

AIREEEAROH MANUFAOTURING COMPANY

A. F. Anderaon

No.of Pacts
Dare August 31,1964

Attachmonts:

1. Appeadis I
(AiResearch Report M-288)
2. Drawing il98005
E. F. Tiapke

PRFPARED OY

Eniteo ay E. E. Busoh

APPACVED or

Approved By

RECUPRRATOR DEVELOPKENT PRGGRAM
SOLAR BRAYION CYCLE SYSTMA
PROGRESS REPORT
JULY 19 TO AOGUST 19,1964

IATRODUCTION
This report desoribes the work accomplished by the AiResearch Manufacturine Division of The Garrett Corporation, Loo Angeles, California, during the above reporting period under National aronautics and Space Administration Contract NAS3-2793. This contract is for the [development of a reouperator to be utilized in a clooed Brayton Cyole space power syaten whicin wili use solar energy as the heat source and argon as the vorking fluid. ?

PIEAL DESIGN SELECTION
On July 15, 1964, official oonfirmation of the HASA selection of pure countorifow plate and fin heat exchanger a the unit to meet their apecification was received. The final operating conaitions for this unit were as follrwa:

Temperature, ${ }^{\circ}$ Promgure paia

Cold Inlet	801	13.8
Hot Inlet	1560	6.73
Gas Flow late (each side) $=$	$36.69 \mathrm{Ib} / \mathrm{min}$ (argon)	
Effeotiveness -0.9		
Total Preasure Drop ($\triangle P / F$ for both sidea), peroent $=2.0$		

With the decieion te use this type of matrix at these problem oonditions, very careful survey of the results obtained during the Parametric Survey (A1Researoh Report L-9372) was made to eneure that the optinum oore was soleoted. In examining the results of the survey, attention had to be paid to the pressure drop ae well as the volume and weight of the matrix. As pointed out in the presentation
of the resulte of the Parametric Suivey, in pure counterflow plate fin heat exchangers whioh have the conetrasat that flow length for both fluids must be identicat, the amount of available preseure drop on the high pressure side varies from matrix to matrix. In seiecting a core it ic, therefore, poseible that the lightest matrix may use more proseure drop than a slightly heavier one. In this oase, the selection of optimum may be strongly influenced by the size and pressure drop of the [trianjular ends required to introduce and remove the ergon frox both sides of the heat exchanger. With these ends becoming increasingly important in reaching the final selection, AiResearch wrote a computer program to analyze the preseure losses in these ends.] The program was written to handie the use of reatengular ends. Rectangular ends are not suited to this applioation as they may only be used where presaure drop on one side of the heat exchanger is very high. A complete desoription of this program, together with the theory used to determine the pressure drop in the ends, is shown in Appendix I attached to this report.

This program has been used to predict the pressure losses in the onds of another very similar heat excnanger. Preliminary testing of this heat exohanger has substantiated the results of the computer program predictions

The careful study of the heat exchanger designs formulated under the Paramotric Survey led to the seleotion of a heat exchanger matrix with a flow length of 7.28 in., a stackup height of 25.46 in., and a flow width of 25.19 in. This core consisted of 74 sandwiohes of 12 reotangilar offset fins per inoh, 0.178 in. high on the 10% pressure side and 74 sendwiches of 16 rectangular offset fins per inoh, 0.153 12. high on the high pressure side. This unit has the required effectiveness of 0.90 with a total preseure drop ($\Delta P / P$) of 0.71 percert. Using 6 in. and A in. diameter ducte, the total fixed pressure losers from ducts to manifolds is estimated to be 0.63 percent. This leaves a total of 0.66 percent available fos the
triangular onde. With this prosaure drop available for the ande, the computer frogeam was used to axamine a series of triangle heights and aplits between high and low preseure eides.

The fins used in the triangular ends require only to match the beight of the appropriate passage. The fewer the fins used, the higher the hydraulic radius and the lower tise presaure drop. The investigations of the ende inoluded the examination of both fins per inch on both sides and 5 fins per inch on the high pressure side and no fins at all in the low preseure side. The rasults of this irvestigations are shown in Figure 1 . This figure ehows that the ratio of the split of the core lace retween low and high preseure should be about 70 paroent to 30 peroent, respectively, if fins are used in both aldes of the ands and to be about 65 to 35 peroent if no fins are used in the low pressure side. The effeot of verying height of the triangluar ends is aleo vlearly shown. The offeow-of oliminating the ing in the low presaure side ia very pronounced, but until strees analysis and manufacturing detaila are completed, it oannot be fully determined whether or not these fins may be omftted.

