NASA CONTRACTOR REPORT

 NASA

PHOTOMETRIC MEASUREMENTS OF SURFACE CHARACTERISTICS OF ECHO I SATELLITE

by Richard H. Emmons, Harvey E. Henjum,

C. L. Rogers, and Darrell C. Romick

Prepared under Contract No. NAS 1-3114 by
GOODYEAR AEROSPACE CORPORATION
Akron, Ohio
for

PHOTOMETRIC MEASUREMENTS OF SURFACE CHARACTERISTICS

OF ECHO I SATELLITE

By Richard H. Emmons, Harvey E. Henjum, C. L. Rogers, and Darrell C. Romick

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

$$
\begin{gathered}
\text { Prepared under Contract No. NAS 1-3114 by } \\
\text { GOODYEAR AEROSPACE CORPORATION } \\
\text { Akron, Ohio } \\
\text { for } \\
\text { NATIONAL AERONAUTICS AND SPACE ADMINISTRATION }
\end{gathered}
$$

The Goodyear Aerospace Satellite Photometric Observatory Facility atop the Instrumentation Building at the Point Site of the Wingfoot Lake

Radar Test Range

FOREWORD

This final report details a two-month task to measure and analyze the photometric characteristics of Echo I. This program was authorized under Amendment 5 of Contract NAS 1-3114.

Mr. William J. O'Sullivan, Assistant-to-the-Chief, Applied Materials and Physics Division, NASA Langley Research Center, provided technical direction for this task.

The principal Goodyear Aerospace Corporation participants are listed in alphabetical order. Richard H. Emmons, Harvey E. Henjum, C. L. "Bud" Rogers, and Darrell C. Romick.

ABSTRACT - SUMMARY

The results and techniques of a program that exploited the realistic test specimen represented by the nearly four-year-old Echo I Satellite by measuring its present surface characteristics are described. For this purpose, the classical astronomical techniques of photometric measurement were employed by developing and utilizing equipment and procedures for the measurement of satellite-reflected light. The data obtained thereby was analyzed to derive and evaluate the desired characteristics. Changes in specularity, reflectance degradation, over-all size, and present shape of the Echo I satellite are derived by this means.

In view of the time limitations involved and to assure validity of the results, it was decided to employ visual, photographic, and photoelectric photometry simultaneously. This permitted correlation of results and determination of the strong points, weaknesses, and most appropriate use of each method. During the program period, all needed equipment was assembled and procedures developed to give satisfactory operation. Data was taken during every satisfactory pass with suitable weather. The Russel phase-angle-luminance relationship was used to derive specularity-to-diffuse ratio. Results obtained from analysis of this data indicated that nearly all of the initial specularity remained, that reflectance had decreased very little (less than 10 percent) over the four-year period in the earthorbital space environment, and that the mean diameter had reduced very little although significant local surface variations were measured. Good correlation existed in results obtained from the three different methods. A wealth of other information beyond the scope, objectives, and time limitations of this program was also found to exist in the data (especially the photoelectric traces) obtained. The basic feasibility of the method employed was proven, and the far wider
inherent potential capability of these techniques was demonstrated by this initial venture into this technology. Therefore, the program was extremely successful.

TABLE OF CONTENTS

Section Page
I INTRODUCTION 1
II THEORY 8
A. General 8
B. Microtexture 8
C. Macrotexture 13
III INSTRUMENTATION 15
A. Visual-Comparison Photometer 15
B. Photographic Back-Up 15
C. Photoelectric Instrumentation 21
IV DATA PROCESSING AND ANALYSIS 33
A. General 33
B. Data Reduction 33
C. Atmospheric Extinction and Instrument Calibration 40
D. Computer Processing and Analysis of Data 42
V RESULTS 46
VI CONCLUSIONS 59
VII RECOMMENDATIONS 61
VIII REFERENCES 62
Appendix
I Typical Orbital Element Data 63
II Typical Results of Computer Data Reduction 65
III Cumulative Results of Echo I Visual Comparison Photometry 69
IV Cumulative Results of Echo I Photoelectric Photometry 75

LIST OF ILLUSTRATIONS

Figure Page
1 Satellite Observing "Window" Availability Diagram for Period of This Program 3
2 GASPO WFL Site 5
3 Satellite Phase Geometry 9
4 Stellar Magnitude Increment of Specular Spherical Satellite due to Earth Albedo 12
5 Visual Comparison Photometer for Bright Satellites 16
6 Echo I Passing through Big Dipper's Handle (Inset Shows ϵ Lyrae Double from Roll 1, Frame 3 - See Text) 18
7 Echo I Passing near Star 82 Pegasi 19
8 Microdensitometer Trace of Echo I in Figure 7 22
9 Components of the Telescope 23
10 Adapter Assembly for Photoelectric Equipment 25
11 Photoelectric Instrumentation 29
12 Telescope Mount Alignment Features 31
13 Data Flow Diagram 34
14 Typical Recorder Data 36
15 Satellite Data Illustrating Reduction Point Selection and Macrotexture 38
Figure Page
16
Star Calibration Illustrating Gain Settings, Sky Reference, and Scintillation 38
17
Star Drifting out of Field with Earth's Rotation 39
18
Gain Change (2.5) with Radioactive Source 39
19
Visual Photometer Calibration Curve 41
20
Regression Analysis (Visual) - Pass 0, 1 March 1964 48
21
Regression Analysis (Visual) - Passes 1 and 2, 25 April 1964 49
22
Regression Analysis (Visual) - Pass 3, 26 April 1964 50
23
Regression Analysis (Visual) - Passes 4 and 5, 2 May 1964 51
24
Regression Analysis (Visual) - Passes 6 and 7, 3 May 1964 52
25
Regression Analysis (Visual) - Passes 8 and 9, 4 May 1964 53
26
Regression Analysis (Visual) - Pass 11, 28 May 1964 54
27
Regression Analysis (Visual) - Pass 13, 30 May 1964 55
28
Regression Analysis (Visual) - Pass 17, 5 June 1964 56
29
Regression Analysis (Photoelectric) - Pass 13, 30 May 1964 57
30
Regression Analysis (Photoelectric) - Pass 17, 5 June 1964 58

LIST OF TABLES

Table Page
I Photometrically Observed Echo I Passes 2
II Observing Site Coordinates 4
III Symbols and Terms 6
IV Reference Star Data (for Figure 7) 20
V Visual Photometer Calibrations and Atmosphere Extinction Determinations 43
VI Photoelectric Calibrations and Atmospheric Extinction Determinations 44
VII Summarized Results of Echo I Photometric Studies on Contract No. NAS 1-3114 47

SECTION I. INTRODUCTION

The 100-foot diameter Echo I satellite was successfully deployed in orbit after launch from Cape Canaveral on August 12, 1960 (Reference 1). It was fabricated from $1 / 2-$ mil Mylar film with an outside coating of vapor-deposited aluminum nominally 2000 A thick. Therefore, the aluminized Mylar surface of Echo I has been exposed to micrometeoroids and other factors of the near-earth environment for nearly four years. This represents a significant opportunity for any characteristic changes to such surfaces to be developed if they were going to occur within a reasonable time period. Any changes in its initially specular and highly reflecting surface would be of immediate value in the technology of materials for space applications and to the scientific study of the environmental factors.

Reference 2 describes a first attempt to determine Echo I's surface characteristics by photometric means. The present report describes the effort under Amendment 5 of Contract NAS 1-3114 to verify and refine the results of the earlier study. The raw photometric data from the earlier study has since been subjected to the digital computer reduction, processing and analysis programs applied to the subsequent data in this study. This recomputation utilized improvements in both the orbit and theory over that used in the original manual processing of the data. The original data was reprocessed in this study for comparison purposes and has been separately identified herein as obtained from observed pass "number 0".

