several runs. No

satisfactory data were obtained mainly due to the, difficulty with the,

establishing of uniform flow around the model as indicat('d by large

fluctuations of the red and blue chanm,l phot_mt, tt,,- signals. Th(. t{ n -- 1. 0

in. model did not experience this unsteadiness, and the test flow was

i'o_md to be considerably, uniform. The. arrangement of the cavity ,,_,age

itself inside the model is shown in Fig. 4. 1'_. A rectangular shape

sapi_hire window 0. 1 in. by 0. 5 in. was used at the stagnation point of

the znodcl. The gage itself was located away from the window with tt_'

_'ntrance slits parallel to the window aperture. Thus, the ooa,,e_, senses

only." radiation from a region of the shock layer close to th_ axis of the

n_od_.t. For the test condition range of interest here, the stagnation

region has almost uniform temperature and is essentiall V transparent.

}"or instanc(_,at Us : Z;4, 000 ft/sec and P1 _ 1. 0 n_a the temperature

CT_

i_: t!_,. <_°'i,.,"CO 2 - 91,0 N£ gas mixture behind the bow shock is T_ :_ 15,_00°K

( O Kwhil_ the sta_nsition temperature is T s _ 13 )_0 ". .\lsc, th,. th,.c_r_,_icatl¥

pr,,dictcd radiative flux at the same conditions is approxi,natcly 1. 2 x l0 t

watts which is about 5% of the black body total radiance. Before the
Z

(2II/

reading obtained from the cavity gage can be interpreted in terms of

radiative, power emitted by the stagnation region gas one must Know the

radiating volume and steradiancy of the emitters. The radiatina volu_ne

is defined by the field of view of the gage entrance slit and the model



window aperture on one side of the normal distance between the model

surface and the bow shock wave,. The stand-off distance was measured by

two techniques. Entrance slits of two two-color photometers were focused

on the axis of the model ahead of the stagnation point at a distance encom-

passing the expected location of the bow shock. The character of the signal

from these instruments indicated whether the predicted location was

correct. A more accurate measurement was made using STL image

converter camera. A photograph obtained by this means is shown in

Fig. 4. 19. The instants at which the three frames were obtained are

indicated on the monitor trace. The upper frame is taken just prior to the

incident shock arrival. The center frame corresponds to the test gas flows

while the bottom one shows the flow of the mixing zone between the test gas

and driver gas.

In the reduction of our cavity gage data the theoretical predictions

were u_ed for establishing the radiating volume depth. An effective solid

,ingh _ corresponding to a parallelpiped defined by the window aperture area

.tll_t _:l, st;_',',,.t-otf etistan_ _' w,_s conqputed by porforn_ing inlegration <)vcr thc

_,_1_1 \<,l,._z_' _,., z_ })$' th,' _,_(_ _ntr,_nce slit.

The. ttnc<.l'talnty of the. g;_s radiance obtained _v n_c_,ns of th," tot_l

r,_diation cavilv _;_g.,. has be<',1 , .q_.l_:at_.d b\ consideriIlg the uncertainties

whi, h ,'l_t,'r iI_tu Ii_,. p_i_,,.try i_x_.g.ts,_rt.mt.t',ts of the g<,_, output g_nd ilsoon<'s

which aptJ_.s_t" in the. r<,duction of the ,oa_,e_, signal. The r,_nge of u:_c_'rt.,inty

\_<is i-,,ul_ct to I[<' b,,t\vc.en , 17+_ and > _%

-Z7 -



• L ' "#

-Z'_-



' i

quartz achromatic lens with the entranc,, slit of ti_e instrum_'nt p_,rpcl_-

dicular to the axis of the tube. Using a suitable stop and a 0. 050_ wide

and 3 mm high entrance slit an optical resolution of 0. 2flxsec was

achieved. The measurements were made at a station located at a distance

of L/D = 51. 5 from the diaphragm end of the tube through a flat, fused

quartz window, 1. 78 cm thick, mounted in the sidewall of the tube. A

light trap in the form of a blackened cylindrical cavity was placed

directly opposite the observation window in order to eliminate, the effects

of internal reflections inside the shock tube. The dimensions of the

light trap were chosen so that the solid angle substended by the spectr_-

photometer was lying fully within the bound of the cavity opening

To measure spectral radiance Jarrell-Ash Co. f/6. $ plane

grating spectrograph with a dispersion of approximately 40 X/n_m was

equipped with six photomultipliers mounted in the exit slit plane.

Because of the size of the individual detectors an arrangement as shown

in Fig. 4.Z0 was necessary in ord('r that the radiation in adjacent

spc_ tr/ql intt'rv;_ls could b,' m_,asured simultaneously. A fibre optics

p/_(:l<agt., with _,ach bttndlc _,utranc(' aperture of 5 trim high and S mn_

k) k)

wide. gix'in v 200 A ,_f spectral coverag{, or a total of 1000 A for th_

O

five channels, was used at wavt,lengths above.t000 A. Five 1t)2-8 photo-

multipliers were loc,_ted at tilt" other end of the fibr(' bundlt s. t;'or tilt:

O

ultraviolet region of the spectrum a quartz lens reimaged a 255 A wide

_cction of thc spectr_lm from the focal plane of the spectrophotometer

)Q



photonlultiplicr_ w(.r,. <_porntcd at -700V with idO-f_toad r_..sist_,,'s

Prop_,r c,_pacit_,_c (. Wg_..s inserled __(r_ss th(' l;:tst .t dyn_ds in tL_. v,,ll,_g,,

divid_.r < ircuit of ,.;t<}_ phot_J,nultiplivr. lhe o_ltp_ll fr,,l_ th_ i0}, ! ,-

z_ultipli_.rs w;t._ f,.d into lh(' ']'yp(' I_. plug-in pr_.it_plifi_-rs ;_rsl lt_.

signal xv_s r_'c_rd_.d ,_s ;_ function _f tiI_e by n_.a_s of 'I'(.ktr_nix Type.

q {5 ,)scillosc,_pt.s ,_n_l P(,1;,r_oict filn_ ca_ncrg_s, i1_ ccrtnin rgt_g_.s ,,f

op,.r;ttion ;td(liti,_,_l ,_plific;_lion <of the, t_hot,_n_ltit)li_.r signori w_s

n_'¢ wss,_ry. T_.ktroni× Type IZ7 _t_it, with a g,tin of 20 w;_s <._l_,ye.d

to ;_plity t}a_. si_:nal 1)_.l,or,.' it w;,s fed into the. "l'ype !_ })r_'g_pli_i, r.

The' tittle. ('onstar_! _f the con_plt,t(, cl_,ctrical circ,_i_ us,'d in t]_, t'¢.,_,l-_,_l

w,_s cstin_it,:d t,_ b_' l_'ss Ib. an 0. 075 /t._c.

C_libr_tton

Th,. c,iIibrati_m of the" complctv <)l)licg_[ syslt.ll-_ \vits _;,tclt. f,,r

(*ac[l run. .\s _, 5()tlrct. ()f radilinI cherry [)_th the. stand_rd llt_l_slt.ll

.\ (;. l._. ttmgsl,,_ ribl)_)n la_ l, \v,_s calibrat_,d by th,' t',_r,.:,,, _i

by I.eeds and N_rthrop _,nd cdiibrat('d ;tg.,insl it })l;i(k b_,dy v,.;,s _ts_.c! t(,

obtain th,, t_mMst,._ ril)10_n bright_,.ss !_._tii_.rgtltlr,..s ;_t ()l}I_'l" t',_l'l','l]l

stettil'l_S, t;rt'q_{'nt chocks ,a_:_ro _n_trt_' _I thw bri_htnwss l('l_l[)t.F&I_ii',,



supplied by the NBS for this lamp. The temperature deviation was

found not to be larger than 6 ° which corresponds to a maximun_

uncertainty in the value of absolute intensity measurements of

approximately 3%. The true temperature of the ribbon was obtained

using radiant properties of tungsten tabulated in the American Institute

of Physics Handbook (16). The spectral distribution of emissivity of

tungsten was taken from the data given by DeVos 17)in calculations

of lamp intensity. During the calibration a 20 c/s light chopper was

placed in front of the entrance slit of the spectrophotometer in order

to permit the use of a. c. mode of amplifiers.