LThe design selected Irom this inveetigation was io lise a height of 7 in . and a split of 65 percent or the low pressure side ard 35 percent on the high pressure side. With this geleotion, the estimgted overall preasure drop for the complete beat exchanger is 1.77 percent (Vith fins) or 1.65 percent (without fins). Both these numbers ar. below the aimed-for 2 percent, but it is believed that this toleranoe is desirable to allow for any possible developmental sz manufacturing diffioulties. The estimatoi tetal waight of this unit is 330 ib (with fine) and 303 lo (without fins). Both tisese waichts are based on the use of 0.005 in . triok Hastelloy plates.

LAYOUT DRAWINGS

Layout drawinge have beer started for the reoupirator design celected by Masa. The layout is based on the result of the final

Mores 1. Ratio defined to appouidx I
2. Core Geometry

Eleight=25.46 in., Fidth=25.19 in., Longthe7. 28 in.
3. Fins in ends, 5 per inch
4. No Pind oniy in low prensure alde
5. Height hown for one ond only

deaign boudy discused in the previoue seotion. The final layout and detail drawings (Task II) will inoorporate all modifications that the smail soalo tost program indicates are nocessary for optimum design.

It is during the layout phase of the program that many of the meohanical design and fabrioation development problems are first considereA. [Some of the main probleme with the MASA reouperstor ara due to ita eize and weight.] The overall aimensions are approximately 25 in. wide by 25 in. high by 31 in. long with a calculated weight of 303 lbs. Because of the size and weight the oore will probably have to be brazed in 2 or 3 seotions whion will then be welded together. In acoordance with the KASA request, provision is also being mado so that the manifold pana may be out off and rewelded in placc.
[Seversl possibilities are beine considered in an effort to reduce the weight.] On is the use of hollow header bare for fluld containment. Another is the possibility of usiñ fins only on the high pressure side of the triangular inlet sections. Pinaliy, the use of 0.005 in. thick tube sheets results in minimum tube sheet reight. To show the progress whioh hae been made to date in the preparation of the lajout drawing, the drawing is shown in AiResearch Draing L198005, inoluded with this report. This drawing is very preliminary and only partially oompleted.

SMALL SCALE TESTIHG

At this time the onjy test approved by HASA ia the axial conduotion test. This test consists of measuring the product ki (kwthormal conduotizity, Ameffective crose seotional area) on amall section of the recuparator core using th: ame finc, tube plates, and braze ailoy. As was disoused in the mall sosie teet progras (AiResearoh Report L-9371) enalytionl procedures are arailable for astimeting the effect on performancy of axial conduotion, however; the axial oondurtion parameter is a atrong funation of ki which is diffioult to estiaste for the following reapons:

1. The proper arosemectional arsa to ues with offset finso
2. The effect on the thermal conductivity of the tube plates and fins due to diffusion of the braze alloy.

Ti: test specimen for this test has been fabricated, using . 005 in . thick Hastelloy C plates,and testing will be oczpleted axiy in September, Sho test specimen is ahown in Figure 2; this figure also shows a section of rectangular offset fins.

The product, $k A$, will be determined from measurements of the electrical reaistance of the tast spacimens an shown in the test schomatic on Figure 2.

The electricel resistance is related to the therana conductivity by the following relations $k=\mathcal{L} \sigma T+B$, whare,
$k=$ therwal oonductivity at temperature T
$\sigma=$ electrioal conductivity at temperature T
T - absolute temperature
$\mathcal{L}=$ Lorenz number
$B=$ lattice conduction constant.
Since the electrioal reaistance and conduotivity are reiated as follows:

$$
\boldsymbol{R}=\frac{\mathrm{L}}{\sigma .}
$$

It follows that:
$\mathbf{k A}=\alpha \cdot \frac{L}{R} T+B$
The data on $k A$ is determined from the prooedure outinned above nill be used to verify the estirates of kA used in the design analysis of the reouperator. Provided kA exp. and kA onlc. are equal, it can bo concluded that the effect of axial heat leak on the recuperator performanon has ben oorreotis estimeted. The theory used for thie tast was take from C. S. Smith E. W. Palmer, "Fhermal Electrical Conductivities of Copper Alleys", Trans. AIM, 117, (1935) and W. RumeRothery, The Ketallio State, Oxford (1931).