Table I presents the dates on which photometric observations were made of Echo I. These observations were taken utilizing clear atmospheric observing conditions during periods ('windows') of visibility with wide phase range (see Figure 1). Alternately in the morning and evening visibility periods, Echo I's trajectory becomes more nearly aligned to the sun, permitting observations over a wide range

Table I. Photometrically Observed Echo I Passes

Pass No.	U T Date 1964	Site	Visibility Period	Remarks
0	1 March		Evening	Visual only
1	25 April		Morning	Visual only
2	25 April	\%	Morning	Visual only
3	26 April	∞	Morning	Visual only
4	2 May	2	Morning	Visual only
5	2 May	.	Morning	Visual only
6	3 May	\#	Morning	Visual only
7	3 May	¢	Morning	Visual only
8	4 May	6	Morning	Visual only
9	4 May		Morning	Visual only
$10^{(1)(2)}$	28 May		Evening	Visual plus photoelectric
$11^{(2)}$	28 May		Evening	Visual plus photoelectric
$12^{(2)(3)}$	28 May	今	Evening	Photoelectric only
13	30 May	3	Evening	Visual plus photoelectric
$14^{(2)(4)}$	30 May	0	Evening	Visual plus photoelectric
$15^{(2)(4)}$	2 June	-	Evening	Visual plus photoelectric
$16^{(2)(4)}$	2 June	\checkmark	Evening	Visual plus photoelectric
17	5 June		Evening	Visual plus photoelectric

(1) Visual data not processed.
(2) Photoelectric data not processed.
(3) Visual data not taken.
(4) Visual data processed but rejected; large calibration σ (battery problem).

Figure 1. Satellite Observing "Window" Availability Diagram for Period of This Program
of phase angles. The 0 pass was observed in the evening, passes 1 through 9 were observed in the morning, and passes 10 through 17 were observed in the evening. The approach used to best assure fulfillment of the objectives of this program was to employ all three of the classically developed methods of photometric observation utilized by conventional astronomy. By using all three for this new application to satellite photometry, developing suitable instrumentation and techniques for each, it was possible to explore and partially evaluate the relative suitability and validity of each method, as well as to cross-correlate the results of each appropriately to yield maximum validity and accuracy to the final results. Accordingly, the visual photometric observations were always backed up by simultaneous photographic observation, and as soon as the photoelectric equipment could be placed in satisfactory operation, all three methods of photometric observations were employed simultaneously.

Two sites were employed for the observations: Smithsonian Astrophysical Observatory (SAO) satellite tracking station No. 8544 and the Goodyear Aerospace Satellite Photometric Observatory (GASPO) site (see frontispiece) at Goodyear's Wingfoot Lake (WFL) facility. Figure 2 shows the latter site and location. The coordinates of these sites are given in Table II.

The symbols and terms used in this report are given in Table III.

Table II. Observing Site Coordinates

Site	W Longitude	N Latitude	Altitude (MSL)
SAO Station No. 8544	$81^{\circ} 24^{\prime} 42.0^{\prime \prime}$	$40^{\circ} 52^{\prime} 44.9^{\prime \prime}$	350 meters
GASPO (WFL)	$81^{\circ} 22^{\prime} 05^{\prime \prime}$	$41^{\circ} 00^{\prime} 54^{\prime \prime}$	360 meters

Figure 2. GASPO WFL Site

Table III. Symbols and Terms

Symbol/Term	Definition
a	Constant used in calibration equation
b	Coefficient used in calibration equation
k	Atmospheric extinction coefficient ($\Delta \mathrm{m}$)
m	Extra-atmospheric stellar magnitude
m_{0}	Satellite m, adjusted for earth albedo and normalized to 1000 st
m_{Sp}	mi range
pe	Indicated specular magnitude; mo less diffuse contribution
r	Probable error
t	Correlation coefficient
z	Student's t test, time
A	Angular zenith distance (degrees)
B	Weighting coefficient for optically specular reflection, area
D	Weighting coefficient for optically diffuse reflection
Dec	Distance (miles)
E	Declination (degrees)
E	Iluminance
E_{S}	Iluminance of a zero magnitude star
F	Illuminance of the sun at earth's orbit
IR	Function, luminous flux
R	Instrument reading
RA	Satellite radius (feet)
R_{c}	Right ascension (hour angle)
UT	Satellite radius of (compound) curvature (feet)
X	Universal time (day, hour, minutes, seconds)

Table III. Symbols and Terms (Continued)

Symbol/Term	Definition
γ	Coefficient of reflectivity
σ	Standard deviation
ψ	Satellite phase angle (0 deg when 'full') (degrees)
ω	Angular velocity, relative
Illuminance	The luminous flux incident on a surface per unit area; $\mathrm{E}=\mathrm{dF} / \mathrm{dA}$.
Luminosity	The luminous flux density emitted by a remote body
Magnitude (stellar)	The arbitrary brightness measure assigned to a celestial body in accordnace with the relationship $m=-2.5 \log \left(E / E_{0}\right)$ where E_{0} is an arbitary luminosity represented by zero magnitude
Reflectivity or Reflectance	The ratio of the intensity of the light reflected by a surface to that of the incident light falling upon it
Specularity	Degree of specular reflectivity. Usually expressed in percentage of total reflectivity, meaning that portion of light reflected in accordance with the laws of (specular) reflection; i. e., the angle of reflection (with the plane of the reflecting surface) is equal to the angle of incidence.
Diffusivity	Degree of diffuse reflectivity. Usually expressed in percentage of total reflectivity, meaning that portion of light reflected in accordance with Lambert's cosine law of diffuse reflection; i. e. , the radiant intensity of a plane surface area falls off as the cosine of the angle between the normal to the surface and the direction of the observer.
Regression (equations)	The statistical relationships used to find the mean or most probable values among samples involving two or more related variables, and thereby defining the "lines of regression" (a terminology generated by its original application to hereditary genetic distributions).

SECTION II. THEORY

A. GENERAL

The present investigation, like that of Reference 2, is a new application of the established science of photometric astronomy. From careful measurements of the intensity of sunlight reflected from an artificial satellite, various inferences can be drawn concerning the present condition of its surface. In the photometric study of the Echo I satellite, the first consideration was to determine, if possible, the extent to which its initially specularly reflecting surface had become roughened or diffuse-reflecting during its almost four-year exposure in the near-earth space environment. For this analysis, the following assumptions were made:
(1) The diffuse component in the sunlight reflected from Echo I will obey the Russell phase function (Equation 1), or will not deviate from it to an extent that would significantly affect the conclusions.
(2) The earthshine component of the light reflected from Echo I is equal to that predicted on the basis of a spherical specular satellite.

B. MICROTEXTURE

The diffuse reflection determination is referred to as microtexture analysis. The distinctly different optical behavior of specular and diffuse spheres is apparent by simply comparing a shiny Christmas tree ornament with a snowball.

A specular sphere has a convex mirror surface that provides a small image reflection of the sun, equal in "brightness'"* regardless of the viewing angle.