The calibration of the spectrophotometer at wavelengths below

o
3200 A was made with the use of a pyrometric carbon arc. The arc

was operated with 00 ° electrode orientation. The positive electrode

was formed by a 1/4" diameter National Carbon AGKSP grade graphite

r{_d. The center of the positive crater was imaged on the _.ntr;_nce slit

,_f the spectrot)ht,tom_'tc'c and the'current (arcftally act iustcd in ordt,r for

it Io l)c just I),.lov_ the ov,'rload.value wh_'n the c,_librati,*n \v;ts i_-tdc,.

(_;trt" xv_ts t,,kt't_ t,) ,lss_.lr(. th:lt the _,ntranct, sli_ _v,,.s (ilL, ,! !tt]',- },\ t}:,

v'_'llter set ti(_tl _)f 1}1_' t*_)slt[\'e crdt_'r. The ,_rc _,_.' is ,ts¢,kl?,t'(t lt_ _,l!_it ,t>

a grey b_cty at ,_ tr,,te l,,l_.,})wr,tt,trt, ()f _,,S()()"},; ,,,.ilh ;,,_ _.,_is>ivtt 3 ,,f' _'7

(IS). A (?h,'(t< _,l t,,lil)r,tll,)n ;,t ;, wit_'l{'t*,,'t}_ ,t xvhic}_ 1}_, rit)})_}_ !:' .:,_,_t

I\Vt) ll/_'lht)(_S.



Data Reduction

The calibration of the opti(al system was accomplished as

described above by means of a localized rcJdiation source placc.d at

a distance from _'ntranc{" slit of the spcctrophotomctcr equ_l t,) Ill,,

distance between the center of the' shock tube and tht' t_ntrance slit. The

spectral radiance of such a radiation source is .ai\,,n in watts per c n 2

steractian-micron of spectrum length, ltowcver the gas radiation v<hich

reaches the photomultipliers con_s fror_ points located along lhc depth

of the radiating gas cqu,_l to tht t dian:ctc, r of th<. shock ttfl_,. It is

thcrt.for_, n< cessary to ,'val_latc the relation bctw,.,,n th,, calibration

siRnal and the total oncrgy l_casured by the photodetectors froin tl_(,

radiating volun'," ,)i th,' _;_s. An assunqption is made that the g/is in

the shock tube hi_s tmih)rn', radiativ,., prol_erti,,s. Three limitin a cases

will bu illustr;_tcd. In th, _ first case \vc c_)nsid,.r th(, distribution of

radiators in the' plan,, l'/ing along the axis <_I the she,ok tub<' and norl_,al

to tht, optical axis of the sy:>t_,n_. Since this pl_,i_c, is t_._cused dir<_ctl T

onto the plane containing the {'ntranc<. slit _>f lhe sl)cctr,>I)h,_tolnclt'r

rndhition fro:n ptdnt rs_digttors l vil_ outsi<tc th<. il_';,gc ,_r_._, of th_ slit

will rttat contribute to the si<nal <,bscrv(.d t;y the ph(,Ic)d{-t{',,ors \s

shown schematically in Fig. 4.! la the l)oint radiator h)c,tt,,d at () will

have its linage in plane :\' Solid art,<,ic c×t_,nct_+t by point 0 is

"a,
77b
-vT<,-
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Points located off-axis in plane A will have their images in plane A'

at a distance

I 0., I

from the optical axis. The limiting point K has its image at K' which

coincides with the edge of the entrance slit of the spectrophotometcr.

Any point with _ _ O_ will lie outside the entrance slit and thercfol'_,

will not contribute to the measured radiation. The solid angle ,,xtcnd_,d

by the limit point K is

_C2= g-g,

Now in the present geometrical arrangement with the slit dimensions

• 006 cm wide and 0. 3 cm high, tan _ _to l" and therefore the change of

solid angle for points off-axis is negligible. We take

_.Q = 4. 255 x io-aes_r.

as the solid angle cxt_'nded for all point radiators lying in pl,,nc .'\ and

whose r_diation is intercepted by. the entrance slit. The radintin,,_ volume

of thickness _3( l,_(',-_t<'d in pi_,n_' .,\ contrib_din,a th,' m_'s,_urt.d rg_diation

Z

_A'l/t rc h is ttl,' h,'i,-l_t _t l}_,' slit ,,nct ._ is its width.

-- ---" V I"2

l], :l<t tl', ' _! tl

_ ; _-



"jTD _" l,',s

EA = [ 4-

Where [ is the intensity in watts per cn_ 3-str-micron.

The second case will consider point radiators located .t x

betw_en the centt, r plane A and the far wail of the sh,_ck tube, plnnc B.

The image of all such points will bt, formed ahead of the' entrance slit

,tt a distance x' d_,termined from the lwns f<_r_ltl;t. As shown in

Fig. 4.21b the entrance slit acts as ;_tl exit p_q_il for th, _ optical s.vsteln

limiting the solid angle within which lh,' individual radinting points

contribute to the measured radiation. :\11 points lying bctwc_,n I_, and NI

subtend a solid angle

_( a,_ .i11 .-:( a.

is an effective height given by

'Ihc location of point L is found by follow'in_ sin_pl_. _,'o_nctric;_l r_.l_ttions

at _Z L

limit point,

located at

,)7Z 5 _.

the solid angle decreas,,s rapidly and bcc_n_cs zero iit the

beyond which no radiation enters the slit. This point is

-_,4-
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The effective width of the radiating volunle is therefore

Z/

: x (o-- x) D
_ta.,

Similarly the height tt is found

Hence the contributing volume is

The energy entering the slit is therefore

which is exactly the same as that radiant energy contributed by the

layer along the shock tube axis. As the third case we consider

contributions from gas layers between the center of tube A and the near

wall C. The geometry of light rays is shown in Fig. -t. 21<. Here

again we observe that the entrance slit limits the solid angh+ extended

by the gns rndiators, t"ullowing sin_ilar derivation as in tt_c previous

c;_sc wc arrive ,it II_c same cxprcssi,_n f_,r the c_>ntributing cnergy

- ,- J7 D*- K
-- ---- ._ ----- ----=a 5. K z /< .,-'_x,
_x 4- ca 4

which a_ain indic;ttes that tht' acti,_n of the exit pupil is con_pensated

by the i_creaaed cross-section of the vO[tltl-le of the radiating gas seen

by the cntrnnce slit.



'thc measured radiant enerffy in ti_c c,_.'.r._e,_f thi._ e._:periment

was reduc_d t_ intensity by dividin_ it i_y the del)th _f radiatin_ ,has

eqttal to the dia_eter ,,f the t'.Li,<0 'i \;i_ic_.! i;_.t:t ,_!_t;_i_tca Ir,,_:_ the

the tw(, be.a_-_s ha._ be:en shifted in ,.rd,.r :_ i)r_:v_..,tt :tn _,verla!_ .,f the

radiati_,n oversh_,_,tso _I'hc tr;tcc-- .re.re ,'_,l:,r<,:d and the ti_,c f,'r th,.'