L-9;75
Page 7

TUTURE FORK
All analytical Fork in this sogram has now been completed.
During the next reporticis feriod, the majority of the mork will concentrate on the preparation of the nanufacuring details. This work will Frogress with the layout drawings and sadi scals tests. It is hoped that during the next reportirig period NASA will make a deaision with regard to the flow distribution test.

COST MANAGEMENT

The percentage of the taske completed are saown in Figure 3. Also shown in this figure is a comparison betioen the ostimsted ard actual cost of the program to date.

appendix I

IBM 7074 PROGRAM E- 1400

END SECTICN PRESSURE DROPS - CCONTERFLOY
pLATE-FIN REAT EXCEANGERS
(A1Researoh Report AM-28Q)

【BM 707s PROGRAM HI 400
ENO SECTIOH PRESSURE DROPS - COUNTERFLOW PLATEのEIN HEAT EXCHANGERS

intrcouction

With the Incressing demend for very tigh effectlveness heat exchangars, the use of pure countertion piate-fin fes!gna has become faifly widesprad. [A computer program, Plate-fin 78 (HIOIO) hes been writtell to design the hatat transfer natrix required to meet a pecified problem.] With the sizing of this matrix, the overall desigris, however, not completed, as the flulds on both sides of the heat exchanger have to be introduced and removed trom the core. As In counterflow heat exchangers, the flow faca area is common to both flulds, simple manifolds are not sufficienc to eccomplish the fiuid distriburlan. Twu prime design concepts are avallable to accomplish the requited flow distribution, and these are lllustraied in figure la Where the pressure drop avallatile is low, the trlangular-shafed ends of figure la are generally preferred, but if pressure drop is not limited, then the rectangular design of figure ib may be preferred. For boin design concepts, the ends are fabricated as an Integral part of the heat transfer matilx, The plates used throughout cover the entire flow passage areas, but the fins used in the end sections need not necessarily have the same configuration as the fins in the counterflow core. Only the fin height must be malntalned throughout. In mast cases, as the temperature differences in the ends are small and as the flow is alnost entirely cross-flow, the heat transfer In these sections is negiligible (or is assumed to giva extra "safety margin" to the design). The dimenslons of the ands must ba minlmized to reduce heat exchanger walght; however, as the size of the ands are reduced, the pressure drop increases. As the geometry of the ands is not fully fixad by the design of the core aerrix. In order to determine the optimum selection for minimum weight and pressure drop, large number of geometries must be investigated. In order to feliltate this Invastigation, a computer program has been wrltten to determine the pressure drops In the end sections of a given configuration.

AM-2'88

DESCRIPTION OF PROCRAM

As previously mentioned, thero are two types of and design, triangular and rectangular, which mey be consldered. The program wlll calculate the pressure lossss in the four Individual ands of either type of design. The appruach taken to determining tive prassure losses in the two designs is slightly different, and they are deserlbed separately below. It must be stressed that this tima, the approsch belng used Is theoretically only. In the trlanguiar designs, there is sone indlcation from a briof serles of thsts that the approasth being used does fairly accuracely determine the true lossas. However, until a more comprehensive test program is conducted, or at least until some units have been bullt from this program and tested, thexpressure losses obtelned must be treated as approximations.

Irlangular End Shape Dosigns

It is first necessaiy to define the geometry of the ands, Some of this is ontalned directiy from the design of the counterflow metrix. Information used from the core design includes core width, stackup height, number of passages on both sldes, and plate spacing on both sldes. In addition, the height (h) of the ends must be defined, together with the number of fins and the fin thickness to ta used on both sides of the ends. One further parameter is requiled to define the end geometry, and the one chosen is the ratio a/w defined on Figure 2. With the end geometry defined, the effective flow width ond length in the ends for both the hl gh pressura and low pressure flulds is calculated. These effective dimenslons are also definad in figure 2. Whth bith flow rates and all terminal pressure and temperature condltion, of the heat exchanger known, the pressure drops are computed by the following steps. Mass veloclty on one side of one end is computed using the appropriate flow and based on the effective flow wideh. Reynolds .umber is computed from viscosity (read from curva) and hydreulic diameter of the fir speling selected (calculated wisnln the program). Friction factor is read from appropriated stored curve (Reynolds number versus friction factor for surface to be considerad -