[^0]

Figure 3. Satellite Phase Geometry

For a 50 -foot radius specular sphere, the sun's image is only 2.8 inches in diameter. A diffuse sphere in sunlight exhibits "phases," like the moon. The integrated light from the diffuse sphere is a function of the "phase angle", ψ, defined as the angle at the sphere between the light source and the observer (zero when phase is "full") (see Figure 3).
H. N. Russell (Reference 3) provides the relation between the observed brightness and the phase angle for a perfectly diffuse sphere that obeys Lambert's Cosine Law of Reflection*:

[^1]\[

$$
\begin{equation*}
\frac{\mathrm{E}}{\mathrm{E}_{0}}=\mathrm{F}(\psi)=\frac{1}{\pi}[\sin \psi+(\pi-\psi) \cos \psi] \tag{1}
\end{equation*}
$$

\]

R. Tousey (References 4 and 5) provides the equations by which the brightness of diffuse and specular satellites may be compared:

Specular case: $\frac{\mathrm{E}_{S p}}{\mathrm{E}_{0}}=\frac{1}{4} \frac{R^{2}}{D^{2}} \frac{\mathrm{E}_{S}}{\mathrm{E}_{0}}=10^{-0.4 m}$
Diffuse case: $\quad \frac{E_{d}}{E_{0}}=\frac{2}{3} \frac{R^{2}}{D^{2}} \quad F(\psi) \frac{E_{S}}{E_{0}}=10^{-0.4 m}$
where
$\mathrm{R}=$ radius of the satellite,
$D=$ distance of the satellite, ($D \gg R$),
$\mathrm{E}_{\mathbf{S}}=$ solar illuminance on the satellite,
$\mathrm{E}_{0}=$ illuminance value at zero stellar magnitude,
m = stellar magnitude.
Equations 2 and 3 then provide the basis for photometrically discriminating between specular and diffuse spherical reflecting surfaces. From a series of brightness observations at various determinable and widely ranged phase angles of a spherical satellite, the relative contributions of simultaneous specular and diffuse reflections can be found. It follows by appropriate scaling that the regression equation permitting this determination is (as used in Reference 2)

$$
\begin{equation*}
\frac{\mathrm{E}}{\mathrm{E}_{0}}=10^{-0.4 \mathrm{~m}}=\frac{1}{4} \mathrm{~A}+\frac{2}{3} \mathrm{BF}(\psi) \tag{4}
\end{equation*}
$$

where
A = weighting coefficient for optically specular reflection,
$B=$ weighting coefficient for optically diffuse reflection.

The indicated specularity is then $\frac{A}{A+B}$.
Before Equation 4 may be applied, however, the reduced observed satellite magnitudes must all be further processed to
(1) Correct for atmospheric extinction.
(2) Normalize to a uniform satellite distance (herein, 1000 st mi).
(3) Correct for the contribution of earth albedo.

The first of these corrections depends upon the atmosphere's zenith filter factor, k (expressed in magnitudes), at the time of the observations and the effective number, X, of such atmospheres through which the light passes. X is a function of the object's zenith distance, z. This function is given, together with a discussion of the determination of \mathbf{k}, in Section IV, "Calibration" paragraph.

Normalization of the photometric data to a uniform range is accomplished simply by applying the inverse square law of illumination to the illuminances, first having determined the satellite's slant range at each observation time (see Section IV, "Calibration" paragraph). The correction for the contribution of the earth's albedo ('earthshine") for a specular spherical satellite is a function of the satellite's orbital height and central angle from the sun (References 6 and 7). Figure 4, taken from Reference 6, presents the magnitude increments based on a 0.37 earth albedo and a specular spherical satellite.

Note that the indicated specularity resulting from Equations 4 and 5 is virtually independent of calibration index errors that might occur between observed passes of the satellite, permitting observations throughout various passes to be safely accumulated in the regression solution.

Figure 4. Stellar Magnitude Increment of Specular Sherical Satellite due to Earth Albedo

C. MACROTEXTURE

The second consideration in the photometric study of Echo I was to obtain mean and local effective radii of (compound) curvature, R_{c}, of the satellite and to note extreme values. This is referred to as macrotexture measurement and analysis. Having determined the diffuse-reflecting weighting coefficient, B, in the preceding microtexture analysis, it is now possible to remove from the normalized magnitudes the contribution of diffuse reflection in each, $-2.5 \log 2 / 3 \mathrm{BF}(\psi)$, to obtain purely specular magnitudes, $m_{s p}$. If a reasonable value for the specular reflectance*, γ, is then chosen, the radii of curvature can next be determined from the relation (Reference 8),

$$
\begin{equation*}
\mathrm{R}_{\mathrm{c}_{(\mathrm{ft})}}=\operatorname{antilog}\left(+1.6776-0.5 \log \gamma-0.2 \mathrm{~m}_{\mathrm{sp}}\right) \tag{6}
\end{equation*}
$$

Since laboratory tests of mildly "aged" aluminized Mylar yield γ values between 0.80 and 0.85 , a γ of 0.83 was chosen for the R_{c} determinations herein.

A third consideration in the Echo I photometric studies was the reflectivity, γ, itself.

Since the observed illuminances depend on both γ and R_{c} (see Equation 6), one may be obtained only if the other is known or assumed. From the previously discussed macrotexture analysis methods, a mean radius of curvature can be obtained, assuming $\gamma=0.83$. Also obtained were local radii of curvature, the range and variability of which may be examined in light of the original design and available material for gross implications for a possible new mean radius of curvature. For example, if all the somewhat randomly "observed" radii of curvature were first found to be much greater than the designed 50 feet, the previously assumed value of γ could well be challenged as being too small.

[^2]Macrotexture variations do exist, and neglecting material stretch, these would tend to reduce the true mean R_{c} below 50 feet. On the other hand, there is danger that satellite stabilization might act to bias the observed areas from the true mean R_{c}. The logical solution (within the scope of this program) for the problem of reflectivity was to provide a parametric solution of γ against $\mathbf{R}_{\mathbf{c}}$. Very fortunately for the analyst, the results of this study tend to relax the ambiguity in the reflectivity, providing moderately high reflectivities even at what was regarded as a reasonable upper limit mean radius of curvature.

Although the specularity determination was virtually independent of between-pass index errors, this is not true of the macrotexture and reflectivity analyses. Considerable care was taken during the calibrations to minimize this problem, and some processed data was later rejected on the basis of apparent index error. It is believed that any remaining between-pass index errors of the data used do not significantly affect the conclusions of this investigation.

SECTION III. INSTRUMENTATION

A. VISUAL-COMPARISON PHOTOMETER

The visual-comparison photometer used in this investigation is detailed in Figure 5. It is shown in actual use in the frontispiece photograph. The rotating polarizing filter is controlled by the Microdial, adjusting the brightness of the comparison point of light to that of the reference star (during calibration) or to the satellite. Upon achieving a match in brightness, the observer says 'mark", which is picked up by a nearby microphone together with Bureau of Standards time signals from the short-wave radio set to WWV, and tape recorded. The digitized filter angle provided by the Microdial is then read into the tape recorder with the aid of a red-filtered flashlight. Between observations, the filter angle is returned to zero, requiring a completely independent "hunt" for the next brightness match. An experienced operator can make and read-out observations as frequently as five times per minute, although it is not felt desirable to try to maintain such a high data rate. Experience during actual calibration against reference stars in various parts of the sky yields standard deviations as low as 0.14 magnitude, depending sensitively on the photometric uniformity of the atmosphere. Where precalibration and post-calibrationobservations throughout the sky have been combined, the resulting dispersions increase to about $1 / 4$ magnitude, one case reaching 0.326. Since the satellite data was taken in between the calibration periods, it is reasonable to assume that the satellite data is not subject to these extreme dispersions.

B. PHOTOGRAPHIC BACK-UP

A tripod-mounted, 124 mm , f 4.5 Kodak 616 roll film camera having a field of

Figure 5. Visual Comparison Photometer for Bright Satellites
view of approximately 30×45 degrees was used with Verichrome pan film (ASA rating 125) to record the Echo I trail against star trails during one- and two-minute sequential exposures during the pass. Figure 6 is a two-minute exposure showing Echo I passing through the Big Dipper's handle. Over 50 such photographs were taken during the program. Resolution achieved was well below 100second arc, judging from the clean trails obtained of both components of the "double" star Epsilon Lyrae (separation 207 seconds), as can be clearly seen with a magnifying glass.

Times of "shutter open" and "shutter closed" were tape recorded along with the superimposed CHU or WWV radio time signals, thus providing adequate tracking information to check and, if necessary, slightly amend the mean anomaly equation of the acquisition orbital elements furnished by SAO for subsequent phase angle, elevation, and slant range determinations.