,,versh,.,t t_, r_ach the ,:_:,_xit:. _.._ vale:,.' u..,>. Ii',.;i_,:rt_(i0 :\l._(, tire t,,tnl

length _,t the m_h-_:qt_ilil_rju: _ r_.u,i,,n '.v_;:_ dt:t(s'::_incdo In intc_r, linu

the area _t'nci¢_r ti_,' _,vcr.,;,,)_,t it ,.va._ ;t'._l'_',O(t that the r:_c!iati_,n ar,_ws linearly

ttl? t'_ the pt,;tk and th,'_: I. ll,,'.vs a_ cxi,,.'_c_:ti;,1 _]ec.ty t, tht: cquilihri_l_/

level°

The, ,)v(.±'cdl ,tnccrtainty in the final r(_s_it._ ,)f the intensity _easured

l_y _c;:tns _,f the -,i_cctr,,;_h,_t__,,,_eter was csti_iat.cd t,: bc : 15%, The

'.vavc]cngth bcalc '..as calibrat_.d wit},, a t_;crc,_ry ]an_p azid the accuracy

_,f setting ,.va_ e._ti,nate.d to bc 10_0

-3_-
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5. TOTAL RADIATION CAVITY GAGE

The measurement of total radiative heat transfer from a

high temperature gas volume to the enclosing envelope has always been

a difficult problem especially when the duration of the emitting sample

is of the order of microseconds. One logical choice of a measuring

device would be a resistance thermometer type gage. Such gages have

been widely used for convective heat transfer determination in shock

tubes and tunnels (1_, Z0).A thin film resistance gage (preferred due to

its fast response) in its normal form will absorb one part of the incident

radiation while the other part will be reflected. In most cases thr

reflectivity is a function of both the surface conditions, the wavelength

of the incident radiation, and the incident angle. In practical applications

the surface conditions of the gage cannot be closely controlled and even

if suitable calibration of ti_e surface characteristics could be carried

out, their variation during the test tinge cannot br predicted. Since the

gage will be in contact with the hot gas. conv,.ctive heat transfer will be

present which is v(.ry diffic_tlt to s,.paratc from tht. total h,.atin_ ._,n_t.(t

l)y the gg_gt'.

}:corn the theoretical studies of the wavc lciigth r_,ah)n which

will contribute to the total emission we find that in the' t.xp_.riI_,.ntal

studies describ_.(t ;thor,. ,_ spectr,,l rcgi<,n froi_ swvcr,_l I_t_,ir,.d

Angstrom to sever/,[ _icrons niust by ct_nsidc, v_'d. l)ur t_) l}_,. },{_4}_

temperatures of the gas the bulk of lht. emitted radi;_tion will !i,, in th,.

-_7-
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UV. An additional effect on the gage response is c_iused by the highly

energetic photons eminating from the test gas and incident on the

resistance gage. They will produce ph{_toclcctric en_ission of c[t*ctrons

from the gage surface causing an apparent reduction of its resistance

and introducing an error not (_asily accountable into the interpretation

of the gage output signal.

Because of all these difficulties the cavity or black body type

geometric shape was chosen for the radiation gage. The present form

()f this gage is shown sch_,lnaticaIly in Fig. _.la. The gage is mgldc in

the torn_ of a cylindrical body with a suit,,bly located entrance slit.

This form rather than thai of a hollow sphere was chosen due to ease

of fabrication. The, gage does not enclose the r;idiatin g gas but the

radiative energy enters the cavity lhrozlah the slit where it is absorbed

by the platinum film in the interior of the g;ige as it _md(,rgoes nlultiplc

rcfl(.ction indicated in Fig. 5. lb. This thin fihn of plg_tinun_ atso s(_rves

;ls ;In extren_ely fast response resistance thern_omcter. The wtriations

q

<)f rcflectivity with wav{_lcngth of clectrodeposited opaque platinum film

is shown in Fig. 5. Z. D_tta for this plot are taken from reference (Z1).

A complete g_i_',_ is shown in Fig., 5. 3. En{_rgy loss as a fraction of the,

incident energy for the geometry of the cavity gage described in this

paper was computed and is plottt_d in Fig. 5. 4 as a function of the film

rcflectivity. Parallel beam and specular reflection were assulned for

the calculations. It is notable that not more than 5c_0 of the incident



radiation will escape through the opening without being absorbed if tile

film reflectivity remains below 70%.

Fast thermal response of the gage is dependent on the film

thickness, which should be made small relative to the characteristic

thermal diffusion depth of the film rnaterial. At the same time the film

must be opaque to the incident radiation since its function is to absorb

the energy. The transmission of thin sputtered platinum fihn was

therefore investigated. The results indicated that a film of about 0. 1

micron thickness transmits less than 2% of the incident light in the wave-

length range between 0. 4 and 0.6 microns. Its transmission becomes

even less for shorter wavelengths.

The total cavity radiation gage used in the present study was

separated from the flow by a sapphire window in the stagnation model

configuration and by a quartz window when measuring radiant emission

fr_n_ the hot gas behind the incident shock. To prevent tile photoelectric

eff_'cts from obsc_lz'iug the time gage signal it was found necessary to

fill tht _ .<aZ<. with p,ir{, nitrogen and to keep it at 1 ,_t_ pressure during

the, t<'st.

The' ])r¢'st'nc_' of the nitrogen gas re_tuccd the. i_ean fr¢.t' path

of the _.lcctrons building tip ;t space ch_ir_,' v,'itt_in ;_ fracti,_,l _f :_ _nicr_)-

scc,_nd cl(_sc t(_ tht' surface' of tht' R;lgc tht,reby inhibiting f,iz'thcr ,'lectron

emissicm. Nitrc_gcn gas was chosen because of tile high energies required

for photo dissociation and photo attachment.
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mi<r,_n_ the photo('lw¢:tric ,'ff_'ct was

pot_,nti;tl of the, _,'t,,Z,t l:)_'coi_w neMdtivc. l"_._w rctns wc, rt, cJbt;tin( d with ;_

_,hiss windo_ with n.) evid_'_ce c,f th/. ph,,t_>l,](.ctric <'lf,.cl in(it, atin_

the })hi,Ions with cncr.<y c_)rrt_si)ondi_t,.z, t,_ ,_ w,,v_.il'n.,.4tta si_i_ll_,r th,_n

()

$5()0 A are v,'quircd t_ cause the. photc_ ,>i_issic_n.

g. I Thct)r,.ti<'a[ Consid,,r<:tions

Tiic o})er'gttion of t}]c <a_c [S b/lscd on tht' resist.in( _' tiacvi_,-

n_,tt, r })i'irl(.'i}_l(_'. 'lh,. r<tdiant (,ncrgy which ,.liters th¢, cavity thl_)tt<h

the ci_tran<c slit is incidl.nl on tilt' intcrn,-_l slli'i/ict_, which is (,,\'¢'I'c(]

with thin t)l<_ti_t_,_ t-ilI_ <h.l,ositwct in .q _t_titerin_. pr,_c_,s._. "Ihc vn¢ c<,v...

is abs(>rbcd by the' liln_ ._.n,t ctissipg_tod i:_to it:(, qtt, irtz ba('kiil_ i_ _l,.'ri,_I.

The filn_ t.}_erc'fc,re /t_t'S nt}t function (tir<.ctly is ._ <,_l' f{)r ilit,<,-;:,rb_g

the hi:at tr,_nsfcr r<ttc [,ut is used t(, inclic,att....3ul'i/tt_'t, lt'!]tt)l l'_{tlzI't' ':l" l}_.t

iitsulator. .,\t,I,lyiitL, the' thc_ry for h_,.,t ct_ncluction it_ ;_ con_p,>>it<. (nc,;_-

hOtTlO,QOnc)tlS) })C*(J',' lilt" };i. stciry of tilt' Stll'(;tc (' lt'l]]tJt'l',ittlI't' t',lI1 })t' ,' ,'i/lit"]

tcJ l}_,. he<it tr,lnsfi'r t<_ lh,. '.-t',,._' ill).