Page 2

Is part of program input). An entrance shock loss coefficient is deter.. mined from the area ratio (end section free-flow erato frontal area) and stored curye. The curves used by tho program era the leminar expansion and contraction coefficients, and the turbulent expansion and contraction coefflcients ($\mathrm{Re}_{\mathrm{E}}=3000$) of Kays ar.d London flgura 20. If the end section Reynolds number is lass than 2000, the laminar curvas are usad. A second expansion or contraction loss is allowed for between and section and stralght core based on the area ratio between end section free-flow area and core free-fiow area. At this function, there is also a turning loss based on the angle θ defined in flgure 2. The coefficlent for this turning loss is taken from figure 14 of SAE 23. The overa:l pressure loss is then computed from the sum of friction term, the face shock loss, and the veloclty head change and turning l.iss at the junction of the ands with the core. Each of the four ands, low prassure Inlet and gutlel and high pressure Inlet and outlet, are computiod separately at the approprlate fluld properties and with the appropriate type of shock loss (expansion or contraction). The two ends of the heat oxchanger are identical is , he calculatluns, but if nan-similar ends are requlred, the results obtalned from different solutlons may be comblined.

Rectanquiar End Shape Design

With this type of design and with the core geometry specified, onl; the helght (h) and tre fin characteristics of the ends nead be defined. In the straight-through (low pressure) slde o. the unlt, the pressure loss In the ends is compluted from a filiction tarm anci from a single shock loss based on the free flow to frontal rea ratio. In the high pressure side where the flow enters at right angles :o its flow path through the core, the pressure loss calculetions are rather more complicated. Two velocity heads are computed, one based on entrance and exit areas (that is, based on h), and one basec on the second set of fins In the and (uses core width, w). Using the velocity head based on h, a fiction term is calculated far the first set of flins, a shock loss for the entrance or exit, and a shock losy (expansion or contraction) from these fins Into the second set. A

Page 3
turning loss coefficient, also based on the "h" velocity head, is added to the pressure loss. This coefficient is an input quantity and should nomally be hased on a 90° turn (1.6 from SAE 23, Figure 14). The turning coefficient was left as an input quantity so that it may be varied at the user's discretion. This approach will be of particular advantage if test data is obtained, as the coefficient may be varied until agreement with the test data is achieved. The velocity head in the second set of fins is used onily to conpute a friction drop through that iection.

INFUT INSTRUCTIONS
A tydical input shee: for this program is shown in figure 3 . In order to ciarify the sheet: the following instructions have been prepared.

CARD 1. Heading (80 Holerith characters avallable)

TABLES

Control Card, (with numbers of pairs of points in each of nine tabies?
All data stored 8 words per card and uses LAIN 2.90 pairs of pulnts maximum.

NVIS NVISH FF FFH EXL CQNL EXT CONT TURN (915)
Table 1. Temperature ${ }^{0} R$) vs Viscosity (lb/sec ft ; for low pressure side fluid.
Table 2. Temperature \mathcal{J}_{R}; $v \operatorname{Viscosity~}^{(l b / s e c} f t$) for high pressure side fluid.
Table 3. Reynolds No. vs Friction Factor for low pressure side tins.
Table 4. Reynolds No. vs Friction Factor for high presgure side fins.
Table 5. Area Ratio vs Laminar Expansion Coefficients.
Table 6 . Area Ratio vs Laminar Contraction Coefficients.
Table 7. Area Ratio vs Turbulent Expansion Coefficients.
Kays and London Figure 20

- Table 8. Area Ratio vs Turbulent Contraction Coefficients.)

Table 9^{*} Turning Angle (sin 9) vs Turning Coefficient (SAE 23 Fig. 14)
*In this table it is the sine of the angle θ that is stored in the program.