The Echo I trail photographs also provided a back-up record of gross brightness variations. These photographs have also been examined to confirm the absence of local thin cloud effects upon the photometric data. Several instances of bright star "sideswipe" were recorded on the photographs, and photoelectric data at these times were not used in the analyses.

Figure 7 is an enlarged section of a photograph (frame 7, roll 6) taken during pass 7 from $08^{\mathrm{h}} 47^{\mathrm{m}} 20^{\mathrm{S}}$ to $08^{\mathrm{h}} 49^{\mathrm{m}} 21^{\mathrm{S}}$ UT on 3 May 1964 from site 8544 , while the satellite was moving from RA $23^{\mathrm{h}} 37^{\mathrm{m}}$ Dec $+15.9^{\circ}$ to RA $23^{\mathrm{h}} 55^{\mathrm{m}}$ Dec $+08.5^{\mathrm{O}}$. Careful visual comparison under magnification of the densities of the Echo I trail in the vicinity of its intersection with star 82 Pegasi and the trails of the stars in Table IV indicated that the Echo I trail at this point had the density equivalent of a solar-type (G2) star of magnitude 5. 2.

The possible effect of the different displacements of Echo I and these stars from the optical axis was investigated and found to range from 0 to only 0.02 magnitude on the basis of the fourth power of the cosine, and was therefore neglected.

Figure 6. Echo I Passing through Big Dipper's Handle (Inset Shows ϵ Lyrae Double from Roll 1, Frame 3 - See Text)

Figure 7. Echo I Passing near Star 82 Pegasi

Table IV. Reference Star Data (for Figure 7)

STAR	SPECTRAL CLASS	VISUAL MAGNITUDE
66 Pegasi	K4	5.28
70 Pegasi	G9	4.67
77 Pegasi	M2	5.39
82 Pegasi	A2	5.39

The resulting 5.2 magnitude is to be compared with +2.32 obtained from the visual photometer at this time, the difference being attributable to the angular velocity ratio between Echo I and the reference stars. The average mean angular velocity ratio can be readily approximated by measuring the relative lengths of the satellite and star trails when the satellite trail limits are both available on the photograph. In this instance, the angular velocity ratio had to be computed, and the result was 17:1.

The theory of trailed images (Reference 11) leads to the conclusion that the difference in photographic magnitudes resulting from different angular velocities is simply

$$
m=-2.5 \log _{10}\left(\omega_{1} / \omega_{2}\right)
$$

On this basis, the magnitude increment that would be expected from an angular velocity ratio of 17 is -3.07 , which appears too large. Agreement between the photometric and photographic magnitudes can, however, be attained by instead applying a $\left(\omega_{1} / \omega_{2}\right)^{0.93}$ correction, resulting in a $\Delta \mathrm{m}=-2.86$. This empirically determined $\left(\omega_{1} / \omega_{2}\right)^{0.93}$ correction was found to give excellent agreement with
visual photometric measurements in three additional applications, leading to its use in the final pass (17) to establish an additional point at high-phase angle. This "photographic point" is shown plotted with the visual photometric data for pass 17 but was not included in the machine analysis for specularity.

Figure $8(\mathrm{~A})$ shows a microdensitometer trace down the Echo I trail of Figure 7. Note that the interference from the several wires in the photograph are easily seen. Similar data is shown in the trace of Figure 8(B). Although the use of the microdensitometer for this investigation was briefly explored, results were uncertain, and it did not appear feasible to pursue this approach within the scope of the present program, although the possible potential value and information content of this method were indicated.

C. PHOTOELECTRIC INSTRUMENTATION

1. Telescope

The basic sensor element of the photoelectric instrumentation consisted of a telescope of optimum aperture for first or second magnitude work, mounting, a photomultiplier along with suitable guide and acquisition telescopes. The telescope used was the "Galactic" model distributed by the Lafayette Radio Corporation. Of basic interest is the 910 mm focal length with a 76.2 mm clear aperture for the primary telescope and the 500 mm focal length with a 42 mm clear aperture for the "finder" telescope. The telescope and associated parts are described in Figure 9. The 76.2 mm telescope was used for photoelectric light gathering, and the 42 mm telescope was used for tracking. Visual angles of from 0.3 to 2 degrees were attainable on the tracking telescope from the eyepieces furnished with the telescope and without recourse to the 25 x magnifier. The 20 mm Huygen eyepiece with a visual angle of 2 degrees was found to be suitable for use in this application. An additional telescope with a visual angle of approximately 7 degrees was incorporated as an acquisition aid and substantially increased the continuity of coverage.

Figure 8. Microdensitometer Trace of Echo I Trail in Figure 7

Figure 9. Components of the Telescope

The problem of dew deposit was minimized by slightly elevating the temperature of the telescope assembly via the use of household "gutter cable" as a distributed' heating element.

2. Photoelectric Adaptation

The primary telescope was adapted for photoelectric use through addition of a photoelectric detector assembly at the eyepiece draw tube. The detector assembly used was Shoeffel Instrument Co model D-500 and incorporated an RCA 1P2 1 photomultiplier tube. Leads were lengthened to 8 feet to allow full telescope traverse, and the original mounting tube was replaced with an aluminum adapter mount specifically designed to accommodate insertion of a field (Fabry) lens and a filter selector bar. A further adaptor tube was designed to mate the mounting tube to the eyepiece draw tube and accommodate field selection via graded aperture holes in the focal plane of the telescope. An adapter to permit interchange of the photoelectric system with the 42 mm telescope was also fabricated for possible alternate usage. Design was based on the following criteria:
(1) Focal plane - field selector congruence at near mid-range of rack and pinion adjustment for both telescopes.
(2) Nominal adjustment of field lens at center of adjustment range.
(3) Accessibility for testing and adjustment as required.

The fabricated pieces are shown in Figure 10.

3. Optical Design

Design of the optics of the photoelectric system was directed toward meeting the requirements of (1) obtaining a suitable size image of the objective lens on the photomultiplier cathode, (2) providing for suitable field of view via aperture selection, and (3) obtaining suitable color match with visual observations.

PHOTOMULTIPLIER HOUSING MOUNTING TUBE

FABRY LENS

MAIN
ADAPTER TUBE

Figure 10. Adapter Assembly for Photoelectric Equipment

The size of the objective image on the photomultiplier cathode is initially considered with the Fabry lens assumed to be exactly on the focal plane (910 mm from the objective lens). The field (Fabry) lens chosen was a Jaegers 18 mm diameter lens with a focal length of 49 mm .

The effective focal length of the field lens for a real image of the objective is calculated as follows:

$$
\frac{1}{f_{e}}=\frac{1}{f_{f}}-\frac{1}{f_{o}}
$$

$$
\begin{aligned}
& =\frac{1}{49}-\frac{1}{910} \\
& =0.0204082-0.0010989 \\
& =0.193093 . \\
\mathbf{f}_{\mathbf{e}} & =51.79 \mathrm{~mm}
\end{aligned}
$$

The image size, I, is calculated by considering the central ray through the lens in the following manner:

$$
\begin{aligned}
\mathrm{I} & =\frac{51.79}{910}(76.2) \\
& =4.34 \mathrm{~mm} \\
& =0.171 \text { inch } .
\end{aligned}
$$

Since the field stop must be located in the focal plane, the Fabry lens is actually located at approximately 922 mm from the objective. The realized image is then calculated as

$$
\begin{aligned}
\frac{1}{\mathrm{f}_{\mathrm{e}}^{1}} & =\frac{1}{49}-\frac{1}{922} \\
& =0.19323 . \\
\mathrm{f}_{\mathrm{e}}{ }^{1} & =51.75 . \\
\mathrm{I}^{1} & =\frac{(51.75)(76.2)}{922} \\
& =4.27 \mathrm{~mm} \\
& =0.168 \mathrm{in.}
\end{aligned}
$$

which is compatible with the projected region of best collection for the 1P21 photoelectric tube as shown:

The field of view at the aperture stop is calculated using the central ray through the lens as follows:

FIELD STOP
$\operatorname{TAN} \boldsymbol{\phi}=\frac{\mathrm{d}}{910}$

The following tabulation indicates field stops and corresponding fields of view as incorporated in the slide mounted in the main adapter tube:

$\frac{\mathrm{d}(\mathrm{mm})}{16}$	$\frac{\phi \text { (degrees) }}{}$	Relative Field Area
11.3	1.007	16
8	0.713	8
5.6	0.503	4
4	0.353	2
	0.252	1

In use, sky background brightness made using the larger field stops undesirable. Twenty-two millilambert radioactive phosphorescent light sources were procured from Dial Service and Manufacturing Company of Cleveland and installed behind these slide stops, thus allowing a system gain check to be made as part of the regular operating procedure.