'i h," _,t:.,_' _<ilt I>¢' ,tppv<,'.i!_isit<.<.i }),.

c<_mt>uscd c,f t'a_> l_ ttt. ti; {s v. ith (iissi::;it_r lll_.r;i'_;,[ and l,}l

i)ropL'rtiw.q as shov, p. in I. i<. -S.-_. £_at<.riltl I _.xt_.lids fr_,t-:

whili, luitt(,rirtl I ,_'..tl'It<ts Ir,,in >: : L 1<, :< 0_ l.<'l k 1, J"

<,. >,.,,_{-£nI,>i!, _!.,

(

,ill,

th,' ther:u<t[ con,i,icti\ity, density and spl,(ifi< ht.<tt ol ii_ntc•i'i;t[

similar itu:ti,tili,,> with sul_s("riI)l i will d,.sccibt, tiic t)rol><.rti<.s

(;i }>'

1 ,v!;:l,.

I
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material 2. Now it is assumed that the thickness of the region 1 is

extremely small (on the order of 0. 1 micron) as compared with other

dimensions. Therefore lateral flow of heat will be correspondingly

small and the assumption of one-dimensional heat flow in the direction

x is justified. At the same time the insulating material 2 is taken to

extend to infinity since basically in the time interval of interest the heat

flow q (t) can only affect the temperature in the quartz a small distance

away from the interface between regions 1 and g.

The heat conduction into such a model can be described by

the following equations.

In region 1

_ae f,c.., _ z

together with boundary conditions

7 (_-) =0

*-.. 70 k (,V,_
it _.c J.t=0

Similarly in r_'gion 2

.C ..q a_ _< ._

w'hilc the' bou_ld/tl"\' _(_nditi_ns ar_.

_ _.._

< ko ) ._t_

I .,._ _j-:o

l._. t _a_ a,,<._ 0

-'-=- l'l d'_ _= L
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where q (t) is arbitrary heat flux applied to the s_lrface region 1 at x : O.

The solution of this boundary value probleIn gives expressions for T t(x,t)

and T 2 (x,t). Thes_ relations wt, rc sin_p'_i!icd b,/ ;,,s_Ll_;ling that

the, thermal conductivity k 1 of n_teria[ 1 is much larger than the the. rt_al

conductivity k Z of m_,terial 2 and that the tir>c i_tcrxal ,d intcr_.st is

targe compared to characteristic time {¢%/t< _here thcrinal diffusivity' 1

K,
K I : / _lCl . This allows us to ,_ssun_e that the i_easur(.,t tcn_per:tt,lre

of the film is its surface t,,mperutur,, (:,: : 0). We recall h_,re that the

thic_,ness of material 1 was taken to b_, sn_ail. If this thickness is

sttfficiently s_nall th,. c>.p:tnded cxpr,,ssic)rL f_r the. surface t,'I_pcratqrc

can be truncated obtainin< the first order soluti<m \vherc the terl_s

containin< higher p_>wers c,f the thick__ess have been neglected. The

resulting expression f_r t,_rnperaturc is:
1:

-J_ .... , _ ¢, y-,

In our cxperin_ents the temper:tlure histor3 T (t) is r'n,.,asurcd

;,net the, tmknown h,'at transfer rate q (t) is required, qht. problem is

therefore t,, invert in c, close form the expression for T (t) given above

and to solve for q (t). The final equation is ,_iven:
ac

,)

+

T • • j

- ) 1% -"; i

,/-x

o¢

o

,,j

i<_ _ .,.,at

,.t -kO ''_-
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The solution for q (t) depends on the heat transfer rate and therefore an

iterative approach is necessary. In the use of this equation the temperature

change T (t) is replaced by the film voltage change with a proper coef-

ficient reflecting the dependence of the film resistance on temperature.

The solution of the above stated equation has been programed

on the IBM 7090 digital computer. Typical oscilloscope traces of the

stagnation point cavity gage signal is shown in Fig. 5. 6. The approxi-

mately parabolic signal of the cavity gage (upper trace) is typical of the

response of a thin fihn thermometer gage to an approximately constant

heating rate. The steadiness and duration of the radiating shock layer,

as indicated by the stagnation region vicinity phototube trace (lower

trace) is also shown in Fig. 5. 6. The corresponding history of the

stagnation gas radiance, as obtained by the reduction of the cavity gag_.

voltage signal from the previous Figure is shown in Fig. 5. 7.

5. 2 Ga_e Construction

The total radiation gage described her_, was made. by

depositing ,_ thin platinum film on the internal surfaces of _: holl<>w

cylinder which termed the cavity of the gage. The cylindrical p,trt of

the gag:,, t"ig. 5. _, was made up of several (two to four) 0. ld:_ in.

high slotted quartz rings whose internal surf;tct, s wer:. fire-polished t:_

a surface fiilish necessary t(_ obtain a uniform and d,trablc film. The

ends of the cylinder were formed by two discs onto which a thin ill,:: _,f

platinum was deposited forming a grid and hence the ends were included

--t _-



into the active surface of the gage,. In the assembly the rinks and the

end sc'ctions were electrically insulated from each oth_'r e>:c_1)t nt the,

ter n,,inal points.

The film was deposited by the widely us_d sputt_.ring

technique (Z3). This process involves gas ions, accelerated by high

voltag_-. which bon_bard a platinum c,_thode thus entriizin _ c_.rtain of

its atones. The atoms leave the s_rface of the c:_thod(, in the foril_ of ;_

vapor and condense on nearby surfA('t_s.

If the current is maint,,in,.d _t a i)r_'ticl_.rn_ined lcvci, th,.

thickness of the. filI_, ,:vit}_v: filnl cur'.sistt'nc\' _,n be' c,,ntrcotl<.d by lht,

ct,tration of sp_tttcrii_R. T<_ establistn e×actiy ti_t' thict.::_'ss of t}_c fili_

(in this case 0. 1 micra)n) test plugs n_ad_, c>f polished ([tiarlz \v_.r_"

oxt)os¢'d to th,_ coatin<a process in parallel with t}_' cax'itv _;_-,. so, '.i,_t_5

The film thickn_.ss was thel_ _eas,_rcd by means of an ii_t,,rf, r,..i_c_.

lliic'r(is( ©ibc,.

The film strips deposited on tile, ri,_s ;t_<t th<. cl_d discs wt'rc

con.,_,.ctcd into a strip's elt,ctrical (it'( uit. Th<. ccJnt;lct b(.tv,<.t-n th(.,

scctic)ns were formed usinf4 platinu_,_ c,)h>ida[ s_ltltion and curing it .it

;_pt)rot)riate temperatures. 'Fhe exter_tal l{';tds w(.r_, soft s;_hlercd to

th<.. t,.rminal points of the, ('ircttit.

The thin film gac_,e is operatc, d in ;,n <.ss,>_ti<_lly c_,n.st_nl

current type circuit as sh,,x_n in }:i R. q. ,q. }'i,iC} _. gagc [_.'/tct is cc,llil(.clt,d

tl_rough a 1500 ohn_ resistt_r to the. p_,x\(,r s_tppiy o,Hput which is

- .t-t -



approximately plus and minus 150 volts (300 volts total) either side of

ground. The voltages are adjusted to give approximately 600 milli-

amperes of gage current while leaving the average gage voltage at nearly

ground potential. The gage leads are connected to the inputs of a

differential amplifier in order to reject as completely as possible any

noise and hum pickup in the gage circuit. A Tektronix Type "D" plug-in

preamplifier is normally used in a Type 127 power supply ahead ,,f tht.

oscilloscope in order to achieve sufficient trace deflection whilt.

preserving microsecond or better rise time. With reasonable care in

balancing the preamp, the residual noise on the scope trace can be

reduced to less than Z0 microvolts over about a megacycle bandwidth.