CAR' 2. Control Card for Other Jariables (315:
J1 No. of 'jets of cards 3 and 4 (5 max)
32 No. of sets of cards 5 and 0 (12 max)
33 No. of sets of cards 7 (50 max)
CARD 3.
WIDTH Heat exchanger core width - in.
ANPI. Total No. of passages on low pressure side of heat exchanger
ANPH Total No. of passages on high pressure side of heat exchangar
ALN Stack-up height of heat exchanger, in.
HPL Plate spacing, low pressure side, in.
HPH Plate spacing, high pressure side, in.
TEST $1=0.0$ if triangulim ends $=1.0$ if rectangular ends
BWL Ac/bw for fins in counterflow core, low pressure side.
CARD 4.
Buty AC/bw for fins in counterflow core, high pressure sice
WTF Weight factor, Weight of ends $=$ WTF X Volume
AK Turning loss coefficient for rectanguiar ends
(Normally $=1.6$ rectengular 0.0 riangular)
CARD 5.

WL Flow rate, low pressure side, ib per sec
WH Flow rate, high pressure side, Ib per sec
IINL Inlet temperature, L. P. side, ${ }^{0}{ }_{R}$
TINH Inlec Tomperature, H.P. side, ${ }^{\circ} \mathrm{R}$
TOUTL Outlet Temperature, L.P. side, ${ }^{\circ} R$
TOUTH Outlet temperature, H.P. side, ${ }^{\circ} R$
PINL Inlet pressure, L.P. side, psia
PINH Inlet pressure, H.P. side, psia

CARD 6.

POUTL	Outlet pressure, L. P. side, psia	
POUTH	Outlet pressurc, H.F. side, psia	
ROEL	Density factor, L.P. sides $\beta=$ ROEL	$\frac{P, p s i a}{T}$
ROEH	Density factor, H.P. side	

CARD 7.
HEIGHT Height of triangle or rectangle, defined in figure 1.
RATIO a / w as defined in Figure 1 , if greater this 0.5 wider face will be low pressure side, if less than 0.5 nider face will be high pressure side.
ANFL ${ }^{\text {* }} \quad$ No. of fins per inch, in low pressure ends.
ANFH No. of fins per inch, in high pressure ends.
TFL Fin thickness of fins in low pressure ends, in.
TFH Finthickness of fins in high pressure ends, ir.
*If desired to look, at zero fins on either side ANF $=0.0$ and also TF $=0.0$. Care should be taken in this case to be sure that friction factor is for flow between flat plates.

OUTPUT CLARIFICATION

A typical output sheet is attached as Figure 4. The first line of data shows the flow, temperature, pressure data jeing examined. The second line defines the end geometry being examined while the third line identifies the counterflow core.

Line 4 presents the solutions where all four end pressure drops are shown both in psia and as a percentage of the IVLET pressure on the appropriate side.

Line 5 presents additional nformation including volume of one end, weight of one end and the length of the two sides of the triangular inds. If rectangular ends the number under "dimensions" are the width of the wore and the height of the ends. Also shown in Line 5 are the hydrautic radii in the ends and the Reynolds numbers in the ends.

NOTE:
At the time of writing a minor error in output furmat exists in line 3 where the passage heights are shown as ${ }^{*} 153$ and ${ }^{* 170}$ this should read 0.153 and 0.178 and will be corrected if the program is recomplished for some other reason. ,

Figure 1. Counterflow Design Concepts

AM-288
Page 8

> EFFECTIVE FLOW WIDTH (LP) $=y$ EFFECTIVE FLOW WIDTH (HP) $=x$ EFFECTIVE FLOW LENG:H (LF) PER END $=x / 2$ EFFECTIVE FLOW LENGTH (HP) PER ENO $:=y / 2$ TURNING ANGLE (LP) $\left.=\theta_{L}\right\}$ TURNING ANGLE $\left.(H P)=\theta_{H}\right\} S I N E$ IS USED IN PROGRAM

NOTẼ: SKETCH SHOWS TWO ENDS OF TRIANGULAR DESIGN TOGETHER, WITH CORE REMOVED

Figure 2. iriangular End Geometry

IBM 7074 Program H 1400
End SEction PrEssure Drops - Cpuntarflof Plate-fin NEAT EXCHANGERS

AIRESEARCH MANUFACJURING DIVISION
AM-286
Page 11