Since a comparison between visual and photoelectric measurements was required for this study, filter type GG14 obtained from Fish and Shurman was used for all photoelectric measurements (although the other filters for the U, B, V system were also mounted in the filter slide). This filter effectively limited the photoelectric response to that characterized by the visual spectrum.

4. Electronic Instrumentation and Recording Equipment

Instrumentation for the acquisition of data is shown in Figure 11. The M600 Photometer provided high voltage for the photomultiplier tube and initial stages of amplification. The Brush Amplifier model BL530 provided additional adjustable amplification and the Dual Channel Recorder, Brush model BL202, allowed a permanent record to be made.

Figure 11. Photoelectric Instrumentation

WWV signals were received solidly on either the 10 mcs band or the 5 mcs band through use of the Hallicrafter model SX42 receiver. An envelope detector was required to be inserted between the receiver and the recorder amplifier to provide for proper pen response.

Other accessories that provided useful information during the test were the magnetic recorder, microphone, and variable speed motor control for "aided" tracking.

5. Acquisition and Tracking

Acquisition and tracking of the satellite during most of the runs were by manual means, although motor-driven aided tracking was also provided. Figure 12 shows the various freedoms available in the mount.

The plane best fitting the satellite position locus and the observer is estimated using the altitude and azimuth of the satellite at culmination. The telescope and its various freedoms are fixed in accordance with the figure. Tracking is then attained with right ascension variation and small amounts of corrective changes in declination as the pass is monitored.

The tripod mount did not allow this mode of operation for overhead passes in that mechanical restriction of the telescope was present when θ approached 90 degrees. A corrected mount was designed but not implemented during this program.

Control of the telescope position was attained by presetting the friction forces on the declination and right ascension restraints such that the telescope could be manually moved through the positions required for satellite monitoring throughout the pass.

In this mode, control with the 5.6 mm stop was such that almost continuous monitor could be attained. The 4 mm stop would allow about 80 percent monitor and was used on NASA pass 13 , since periodic background illumination level readings are necessary for data reduction.

Aided track with a drive on the right ascension freedom axis was used during initial phases of monitor and allowed an estimated $2: 1$ increase in control accuracy. This mode was not used in acquiring data for NASA passes 13 and 17 because of mount restrictions on high-altitude passes as mentioned above.

Figure 12. Telescope Mount Alignment Features

6. Calibration

Calibration of all data was made with respect to star magnitudes. Linearity of the amplifiers, gain drift, and zero drift were monitored and incorporated into calibration where required. The radioactive light source was used to illuminate the photomultiplier before and after pass 17 to confirm that over-all system gain had not changed. Readings of 'zero level", amplifier calibration, voltage level, and adjacent sky background level were interspersed during data recording to provide adequate calibration data.

Several special checks are required to ensure that correct "Fabry" action is being utilized in the telescope optics. First, the field stop aperture must be located at the focal plane. This is checked by slipping off the photoelectric head and adjusting the rack and pinion for a clear star (or other light source) image on a piece of wax paper temporarily bonded to the aperture. The second special check is to pass a star through the field of view at a constant rate. Various adjustments of Fabry lens distance are made until maximum slope on the record at the field edge indicates correct positioning of the objective image on the photomultiplier cathode.

SECTION IV. DATA PROCESSING AND ANALYSIS

A. GENERAL

The reduction and analysis of the observational data obtained required first putting the data in a point tabulation form, i.e., reducing it to a series of data points for each pass in the form of values proportional to the light received at the observing sensor from the satellite or calibration star. Next, use of the calibration star readings and the associated geometry of the observations must be normalized to comparable extra-atmospheric magnitude values. Then the resulting data must be processed and analyzed to extract the desired satellite surface characteristics. The data flow, shown in Figure 13, is described in the following paragraphs.

B. DATA REDUCTION

The visual photometric observing process utilized gave data point readings proportional to the observed object directly from the recorded Microdial readings. However, where the observational data is in the form of raw signal traces or other output, as in the case of the photoelectric method, it must be reduced to such data point readings.

Data readings are made from the recorded signal trace with several points in mind:
(1) Desired readings must be in terms of the additional light in the field which is generated by the satellite (or star) only.
(2) Scintillation is present because of the small telescope used.
(3) Macrotexture variation is present because of variation in curvature of the satellite surface.

Figure 13. Data Flow Diagram
(4) The instruments are operated such that linear gain characteristics are attained.
(5) In some areas of the sky, thin cloud cover could be present although not visible to the observer. This may lead to throwing out of one or several of the calibration star data used in obtaining atmospheric transmission coefficients.

The type of data recorded by the equipment is shown in Figure 14, which shows typical star calibration data recorded on NASA pass 16 and satellite luminosity data recorded on pass 17, including its eclipse in the earth's shadow (bottom line). The WWV radio time signal trace is recorded above each data trace.

Noteworthy features of this typical data are the calibrating star identification notations (Regulus, γ Leonis), the gain setting notations (e. g., "11-6" - meaning the amplifier gain range settings of the photometer and d-c signal amplifier feeding the recorder, respectively), the sky background levels recorded (and noted) at appropriate intervals, and the calibration levels (labeled "cal" in the notation). Zero level settings are also recorded periodically (see Figure 15). Also note the pulse (or pip) recorded each second on the time signal trace, plus WWV identifying code, coded time indication, voice modulation (giving same information), and resumption of 440 -cycle modulation tone following this, with the superimposed 1 -second interval pulses.

It can be noted in this data (especially the center trace of Figure 14), as well as in the photographic photometry trace (Figure 8), that there are three distinct frequencies observable in the light output signal trace. One is a relatively high frequency of about 4 to 6 cycles per second, representing scintillation effects. Another is a medium frequency with a period of around 5 to 8 seconds, while a third lower frequency variation appears to have a period of from 15 to 20 seconds. There are also other variations, but these latter two must surely represent

Figure 14. Typical Recorder Data
effects of the satellite surface geometry (macrotexture), position geometry, and attitude dynamics. Since the investigation and analysis of these aspects were beyond the scope of this program, the main consideration here was to utilize data reduction and analysis techniques that would eliminate their effect.

For illustration of the data read-out processes, several examples of typical data used in calibration and during satellite passes are shown in Figures 15 through 18. As can be seen in these figures, superimposed lines are drawn representing average signal levels (thus excluding the higher frequency and scintillation variations) at frequent intervals along the signal trace. The readings for seven typical data points (15 through 21) and two calibration star levels (representing two gain setting levels) are shown, along with time reference indications on the corresponding time signal traces.

These signal levels are then measured with reference to the "cal" iveel (see signal traces) from the sky background level base line and "zero" levels (also shown). These data readings (along with their gain settings) are then tabulated, and in succeeding columns manipulated in accordance with the calibration equation. This data forms the input to the computer programs, and the reduction process proceeds from this point identically the same as with each method.