The cleanness of the signal is evident in traces shown in Fig. 5. 6.
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6. DISCUSSION OF RESULTS

6. 1 Convective Heat Transfer

The e>:perimentai convective }_cdt trdnsfcr d._ta obtained with

platinum calorimeter and thin filn_ gages are preset;ted in Fig. 6. l.

The results are normalized by the, square root of the ratio of the r:os_-

radius to the stagnation pressure and plotted against the enthdlpy

difference between the edge' of the stagnation point boundary layer and th,.

wall. The composition in which most of the present data were art;tined

was 9"5 COg and 91% N 2. A few data were ,_,btr_ined in a n_ixturc

containing 87';/o CO 2 and I _% N 2. The calorimeter _agcs used in the

cyperimcnt were 0. 00g in. thick and were p, louutcd at the stagn;,tion

point of a 0. 5 in. nose radius hemisph_rical model. A m,w gage was

used for each _,xpcrimcnt. As described earlier a correction factor

was applicd, Fig. 4. 6, to the observed _alorimeter gage signal t_) dccount

for the, non-line:tr temperature distributi,_n across the thickness of the

_age cbc'nlcnt. The thin film ,,,_,a,,e_ results were adiusted, for the, variation

_f the heating materi,_l properties due to the change of its te_np_'ra_,,rc,

during the test _ime.

In analyzing the data the possibh _ contribution of radiative heating

to the lneasured heat transfer rates was considered. For enthalpy levels

corresponding to flight velocities below {7, 000 ft.:sec and stagnali<,n

point dcnsities of the present experiments, the radiative flu_-: to the gage,

on the basis of Fig. 6. Z, was less than 10% of the meltsurcd heat transfer

- -t 6 -



rate. However, for higher flight velocity simulations the radiation

becomes appreciably larger and may add considerably to the meast_rt,d

rates. The amount of the incident radiation which the gage will absorb

depends on the surface reflectivity, which itself is a function of the wave-

length and the surface conditions. Since these factors are difficult to

evaluate for each gage used it was assumed that the gage will absorb

50% of the incident radiant energy. Appropriate corrections were made

and the data plotted showing the range of uncertainty (25% to 75%

absorption) of the radiant heat contribution to the ga_e reading.

The present data are compared with the theoretical solutions ,,f

the stagnation point laminar boundary layer heat transfer in CO2 and air

(g4). At enthalpies equivalent to flight velocities below 37,000 ft/sec

the data lie between the COg and air predictions, at higher speeds the

data lie closer to the COg theory.

In an effort to investigate the scaling low with re eard to

pressure, sevt, r_l runs v_'ert?made at approximat_,ly the s<t_neshock

vt,ltocily blot g_twidely difft-rt,nt stagnation pressures varying between

5.25 ,_nd q-t. _ ,lt_,._,sph_'r_'. :\t stagnation pr_,ssures of 9 ,_ttll and gibe)re

tl_,. s<:,lil_g is prt'<is<,, tt<,',vt,vcr, ctala c,bt:iint,d _it the, [_>w t)r_.ssutc g_v,,

r<.sults wt',i<-la dt,finileiy d<'vi;_t_' fr<)m th<. _ain tr_'nd of otht,r _i;tt_. ..\

quc, sti,_n aris_,,s wlaether the shock layer is in eqti[lil_riun_. Using th,.

t_r_.di<tic)n <,i l't'ft'i't'Ilt't' <i f,)r tilt, rt'laxaticJn di_lstnce bt'liii_d ;, i_orI_,+l

sh,ick ol_' <'c>nclu(lt.._ th<tt with t ) O. ! <, li]ll; Ilg <t.I]d O' S I _, _0[) It/ 5t>C
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the gas at the outer edge of the b_undary layer (';_n b_" o_tt of equilibrium.

The _fffect of this on boundary layer flow and the heat transfer has not

been treated analytically with a sufficie::t rig_r to pr_vict_, th,. ar_sv,_ r.

whether the heat transfer should be eith(,r hi<her or lower titan f,)r the

equilibriun_ shock layer case.

Further consideration must be given _o the star,, of ttnc boundary

layer itself which even with its outer (,d_c in _-quilibriu_ c,in be in mon-

equilibrium duc to the' finite rccombim_tion ratt:s. }'ay and Ridch'l[ (Z5)

studied the non-equitibriur_ st;tgnatio_L point (tisso(iatt, d boundary layer

and formulated a para_et_,r which can bc used ;¢s ;_ _as_r(, of the' ,'ff_'cts

uf finite recombination rates in the' bt_mdary layer. Applying this

para_1_cter to tin(, condilh)ns of the present {,xlyrin/ct_ts ()no would ct,nclud,,

that the boundary layer is in eq_tilibriun_ for heat transfer purposes.

ttowcv,.r, no electron recon_bination in the bottn(tary layer was considcred

in retcr_'ncc 25. This l?_:ty be quite it_np,_rtant since the energy invested

in io.uization is a large p_)rlion of the shock layer flow cneray for shock

v_'l_citics in the' present study. Also lint. el,,ctron temper,_ture will

pr_)bably bc hi-her than ion temperature ;it any given point of the bo_mclary

layer and may approa( h tt_,, slagnation r(,gion gas temperaturt _. Thus,

if the boundary layer is not in equilibrium wilh respect to electr_ns and

ions, the energy delivcr,'d to its inner surfacc may be significantly higher

than for the _'quilibriun _, or one temperate(r(, non-equilibrium cases. Such

effects in combination with gage surface catalylic effects could explain
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the results obtained in the present study (Fig. 4. 14).

A summary of all experimental data available on the conv,'ctive

heat transfer in N2, COZ and CO2 - Ng mixtures is shown in Fig. 6. 3

together with the theoretical predictions of Hoshizaki. The data in CO2

include free flight measurements of Yee, et al (26) and the results of

shock tube experiments by Rutowski and Chan (27). Both sets of data

correspond to relatively low stagnation enthalpies and thus, providv

results at velocity levels lower than that of the present investigations.

In the simulated flight velocity range between 30,000 and _8, 000

ft/sec it can be seen that the heat transfer results in 9% CO2.- 91% Ng

gas mixture tend to tie below the CO2 shock tube data of Nerem (28)

and in general agreement with the Ng results of Rose and Stankevics (9).

The few data points from 87% CO2 - 13%N2 appear ta agree with the 100%

CO2 results of Nerem, which further supports the existence of a son_,what

higher level of heat transfer in the CO 2 rich mixtures over that in the N Z

rich mixtures.
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6. 2 Stagnation l)oint Equi[ibrium Total Radiation

The theoretical total radiance of a 9'_3CO Z - 91'J]_X'3 gas n_ixturc

for wide temperature and d_nsity rongos is showll in KiE. ,. d.

Also shown are calculations for air (30). Several intercstin_ properties

are noted. First, there is a significant increase in radiation at

temperatures above 7,000°K and towards the lower density levels when

the' spectral region b_twcen . 05 and . 2/-t is includ,,d. This differencc is

caused primarily by the imt)ortanc_" of the de-ionization of N' and ()_ in

this region. Second, the total radiances of _ir and of the CO Z N 2

mixture are almost identical at the high temperature linlits of the curve.

This is due to the decreased importance of n_c)lecular radiation in lhese

regions and the general similarity of the, ionization level of the two gases.

Third, at temperatures below about 10, 000'>K air and the CO Z N Z mixture

deviate markedly in their radiant intensity. This increase in radiation

for the assumed planetary gas naixture is duc l_ril_:._rily to _}_e impc, rtanc¢.

tof radidtion from the CN and CO band syst_,ms. Shown in t- id. _. 5 :ire

the contributions to the r,diation fro_ t}lc v,_ri<)us (tc-t.×cit,_ti_m n_(:chanisms

in the stagnation region _as of a model in lh,, shock t_d)e I_,r ;i partic_,tlar

PI value. This curve presents the radiant intensilics for _';_ch m('cb.ar_,isnl

based upon the equilibriun_ conc_.ntrations for the santo r:mge of shock

tube properties as shc,wn in Fig. _..t8. Note the detain,thee of lht:

conti'_uutn_ produeinR radiation mechdnisn_s :_bove ,t shock v,,lc, citv v,_luc

of g4, 000 ft/sec. Fig. (). (, shows th(, theoretical stand-off distaucc _ d

-'_0-



shock layer on a hemispherical model as a function of shock velocity

and initial shock pressure. Experimentally measured values are also

shown. It can be seen that the measured distance agrees reasonably well with

the calculated values obtained using the formula developed by Serbin (31).

Cavity gage measurements of the total radiative intensity of th(,

stagnation region gas are presented in Fig. 6.7. Results have been

obtained for shock velocity values between g2,000 and 34, 000 ft/sec. Also

shown on Fig. 6.7 are the theoretical curves (.2 to 10_t. spectral region)l

for the shock tube property ranges covered by the experimental conditions.

The radiance has been normalized by the stagnation region density ratio

to the 1. 55 power which brings the theoretical curves into reasonably

good agreement for the property range of interest. In general, the

experimental points scatter near the theoretical predictions. There is a

tendency for the experimental results to be slightly higher than the theory

at shock velocities below about 28, 000 ft/sec. Above this valut, the points

generally group somewhat below the predicted level. Note tht, f_,w points

corr_.spondin_ to t_1w_lues of . 1 n_m Ilg. These lie signitic_nt[y above

tht" l_'v_'ls pr,'di_tt'd by the t,quitibrim_', thc(,ry ;tt',d th,' a,,_.r,_l l_,_.ls

_t)tg_i_,d _,×i,t. rinl,'nTallv ,-_t hi_her prt_ss_tres Wt, ,_ss,_ci_ttc(l t}_is b_.}_._\i,,_"

with It,t, i_itiati_n of n,_n-_'qtlilil)ri:_i t'ff,'cls in Ih,' sl_,,ck l:_\'_'r. R,,.di;tti_)!a

frt_l_ ;t l_On-c(tuilil)rittll_, air shock [a\'_,r }I,tS _t't'II inv_,slig;_l_ <1 t.xl_crit_:t'_',.:[t\

175" [';,V" (_2). ,_inc," the' nol_-cquitit_ri_t_n ])l-,_¢t.s.,4 ill [hr. tl/tl(tt.[ lt..st

_,n!i,,_tr,tti(_n will i>_. diftt, r,,n! frol,,_ _}/:_t invt,sl[_gtt_:d })v ]_._gc }),.t'_t.ts_. <,I
y-,



the high temperature and dissociation level of thw _as enterin< tht, shock

layer in the shock tube, a direct comparison with Da_e's results is not

necessarily valid. However. it is noted theft ti_c _agnit_ldcs oi th,. few

low pressure points are compatible with those presented by Pagt'.

Several points from different test gas mixtures ar_: also shown

in Fig. 6. 7. While more data are required for the study of the,

importance of gas composition, there appears to be a reasonable ;_gr_,e-

ment between th_se points i,t flight v_'locitics _,bovc 55, t)O0 ft/st.e ,_nd

the other data. ttowcv(.r, at lower vetociti_,s this is not so. the, ZSq'0 CO 2

data lie considerably above, the predicted v;_lues as discussed in (onne(tion

with incident shock radiation measurem(.nts.

A time resolved spectrum of the stagnation region flow observ,.d

through a slit in the sidewall of the shock tube is shown in Fig. 6. 8.

This figure is intc,resting since it shows that the t,'st gas is largely

contan:inant free; that is, the, strong line radiation seen following the

,tvailabh, test time does not _'xtcnd into tht, test gas in g_neral. Whil_

th,.'re is the' possibility of small qu,qntilics of easily ionized c_nta:_inants

existing in the test gas. the high stagnati_n r_.gion ionization l.,,_t, ls

associated with the hypervclocity regime, arc such that the nu>:b,.r of

electrons contributed by tIqe contaminants should b__• z_egti,,_,ibl,'. Note

that a prominent H/_ lim_ exists durin< the test tinge.

The small quantity of hydrogen (order of 10 parts per _nillion)

has a negligible effect on the th_,rm_,ch,-,mical !_rc_porties of the' gas in
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the stagnation region but its presence in the spectrum allows the

calculation of electron concentration by the application of Griem's

analysis of the Stark broadening effect (32). Calculations have been

made for several test spectra by Sadjian (34); they indicate that the ion

concentration of the test gas agrees within a factor of two with the con-

centrations predicted by the thermochemical equilibrium calculations

(to temperature levels of 14,500°K).

-5_-
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6. 3 Incident .Shock Equilibrium Tolal Radiatit,n

Using a total radiati{_n c<lvit.v gaze measur_ents w('re _ade of the

equilibriun_ radiation behind the incident sti,')ck in 25% C(] 2 - 75'5 N2

gas mixture at shock velocities up to _0, 000 ft/sec. The results are

shown in Fig. 6. 9. Also stagnation point radiation d,tta obtained with the

model cavity gages are shown in the rang_' of the simulated Flight velocity

overlap. Both st_ts of dala art, normalized by lhe density ratio raiscd to

I. _5 power. Curv_:s rcpr_,scnting lh_,oretic,_l c,_Iculations obtain(,d with

the, use of Fig. 6. 10 ar<. also shown. Not( _ th,_t ;it siinulatcd Flight velocity

al)ovc {Z, 000 ft/see the thcort, tical ('urvcs collapse on each other indicatir, g

that the density cffctt was corrclatcd corr,,ctly, at lowt_r flight speeds

the ti_.or_.tical curves div_r_( ,. To n_ak_, tt',t,r_,fc_re a propcr comparisc)n

_f, .,.pc'rin_cntal data \vittn lhc th,,or,,_ical })rcdictions tht. stagnaticm point

data sIlouhl bt. compar,..d with a th,,or(,ti(<,l curv(, calculated for ap-

,_l<>,:iin tlcly PI -_ 70 lni_ tlg since only then the donsity of the radiatin_

,.t:ts will be in prop_,r relation bctwc, en the ('xperiment ard the theory.

i)_t;t fron_ the, incident shock mcasurcTnents c<{n be con_parcd directly with

th,. at)l)rol)ri;tt_, th_ orctica[ curve at i , orr,.spon¢ting Pl" It sh_>_ti,t },,. nc_t,.d

th<tt botl_ sets c)f c×pcrimel_tal results ;_re <'quail 3 t'i<<h<':" tl:,n 111, _}.,,,r(,tital

prt.dictions. A further con_p}_ris()l_ is made with the fre_ flight range data

of C. ,lames (_5). .lam{,s' interpol,tted results for 25'_0 CO Z - 75<,r'0 X 2

are shown in Fig. 6. 9. It is interesting to note that at flight velocity of

approximately 26. 000 ft/sec free flight data indicat( _ even higher radiance
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than present shock tube measurements. To explain the differences