It can be seen that several factors in the received light intensity (and resulting signal) contribute to the accuracy limits to which the data can be read. For example, the macrotexture contribution to confidence limits is quite evident. Factors that might be reduced and approaches are as follows:
(1) Scintillation: By use of a larger telescope.
(2) Amplifier gain and zero drift: By true differential signal handling or chopping in the focal plane.
(3) Tracking alignment: By error driven mount.

Figure 15. Satellite Data Illustrating Reduction Point Selection and Macrotexture

Figure 16. Star Calibration Illustrating Gain Settings, Sky Reference, and Scintillation

Figure 17. Star Drifting out of Field with Earth's Rotation

Figure 18. Gain Change (2.5) with Radioactive Source
(4) Thin cloud errors: By continuous monitor of sky background.
(5) Limited utilization of data: By power spectral density reduction of data. The method used in this program to minimize these effects was to utilize a number of runs and to process a relatively large number of points from each run to permit segregation of the data variations for the analytical purposes intended. Then the regression equations were applied to serve as a curve-fitting process according to the physical conditions involved.

C. ATMOSPHERIC EXTINCTION AND INSTRUMENT CALIBRATION

Photometric observations of identified first, second, and third magnitude stars in various parts of the sky were made before and/or after each observed Echo I pass for the purpose of calibration and extinction coefficient determination. The elevation of each star at the precise time of the calibration observation was then determined within $1 / 2$ degree, utilizing its local hour angle and declination (Reference 9).

The visual extra-atmosphere magnitude of each reference star was then obtained from Reference 10. A separate investigation revealed that the star's color index had no significant effect upon the calibration.

For the visual photometer, a plot (Figure 19) of the raw calibration data on semilog paper indicated that the instrument readings could be well fitted to the following regression equation:

$$
m=a+b \log _{10}(\mathrm{IR})-k X
$$

where
$\mathrm{m}=$ the extra-atmosphere magnitude,
IR = instrument reading,
$\mathrm{k}=$ the extinction coefficient (1 atmosphere),
$X=$ the effective number of atmospheres,

Figure 19. Visual Photometer Calibration Curve

$$
\begin{aligned}
=\sec z & -0.0018167(\sec z-1) \\
& -0.002875(\sec z-1)^{2} \\
& -0.0008083(\sec z-1)^{3}(\text { Reference } 9),
\end{aligned}
$$

and where $z=$ zenith distance (90 deg - elevation).
Least-square best-fit solutions of this regression equation for a, b, and k were then performed for each of the calibrations. The results are presented in Table V.

The photoelectric calibrations were similarly fitted to the equation $\mathrm{m}=\mathrm{a}-2.5$ $\log (\mathrm{IR})-\mathrm{kX}$, and the results are given in Table VI.

D. COMPUTER PROCESSING AND ANALYSIS OF DATA

Data processing and analyses were highly automatized by the extensive use of the IBM 1410 computer. The calibration equations for both the visual and photoelectric photometers having been determined as described in the preceding section, the processing programs were written to assimilate the raw data.

This program was also used during the second observing "window" to generate the detailed pass predictions.

The processing program print-out is typified in Appendix I. The anomalistic orbital elements from the SAO acquisition Ephemeris VI are used in this program to determine the local look angles, slant range, and phase angle for each observation time. The elevation angle is used with the calibration equation to determine the satellite's stellar magnitude which is then reduced by the increment of magnitude due to earth albedo, as discussed in Section II. The resulting magnitude is then normalized to 1000 st mi and punched on cards, together with the phase angle, for use later in the analysis programs. If it were found, upon comparing the computed night ascensions and declinations with photographic tracking information during the observed pass, that more than a 3-second time error had accumulated,

Table V. Visual Photometer Calibrations and Atmosphere Extinction Determinations

$$
m=a+b \log (I R)-k X
$$

$\begin{aligned} & \text { UT } \\ & \text { Date } \end{aligned}$	For Pass No.	No. of Readings	No. of Elevations	No. of Stars	k	a	b	r	σ^{*}	Site
3/1/64	0	39	18	17	0.207	6.446	-3.802	0.984	0.196	H
4/25/64	1, 2	35	7	6	0. 232	5.838	-3.705	0.932	0.231	$\stackrel{\infty}{\infty}$
4/26/64	3	41	14	8	0.291	5.977	-3.952	0.960	0.245	$\stackrel{\circ}{8}$
5/2/64	4,5	38	8	8	0.276	6.061	-3.987	0.985	0.139	\%
5/3/64	6,7	59	21	12	0.310	5.716	-3.649	0.934	0.326	\bigcirc
5/4/64	8,9	67	14	10	0.244	7.311	-4.614	0.951	0.238	0
5/28/64	11	37	12	6	0.402	5.112	-3.710	0.952	0.278	
5/30/64	13	54	16	12	0.153	5.289	-3.656	0.971	0.236	令家
6/5/64	17	18	7	7	0.377	6.526	-4. 403	0.983	0.172	¢

*Standard deviations above 0.2 are associated with two or more calibration periods and are subject to the effect of changing extinction.

Table VI. Photoelectric Calibrations and Atmospheric Extinction Determinations

$$
\mathrm{m}+2.5 \log \mathrm{IR}=\mathrm{a}-\mathrm{kX}
$$

UT Date	For Pass No.	No. of Readings	No. of Stars	k	a	r	σ	Site
$5 / 30 / 64$	13	55	6	0.209	5.340	0.955	0.111	GASPO (WFL)
$6 / 5 / 64$	17	51	12	0.403	5.630	0.843	0.224	

the mean anomaly equation of the orbital elements was adjusted and the program was rerun.

Pass 0 was reduced by a digital computer to the anomalistic orbital elements of Echo I provided by the SAO for acquisition Ephemeris VI, of epoch 3 March 1964, and required no correction.

Passes I through 9 were machine reduced to the anomalistic orbital elements of Echo I provided by SAO for acquisition Ephemeris VI, of epoch 28 April 1964, with the mean anomaly equation modified to read $\mathrm{M}=0.117147+12.573579$ $\left(t-t_{0}\right)+3.107 \times 10^{-4}\left(t-t_{0}\right)^{2}$.

Passes 11 through 17 were machine reduced to the anomalistic orbital elements of Echo I provided by SAO for acquisition Ephemeris VI, of epoch 26 May 1964, and required no correction.

The machine analyses of the data first provided the A and B weighting coefficients for specular and diffuse reflection by best fitting the normalized data to Equation 4, and then determined the specularity in accordance with Equation 5 . These results and other pertinent information are shown printed out in Appendix II for one typical pass (No. 13).

Next, having found B, the satellite's magnitude was adjusted by $-2.5 \log [2 / 3 \mathrm{~B} F(\psi)]$ to eliminate the contribution of diffuse reflection, and the resulting "specular magnitude" was printed out for each observation. Utilizing the specular magnitude and an assumed coefficient of reflectivity of 0.83 , the indicated radius of curvature at each observation is determined and printed out, together with their average radius of curvature.

A third machine analysis was a parametric solution of the reflectivity, based on the desired specular magnitudes. The print-out is also shown in Appendix II. The original manually reduced "0 pass" results were used when applicable in confirming the machine processing and analysis programs.

SECTION V. RESULTS

Figures 20 through 30 present the normalized Echo I magnitudes versus phase angle for the selected passes, together with the results of each regression analysis. These passes were selected for a variety of considerations as those most suitable for yielding reliable, accurate data. A best-fit 100 percent diffuse curve was derived for each pass and is added to each graph to assist the reader in seeing clearly the data's departure from the diffuse theory.

Table VII summarizes the results of the several independent specularity determinations, showing for the visual photometry a probable error of less than 2 percent, determined in the manner prescribed by Reference 12.