between the theory and the results of the present experin_cnt w,, rcf-,r to

Fig. 6. 11 where species radiation has been plotted. It is found that

major contributors to the total radiation are CN and CO bands. Since

the theoretical equilibrium composition calculations enter into the

computation of the species radiation, any uncertainty of thermodynamic

constants entering into the equilibrium calculations which affect the

particle density of CO and CN will also affect the final results of total

radiation calculations. The dissociation energy of CN radical used in

present calculations was taken as D o = 7. 52 ev on the basis of the report

by Knight and Rink (36). This value is considered to be true in the light

of later experimental results by Berkowitz (37). Fairbairn (_8) recently

n_easured the f numbers for CN violet and red band systems, tle reports

f -- 0. 0318 for CN violet and f -- .0034 for the red band system. In

arriving at the theoretical prediction in Fig. 6. 9, f = 0.027 and

f : 0. 020 w'er(, used for the violet and red systems respectively. The

n,,w values will compensate each other to some extent when cised in

prt. suilt c,-tlcttlations. It is therefore unlikely that CN is the source of

lht' hi_her radiation. The formation energy of C(_) is very well estat_lish_,d

howc, v_,r sonic of the f numbers are not absolutely t<nown. Since highc, r

thitn thcor_.ti_gtily prc(ti_tcd radiation has m,w been rc.pc_rt_,d iI',,!Ei txvo

i,_d,.l>,'n(tt'nt c\l_{,riz,_t,nts it n_ust bc <_ssun_t_d theft it rt'])rt's('nls ;_ tr,l,

l_.v_'l. SI)_'clr_r<t})}_ic stvidic's of tht' rg,di,ttion _tr_. I-it'('t, sSgtl-y to c:,t,l.,i_

_q:__
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6. 4 Equilibrium & Non-equilibrium Spectral Radiance Behind Incident Shock

The results of spectral measurements made with the modified

JACo spectrograph described in section 4.4 are shown in Figs. 6. 12,

6. 1_ and 6. 14. The measurements were made at one condition of shock

velocity U s = Z8,400 ft/sec and initial pressure Pl = 0.5 mm Hg. The

corresponding equilibrium temperature and density ratio of the radiating

gas are T = 7400°K and _o = 1.26 x 10 -2. The wavelength coverage

o
extended from 2500 _ to 7000 A.

The equilibrium radiation data are plotted in Fig. 6. IZ where

they are compared with theoretically predicted radiance distribution.

There is a reasonable agreement between the experiment and the theory

o
for the violet system of CN except at 2150 A where the measured intensity

is higher than the calculated value (f = 0.027). Another area of higher

o o

radiance indicated by the experiment lies between 4300 A and 6000 A.

It is impossible to identify absolutely the source contributing to the

disagreement between the experiment and the theory without a speclr_,-

graphic investigation of the gas radiation. Both CO and C g r/tdiatc in this

spectral region and therefore both can be suspect(.d to bt, lhe contrib_ttors.

The peak of the non-equilibrium radiation is sh(_wn in Fig. (,. 1

as a function of wavelength. Comparison of tht, se data lind the cquilit_rium

radiation shown in the previous figure imlic,_tt,s that the non-cquilibriun_

r,Ldiation exceeds the equilibrium level depending on the wavelength by a

factor v,_rying between three and s-ix. Strong non-equilibrium overshoots

--_7-



_ii)t,,.,qr in _h(' spectral region b_'twe('n 3400 A .'ind 4()0i) \. The

NZ_{I- ) and C.N violet systems radiate in this _vavclen_th region.

Accordin,,.. to Alh,n ({9) the contribution of the N2_ (1-) to thc' non-

eq_tilibriun_ radiation of air is relatively low. It is possible thercior_'

to ,isslu_c theft the ."_ ¢ (1-) is also a Tninor contributor and that the
Z

stro_< non-t-quilibriun_ overshoot comes from {ht CN vi,)l_'l systt'n_.

Tht inte,er,tt_'d non-equilibrium radiation is shown in I,'ig. _). 14.

"I'h_ n_ctllod ,ls_,ct in inte_ratin_z tht, int_.nsity across the non-equilibritm_

shock wave front was (h, scritoed in section 4. 4. In order t_ _t)l._in lhc

n_agniludc of th, Iotlii non-t, quilibrium radiation the area under the dg_sh,'d

cur\',' was intt,grate(t. The aw,ragt_ intensity was found to be _. _g w;,tts/

cm -str- _t._. Assuming that this average value (_xtt,nds dov,,t'_ t_ 10¢) ,.'\

and allowing for tI_e ,_ton_ic tin(' radiati(m (39) one calcuIatt, s the l_)lal

non-<'quilibri_u_ ra(tis_tion in th(' spectra[ region betwt.en 100 A ;_nd

t) 2.

10, 000 A to be 75 watts/era Allen reported a total non-_'(tuilit_riu_

rndirtti,_n for air t,_ be 40 watts/cm'" at shock veh)city ol 5 _. 00(_ _t/ s,,c.

'[hi._ vi:l_t,.' ',,,"_s ,'x:trc_l_,,lat<.d _Iv,.,._ _<_ "'_. tl)t_ it/s_.{ ,,._ing _!_t' v,.t,, i,\

)

<l,':a, li<it I]_',' gi_,'* :, })% t' t_2,', ('__'/ ", i_l}) *t}',. • I°, .'_!:I[ <,I .>.0 \Vi*lt._ ('11'

It ca,,_ be concluded t}_cr_,lor<' thnt the, t>_n-t,cttliliI_ri:,_t_:

radiation in the pl_netary ;_t_nospherc containin_ ZS'L CO 2 and 7:_<, N 2

c:tn be about four ti_,s hizt_er lhan in lh<' t:_arth's ;,t_osph(,rc.



7. SUMMARY AND RECOMMENDATIONS

7.1 Summary

During the present investigations stagnation point convective heat

transfer was measured by means of platinum calorimeter and thin tilm

gages in a simulated planetary atmosphere composed of 9% CO 2 - c_1% N 2

over a range of flight velocities up to 45,000 ft/sec. These resL_lts and

some additional data obtained at different mixture ratios indicate that the

composition of the CO 2 - N Z mixture does not have a large effect on ex-

perimental convective heat transfer rates.

Convective heat transfer data were also obtained with gages ot

different materials. They indicate that the state of the stagnation point

boundary layer can be such that the gage surface affects the observed

heat transfer rates.

Stagnation point equilibrium total radiation measurements in 9%

CO2 - 91% N 2 for shock velocities between 22., 000 and 34, 000 ft/sec show

a generally good agreernent with the theoretical predictions of t3reene,

et ai, above "8,000 ft/sec. :\t lower speeds the experiments indicate

higher radiance. Total radiation measurements behind the incident shock

for shock velocities between Z0,000 and 30,000 ft/sec in 25% CO Z 75% N g

give results which are more than two times higher than the theoretical pre-

dictions but slightly lower than the free flight experimental data of James.

Spectral distributions of equilibrium and non-equilibrium radiation

were, _leasured in a Z5% CO2_ - 75°70 N g gas mixture. The equilibrium
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radiation in tEw ',,.a',,_'[t.l_t_t}, r,..gi_n bt>twcc, n -13()(_ \ i::_l t,()l_t_ .\ ,,.._> :i_,_.,._

tIxan the' tIlc, c,ry but not suIiiciently hig_q 1o expl;ii.n tJ_t. '(_t,_[ r,_li,,:i,>_

._ _ was icJtl_.'l(, l tO lot' ;t!Jc)ti[ "_(i ',', gl l t >;, c :;_

J

at Zh,-ii ()t} It,l_,_.c ,,, bi.cT: i.> i,t.l',,.,-t:!,

three and ic,t_l" li.ll_w,4 }_i.,_,bvr liirtli lf_,tt t'xpcct_.(t !{_r iiir.
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7. 2_ Recommendations

As a result of the current investigations certain problems

associated with the convective and radiative heat transfer becam_ _ apparent

and they should be considered in future studies.

The most urgent problem is to explain both experimentally and

theoretically the phenomena indicated by the present measurements of

convective heat transfer with different material gages. The e×perimental

program would involve a series of test runs with various gage materials

and surface _oatings of known catalytic activities over a range of stagnation

point pressures and enthalpies.

At velocities above 36,000 ft/sec it appears that the intensity of the

equilibrium radiative flux to the stagnation point of the vehicle is not

greatly affected by the composition of the atmosphere, since most of the

gas in the shock layer will be completely dissociated and partially ionized.

The strong molecular radiators such as CN, CO and N Z will not be

present. The main contributors therefore will be free-free and free-bound

modes <,f r,Ldiation. Models for th_,oretical calcul,_tions of such ;_

radiation have been developed by Breene in this Laboratory and oth_'rs.

There exists, howevcr, it cert._in amount of disagreement a,_on.a the

investigators regarding the validity of some of the assumt_ti_,ns includt.d

in tht' theortqical treatnlent of the dominant ,_odes of r/_diant ,.,_issiton.

The _.xisting results are found to w_ry by factors of 2, 5 or (,v_.n :uort.

depending on the mt'thods used in their computation.

-t'_ 1 -
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.,\ss,_n_ing tl_;Lt _ur thcoretic;il _,o_{, I gi_cs the c,)rrt.cl xa[u_' _r

the cn_ittc(i r,idiatlon per unit particle, the. next step is to co,_p_H_, the,

tot;,t contri}mtion fro,n the Riven spcci,.s c_,rrespondln_ tr_ th_ p.,rlicl,.

density as given by ttlt. ,,q_lilibriun_ conuposition _tt cnthalpy and prcss_tr

t,.vt, ls _f int,.rest. 'lhis equilibrium (:ollccnlration is obtail_,.d by

Inini,l_izin._ tJ_e Gibbs fr(.e energy and by treating the tluid ;is a perfe_:t

Ras. in the i)roc_,ss <)f solvin,,._ this pI'o})Lt._n thcrl_i_ fttnctions ,_t

,_olceulees. alert,s and charg,.d particl,.s arc used which ill t,lrn arc ._l})-

ject t_, sever.it _ipprt)xilli;ttion5, especially at high teI_perature. Also,

the assun_p/it,n c>f a perfett gas becol,_cs less valid as the charged p,rticl(,

density bct_)t_c.s appreciable. In eill_er case, lhc cc)n_puted x-:du(-s ot

species c{,nccntrations can contain an uncertainty factor of up t<, Z. It

appears that direct measurement of raditttion fron_ the shock l:tyc r wi_ich

is r,,iscd to the energy level equal to eqthalpy change dne t,) flight vclt;,ilv

,x ill pr,,dtlce rcsttlts wt_ich have more acctlracy thgin co,_parabl,., li_corclt-

_,,l calcul,,,ions. This is t_cst a('hic\-ed by the exl)erimcntal c,_,_:_lr;_i_,,_

t,s_'d in _,._r }>rose.hi stucti( s \vherc ti_c racliat£<;,_ l_c_sur£_,,> pr.,_,_ i_. 1,,_,_,,(i

dt t}l(' _t.tKntliv):l [),,il_ I (}i l}le ,_odel. l'heoretic_il prcdiction._ ,_t r,_ii.,ti_n

indi_ ,,l,' 12,.,I .:'_ I,':ll};t'l',tllll't',q ,l})(.,\t' 7('!(i(}O}*; ,tI£(t ttl<)elt'l'Att' (1 'I1 _I¢ "-; :!,_ i','

is ,t ,_i,,'i,i_ ,'_l c,_ntril)ntion fron_ the freet),,und transiti(,ns in * _,. wa'.,.'-m ....

O

lcnatt_, r_.gi_)n below _O00'( " ..\. l_t,cat, s_. of difficulties with thc ,_t)li_a[

It) (,.,llIil'iIl Ii)C {}lt't) I'\. [I C_tll b(! .s}lt_\,,ll t}!gtl l_,tgniti_dc (,t t}_c (.'t)lll Fi})tl{[_'l'_

-()_) -
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belo,, _'000 A can exceed severalfold all other radiation. A cavity gage,

with the window ren_oved and provided with a proper differential putnping

system will be able to measure the total radiation far into the vacuum UV

region, thereby providing data for the deternlination of validity of the

theoretical predictions.

At lower flight velocities such as these corresponding to Martian

entry the contribution from free-free and free-bound transitions is not so

important while the molecular radiation produces the bulk of the radiative

transfer. Ln this moderate temperature range the commonly used

techniques for calculating species concentrations in a gas mixture are

satisfactory. The only question that remains is whether the f numbers

of the radiating species are known with sufficient accuracy. Since sonle

of the syste'_',s have not bc_en explored under conditions sil_liI,_r t() that ,'n-

countered by an entry vehicle, direct measurements of the radiation by

means of the technique used inthc present study is tJ_e only assurance of

being able to deterlnine the radiative heat t-lux with good en(m_h _iccuracy

necessary for a successful design.

In view of the latest estimates of the Nlartian atmo.sphcr_, c_,[n-

position, the radiation to the entering vehicle becomes critical, l'}le

presence oI a large Concentration of Argon will have a tendency to increase

the tcn_perature ot the shock layer at a given flight vclocitv mainly d,lc to

the absenc¢> oI c}_e_,d¢ a[ changes of Argon _khich \vouid-ltbs_r}_ tL_c ,'ncray.

[n ,td¢iiliutl ',l,,,,n_ il,_cit can co_ltri!)utc t_) rgidi_lti_n. ['_lis, _,,l_b,l_(,d v, itll

the lar_ c _ ross-_t, ctiona[ di_lelisioas of the _'nlry xe}_[cle necc_,,.r\ t_,r

-t) {-



retardation creates an even heavier demand on the precision with v.} c}:

we must predict tile total radiative flux. Experiments should be <_)nciu, ted

at several n_ixtures spanning the anticipated cotnposition of the Martian

atznosphe res.

The experimental investigation of non-equilibriun_ r;_diation should

include a study at higher velocities and different con_positions than in-

vestigated in the current program. Also by applying tithe rest)lved

spectrography the contributions from various species should also be

identified and the non-equilibrium chemical process studwd.

The total radiation cavity gage developed at the Space Science.+

I_aboratory is sditable to the direct n_easuren_ent of surlacc }',eat trans-

fer rates through its modification for location at the n_c)de[ s_trlace. .\

study t_;ing the surface gage would be of value in determining tile v;diditv

of analytical n_ethods developed f,,r the calculation ot surface heat trans-

fer from known gas radiance data a_d known flow field geo_etry, tlc,_tint_

r_itcs c,)uld bt: _easured at and away tron-i the stagnation point, on

symmetric and asym_netric bodies, and on bodies al zero st"Ld :initc

angles ot attack.
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NOMENCLATURE

A
CD
C
D
E
H
I
K
L
M
N
P
R
Q
S

T

U

V

X

Y

a

f

h

i

k

I

q

S

I

V,'

X

Z

a

Y

Y
¢

area

drag coefficient

specific heat

diameter, dissociation

voltage, energy

enthalpy

intensity

thermal diffusivity

length

molecular weight

number density

pressure

gas constant, radius

energy

entropy

temperature

velocity

volume, voltage

radial distance

normal distance

energy

distance

oscillator strength

enthalpy, height

current

thermal conductivity

length thickness

I13 it S 8

heat transfer rate

slit width

t in_ t:

x_idt h

c oo r (-it i_ ,_t e

co,ordinate

tcn_t_crature coefficient of resistivity

_,ntry anglt"

shock ldyer thickness

variablt' of integration, wavelength

den sit y

angle for off-axis points

solid angle,
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l,,tiin<t iia, idcnt sl-lcJ_:k, b,.hind b_>w sh,,cl,_

}),.bin(1 bc_v,,' shock

I iTtgtl driver
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