The mean and extreme observed radii of curvature, assuming a reflectivity coefficient of 0.83 , are as follows:

	Mean $\mathrm{R}_{\mathrm{c}}(\mathrm{ft})$	$\begin{gathered} \text { Maximum } \\ R_{c}(\mathrm{ft}) \\ \hline \end{gathered}$	${ }_{R_{c}}^{\operatorname{Minimum}}(\mathrm{ft})$
Visual	51.8	72.1	33.9
Photoelectric	48.2	61.2	39.3

The parametric solutions for indicated coefficient of reflectivity are as follows:

$$
\begin{array}{rlllll}
\mathrm{R}_{\mathrm{c}}= & \frac{40}{45} & \frac{50}{1.10} & \frac{55}{0.89} & \frac{55}{0.74} & \frac{60 \mathrm{ft}}{} \\
1.39 & 1.62 \\
1.21 & 0.95 & 0.77 & 0.64 & 0.54
\end{array}
$$

These results and local radii of curvature determinations for the visual observations are presented in Appendix III and for the photoelectric data in Appendix IV.

Table VII. Summarized Results of Echo I Photometric Studies on Contract No. NAS 1-3114

SPECULARITY DETERMINATIONS

*Reference 2 (Revised), 95. 6 percent (18 points).

Figure 20. Regression Analysis (Visual) - Pass 0, 1 March 1964

Figure 21. Regression Analysis (Visual) - Passes 1 and 2, 25 April 1964

Figure 22. Regression Analysis (Visual) - Pass 3, 26 April 1964

Figure 23. Regression Analysis (Visual) - Passes 4 and 5, 2 May 1964

Figure 24. Regression Analysis (Visual) - Passes 6 and 7, 3 May 1964

Figure 25. Regression Analysis (Visual) - Passes 8 and 9, 4 May 1964

Figure 26. Regression Analysis (Visual) - Pass 11, 28 May 1964

Figure 27. Regression Analysis (Visual) - Pass 13, 30 May 1964

Figure 28. Regression Analysis (Visual) - Pass 17, 5 June 1964

Figure 29. Regression Analysis (Photoelectric) - Pass 13, 30 May 1964

Figure 30. Regression Analysis (Photoelectric) - Pass 17, 5 June 1964

SECTION VI. CONCLUSIONS

The results of this program indicate the following about the Echo I satellite:
(1) Its present light reflection characteristic is highly specular as it was at the time of launch.
(2) Its mean radius of curvature remains near the design value, though local variations exist.
(3) Its total reflection coefficient is presently near the value at the time of launch.

These conclusions have certain engineering implications that include the following:
(1) The satellite environmental factors such as ultraviolet, solar wind, micrometeoroids, and hard vacuum have not removed or appreciably modified the reflectivity characteristics of the vapor-deposited aluminum.
(2) The forces such as solar pressure, meteorites, and thermal stresses resulting from the satellite passing in and out of the earth's shadow have not appreciably affected the satellite's over-all geometry.
(3) The space environment at the orbit of Echo I does not degrade aluminized Mylar optical surfaces as rapidly as feared in the more pessimistic estimates of the effects of satellite environments.

In addition, this program established new techniques of photometric observation and measurement that will prove valuable in various important applications utilizing optical signatures of space vehicles. The peripheral information gained in

SECTION VI. CONCLUSIONS

conducting this program indicates that a wide variety of scientific applications exist for these techniques.

SECTION VII. RECOMMENDATIONS

This program provided valuable information on the reflectivity characteristics of Echo I. However, much more information for use by astronautics engineers and space scientists can be provided utilizing similar but more comprehensive photometric observing and analysis techniques.

For example, Echo I could yield valuable additional information in the areas of (1) atmospheric light transmission characteristics by studying eclipse phenomena, (2) specifying passive satellite surface tolerances by relating its geometry determined by photometry to its microwave relay characteristics, (3) refining the effects of the space environment by monitoring its long-term time history of the degradation of its optical surfaces, and (4) determining effects of forces acting on an earth-satellite by obtaining a time history of its orientation.

Echo II should be observed for the same phenomena as Echo I. In addition, it may give valuable information on the effect of the space environment on its alodine thermal control coating through determining its optical color signature.

Both satellites can be used to refine the measurement and analysis techniques for obtaining the optical signatures of any earth satellite. Also, similar work could be done on other satellites.

Therefore, it is recommended that this program be extended and expanded to fully utilize the scientific knowledge that the existing Echo satellites and the techniques demonstrated can provide.

SECTION VIII. REFERENCES

1. The Echo Communications Satellite, IGY Bulletin 39, September 1960.
2. Emmons, R. H. , An Indicated Specular Degradation Rate for Aluminized Mylar Surfaces in Near-Earth Orbit from Recent Photometric Observations of the Echo I Satellite, GER 11521, Goodyear Aerospace Corporation, Akron, Ohio, 26 March 1964. (Revised 17 June 1964)
3. Russell, H. N., Astrophysical Journal, Vol 43, 1916, p 173.
4. Tousey, R, "Optical Problems of the Satellite", Jr. Optical Society of America, Vol 47, 1957, p 261.
5. Tousey, R., "The Visibility of an Earth Satellite", Astronautic Acta, Vol 2, 1956.
6. Schneider, L. J., The Stellar Magnitude Increment of the Echo I Satellite due to the Earth's Albedo, Goodyear Memorandum SP-3225, 28 May 1964.
7. Ginter, R. L. , Albedo Radiation on a Sphere or Planet-Oriented Flat Plate, GER 11618, Goodyear Aerospace Corporation, Akron, Ohio, June 1964.
8. Baker, Robert M. L. , Jr., and Makemson, Maud W., An Introduction to Astrodynamics, Academic Press, New York, 1960, p 252.
9. Hardie, R. H., "Photoelectric Reductions", Ch. 8, Astronomical Techniques, Edited by W. A. Hiltner, Univ of Chicago Press, 1962.
10. MacRae, D. A., "The Brightest Stars," The Observers' Handbook, The Royal Astronomical Society of Canada, Toronto, 1964. (Based on H. L. Johnson and W. W. Morgan, The Astrophysical Journal, Vol 117, 1953, p 313.)
11. Veis, G., "Optical Tracking of Artificial Satellites", Space Science Reviews, II, D. Reidel Publ Co, Dordrecht, Holland, 1963, pp 250-296.
12. Wilks, S. S. , Elementary Statistical Analysis, Princeton University Press, Princeton, N. J., 1951.

APPENDIX I

TYPICAL ORBITAL ELEMENT DATA

VISUAL PHOTOMETRY						ECHO I	NASA	013	WFL							
YEAR	MO	DA		UT		HT	LONG	LAT	ALT	AL	SR		RA	DEC	MAG	PHASE
1964	5	30	2	50	38.00	838.4	120.30	47.40	6.49	296.18	2295.54	7	4.2	23.93		144.1
1964	5	30	2	51	38.00	852.6	115.83	47.49	10.65	296.40	2096.3*	7	18.4	26.84		141.1
1964	5	30	2	52	8.00	859.7	113.60	47.46	12.92	296.51	1998.4*	7	26.4	28.39	-0.173	139.3
1964	5	30	2	52	30.50	865.0	111.94	47.40	14.72	296.60	1925.8*	7	32.9	29.59		137.9
1964	5	30	2	52	37.00	866.6	111.46	47.38	15.25	296.62	1905.0.	7	34.9	29.94	0.527	137.5
1964	5	30	2	52	47.00	868.9	110.72	47.35	16.10	296.66	1873.1*	7	38.0	30.49		136.8
1964	5	30	2	53	5.00	873.2	109.40	47.27	17.66	296.72	1816.2*	7	43.9	31.51	0.217	135.6
1964	5	30	2	53	28.00	878.7	107.73	47.15	19.77	296.81	1744.5*	7	52.0	32.84	0.332	133.9
1964	5	30	2	53	30.00	879.2	107.58	47.13	19.96	296.82	1738.3-	7	52.7	32.96		133.7
1964	5	30	2	54	42.00	896.2	102.43	46.57	27.48	297.09	1523.3*	8	23.7	37.40	-0.349	127.4
1964	5	30	2	55	7.00	902.1	100.68	46.31	30.47	297.19	1452.8*	8	36.9	39.02	-0.031	124.8
1964	5	30	2	55	32.00	907.9	98.95	46.03	33.70	297.29	1384.9*	8	51.9	40.65	-0.014	122.0
1964	5	30	2	55	46.00	911.2	98.00	45.86	35.61	297.35	1348.3*	9	1.1	41.55		120.3
1964	5	30	2	56	3.00	915.2	96.85	45.64	38.06	297.42	1305.1*	9	13.1	42.64	0.112	118.1
1964	5	30	2	56	28.00	921.0	95.17	45.29	41.90	297.54	1244.7*	9	32.9	44.18	-0.171	114.7
1964	5	30	2	56	46.00	925.2	93.98	45.02	44.85	297.62	1203.9**	9	48.8	45.22		112.0
1964	5	30	2	57	9.00	930.5	92.49	44.66	48.87	297.74	1155.3*	10	11.3	46.39	0.341	108.4
1964	5	30	2	57	56.00	941.3	89.50	43.87	57.96	298.02	1070.6*	11	4.8	47.97	0.067	100.2
1964	5	30	2	58	26.00	948.1	B7.65	43.31	64.37	298.26	1028.5*	11	43.7	48.11		94.3
1964	5	30	2	59	26.00	961.5	84.07	42.11	78.31	299.30	977.6*	13	5.3	45.66	0.097	81.6
1964	5	30	2	59	59.00	968.8	82.18	41.40	86.32	302.80	970.30	13	47.6	42.74		74.4
1964	5	30	3	0	16.00	972.6	81.22	41.03	89.44	84.20	972.6"	14	7.7	40.88	0.125	70.6
1964	5	30	3	0	40.00	977.8	79.89	40.48	83.74	115.10	982.6*	14	33.9	37.94		65.5
1964	5	30	3	0	59.00	981.9	78.86	40.03	79.27	116.36	996.0*	14	52.6	35.44		61.5
1964	5	30	3	1	12.00	984.6	78.16	39.72	76.29	116.77	1007.9*	15	4.5	33.66		58.9
1964	5	30	3	1	26.00	987.6	77.42	39.38	73.15	117.06	1023.0*	15	16.5	31.73		56.2
1964	5	30	3	1	47.00	992.1	76.32	38.86	68.62	117.36	1050.0.	15	33.0	28.81	-0.322	52.3
1964	5	30	3	2	3.00	995.4	75.50	38.46	65.31	117.52	1073.8*	15	44.4	26.61		49.5
1964	5	30	3	2	40.00	1003.1	73.64	37.51	58.19	117.80	1138.4 \%	16	7.6	21.69		43.7
1964	5	30	3	3	11.00	1009.4	72.12	36.68	52.79	117.98	1201.5*	16	24. 1	17.82	-0.018	39.6
1964	5	30	3	3	31.00	1013.4	71.16	36.14	49.57	118.08	1245.9\%	16	33.6	15.47	0.031	37.3
1964	5	30	3	3	40.00	1015.2	70.74	35.89	48.19	118.12	1266.7*	16	37.7	14.45		36.3
1964	5	30	3	3	53.00	1017.8	70.13	35.53	46.26	118.17	1297.6*	16	43.2	13.02	-0.103	35.0
1964	5	30	3	4	40.00	1026.9	67.98	34.21	39.89	118.36	1416.6*	17	1.2	8.25	0.174	31.1
1964	5	30	3	5	41.00	1038.4	65.32	32.44	32.88	118.58	1584.2*	17	20.5	2.92	-0.026	27.8
1964	5	30	3	6	19.00	1045.4	63.72	31.30	29.09	118.70	1694.1*	17	30.9	0.01	-0.141	26.6
1964	5	30	3	6	45.00	1050.0	62.66	30.51	26.70	118.78	1771.1*	17	37.5	-1.82		26.1
1964	5	30	3	7	16.00	1055.4	61.42	29.56	24.06	118.88	1864.5*	17	44.8	-3.85		25.8
1964	5	30	3	7	17.00	1055.6	61.38	29.53	23.97	118.88	1867.6*	17	45.0	-3.92		25.8
1964	5	30	3	7	18.00	1055.8	61.34	29.50	23.89	118.88	1870.6*	17	45.2	-3.98		25.8
1964	5	30	3	7	19.50	1056.0	61.28	29.45	23.77	118.89	1875.2*	17	45.6	-4.07		25.8
1964	5	30	3	7	33.00	1058.4	60.75	29.04	22.69	118.93	1916.4*	17	48.6	-4.91	0.181	25.7
1964	5	30	3	7	40.00	1059.5	60.48	28.82	22.14	118.95	1937.9	17	50.1	-5.33		25.7

APPENDIX II

TYPICAL RESULTS OF COMPUTER DATA REDUCTION

MEAN RADIUS IS 50.37136 MEAN MAG IS 0.07939
MEAN RADIUS IS 50.37136 MEANAMAG IS 0.07939
SPECULAR

RADIUS	INDICATED REFLECTIVITY
40	1.3162121
45	1.0399699
50	0.8423758
55	0.6961785
60	0.5849832

APPENDIX III

CUMULATIVE RESULTS OF ECHO I VISUAL COMPARISON PHOTOMETRY

\qquad

APPENDIX IV

CUMULATIVE RESULTS OF ECHO I PHOTOELECTRIC PHOTOMETRY

```
                                    CUMULATIVE PHOTOELECTRIC RUN ECHO I
    106 POINTS ZPASSES,NO. 13&'7
mEAN magnitude 0.13504
SIGMA OF THE MAGNITUDES IS 0.17178
CORRELATION COEF. IS • 0.15594
STUDENTS T IS 1.60545
MAGNITUDE FOR B # O IS, 0.12138
COEF. OF REFLECTIVITY 0.83000 & ASSUMED FOR RADIUS OF GURVATUKE DETE|MINATIONS
REGRESSION A IS 3.45301
REGRESSION B IS 0.12385
SPECULAR'TX FROM REGRESSION 0.96538 = 96.5%%
```

106 PHUTUELECTRIC POINTS
PARAMETRIC SOLUTION
RAOIUS INDICATED REFLECTIVITY
$40 \quad 1.2060202$
$45 \quad 0.9529047$
$50 \quad 0.7529047$
550.6378951
$60 \quad 0.5360090$

ANGLE
MAG. A응
RADIUS

MSP

39.70242
49.70242
42.53924
46.49401
46.46134 45.67425 48.14148 50.09184 51.86347 46.65853 51.69160 47.59530 48.86854 39.30347 46.85821 49.32735 49.33604 47.53306 46.40442 42.83872 47.10452 41.26171 48.79327 48.57624 49.36152 50.81286 51.99334 48.61995 46.83674 51.35989 42.65792 47.20472
51.67497 43.51318 47.54187 44.25823 43.11787 49.28027 49.71889 43.42845 43.70040 48.53441 46.39258 48.97341 47.65119 43.90007 42.33091 44.39588 46.18741 41.34749 41.93597 46.24772 45.85892 48.09019 48.78310 48.89390 $48.24470 \ldots-\ldots \ldots$

[^0]: *Illuminance, E ; stellar magnitude $=-2.5 \log _{10}\left(\mathrm{E} / \mathrm{E}_{0}\right)$.

[^1]: *This law states that the reflection from a small area is proportional to the product of the cosine of the angle between the incident light and the normal to the surface and the cosine of the angle between the normal and the direction to the observer.

[^2]: *Not to be confused with specularity.

